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First, we would like to thank the Anonymous Referee 1 for his/her times and very useful comments
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rections in blue color. In addition, we have attached a updated version of the paper below. Figures
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included in the updated version of the paper.

Answers to Anonymous Referee 1
In this study, a new, advanced algorithm is developed to classify mixed-phase clouds into liquid,

mixed and fully glaciated clouds from remote sensing measurements. Further, microphysical and optical
properties of the different phases can be retrieved from the measurements. This is an important step
towards large-scale, detailed analysis of mixed-phase clouds, which have been difficult to detect but
play an crucial role in cloud feedback to the climate.

I cannot express the innovation and importance of this work any better than Referee 3 and 2 have
already done, so I like to say here only that I fully agree with them.

I also find the manuscript very well structured, fluently written and easy to understand. I am not an
expert in remote sensing retrieval algorithms, but I was able to follow the explanations of the method
and the innovations in it - but without being able to judge it well. Regarding the figures, I have some
suggestions to make them easier to understand (see below the specific comments on the Figures).

There is only one more important point about which I have a question (see point 11 of the specific
comments) : the presented case study shows a cloud of about 1 km thickness. The information from
lidar and radar together is only available in the upper half of the cloud, for the lower part there is no
information from lidar.

• Can satellite-borne lidar instruments generally only penetrate approx. 500 m deep into mixed
phase clouds or is this determined by the thickness of the cloud in the upper part ? Or, could
thicker liquid clouds still be detected in the lower part, i.e. is only the lidar signal too weak in
the present case ?

▶ Satellite-borne lidar generally only penetrate up to approx. 500 m, depending on the supercooled
water optical thickness, even if the supercooled water droplets are present on a 1 km layer. Since the
satellite-borne lidar is located far from the clouds, its signal is partly attenuated before it reaches the
cloud particles. In addition, the signal is strongly attenuated by supercooled droplets and satellite-
borne lidar are too “weak” to penetrate deeper in the clouds (i.e. it is not the case for airborne lidar,
which can still detect cloud particles after a mixed-phase layer, and sometimes airborne lidar can
detect multiple mixed-phase layers, which is rarely the case for CALIPSO). Generally, lidar cannot
penetrate optical thicknesses greater than 3. Figure A shows the total, ice and liquid optical thicknesses
calculated from the total, ice and liquid extinctions retrieved by VarPy-mix, respectively. We can see
that most of the total optical thickness comes from the liquid part. Furthermore, the thickness quickly
rises above 3, making it difficult for lidar to penetrate deeper into the cloud.

All other points are minor and are listed in the specific comments. Overall, I recommend the ma-
nuscript for publication in AMT after minor revisions.
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Figure A – Optical thickness retrieved by VarPy-mix (from total extinction).

Specific comments
1. Page 11, line 219 : ‚Whereas, the coefficient applied to the liquid water is different and set to

10, since the thickness of the detected liquid layer is smaller than ice layer.‘
• Is it generally the case that the thickness of the liquid layer is smaller than that of the ice

layer ?
▶ Since ice clouds are generally much more extended in height than supercooled water or

mixed-phase layers, this coefficient is chosen according to this trend.
2. Page 12, line 248ff : ‘For this study we use the following log-normal relationship defined by

Frisch et al. (1995).’
• Why you use the oldest of the three available parameterizations ?

▶ The idea was to start with the log-normal distribution, which is more computationally
convenient. Frisch et al. 1995 proposed this distribution and Fielding et al. 2015 adopted the
same distribution, defining r0 as the median radius instead of the modal radius. Since Frisch
et al. 1995 proposed it and exposed the moments of the distribution, we cite this paper to
explain the distribution we have chosen. Nevertheless, the parameterization of Fielding et al.
2014, 2015 are taking into account for the standard deviation of the distribution (lines 387-389
in the revised version). Besides, one possible perspective is to create a liquid look-up table from
a gamma distribution and compare retrievals from the different liquid LUTs.

3. Page 13, line 278 : ‘Indeed, the radar is not used to retrieved the supercooled water neither in
pure liquid clouds nor in mixed-phase clouds, ...’
• Thank you, it has been corrected.

4. Page 14, line 306f : ‘On the other hand, where there is no radar signal and a strong lidar
backscatter, it is categorized as “supercooled water” . . . ‘
• What is meant with ‘where there is no radar signal‘ ? I think that means that the radar

could in principle measure but there is no signal ? But what if the conditions are such that
the radar cannot measure but there would be a signal ? Is such a cloud misclassified ? Does
this happen ?
▶ We mean that the particle are too small for the radar sensitivity, which consequently give

no radar signal. CloudSat (95 GHz) sensitivity does not allow detection of supercooled water.
Regarding possible signal “mistakes”, this can be corrected easily during the first steps of the
radar data processing (we guess that in such cases, the radar signal will be very different than
for real detection) and the misclassifications can be avoided. In the updated version, we have
added (L314-315 : “On the other hand, where the radar does not detect particles (no radar
signal) and the lidar backscatter is strong, ...”
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5. Page 16, line 343f : ‘...note that the base of the supercooled liquid layer within the mixed-phased
cloud cannot be determined unequivocally.’
• From Figure 2 c, it is also visible that from comparison with the in situ measurements the

lowest part of the cloud is not detetcted with the radar – or is this an uncertainty caused
by the unperfact match between in situ and satellite observation ?
▶ The lower part is not detected by the radar because of the ground clutter (unwanted

echoes from the ocean in that case). Even if the match was perfect, CloudSat has difficulty
detecting below 1 km altitude due to the clutter phenomenon.

