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Abstract. In times of growing concern about the impacts of air pollution across the globe, lower-cost sensor 18 

technology is giving the first steps in helping to enhance our understanding and ability to manage air quality issues. 19 

While the benefits of greater spatial coverage and real-time measurements that these systems offer are evident, 20 

challenges still need to be addressed regarding sensor reliability and data quality. Given the limitations imposed by 21 

intellectual property, commercial implementations are often "black boxes", which represents an extra challenge as it 22 

limits end-users' understanding of the data production process. In this paper we present an overview of the QUANT 23 

(Quantification of Utility of Atmospheric Network Technologies) study, a comprehensive 3-year assessment across a 24 

range of urban environments in the United Kingdom. QUANT stands out as one of the most comprehensive studies 25 

of commercial air quality sensor systems carried out to date, encompassing a wide variety of companies in a single 26 

evaluation and including two generations of sensor technologies. Integrated into an extensive data set open to the 27 

public, it was designed to provide a long-term evaluation of the precision, accuracy, and stability of commercially 28 

available sensor systems. This overview discusses the assessment methodology, and key findings showcasing the 29 

significance of the study. The results shown here highlight the significant variation between systems, the incidence of 30 

corrections made by manufacturers, the effects of relocation to different environments and the long-term behaviour 31 

of the systems. Additionally, the importance of accounting for uncertainties associated with reference instruments in 32 

sensor evaluations is emphasised. Practical considerations in the application of these sensors in real-world scenarios 33 
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are also discussed, and potential solutions to end-users data challenges are presented. Offering key information about 34 

the sensor systems' capabilities the QUANT study will serve as a valuable resource for those seeking to implement 35 

commercial solutions as complementary tools to tackle air pollution. 36 

Keywords: air pollution, commercial sensor systems, QUANT, long-term evaluation. 37 

1. Introduction 38 

Emerging lower-cost sensor systems1 offer a promising alternative to the more expensive and complex monitoring 39 

equipment traditionally used for measuring air pollutants such as PM2.5, NO2, and O3 (Okure et al., 2022). These 40 

innovative devices hold the potential to expand spatial coverage (Malings et al., 2020) and deliver real-time air 41 

pollution measurements (Tanzer-Gruener et al., 2020). However, concerns regarding the variable quality of the data 42 

they provide still hinder their acceptance as reliable measurement technologies (Karagulian et al., 2019; Zamora et 43 

al., 2020).  44 

Sensors face key challenges such as cross-sensitivities (Cross et al., 2017; Levy Zamora et al., 2022; Pang et al., 2018), 45 

internal consistency (Feenstra et al., 2019; Ripoll et al., 2019), signal drift (A. Miech et al., 2023; Li et al., 2021; 46 

Sayahi et al., 2019), long term performance (Bulot et al., 2019; Liu et al., 2020) and data coverage (Brown & Martin, 47 

2023; Duvall et al., 2021; Feinberg et al., 2018). Additionally, environmental factors such as temperature (Bittner et 48 

al., 2022; Farquhar et al., 2021), and humidity (Crilley et al., 2018; Williams, 2020) can significantly influence sensor 49 

signals. 50 

In recent years, manufacturers of both sensing elements (Han et al., 2021; Nazemi et al., 2019) and sensor systems 51 

have made significant technological advances (Chojer et al., 2020). For example, there are now commercial and non-52 

commercial systems equipped with multiple sensing elements to measure distinct pollutants (Buehler et al., 2021; 53 

Hagan et al., 2019; Pang et al., 2021) helping mitigating the effects of cross-interferences. Additionally, enhancements 54 

in electrochemical sensors have been demonstrated in terms of their specificity (Baron & Saffell, 2017; Ouyang, 55 

2020).  56 

However, the complex nature of their responses, coupled with their dependence on local conditions means sensor 57 

performance can be inconsistent (Bi et al., 2020). This complicates the comparison of results or anticipating sensor 58 

future performance across different studies. Moreover, assessments of sensor performance found in the academic 59 

literature often rely on a range of protocols (e.g., CEN (2021) and Duvall et al. (2021)) and data quality metrics (e.g., 60 

Spinelle et al. (2017) and Zimmerman et al. (2018)), with many studies limited to a single-site co-location and/or of 61 

short-term evaluations that do not fully account for broader environmental variations (Karagulian et al., 2019).  62 

The calibration of any instrument used to measure atmospheric composition is fundamental to guarantee their accuracy 63 

(Alam et al., 2020; Long et al., 2021; Wu et al., 2022). Using out-of-the-box sensor data without fit-for-purpose 64 

calibration can produce misleading results (Liang & Daniels, 2022). An effective calibration involves identifying and 65 

correcting systematic errors in the sensor readings. For standard air pollution measurement techniques, calibration is 66 

 
1 The term "Sensor Systems" refers to sensors housed within a protective case, which includes a sampling and power system, 

electronic hardware and software for data acquisition, analog-to-digital conversion, data processing and their transfer (Karagulian 

et al., 2019). Unless specified otherwise, the term "sensor" will be used to refer to "Sensor Systems". 
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often performed in a controlled laboratory environment (Liang, 2021), or by sampling gas from a certified standard 67 

cylinder in the field.  68 

Yet, the aforementioned challenges with lower-cost sensor-based devices suggest that such calibrations may not 69 

always accurately reflect real-world conditions (Giordano et al., 2021). A frequent approach involves co-locating 70 

sensors alongside regulatory instruments in their intended deployment areas and/or conditions and using data-driven 71 

methods to match the reference data (Liang & Daniels, 2022). Numerous studies have investigated the effectiveness 72 

of calibration methods for sensors e.g. (Bigi et al., 2018; Bittner et al., 2022; Malings et al., 2020; Spinelle et al., 2017; 73 