6. Page 17, line 354f : ‘Consequently, the CPI gives information about the ice particles and the
FSSP about liquid droplets.‘
• The particles in the FSSP can also be ’secondary ice particles’, which cannot be distinguished

with the FSSP (see e.g. Costa et al. (2017). This should be mentionened here.
▶ We provide more details by modifying the text with : “We assume here that the CPI

provides information on ice particles, while the FSSP provides information on liquid water. We
cannot exclude that the FSSP also detects secondary ice particles (Costa et al. 2017) or could
be more likely contaminated by ice crystal shattered on the instrument tips. However, Costa
et al. 2017 showed that secondary ice particles are not frequent in Arctic mixed-phase clouds.
The temperature range at which cloud were probe (between −21 °C and −14 °C) does not point
towards possible secondary ice production mechanisms (above −10 °C). Additionally, Febvre
et al. 2012 showed that when ice crystals are measured by the FSSP, the asymmetry parameter
measured by the PN decreases compared to what would be expected for water droplets only.
In our case study, the asymmetry parameter g is mostly greater than 0.84 in the upper cloud
layer which is indicative of a layer composed quasi-exclusively of water droplets. Consequently,
we are quite confident that the presence of small ice crystals does not significantly impact the
results.”
In addition, we provide in Figure B the Particle Size Distribution of the FSSP. For each dis-
tribution, we have indicated the altitude and the asymmetry parameter g. The largest (and
most numerous) drops are found in the upper layers (the two highest lines in each figure), with
the corresponding g (above 0.84). When g falls below 0.84 (mixed-phase), drops are much less
numerous.

Figure B – Particle Size Distribution (PSD) of the FSSP. The corresponding altitude and g value are
indicated in the legend.
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7. Page 17, line 355f : ‘.. we take the ... ice water content IWCCPI from the CPI, ...’
• What mass-dimension relationship have you used to calculate IWCCPI ? I found it a few

lines later (line 361 - HC mass-size relationship), but would find it more appropriate here.
And, can you explain why you used this one ?
▶ The HC relationship corresponds to the chosen LUT for VarPy-mix. Line 361 has been

corrected with : “In this study, we chose to retrieve ice properties with the HC LUT.” (it is lines
385-386 in the revised manuscript). Nevertheless, the mass-size relationship to calculate the ice
particle properties is given by Equation A (model B for 0.2 kg.m-2 in Leinonen et Szyrmer
2015). It corresponds to moderate riming and gives the best agreement over the whole flight.
We have included this information in the new manuscript version (L 390-393).

m = 0.033D1.94 (A)

8. Page 18, line 371f : ‘Table 7 presents the mean values in all selected pixels of all retrieved
properties.’
• Why not include the in-situ mean values in the table, at least for the time periods where

both in-situ and remote sensing measurements are available ? I think that would be useful.
▶ The idea behind Table 7 was to present only the trends obtained for VarPy-mix retrievals,

independently of the comparison with in situ. Instead, we propose to extend Table 8 with the
mean in situ values and the mean VarPy-mix values for the selected gates that are spatially
closest to the in situ data (corresponding to the values of the right-hand panels in Figures 4
and 5). We have also added to this table the values for concentrations (see answer to question
11) and effective radii (following a question from Anonymous Referee 3, we have calculated the
in situ effective radii and added the comparison to the updated version of the manuscript).

Table 8 – Mean absolute error and mean percent error regarding in situ for each property.

Properties
Mean values

for VarPy-mix
selected gates

Mean values
for in situ

Mean absolute
error

Mean percent
error

αice 8.1× 10−4 m−1 6.8× 10−4 m−1 7.2× 10−4 m−1 398 %
αliq 6.7× 10−3 m−1 3.3× 10−3 m−1 4.3× 10−3 m−1 39 %

αtot (CPI+FSSP) 4.2× 10−3 m−1 4.1× 10−3 m−1 3.4× 10−3 m−1 50 %
αtot (PN) 4.2× 10−3 m−1 6.2× 10−3 m−1 4.2× 10−3 m−1 56 %

IWC 2.9× 10−2 gm−3 3.4× 10−2 gm−3 5.0× 10−2 gm−3 75 %
LWC 2.6× 10−2 gm−3 5.2× 10−2 gm−3 1.4× 10−2 gm−3 49 %
TWC 3.0× 10−2 gm−3 6.0× 10−2 gm−3 4.7× 10−2 gm−3 39 %
re,ice 69.7 µm 177.5 µm 128.2 µm 54 %
re,liq 12.2 µm 5.56 µm 6.40 µm 122 %
Nice 3.40× 10−2 cm−3 2.02× 10−2 cm−3 3.24× 10−2 cm−3 280 %
Nliq 1.73× 101 cm−3 2.59× 101 cm−3 6.10× 101cm−3 77 %
Ntot 8.69 cm−3 3.59× 101 cm−3 4.51× 101cm−3 89 %

9. Page 18, line 372ff : ‘The extinction of liquid droplets is stronger than ice crystals by a factor
of 7. The same trends is observed between LWC and IWC with average values 30 % larger for
LWC. The ice crystals are larger than liquid droplets by a factor of 5 for the mean values. The
liquid number concentration is much higher than ice number concentration by a factor 103 .‘
• Should one see that from the figures ? This would only be possible if you use the same color

code in all panels (which is difficult, but not impossible), or at least the same limits in the
color code scale (see also the comment b) on Figures 4, 5, right panels).
▶ We propose the following rewording : “Table 7 presents the mean values in all selected

pixels of all retrieved properties. These values allow us to observe trends for each variable. The
extinction of liquid droplets is stronger than...”. In addition, we use the same y axis scale for
the three right panels of Figure 4 and 5. (Using the same scale color scale for the left panel
curtains is more difficult.)
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10. Page 20, line 381ff :
• see comment 5).