Zimmerman et al., 2018), including selecting appropriate reference instruments (Kelly et al., 2017), the need for 74 

regular calibration to maintain accuracy (Gamboa et al., 2023), the necessity of rigorous calibration protocols to ensure 75 

consistency (Kang et al., 2022), and transferability (Nowack et al., 2021) of results. Ultimately, the reliability and 76 

associated uncertainty of any applied calibration will influence the final sensor data quality.  77 

For end-users to make informed decisions on the applicability of air pollution sensors, a realistic understanding of the 78 

expected performance in their chosen application is necessary (Rai et al., 2017). Despite this, there has been relatively 79 

little progress in clarifying the performance of sensors for air pollution measurements outside of the academic arena. 80 

This is largely due to the significant variability in both the number of sensors and the variety of applications tested, 81 

as well as the availability of highly accurate measurement instrumentation and/or regulatory networks to those outside 82 

of the atmospheric measurement academic field (e.g. Lewis and Edwards (2016) and Popoola et al. (2018)). From a 83 

UK clean air perspective, this ambiguity represents a major problem. The lack of a consistent message undermines 84 

the exploitation of these devices’ unique strengths, notably their capability to form spatially dense networks with rapid 85 

time resolution. Consequently, there is potential for a mismatch in users’ expectations of what sensor systems can 86 

deliver and their actual operating characteristics, eroding trust and reliability. 87 

In this work, as part of the UK Clean Air program funded QUANT project, we deployed a variety of sensor 88 

technologies (43 commercial devices, 119 gas and 118 PM measurements) at 3 representative UK urban sites —89 

Manchester, London and York—  alongside extensive reference measurements, to generate the data for an extensive 90 

in-depth performance assessment. This project aims to not only evaluate the performance of sensor devices in a UK 91 

urban climatological context but also provide critical information for the successful application of these technologies 92 

in various environmental settings. To our knowledge, QUANT is the most extensive and longest-running evaluation 93 

of commercial sensor systems globally to date. Furthermore, we tested multiple manufacturers' data products for a 94 

significant number of these sensors to understand the implications of local calibration. This comprehensive approach 95 

offers unprecedented insights into the operational capabilities and limitations of these sensors in real-world conditions. 96 

Significantly, some of the insights gathered during QUANT have contributed to the development of the Publicly 97 

Available Specification (PAS 4023, 2023), which provides guidelines for the selection, deployment, maintenance, and 98 

quality assurance of air quality sensor systems. 99 

In the following sections, we delve into the methodology and provide an overview of the QUANT dataset, as well as 100 

a discussion of some of the key findings and potential considerations for end-users. 101 

2. QUANT study design  102 

2.1 Main study 103 
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The Main QUANT assessment study aimed to perform a transparent long-term (19 Dec 2019 - 31 Oct 2022) 104 

evaluation of commercially available sensor technologies for outdoor air pollution monitoring in UK urban 105 

environments. Four duplicates of five different commercial sensor devices (Table 1) were purchased in Sept 2019 106 

for inclusion in the study, with the selection criteria being: market penetration and/or previous performance 107 

reported in the literature, ability to measure pollutants of interest (e.g. NO2, NO, O3, and PM2.5), and capacity to 108 

run continuously reporting high time resolution data (1-15 min data) ideally in near real-time with data accessible 109 

via an API. 110 

Table 1. Main QUANT devices description. The 20 units offered 56 gas and 56 PM measurements in total. For a detailed 111 

description of the devices see Section S1 in the Supp. 112 

Product* 

(# units) 
Company 

Measurements 
Cost (£)** 

NO NO2 O3 CO CO2 PM1 PM2.5 PM10 

AQY (4) Aeroqual - ✔ ✔ - - - ✔ ✔ ~4.7K 

AQM (4) AQMesh ✔ ✔ ✔ - ✔ ✔ ✔ ✔ ~8.6K 

Ari (4) QuantAQ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ~8.6K 

PA (4) PurpleAir - - - - - ✔ ✔ ✔ ~0.3K 

Zep (4) Earthsense ✔ ✔ ✔ - - ✔ ✔ ✔ ~7K 

*AQY: Aeroqual; AQM: AQMesh; Ari: Arisense; PA: PurpleAir; Zep: Zephyr.  

**Cost (Sep 2019) per unit including UK taxes and associated contractual costs (i.e., communication, data access, sensor 

replacement, etc.). 

To capture the variability of UK urban environments, identical units were installed at three carefully selected field 113 

sites. Two of these sites are highly instrumented urban background measurement supersites: the London Air 114 

Quality Supersite (LAQS) and the Manchester Air Quality Supersite (MAQS), located in densely populated urban 115 

areas with unique air quality challenges. The third site is a roadside monitoring site in York, which is part of the 116 

Automatic Urban and Rural Network (AURN, https://uk-air.defra.gov.uk/data/), representing a urban environment 117 

more inlfuenced by traffic. This selection strategy ensures that the QUANT study's findings reflect the dynamics 118 

of urban air quality across different UK settings, while providing comprehensive reference measurements. Further 119 

details about each site can be found in Section S3 in the Supp., and the available reference instrumentation in 120 

Section S4. 121 

Initially, all the sensors were deployed in Manchester for approximately 3 months (mid-Dec 2019 to mid-Mar 122 

2020) before being split up amongst the three sites (Fig. 1). At least one unit per brand was re-deployed to the 123 

other two sites (mid-March 2020 to early-July 2022) leaving two devices per company in Manchester to assess 124 

inter-device consistency. In the final 4 months of the study, all the sensor systems were relocated back to 125 

Manchester (early July 2022 to the end of October 2022).  126 
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 127 

Figure 1. Main Quant and Wider Participation Study (WPS) timeline. 128 

2.2 Wider Participation Study 129 

The Wider Participation Study (WPS) was a no-cost complementary extension of the QUANT assessment, 130 

specifically designed to foster innovation within the air pollution sensors domain. This segment of the study took 131 

place entirely at the at MAQS from 10th June 2021 to 31st October 2022 (Fig. 1). It included a wider array of 132 

commercial platforms (9 different sensor systems brands), and offered manufacturers the opportunity to engage in 133 

a free-of-charge impartial evaluation process. Although participation criteria matched those of the Main QUANT 134 

study, a key distinction lay in the voluntary nature of participation: vendors were invited to contribute multiple 135 

sensor devices throughout the WPS study (see Table 2). Participants were able to demonstrate their systems’ 136 

performance against collocated high-resolution (1-minute) reference data at a state-of-the-art measurement site 137 

such as the Manchester supersite.  138 

Table 2. The 23 WPS devices deployed at the Manchester supersite provided 63 gases and 62 PM measurements in total. 139 

For a detailed description of the devices see the Section S2 in the Supp. 140 

Product* 

(# units) 
Company 

Measurements 

NO NO2 O3 CO CO2 PM1 PM2.5 PM10 

Mod (3) QuantAQ - - - - - ✔ ✔ ✔ 

AQM (3) AQMesh ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Atm (2) RLS** - - - - - ✔ ✔ ✔ 

IMB (2) Bosch - ✔ ✔ - - - ✔ ✔ 

Poll (2) Oizom ✔ ✔ ✔ ✔ ✔ - ✔ ✔ 

AP (3) Kunak ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

SA (3) Vortex IoT - ✔ ✔ - - - ✔ ✔ 

NS (3) Clarity - ✔ - - - ✔ ✔ ✔ 

Prax (2) SCS*** ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

 141 

*Mod: Modulair; AQM: AQMesh; Atm: Atmos, Polludrone: Poll; AP: Kunak Air Pro; SA: Silax Air, NS: Node-S, Prax: 142 

Praxis. **RLS: Respirer Living Sciences. ***SCS: South Coast Science. 143 
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2.3 Data collection, co-located reference data and data products 144 

All sensor devices were installed at the measurement sites as per manufacturer recommendations. In addition to 145 

the device supplier's own cloud storage (accessed on-demand via each supplier’s web portals), an automated daily 146 

scraping of each company’s API was performed to save data onto a secure server at the University of York to 147 

ensure data integrity. PurpleAir units were exempt from this due to a lack of mobile data connection and poor 148 

internet signal at the sites; instead, readings were locally collected and manually uploaded. Minor pre-processing 149 

was applied at this stage to standardise the data format across all the devices. No outlier checks or data 150 

modifications were applied. 151 

In addition to providing an independent assessment of sensor performance, QUANT also aimed to contribute to 152 

device manufacturers to help advance the field of air pollution sensors. To this end, three separate 1-month periods 153 

of reference data, spaced every 6 months, were shared with each supplier, provisional data soon after each period, 154 

and ratified data when available. For an overview of reference instrumentation at each site refer Table S1, and for 155 

details on the quality assurance procedures applied to the reference instruments see Table S2.  156 

Access to colocated reference data allowed the companies to assess sensors’ performance and, if they chose, to 157 

generate and provide additional calibrated data products. These products are distinct data versions provided by 158 

manufacturers throughout QUANT, before and/or after sharing reference data —for instance, “out-of-box”, “cal1”, 159 

“cal2”, etc. Figures S1 and S2 show a time-line of the different data products. To see the dates and periods of the 160 

shared reference data refer to Table S3. All reference data was embargoed until it was released to all manufacturers 161 

simultaneously to ensure consistency across manufacturers. Not every manufacturer opted to use this data to apply 162 

corrections or improve calibrations, but if they chose to do so, the updated measurements were treated as a separate 163 

data product. Device calibrations were performed solely at the discretion of the manufacturers without any 164 

intervention from our team, thus limiting the involvement of vendors/manufacturers in the provision of standard 165 

sensor outputs and unit maintenance as would be required by any standard customer. 166 