11. Page 20, line 392f : ‘In these regions the FSSP detects liquid droplets while CALIOP signal
cannot be used because of the attenuation (extinguished). This can explain why αVarPy is lower
than αCPI+FSSP.’
• I think that this effect deserves to be discussed in a little more detail, because this sounds as

if liquid droplets in lower cloud layers are generally not detected. This raises the question of
the limitations of the method in relation to the vertical extent of the cloud (see also genaral
comment) ? ▶ This is indeed a problem that we mention in the conclusion on lines 503-504
(updated manuscript) :“First, the lower part of the cloud is missing which compromises part
of the comparison. In fact, the lidar is attenuated by the liquid droplets of the mixed-phase
layer and extinguished after it. The radar does not detect down to the ocean because of the
clutter and therefore cannot see the cloud base.” However, the FSSP signal in this area is
much weaker than in the mixed phase clouds above, so there are far fewer drops present.
So a question is whether it would be possible to detect liquid drops with a concentration as
high as in the mixed phase layer in the lower part of the cloud with the lidar ? ▶ This is very
rare with CALIPSO, but possible with airborne lidars. Furthermore, in the article by Costa
et al. (2017) – who classified mixed phase clouds based on airborne in situ measurements
– it is shown in their Figure 8 that small cloud particles (up to 50 um, detetcted with a
CAS instrument, which is similar to an FSSP) are still present even in completely glaciated
clouds. This is also listed in their Table 6. It is not clear where these cloud particles come
from, but the clouds are still classified as glaciated because the number of liquid droplets is so
small (< ∼ 0.1 cm-3) that they cannot be considered a liquid cloud. This could be discussed
here to show that the new classification method is applicable. By the way, it would be also
interesting to see Nliq and Nice from the in situ observations - then one could see whether
the number of droplets is so small that they can hardly be called a cloud.
▶ We calculated liquid, ice and total number concentrations from the PSDs of each probe

(CPI and FSSP). The results are shown in Figure 7. Panels (a) and (d) show that the FSSP
detects highly concentrated particles (∼ 102 cm−3) in the yellow and purple zones. The va-
lues remain quite high in some areas below the mixed-phase layer delimited by remote sensing.
Values fall below 10 cm−3 between 77.52 and 77.62°N only. The question of layer thickness
detection is therefore relevant and should be taken into account in the results of our method.

It is also interesting to look at the asymmetry parameter g. Jourdan et al. 2003, 2010 have
shown that g values measured by the PN are usually less than 0.8 in ice clouds and around 0.84
- 0.85 in liquid-phase clouds. Besides, Gayet et al. 2002 estimates the uncertainties of g at 4 %.
Figure C shows the cloud phase classification from remote sensing (curtain, panel (a)) and the
asymmetry parameter g (dots on panel (a) and line on panel (b)) from in situ. The parameter g
indicates the predominant presence of mixed-phase or liquid water between 1 and 1.5 km alti-
tude (corresponding to the mixed-phase layer indicated by the radar-lidar classification). Below
1 km altitude, the phase is predominantly ice, with some areas of mixed phase, presuming the
lesser presence of water droplets up to 400 m altitude.
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Figure 7 – The panels (a) to (c) represent the liquid (a), ice (b) and total (c) number concentrations
from VarPy-mix retrievals (curtain) and in situ probes (dots) regarding the latitude and the height.
The panels (d) to (f) share the same ordinate axis and represent the ice (d), liquid (e) and total (f)
number concentration from VarPy-mix retrievals and in situ probes regarding the latitude. The error
bars of in situ measurements (uncertainties from Table 6) are displayed in panels (d) to (f). The yellow
and purple shading represents the latitude range where mixed-phase retrievals are compared with in
situ.

Figure C – Panel a) : Cloud phase classification (curtain) and asymmetry parameter g from the Polar
Nephelometer (dots) as a function of the altitude and latitude. Panel b) : Asymmetry parameter g as
a function of the latitude. The asymmetry parameter on both panel share the same colorbar.
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12. Would it be an idea to look for other in situ cases for comparison ? The data base of Costa et al.
(2017) might provide the in situ observations. Maybe not for this paper, but for future work ?

▶ It is a good idea to compare VarPy-mix retrievals with other in situ measurements.
The different scenarios (according to latitude, season, etc.) analyzed with in situ constitute a
database that could be compared with similar scenarios processed with VarPy-mix. For example,
this would enable us to determine the behavior of VarPy-mix at different latitudes, and to
assess these retrievals with in situ data. The best would be to have collocated data between
CloudSat/CALIPSO and data from Costa et al. 2017.

Figures : a) Figures 4, 5, 6 : I recommend to change the order of the panels, liquid at the top and
ice below, just like in the atmosphere – this is more intuitive and thus easier for the reader.

b) Figures 4, 5, right panels : I recommend using the same y-axis scales for all three panels, so that
the differences between the panels (phases) are better visible.

▶ The Figures 4 and 5 have been corrected.

Figure 4 – The panels (a) to (c) represent the ice (a), liquid (b) and total (c) extinctions from VarPy-
mix retrievals (curtain) and in situ probes (dots) regarding the latitude and the height. The panels (d)
to (f) share the same ordinate axis and represent the ice (d), liquid (e) and total (f) extinctions from
VarPy-mix retrievals and in situ probes regarding the latitude. The error bars of in situ measurements
(uncertainties from Table 6) are displayed in panels (d) to (f). The yellow and purple shading represents
the latitude range where mixed-phase retrievals are compared with in situ.
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Figure 5 – As Fig. 4 for IWC, LWC and TWC.
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Abstract.

Mixed-phase clouds are not well represented in climate and weather forecasting models, due to a lack of the key processes

controlling their life cycle. Developing methods to study these clouds is therefore essential, despite the complexity of mixed-

phase cloud processes and the difficulty of observing two cloud phases simultaneously. We propose in this paper a new method5

to retrieve the microphysical properties of mixed-phase clouds, ice clouds and supercooled water clouds using airborne or

satellite radar and lidar measurements, called VarPy-mix. This new approach extends an existing variational method developed

for ice clouds retrieval using lidar, radar and passive radiometers. We assume that the attenuated lidar backscatter β at 532 nm is

more sensitive to particle concentration and is consequently mainly sensitive to the presence of supercooled water. In addition,

radar reflectivity Z at 95 GHz is sensitive to the size of hydrometeors and hence more sensitive to the presence of ice particles.10