3. Results and discussion 167 

A key challenge in sensor performance evaluation is the high spatial and temporal variability errors that impact 168 

the accuracy of their readings, making the application of laboratory corrections more challenging. Furthermore, 169 

the overreliance on global performance metrics, such as R2 (i.e., the Coefficient of Determination), RMSE (i.e., 170 

the Root Mean Squared Error), and MAE (i.e., the Mean Absolute Error) is an important issue when assessing 171 

sensors. While these metrics provide a general understanding of sensor performance, they can be limiting or even 172 

misleading, restricting a comprehensive understanding of the error structure and the measurement information 173 

content (Diez et al., 2022).  174 

In response to these challenges, the QUANT assessment represents the most extensive independent appraisal of 175 

air pollution sensors in UK urban atmospheres. As the results presented here illustrate, QUANT is dedicated to 176 

examining sensor performance through multiple complementary perspectives and metrics, aiming to integrate 177 

these to accurately reflect the complexity of this dataset. By making the dataset open-access, it enables other 178 

stakeholders to evaluate it based on criteria that align with their specific needs and contexts. The following sections 179 

aim to provide an overview of the data and provide initial findings, with a focus on those that are most relevant to 180 

end-users of these technologies. 181 
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3.1 Inter-device precision  182 

Inter-device precision refers to the consistency of measurements across multiple devices of the same type, an 183 

important characteristic to ensure the reliability of sensor outputs over time (Moreno-Rangel et al., 2018). During 184 

QUANT, all the devices were collocated for the first 3 months and the final 3 months of the deployment to assess 185 

inter-device precision and its changes over time. Fig. 2 shows the inter-device precision (as defined by the CEN/TS 186 

17660-1:2021, i.e., the "between sensor system uncertainty" metric: us(bs, s)) of PM2.5 measurements during these 187 

periods. While most of the companies display a certain level of inter-device precision stability in each period 188 

(except for one, with a seemingly upward trend in the final period), there are evident long-term changes. Notably, 189 

out of the four manufacturers assessed in the final period (each having 3 devices running simultaneously), three 190 

experienced a decline in their inter-device precision compared to two years earlier. This is likely due to both 191 

hardware degradation but also drift in the calibration, which at this point had been applied between 16 and 34 192 

months prior (depending on the manufacturer). For extended periods, inconsistencies among devices from the 193 

same manufacturer might emerge, leading to varying readings under similar conditions. Consequently, data 194 

collected from different devices may not be directly comparable, which could result in inaccuracies or 195 

misinterpretations when analyzing air quality trends or making decisions.  196 

 197 

Figure 2. The inter-device precision of PM2.5 measurements from "identical" devices across the 5 companies 198 

participating in QUANT is assessed using the "between sensor system uncertainty" metric (defined by the CEN/TS 199 

17660-1:2021 as u(bs, s)). Each line represents this metric as a composite of all sensors per brand (excluding units with 200 

less than 70% data) within a 40-day sliding window.  201 

It is worth noting that the inter-device precision provides no information on the accuracy of the sensor 202 

measurements; a batch of devices may provide a highly consistent, but also highly inaccurate measurement of the 203 

target pollutant.  204 

The “target plot” (as shown in Fig. 3) is a tool commonly used to depict the bias/variance decomposition of an 205 

instrument’s error relative to a reference (for more details see Jolliff et al. (2009)). The mean error bias (MBE) is 206 

used to characterise accuracy and precision is quantified by the centered Root Mean Squared Error (cRMSE, e.g.  207 

Kim et al. (2022) also called unbiased Root Mean Squared Error (uRMSE, e.g. Guimarães et al. (2018)). Fig. 3 208 

visualises the performance of a set of PM2.5 sensors of the WPS deployment for the first 2 months (out-of-box 209 

data) and the last 3 months of colocation (manufacturer-supplied calibrations). In addition to highlighting which 210 

devices are most accurate, Fig. 3 also provides an additional perspective of inter-device precision. 211 
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 212 

 213 

Figure 3. Target diagrams for the WPS PM2.5 measurements during the initial co-location period (Jun-Jul 2021, left) 214 

and final co-location period (Aug-Oct 2022, right). The error (RMSE) for each instrument is decomposed into the MBE 215 

(y-axis) and cRMSE (x-axis). Each point represents an individual sensor device, with duplicate devices having the same 216 

colour. Since only units with more than 75% of the data were considered, the plot on the right shows fewer units than 217 

the plot on the left. 218 

3.2 Device accuracy and collocation calibrations 219 

Sensor measurement accuracy denotes how close a sensor's readings are to reference values (Wang et al., 2015). 220 

Characterizing this feature is imperative for establishing sensor reliability and making informed decisions based on 221 

its data. Fig. 4 shows that collocation calibration can greatly impact observed NO2 sensor performance in a number 222 

of ways. Firstly, measurement bias is often, but not always, reduced following calibration, as evidenced by a general 223 

trend for devices to migrate towards the origin (RMSE = 0 ppb). Secondly, it can help to improve within-manufacturer 224 

precision by grouping sensor systems from the same company closer together. The figure also highlights a 225 

fundamental challenge with evaluating sensor systems: the measured performance can vary dramatically over time —226 

and space— as the surrounding environmental conditions change. To quantify this, 95% Confidence Intervals (CIs) 227 

were estimated for each device using bootstrap simulation and are visualised as a shaded region. For the out-of-box 228 

data, these regions are noticeably larger than in the calibrated results for most manufacturers, suggesting that 229 

colocation calibration has helped to tailor the response of each device to the specific site conditions. This is reinforced 230 

by the cRMSE component reducing by a greater extent than the MBE, in the terminology of machine learning the 231 

calibration has helped reduce the variance portion of the bias-variance trade-off.  232 
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 233 