Consequently, in the mixed-phase the supercooled droplets are retrieved with the lidar signal and the ice particles with the

radar signal, meaning that the retrieval rely strongly on a priori and errors values. This method retrieves then simultaneously

the visible extinction for ice αice and liquid αliq particles, the ice and liquid water contents IWC and LWC, the effective radius

of ice re,ice and liquid re,liq particles and the ice and liquid number concentrations Nice and Nliq. Moreover, total extinction

αtot, total water content TWC and total number concentration Ntot can also be estimated. As the retrieval of ice and liquid is15

different, it is necessary to correctly identify each phase of the cloud. To this end, a cloud phase classification is used as input

to the algorithm and has been adapted for mixed-phase retrieval. The data used in this study are from DARDAR-MASK v2.23

products, based on the CALIOP lidar and CPR radar observations, respectively from the CALIPSO and CloudSat satellites

belonging to the A-Train constellation launched in 2006. Airborne in situ measurements performed on the 7th April 2007

during the ASTAR campaign and collected under the track of CloudSat-CALIPSO are compared to the retrievals of the new20

algorithm to validate its performance. Visible extinctions, water contents, effective radii and number concentrations derived

from in situ measurements and the retrievals showed similar trends and are globally in good agreement. The mean percent error

between the retrievals and in situ is 39 % for αliq, 398 % for αice, 49 % for LWC and 75 % for IWC. It is also important to note
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that temporal and spatial collocations are not perfect, with a maximum spatial shift of 1.68 km and a maximum temporal shift

about ten minutes between the two platforms. In addition, the sensibility of remote sensing and in situ are not the same and in25

situ measurements uncertainties are between 25 % and 60 %.

1 Introduction

The current situation concerning climate change strongly impacts our society (IPCC, 2022), which leads to an interest in climate

and weather forecasting. Clouds cover about 67 % of the Earth’s atmosphere (King et al., 2013) and take an important part in

Earth’s water cycle and its radiation budget (Stephens, 2005). However, climate and weather prediction models still have a lack30

of knowledge in some situations and scenarios where clouds, especially mixed-phase clouds, remain one of the main sources

of uncertainty, due to the complexity of the related processes. Mixed-phase clouds occur at all latitudes and more significantly

at mid- and high-latitudes (Choi et al., 2010; Shupe, 2011) and are a coexisting mixture of three phases of water: ice particles,

supercooled droplets and water vapor at temperatures between −40 ◦C and 0 ◦C. This coexistence implies complex formation

processes, such as primary ice nucleation (Meyers et al., 1992), secondary ice production (Field et al., 2017; Kanji et al., 2017)35

and ice deposition (Meyers et al., 1992), and growing processes, such as the Wegener-Bergeron-Findeisen process (Wegener,

1911; Bergeron, 1935; Findeisen, 1938), water vapor deposition (Song and Lamb, 1994), aggregation (Hobbs et al., 1974) and

riming (Hallett and Mossop, 1974). Since liquid and ice particles influence the shortwave and longwave radiation differently

(Matus and L’Ecuyer, 2017), the fraction of liquid and ice particles significantly affects the radiative properties of mixed-phase

clouds, altering the radiative balance of the Earth’s atmospheric system. Moreover, all these processes are difficult to represent40

in numerical model (Morrison et al., 2008, 2012) and mixed-phase clouds that are not well represented in models can introduce

significant biases, such as a misrepresentation of the cloudy state (Pithan et al., 2014). For that reason, it is crucial to have

information on mixed-phase clouds microphysics in order to reduce the uncertainties in climate and weather prediction.

The localization and lifetime of the mixed-phase in a cloud differ according to the type of clouds and can make their

observation challenging. The difference of water vapor saturation over ice and liquid makes the mixed-phase condensationally45

unstable and only exists for a limited time (Korolev et al., 2017). One way of observing these clouds is to use active remote

sensing instruments. They can be onboard an aircraft or a satellite allowing to probe clouds on a large scale with vertical

profiles seen from above. They are then useful to detect the mixed-phase layer at cloud top, which is typically the case in arctic

boundary layer clouds (Gayet et al., 2009; Mioche et al., 2017). Each instrument has its own characteristics and a specific

sensitivity that depends notably on the instrument wavelength. On one hand, the lidar measures the attenuated backscatter50

β[m−1.sr−1], which corresponds to the energy backscattered by the targets and is affected by the atmospheric transmission.

At a wavelength between 355 nm and 1064 nm, the lidar attenuated backscatter is more sensitive to the concentration of

hydrometeors and can detect small cloud particles and aerosols. However, this signal can be attenuated or extinguished by

a region with high particle concentration and cannot give information below this cloud layer. On the other hand, the radar

measures the reflectivity Z [mm6.m−3] typically at 35 or 95 GHz for cloud radars. At these wavelength, the radar reflectivity55

is more sensitive to the particle size and the signal can penetrate thick clouds (Delanoë et al., 2013; Cazenave et al., 2019).
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Consequently, in mixed-phase clouds the lidar is more sensitive to highly concentrated liquid droplets and will give a strong

backscatter signal. On the other hand, the radar reflectivity of liquid droplets will be weaker than ice particles. As a result,

both instruments complement each other. These measurements can then be used in algorithms to retrieve microphysical cloud

properties such as the visible extinction α, the ice and liquid water contents (IWC and LWC) and the total number concentration60

Ntot.

Lidar-radar synergistic methods were first proposed by Intrieri et al. (1993), Donovan and van Lammeren (2001), Tinel et al.

(2005) and Mitrescu et al. (2005) to retrieve ice clouds properties where both instrument overlap. Algorithms as VarCloud

(Delanoë and Hogan, 2008) and 2C-ICE (Deng et al., 2010) were later developed to retrieve ice clouds properties all along the

instruments profile using the Cloud Profiling Radar (CPR) onboard CloudSat (Stephens et al., 2002), the Cloud-Aerosol Lidar65

with Orthogonal Polarization (CALIOP) onboard CALIPSO (Winker et al., 2003) and additionally radiometric information

for VarCloud. For the EarthCARE mission (Illingworth et al., 2015) the unified synergistic retrieval algorithm CAPTIVATE

(Mason et al., 2022) uses the ATmospheric LIDar (ATLID), the Cloud Profiling Radar (CPR), and the MultiSpectral Imager

(MSI) data to retrieve clouds, precipitations and aerosols properties.

The variational method VarCloud, developed by Delanoë and Hogan (2008), aims to retrieve ice clouds properties using70

radar, lidar and radiometric data synergy. Since, this algorithm has been improved with new parameterization for ice clouds

retrievals (Ceccaldi, 2014; Cazenave et al., 2019), allowing more flexibility. As a result, it can process data from different

airborne or spaceborne instruments platforms. In the mixed-phase, the algorithm only retrieve ice properties with the radar

signal. The algorithm current version is called in this paper VarPy-ice and is described in detail in Cazenave (2019) thesis,

pages 107 to 113. Our method, VarPy-mix, aims to retrieve simultaneously ice, supercooled water and mixed-phase clouds75

properties with lidar and radar synergy, based on VarPy-ice to retrieve ice clouds. Each cloud phase is not processed in the

same way. The ice clouds are retrieved with both instruments while the mixed-phase retrieval is divided in two parts: the ice

particles are retrieved with the radar signal and the supercooled water with the lidar signal. Besides, supercooled water clouds

are retrieved with the lidar signal only. Therefore, the retrieval relies strongly on a priori and errors values. Additionally, this

flexible algorithm can be apply on several radar-lidar platforms, airborne or spaceborne. As a starting point, these changes80

were developed with CloudSat and CALIPSO instruments datasets. These data have a large, robust and proven classification

algorithmic statistics as well as existing cases of collocation with in situ measurements.

In this paper, we first describe in Sect. 2 the general points of both version of VarPy before going into details of the new

version structure. In addition, the processed cloud phases are presented in this section, along with an adaptation of the cloud

phase classification dedicated to the mixed-phase and supercooled water. Next, Sect. 3 presents a case of mixed-phase at the85

top of an ice cloud for which microphysical properties are retrieved using VarPy-mix and compared with in situ measurements.

Finally, the last section is dedicated to a conclusion and to an outlook on future work.
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2 Methodology

2.1 Variational method

2.1.1 Description of VarPy90

The radar reflectivity Z [mm6.m−3] and the lidar attenuated backscatter β [m−1.sr−1] are linked to the clouds microphys-

ical vertical structure. For example the water content is strongly correlated with the reflectivity (Atlas, 1954) and the lidar

backscatter is related to the cloud extinction α. We can relate this situation to an inverse problemgiven by:

Y = f(X)+ ϵ (1)

95

The vector Y is the observation vector composed of the measured radar reflectivity Zobs and lidar attenuated backscatter

βobs. The vector X is composed of the quantities that describe the system, e.g. some clouds microphysical properties. The

function f is the “forward function” (Rodgers, 2000, p. 14) and in our case represents the lidar and the radar forward models.

These models and measurements are associated to specific uncertainties that can be presented by the error vector ϵ. According

to the values of the vector X, called hereafter the state vector, the forward models predict reflectivity and backscatter values,100

respectively noted Zfwd and βfwd. These forward modeled values are afterwards compared to the measurements. The difference

between Y and the predicted values is used to update the state vector via the Gauss-Newton method. New values of Zfwd

and βfwd are computed with the forward models and Look Up Table (LUT, detailed in Sect. 2.1.2) until convergence occurs

according to a χ2 test. The solution is defined by the state vector at the last iteration when the solution converges. These values

are used in combination with a LUT to retrieve the desired microphysical properties. The diagram of Fig. 1 summarizes the105

whole structure of the variational scheme.

The two main inputs of VarPy are the observations vector Y (box 2 of Fig. 1, Eq. (2)) and the initialized state vector X0 (box

1 of Fig. 1), given by Eq. (5) with first guess values from Table 1, as explained in Sect. 2.1.2. The natural logarithm is applied

to the variables of X and Y to avoid the unphysical possibility of retrieving negative values. Both vectors are defined for one

measurement profile and as a function of the distance from the instrument. Radar and lidar do not have the same amount of110

values per profile (also called hereafter gate): there are q values of ln(Zobs) for a profile and p values for ln(βobs). Then the

observations vector Y is defined for a single profile as follows:
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Figure 1. Diagram showing the sequence of operations executed by the VarPy retrieval method.

Y =




ln(Zobs,0)
...

ln(Zobs,q)

ln(βobs,0)
...

ln(βobs,p)




(2)

To retrieve ice properties, the state vector is composed of the visible extinction α [m−1], the extinction-to-backscatter ratio

S [sr] and N ′ which is related to the normalized number concentration parameter N∗
0 [m−4] via the following relationship:115

N ′ =
N∗

0

αγ
(3)

where γ is an empirically determined coefficient normalizing N ′ (Delanoë and Hogan, 2010; Delanoë et al., 2014). Values for

this coefficient are shown in Table 1. For n measurements gates, the state vector is composed of n values of ln(α). However, N ′

is not retrieved for each gate. A cubic-spline basis function interpolates the N ′ profile with a number concentration parameter

spacing factor ηN set to 4 and decreases the number of N ′ values to m such that smooth variation in range is guaranteed120

(Hogan, 2007; Delanoë and Hogan, 2008). This improves computing efficiency by reducing calculation time.
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The lidar ratio is assumed to be a function of temperature T [◦C], adapted from Platt et al. (2002) and derived using radar-

lidar data from previous version of DARDAR (Cazenave et al., 2019). Consequently, the lidar ratio S is not represented in the

state vector for each gate but by the two coefficients aln(S) and bln(S) that are the slope and the intercept coefficient from the

temperature dependence relationship (Eq. (4)). As a result, for this configuration of the state vector, the dimension of the lidar125

ratio S is given by k = 2. For VarPy-ice, the average retrieved lidar ratio equals 35 ± 10 sr for a temperature range from −60