Figure 4. Effect of colocation calibration on NO2 sensor accuracy. The accuracy is quantified using RMSE, which is 234 

decomposed into MBE (y-axis) and cRMSE (x-axis). 95% confidence regions were estimated using bootstrap sampling. 235 

The left panel displays results from the period Jun - Jul 2021 (‘out-of-the-box’ data), while the right-hand panel 236 

summarises Aug 2021 when calibrations were applied for all the WPS manufacturers. 237 

However, it is important to note a limitation of Target Plots: they primarily focus on sensor behaviour around the 238 

mean. Therefore, the collective improvement evidenced by Fig. 4 might be only partial. For applications where it is 239 

important to understand how calibrations impact lower or higher percentiles, considering other metrics or visual tools 240 

would be advisable. An example of this is the absolute and Relative Expanded Uncertainty (REU, defined by the 241 

Technical Specification CEN/TS 17660-1:202). Fig. 5 illustrates how NO2 calibrations might not only improve 242 

collective performance around the mean (as indicated by the dotted red line in Fig. 5 and previously displayed in the 243 

target plot) but across the entire concentration range. 244 

 245 

Figure 5. The top plots display the REU (%) across the concentration range, while the bottom plots depict the Absolute 246 

Uncertainty (ppb) —both before (left plots) and after (right plots) calibrating NO2 WPS systems. The shaded areas 247 
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represent the collective variability evolution (all sensors from all companies) of both metrics. These plots were constructed 248 

using the minimum and maximum value of the REU and the Absolute Uncertainty for the entire concentration range. 249 

However, a note of caution when interpreting results from observational studies such as these is that it is impossible 250 

to ascertain a direct causal relationship between calibration and sensor performance as there are numerous other 251 

confounding factors at play (Diez et al., 2022). Notably these two data products are being assessed over different 252 

periods when many other factors will have changed, for example, the local meteorological conditions as well as 253 

human-made factors such as reduced traffic levels following the COVID-19 lockdown that commenced in March 254 

2020. 255 

3.3 Reference instrumentation is key 256 

A common assumption when evaluating the performance of sensors is that the metrological characteristics of the 257 

sensor predominantly influence discrepancies detected in colocations. While this presumption can often be justified 258 

due to both devices' relative scales of measurement errors, it is not always the case. Since every measurement is subject 259 

to uncertainties, it is crucial to consider those associated with the reference when deriving the calibration factors of 260 

placement. 261 

Fig. 6 (left plots) displays the performance of a NO2 reference instrument (Teledyne T200U) specifically installed for 262 

QUANT, located next to the usual instrument at the Manchester supersite (Teledyne T500). Although they use 263 

different analytical techniques (chemiluminescence for the T200U and Cavity Attenuated Phase Shift Spectroscopy 264 

for the T500), their measurements are highly correlated (R2~0.95). However, it's possible to identify a proportional 265 

bias (slope=0.69), attributed to retaining the initial calibration (conducted in York) without subsequent adjustments, 266 

a situation exacerbated by an unnoticed mechanical failure of one of the instrument's components. The REU 267 

demonstrates that, under these circumstances, an instrument designated as a reference does not meet the minimum 268 

requirements set out by the Data Quality Objectives (DQOs) of the EU Air Quality Directive 2008/50/EC. Figure S3 269 

shows a unique sensor evaluated against both the T500 and the T200U. The comparison against the T200U yields 270 

better results, suggesting that, in a hypothetical scenario where it was the only instrument at the site, this could lead 271 

to misleading conclusions. This situation reinforces the idea that instruments should not only be adequately 272 

characterised but also undergo rigorous quality assurance and data quality control programs, as well as receive 273 

appropriate maintenance (Pinder et al., 2019). All of this must be performed before and during the use of any 274 

instrument. 275 

For PM monitoring the current EU reference method is the gravimetric technique (CEN EN 12341 , 2023), which is 276 

a non-continuous monitoring method that requires weighing the sampled filters and off-line processing of the results. 277 

Techniques that have proven to be equivalent to the reference method (called “equivalent to reference” in the EU Air 278 

Quality Directive) are very often used in practice. In the UK context, the Beta Attenuated Monitor (BAM) and FIDAS 279 

(optical aerosol spectrometer) are equivalent-to-reference methods commonly used as part of the Urban AURN 280 