◦C to −20 ◦C (Cazenave et al., 2019).

ln(S) = aln(S) + bln(S) ·T (4)

Thereby for VarPy-ice, the state vector to retrieve a profile of n gates is as following:

Xice =




ln(N ′
0)

...

ln(N ′
m)

aln(S)

bln(S)

ln(α0)
...

ln(αn)




(5)130

The update of the state vector (box 8 of Fig. 1) is given by:

Xk+1 =Xk +H−1 · (J⊺ ·R−1 · (Yosb −Yfwd)−B−1 · (Xk −Xa)−T ·Xk) (6)

with J the Jacobian matrix that contains the partial derivative of ln(Zfwd) and ln(βfwd) with respect to each element of the state

vector (box 5 of Fig. 1), H is the Hessian matrix given by Eq. (7), R is the error covariance matrix of the observations, B is

the error covariance matrix of the a priori (explained in Sect. 2.2.1), and T is the “Twomey-Tikhonov” matrix (box 6 of Fig.135

1; Rodgers, 2000) used to smooth the extinction profile.

H= J⊺ ·R−1 ·J+B−1 +T (7)

Each measurement is limited by the instrument performance and the signal-to-noise ratio. This is notably the case for the

lidar and this can affect the retrieval of the extinction (Hogan et al., 2006). To limit the impact of measurement noise, a

“Twomey-Tikhonov” matrix T can be used to penalize the second derivative of the state vector variables profile, especially the140

extinction. T is a square matrix and is defined, at dimension 6, by:
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T= κ×




1 −2 1 0 0 0

−2 5 −4 1 0 0

1 −4 6 −4 1 0

0 1 −4 6 −4 1

0 0 1 −4 5 −2

0 0 0 1 −2 1




(8)

where κ is a coefficient that sets the smoothness degree of T. The dimensions of the final matrix T used by the algorithm

correspond to those of the state vector depending on the version of VarPy. As we only want to smooth the extinction profile,

the values of T corresponding to the lidar ratio S and the number concentration parameter N ′ are set to 0.145

The Jacobian is a product of the forward models (box 5 of Fig. 1) and its composition depends on the structure of the state

vector. For VarPy-ice, this matrix is given by Eq. (9) with a dimension of (p+ q)× (m+2+n):

J=




∂β0

∂N ′
0

. . .
∂β0

∂N ′
m

∂β0

∂aln(S)

∂β0

∂bln(S)

∂β0

∂α0
. . .

∂β0

∂αn

...
. . .

...
...

...
...

. . .
...

∂βp

∂N ′
0

. . .
∂βp

∂N ′
m

∂βp

∂aln(S)

∂βp

∂bln(S)

∂βp

∂α0
. . .

∂βp

∂αn

∂Z0

∂N ′
0

. . .
∂Z0

∂N ′
m

∂Z0

∂aln(S)

∂Z0

∂bln(S)

∂Z0

∂α0
. . .

∂Z0

∂αn

...
. . .

...
...

...
...

. . .
...

∂Zq

∂N ′
0

. . .
∂Zq

∂N ′
m

∂Zq

∂aln(S)

∂Zq

∂bln(S)

∂Zq

∂α0
. . .

∂Zq

∂αn




(9)

For better readability, the indices fwd of Z and β are not displayed and the natural logarithm of Z, β, N∗
0 and α are not written.

2.1.2 State vector parameterization150

During the iterative process, the state vector variables are used by the forward models (radar and lidar) to compute the radar

reflectivity Zfwd and the lidar backscatter βfwd. The lidar forward model differs from the radar forward model because an

additional step is required to obtain βfwd with the equivalent area radius ra and the multiscatter code from Hogan (2006) (box 5

of Fig. 1). To obtain Zfwd and ra, the ratio
α

N∗
0

derived from the state vector is linked to these variables via an one-dimensional

LUT (box 4 of Fig. 1), which is also used to retrieve the cloud microphysical properties (box 9 of Fig. 1) as the effective155

radius re and the ice water content IWC. The ice clouds properties can be retrieved with two types of LUT. The “Heymsfield

Composite” (HC) LUT uses the Transition Matrix Method (T-matrix) and the mass-size relationship from Heymsfield et al.

(2010). The “Brown and Francis modified” (BF) LUT is based on a combination of Brown and Francis (1995) and Mitchell

(1996) mass-size relationships. These LUT are used for DARDAR-CLOUD v3.00 and v3.10 products (Delanoë, 2023a, b)
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Table 1. A priori and first guess values for each variable of the state vector.

Variables Values

aln(S) 3.18

bln(S) −0.0086

ABF 22.234435

BBF −0.090736

γBF 0.61

AHC 21.94

BHC −0.095

γHC 0.67

ln(αice) −7

ln(N∗
0,liq) 30

ln(αliq) −5

and more details about them can be found in Delanoë et al. (2014) and Cazenave (2019). For both VarPy-ice and -mix, both160

LUT can used to retrieve the ice properties and one must be selected beforehand. Regarding the retrieval of liquid part of the

mixed-phase and supercooled water clouds, a LUT has been created and more details can be found in Sect. 2.2.2.

The LUT setting also involves defining the a priori and first guess values of the state vector. The first guess values are used to

initialize the state vector for the forward models before the first iteration, corresponding to X0. The a priori values are important

for regions where only one instrument is available and this constrains the scheme towards temperature dependent empirical165

relationships. We have postulated in the Sect. 2.1.1 that the lidar ratio is given by a temperature-dependent relationship (Eq.

(4)) and a priori and first guess values are listed in Table 1. For the number concentration parameter ln(N ′), the a priori and

first guess values are also given as a function of the temperature T :

ln(N ′) = (A+B ·T ) (10)

Table 1 lists the values of A and B used for each mass-size relationship (BF and HC). The coefficient γ linking N∗
0 to α and170

N ′ differs according to the mass-size relationship and the values are also given in Table 1. The a priori and first guess values

for the extinction are constant values.

2.1.3 Definition of VarPy versions

Before going into details of the adaptations made in VarPy-mix to retrieve supercooled water and mixed-phase clouds, we

describe in this section the main assumptions on the instruments used for VarPy-ice and -mix.175

VarPy-ice retrieves ice properties from radar and lidar measurements, including ice from mixed-phase layers. Since the lidar

signal is more sensitive to liquid droplets than ice particles, it cannot be used in VarPy-ice to retrieve ice properties of mixed-

phase. Therefore, every lidar gate below the mixed-phase layer cannot be used due to the attenuation of the liquid droplets in
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the lidar signal. Consequently, the mixed-phase and the ice cloud below are not retrieved via radar-lidar synergy but only with

the radar signal and the state vector a priori values.180

The main hypothesis for the VarPy-mix version is to consider the ice and liquid parts of the mixed-phase separately and

retrieve the liquid part with the lidar signal and the ice part with the radar signal. This hypothesis is based on the sensitivity of

the instruments, explained in the introduction (Sect. 1). The aim of this version of the algorithm is to be able to retrieve several

cloud phases using the same variational method, but with a structure and parameterization that are adapted to supercooled water

and the mixed-phase. A large part of VarPy-ice has been preserved to maintain the strengths of the method and the consistency185

of the results.

2.2 New configuration of the state vector to retrieve ice and supercooled water simultaneously

For the new version of the algorithm, the state vector needs to be adapted to also retrieve supercooled water properties. The

special case of the mixed-phase has to be taken into account. The supercooled water and the ice particles properties are

retrieved separately for mixed-phase. The state vector is consequently divided in two parts: one part of the variables retrieves190

ice properties and the other part retrieves liquid properties. The ice particles of the mixed-phase are included in the ice part and

the supercooled droplets are in the liquid part. The composition of the state vector differs from the previous version and will

be described in the following paragraphs.

As the liquid droplet concentration does not depend on the air temperature like for ice particles, the temperature-dependent

concentration parameter N ′ is not required to retrieve liquid cloud properties. For this, we decided to use N∗
0 in the state vector,195

instead of N ′. It can be noted that VarPy-ice algorithm has also the possibility to retrieve ice properties using the normalized

number concentration parameter N∗
0 . This enables the VarPy-mix ice retrieval to be compared with VarPy-ice retrieval to avoid

any inconsistencies. We include this variable for each state vector part, so there is N∗
0,ice for the ice part and N∗

0,liq for the

liquid part. Choosing N∗
0 allows to keep the a priori and first guess values for the ice with the following temperature dependent

relationship:200

ln(N∗
0,ice) = (A+B ·T )+ γ · lnαice (11)

This relation is based on the Eq. (10) to calculate N ′ a priori and first guess values. To keep the old scheme benefits, the

cubic-spline basis function interpolates the N∗
0,ice values with a spacing factor ηN set to 4. It is unusable for the liquid group

since supercooled layer are thin and corresponds to too few gates.

The extinction α is still part of the state vector. Like for N∗
0,ice and N∗

0,liq, the extinction is divided into two variable: αice for205

the ice properties and αliq for the liquid ones. Both are defined for each gate of a profile. Regarding the lidar ratio S, we keep

the same configuration in the state vector with the two coefficients aln(S) and bln(S). Table 2 lists the value of the lidar ratio at

different wavelength and according to particle size or type. As a result, we make the assumption that the lidar ratio is constant

for liquid droplets (Pinnick et al., 1983). Consequently, the lidar ratio is defined only for ice gates in the state vector and its

value is fixed at 18.6 sr for supercooled water (pure or in mixed-phase) at 532 nm.210
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Table 2. Lidar ratio S for liquid droplet depending on cloud type, particle size and lidar wavelength.

Source Particle or cloud type Wavelength λ [nm] S [sr]

Pinnick et al. (1983) Spherical water droplets
1064

632

18.2

17.7

O’Connor et al. (2004)
Median equivolumetric diameter

between 8 and 20 µm

905

532

355

18.8 ± 0.8

18.6 ± 1.0

18.9 ± 0.4

Hogan et al. (2003)
Mie theory and distributions with median

volume diameters between 5 and 50 µm
905 18.75

For ni the number of ice gates, nl the number of liquid gates and mi defined in the same way as m depending on the spacing

parameter ηN , we end up with the new state vector given by Eq. (12):

Xmix =




ln(N∗
0,ice,0)
...

ln(N∗
0,ice,mi

)

aln(S)

bln(S)

ln(αice,0)
...

ln(αice,ni)

ln(N∗
0,liq,0)
...

ln(N∗
0,liq,nl

)

ln(αliq,0)
...

ln(αliq,nl
)




(12)

For VarPy-ice, a single “Twomey-Tikhonov” matrix of dimension (m+k+n) × (m+k+n) is applied for the entire extinction

profile. However, the extinction values of liquid droplets is different from ice particles, and it is therefore unsuitable to use a215

single “Twomey-Tikhonov” matrix on a profile with simultaneously ice and supercooled water. As we want to smooth the

extinction profile for both ice and liquid parts, we decided to smooth them out separately and not to use a single “Twomey-

Tikhonov” matrix to smooth an entire profile. Consequently, for VarPy-mix, a method has been developed to separate different
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sections of a profile according to the smoothing to be applied. The separation is made between ice, liquid and where there is

clear sky. Then, one “Twomey-Tikhonov” matrix is applied to each section. The dimension of the final matrix is (mi+k+ni+220

2×nl) × (mi+k+ni+2×nl). The smoothness coefficient κ is set to 100 for VarPy-ice and this parameterization is kept for

the ice part of VarPy-mix. Whereas, the coefficient applied to the liquid water is different and set to 10, since the thickness of

the detected liquid layer is smaller than ice layer.

2.2.1 A priori error covariance matrix

Generally, radar and lidar signals do not both cover simultaneously the entire vertical cloud profile. In many cases of ice clouds,225

lidar in downward direction first detects the top of the cloud, while radar only detects deeper cloud regions down to the ground.