Network (Allan et al., 2022). To illustrate these differences in practice, Fig. 6 compares these two equivalent-to-281 

reference PM2.5 measurements obtained with a BAM (AURN York site, located on a busy avenue), and a FIDAS unit 282 

specifically installed for QUANT. During this specific period, they do not fully agree (R2 = 0.87). Despite a not very 283 

pronounced bias (slope=0.80), the dispersion of points around the best-fit line is noticeable, limiting the linearity of 284 

the FIDAS compared to the BAM.  285 
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In the hypothetical case that the BAM were to be considered the reference method (arbitrarily chosen for this example 286 

as it is the current instrument at the AURN York site) when assessing the FIDAS under these test conditions, it would 287 

only meet the criterion stipulated by the EU DQOs for indicative measurements, but not for fixed (i.e., reference) 288 

measurements. Of course, this example is primarily intended to illustrate the magnitude of differences between both 289 

methods for this particular application, and by no means does this observation imply that the FIDAS measurements 290 

are inherently problematic. 291 

 292 

Figure 6. The left plots depict the comparison between the Teledyne T200U (chemiluminescence analyzer) and the 293 

reference method (Teledyne T500 CAPS analyzer) at the Manchester supersite. The plots to the right illustrate PM2.5 294 

measurements in York, taken with a FIDAS instrument (optical aerosol spectrometer) and a BAM 1020 (beta 295 

attenuation monitor), both equivalent-to-reference methods. While the top plots show the regression (including some 296 

typical single-value metrics), those on the bottom present the REU alongside the DQOs defined by the European 297 

Directive 2008/50/EC. 298 

Although these two instruments (BAM and Fidas) show a greater concordance between themselves than with sensors 299 

(for the comparison of two sensor systems against the BAM and the Fidas, refer to Fig. S4), the choice of the 300 

measurement method can have a considerable impact on evaluations of this type. This underscores the importance of 301 

adequately characterising the uncertainties of the reference monitor when evaluating sensors. 302 

3.4 Systems performance after location transfer  303 

An extreme example of sensor performance varying due to environmental conditions is when sensors are moved 304 

between locations, as their apparent performance may vary drastically. Fig. 7 displays the REU and regression 305 

plots for four of the same PM2.5 sensor system in two periods: April-June 2022 when the devices were working 306 

across the 3 sites (York, Manchester and London), and August-October 2022 when they were all reunited in 307 

Manchester. The RMSE remains reasonably consistent between the devices across the periods and locations. 308 

However, the device that moved from York to Manchester saw its slope change from 0.69 to 0.86. Because this 309 

device’s slope is consistent with the other units when running in Manchester, this is likely due to the different 310 
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sensor responses in the specific environments. The precise cause of this change is not immediately evident and 311 

will be the focus of a follow-up study, but could be due to changes in local conditions impacting sensor calibration 312 

and/or differences in actual PM2.5 sources and particle characteristics at the sites (Raheja et al., 2022).  313 

 314 

Figure 7. Regression (top) and REU (bottom) plots showing data from four PM2.5 sensors (same manufacturer) over 2 time 315 

periods: Apr-Jun 2022 and Aug-Oct 2022. The four devices were in separate locations in the first period, but all deployed 316 

in Manchester in the second. 317 

A second example of performance changing between locations is presented in Fig. 8, showing NO2 data from two 318 

sensor systems (different brands, one shown on top of the other) before (left plots) and after (right plots) they were 319 

moved from Manchester to London in March 2020. Both sensors saw a reduction in agreement with the reference 320 

instrument at the London site compared to Manchester, despite both these sites being classified as urban-background 321 

with reference instrument performance regularly audited by the UK National Physical Laboratory. 322 
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 323 

Figure 8. Comparison of NO2 measurements for two systems (A and B) that were moved between Manchester (left plots) 324 

and London (right plots). The Manchester deployment was from January - February 2020, and the London data was 325 

recorded from April - May 2020. 326 

The primary distinction between both systems’ behaviour lies in the fact that the sensor located in the top row, even 327 

after being relocated to London, maintains a linear response (albeit slightly more degraded than that observed in 328 

Manchester, as the R2 and RMSE show). In contrast, in the second system (bottom row), the response is notably 329 

noisier as the Standard Error (SE) —which is the dispersion of the data around the best-line fit line, i.e., the remaining 330 

error after bias correction. In scenarios akin to this latter, where there is a high variance in the residuals, a linear 331 

correction will not provide a significant improvement. While more sophisticated corrections could be applied, these 332 

will be limited by domain knowledge of the end-user, and potentially by other complex data sources that might be 333 

available. However, it is important to remember that additional post-processing could increase the risk of overfitting 334 

(Aula et al., 2022). On the other hand, for cases like the top plots, users might benefit from trying to correct them 335 

using simple linear correction (e.g. using reference instruments if available) or other approaches that could provide 336 

means for zero and span correction. A straightforward and cost-effective example could be the use of diffusion tubes 337 

for the case of NO2, as discussed in Section 3.6.  338 

3.5 Long-term stability 339 

The long-term stability of sensor response is also an important facet of its performance, especially for certain use 340 

cases such as multi-year network deployments. There can be multiple causes of long-term changes to sensor 341 

response, for example, particles settling inside the sampling chamber in optical-based sensors(e.g. Hofman et al. 342 

(2022)), or the gradually changing composition of electrochemical cells (e.g. Williams (2020)). How these changes 343 

manifest themselves in the data must be identified if ways to account for them are to be implemented. 344 
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Fig. 9 shows the temporal nature of the O3 and NO2 errors (MBE, cRMSE and RMSE) from a sensor system 345 

between February 2020 and October 2022. The O3 shows (Fig. 9a) a gradual increase in the overall measurement 346 

error, largely due to an increase in the MBE. It also shows a distinct seasonality MBE, increasing by a factor of 3-347 

4 between March and July compared to the August-February period. The cRMSE component shows fluctuations 348 

during the study but only has a small increasing trend. The NO2 system (Fig. 9b) demonstrates a consistently 349 

increasing overall error, with a less pronounced seasonal influence. The bias contributes greatly to the total error 350 

(see Section 3.6 for NO2 sensor correction, Fig. 9c).  351 

 352 

 353 

Figure 9. Error (as RMSE, red line) of one of the systems belonging to the Main QUANT, decomposed into cRMSE (in 354 

blue) and MBE (in yellow) estimated based on a 40-day (1-day slide) moving window. Panel a) is for O3 measurements, 355 

and panel b) is for NO2 (April 2020-Oct 2022). Panel c) is also for NO2, this time showing the effect of a linear correction 356 

using diffusion tubes (see next section for more details). 357 

3.6 Informing end-use applications 358 

Ultimately, for any air pollution monitoring application, the requirements of the task should dictate the 359 

measurement technology options available. For example, if the requirement for a particular measurement is to 360 

assess legal compliance, then lower measurement uncertainty must be a key consideration as the reported values 361 

need to be compared to a limit value. In contrast, if an application aimed to look at long-term trends in pollutants, 362 

then absolute accuracy may not be as important as the long-term stability of sensor response. In order to realise 363 

the potential of air pollution sensor technologies, end users need to be provided with the information required to 364 

critically assess the strengths and weaknesses of potential candidate sensor devices, ideally in an easy-to-access 365 

and interpret manner. 366 

 367 

Understanding the uncertainty associated with a measurement instrument is essential for recognizing its 368 

capabilities and limitations. Accurate instruments are crucial, especially in areas like public health decision-369 

making, where inaccurate data can have profound implications (Molina Rueda et al., 2023). Furthermore, 370 

instruments that operate autonomously ensure consistent, uninterrupted data collection, making them more 371 

efficient and cost-effective in terms of maintenance and calibration. Figure 10 shows the REU (y-axis) and Data 372 

Coverage (DC, x-axis) of companies measuring NO2 with more than 2 systems running to avoid ambiguity in the 373 
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results. Using multiple systems, not only avoids ambiguity in results but also enhances the robustness of the data 374 

collected. Both REU and DC are key criteria within the EU scheme (EU 2008/50/EC) for evaluating the 375 

performance of measurement methods, and are complemented by the CEN/TS 17660-1:2021 specifically for 376 

sensors. This document defines three different sensor system tiers. Class 1 sensors, bounded by the green rectangle, 377 

offer higher accuracy than Class 2 sensors, highlighted by the red rectangle (Class 3 sensors have no set 378 

requirements). Presenting the data like this helps users anticipate the performance of sensor systems —under the 379 

assumption that all sensors from the same brand will behave similarly in equivalent environmental conditions— 380 

providing more insight into selecting the appropriate instrument for a given project or study. 381 

 382 

Figure 10. The REU vs. Data Coverage (DC) for 4 systems companies was evaluated during the WPS for the period Nov 383 

2021-Oct 2022 (after all companies had at least one calibrated product). Both the REU and the DC were estimated 384 

based on a 40-day size (which is the number of days used by CEN/TS 17660-1:2021 for on-field tests) moving window 385 

(1-day slide). While the green rectangle represents the DQOs for Class 1 sensors, the red one limits the DQOs for Class 386 

2 sensors (Class 3 sensors have no requirements). 387 

Depending on the nature of the sensor data uncertainty, methods can be implemented to improve certain aspects 388 

of the data quality for a particular application. One such example is the use of distributed networks to estimate 389 

sensor measurement errors, such as that described by (J. Kim et al., 2018). Depending on the application, simpler 390 

methods could also be available to reduce the magnitude of the changing bias, and thus significantly improve the 391 

accuracy of an individual sensor system, but also that of broader sensor networks. For the case shown in Fig.9b, 392 

one possible way to do this would be using supporting observations of NO2 made via diffusion tubes. These 393 

measurements are widely used to monitor NO2 concentrations in UK urban environments, due to their lower cost 394 

(~£5 per tube) and ease of deployment, but only provide average concentrations over periods of weeks to months 395 

(Butterfield et al., 2021). During QUANT, NO2 diffusion tubes were deployed at the 3 colocation sites (see Section 396 

S8 at the Supp. for more details). Combining these measurements offers the possibility of quantifying the average 397 
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sensor bias, thus reducing the error on the sensor measurement whilst maintaining the benefits of its high-time 398 

resolution observations. It is important to note that while bias correction has been applied to the sensor data, the 399 

NO2 diffusion tube concentrations used for comparison purposes must also be adjusted (e.g. following DEFRA 400 

(2022)). Fig. 9c shows the accuracy of the same NO2 sensor data shown in Fig. 9b but applies a monthly offset 401 

calculated as the difference between its monthly average measurement and that from the diffusion tube (see Figure 402 

S5). This shows a dramatic reduction in overall error largely driven by its bias correction. What remains largely 403 

resulting from the cRMSE, i.e. the error variance that might arise from limitations from the sensing technology 404 

itself and/or the conversion algorithms used to transform the raw signals into the concentration output. To validate 405 

the efficacy and reliability of this bias correction method, further long-term studies are warranted. 406 

The development and communication of methods that improve sensor data quality, ideally in digestible case 407 

studies, would likely increase the successful application of sensor devices for local air quality management. There 408 

is also a need for similar case studies showcasing the successful application of sensor devices for particular 409 

monitoring tasks. An example of this from the QUANT dataset is the use of sensor devices to successfully identify 410 

change points in a pollutant’s concentration profile. Determining when a specific pollutant has changed its 411 

temporal nature is a challenging task as there are a large number of confounding factors that influence a pollutant’s 412 

concentration at a specific point in time, including but not limited to seasonal factors, environmental conditions 413 

(both natural and arising from human behaviour), and meteorological factors. A novel statistical approach to 414 

smoothing air quality measurements was applied, accounting for these external factors (Lacy & Moller). This 415 

method was applied to NO2 concentrations determined from the sensor systems that had remained in Manchester 416 

throughout 2020, aiming to identify whether the well-documented reduction in ambient NO2 concentrations could 417 

be observed due to changes in travel patterns associated with COVID-19 restrictions. To provide an objective 418 

quantification of whether a change-point had occurred, the Bayesian online change-point detection (Adams & 419 

MacKay, 2007) was applied. Of the 8 devices that measured NO2, clear changepoints corresponding to the 420 

introduction of a lockdown were identified in 2 (Fig.11). While this is an unsupervised analysis, it demonstrates 421 

the potential of these devices to identify long-term trends with appropriate processing, even with only having had 422 

3 months of training data to fit the model to. This is especially aided by the given algorithm’s ability to use 423 

reference data as a prior allowing sensor systems to fine-tune the model. 424 
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 425 

Figure 11. NO2 measurements (black solid line) and detrended estimates (blue solid line with 95% confidence interval 426 

in the shaded grey region) from the reference instrument (left panel) and 2 sensor systems (middle and right panels) 427 

from Manchester in 2020. Vertical dashed lines and their corresponding dates indicate identified change points, which 428 

correspond to the introduction of the first national lockdown due to COVID-19 on the 23rd of March 2020. The 429 

percentage in blue represents the relative peak-trough decrease from 5th March to 20th April. 430 

4. Conclusions  431 

Lower-cost air pollution sensor technologies have significant potential to improve our understanding and ability 432 

to manage air pollution issues. Large-scale uptake in the use of these devices has been primarily limited by 433 

concerns over data quality and a general lack of a realistic characterisation of the measurement uncertainties 434 

making it difficult to design end uses that make the most of the data information content. Developments in the 435 

field of air pollution sensor technology are also developing rapidly, with advances in both the measurement 436 

technology and particularly in the data post-processing and calibration. A challenge with the use of sensor-based 437 

devices is that many of the end-use communities do not have access to extensive reference-grade air pollution 438 

measurement capability (Lewis & Edwards, 2016), or in many cases expertise in making atmospheric 439 

measurements. For this reason, reliable information on expected sensor performance needs to be available to aid 440 

effective end-use applications. Large-scale independent assessments of air sensor technologies are non-trivial and 441 

costly, however, making it difficult for end users to find relevant performance information on current sensor 442 

technologies. The QUANT assessment is a multi-year study across multiple locations, that aims to provide relevant 443 

information on the strengths and weaknesses of commercial air pollution sensors in UK urban environments.  444 

The QUANT sensor systems were installed at two highly instrumented urban background measurement sites, in 445 

Manchester and London, and one roadside monitoring station in York. The study design ensured that multiple 446 

devices were collocated to assess inter-device precision, and devices were also moved between locations and able 447 

to test additional calibration data products to assess and enable developments in sensor performance under realistic 448 

end-use scenarios. A wider participation component of the Main QUANT assessment was also run at the 449 

Manchester site to expand the market representation of devices included in the study, and also to assess recent 450 

developments in the field.  451 
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A high-level analysis of the dataset has highlighted multiple facets of air pollution sensor performance that will 452 

help inform their future usage. Inter-device precision has been shown to vary, both between different device types 453 

and over different periods of time, with the most accurate devices generally showing the highest levels of inter-454 

device precision. The accuracy of the reported data for a particular device can be impacted by a variety of factors, 455 

from the calibrations applied to its location or seasonality. This has important implications for the way sensor-456 

based technologies are deployed and supports the case made by others (Bittner et al., 2022; Farquhar et al., 2021; 457 

Crilley et al., 2018; Williams, 2020; Bi et al., 2020) that practical methods to monitor sensor bias will be crucial 458 

in uses where data accuracy is paramount.  459 

In addition to these findings, this overview lays the groundwork for more detailed research to be presented in 460 

future publications. Subsequent analyses will focus on on providing a more nuanced understanding of the 461 

uncertainty in air pollution sensor measurements, thus equipping end-users with better insights into of the 462 

capability of sensor data. Future studies will delve into specific aspects of air pollution sensor performance: 1) a 463 

comprehensive performance evaluation of PM2.5 data, assessing their accuracy and reliability under different 464 

environmental conditions; 2) an in-depth analysis of NO2 measurements, examining their sensitivity and response 465 

in various urban environments; and 3) a detailed investigation into the detection limits of these sensor technologies, 466 

targeting their optimized application in low concentration scenarios. These focused studies are basic steps needed 467 

to further advance our understanding of sensors' capabilities and limitations, ensuring informed and effective 468 

application in air quality monitoring. 469 
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