The lidar signal will not detect the lower layers of the cloud if it gets attenuated or extinguished. To ensure that the results tend

towards physical values in regions where a single instrument is available, state vector a priori parameterization and errors are

used. The a priori errors are defined by the a priori error covariance matrix B and express how strong is the constrain of the a

priori. This matrix is composed of the error variances of the state vector a priori σ2. In the simplest case where no information230

propagates between gates, this matrix is diagonal.

To overcome the limitation of single instrument retrieval, the matrix B can be used to spread information in height. Ad-

ditional off-diagonal elements can be added to propagate information from synergistic regions to single instrument ones. In

VarPy-ice (Hogan, 2007; Delanoë and Hogan, 2008), the off-diagonal terms of B corresponding to N ′ are given by:

Bi,j =Bi,i × e
−
|zj − zi|

z0 (13)235

where z0 is the decorrelation distance, a parameter set to 600 m for VarPy (initially set to 1 km for VarCloud). This value is

set for CloudSat-CALIPSO and can be adapated to the resolution of the data used.

In VarPy-mix version, the structure of B has been adapted to the composition of the new state vector. In order to keep

the same configuration as VarPy-ice, the off-diagonal terms are calculated for N∗
0,ice only. As a result, B remains diagonal

regarding the other variables. The a priori error variances values for both VarPy-ice and -mix are listed in Table 3 and are240

assumed to be constant with height.

Besides, the dimensions of the matrices U and M, used for the calculation of the error covariance matrix of the state vector

Sx (refer to Appendix A of Delanoë and Hogan 2008 for more information), have been adapted to the number of variables in

Xmix and their dimension.

2.2.2 Normalized Droplet Size Distribution for liquid Look Up Table245

For VarPy-ice and VarPy-mix, ice properties are retrieved using dedicated LUTs. These are created using the particle size

distribution of ice particles (Delanoë et al., 2014). However, the particle size distribution differs between ice particles and

liquid droplets, meaning that LUTs dedicated to the retrieval of ice properties cannot be used to retrieve liquid properties.
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Table 3. A priori error variances used in VarPy for the a priori error covariance matrix B

Variables Values

σln(N′) 1

σln(N∗
0,ice)

1

σaln(S)
0.1

σbln(S)
0.0001

σln(αice) 5

σln(N∗
0,liq)

1

σln(αliq) 5

The solution is to define a Droplet Size Distribution (DSD) for liquid droplets to create a LUT dedicated to liquid properties

retrieval. Regarding literature, there are two types of distribution: the gamma distribution (Miles et al., 2000) and the log-250

normal distribution (Frisch et al., 1995; Fielding et al., 2015). For this study we use the following log-normal relationship

defined by Frisch et al. (1995):

n(r) =
Nliq

σ
√
2π

e
−
(ln(r)− ln(r0))

2

2σ2 (14)

where n(r) is the number concentration at a given cloud droplet radius r [µm], Nliq is the total number of liquid droplets

per unit volume [m−3], r0 is the modal radius [µm], and σ is the geometric standard deviation. The kth moment ⟨rk⟩ of this255

distribution can be expressed as following:

⟨rk⟩= 1

Nliq

∞∫

0

n(r)rk dr (15)

It permits to relate the following variables to Dm [m] (proportional to the ratio between the fourth moment and the the third

moment):

– the reflectivity Z [mm6.m−3], which is proportional to the sixth moment of the DSD260

– the extinction α [m−1], which is proportional to the second moment

– the liquid water content LWC [kg.m−3], which is proportional to the third moment

– the effective radius re [m], which is proportional to the ratio between the third moment and the the second moment

– the equivalent area radius ra [m], which is equivalent to re for droplets

– the total number of liquid droplets per unit volume Nliq [m−3]265
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Those quantities are then normalized by N∗
0 [m−4] which can also be expressed as a function of Dm using the moments

of the distribution (proportional to the ratio between the third moment to the fifth power and the fourth moment to the fourth

power). The LUT ends up to be composed of
Z

N∗
0

,
α

N∗
0

,
LWC

N∗
0

,
Nliq

N∗
0

, ra and re as a function of Dm. As with ice LUT, the

liquid one is used in two steps of the algorithm with the ratio
ln(αliq)

ln(N∗
0,liq)

from the state vector values. This ratio is used to

retrieve the corresponding value in LUT, by interpolation. First, at each iteration, to predict lnZfwd, lnβfwd (via lnra and the270

fast multiple-scattering model of Hogan 2006) and the Jacobian terms with the forward models. Then with the final state vector,

the ratio
ln(αliq)

ln(N∗
0,liq)

permits to obtain LWC, re,liq and Nliq (box 9 of Fig. 1).

As explained in Sect. 2.1.1, two LUTs are available to retrieve ice properties. They are both implemented in VarPy-mix to

retrieve the ice part of the mixed-phase. Besides, they are defined in terms of the mean volume-weighted melted-equivalent di-

ameter, which makes them very similar from the liquid LUT for small radius. This ensures scientific consistency and algorithm275

flexibility.

2.2.3 Jacobians

The Jacobian depends on the state vector composition and is different between VarPy-ice and VarPy-mix. The structure of the

Jacobian J for VarPy-mix is shown by Eq. (16).

J=




∂β0

∂N∗
0,i,0

. . .
∂β0

∂N∗
0,i,mi

∂β0

∂aln(S)

∂β0

∂bln(S)

∂β0

∂αi,0
. . .

∂β0

∂αi,ni

∂β0

∂N∗
0,l,0

. . .
∂β0

∂N∗
0,l,nl

∂β0

∂αl,0
. . .

∂β0

∂αl,nl

...
. . .

...
...

...
...

. . .
...

...
. . .

...
...

. . .
...

∂βp

∂N∗
0,i,0

. . .
∂βp

∂N∗
0,i,mi

∂βp

∂aln(S)

∂βp

∂bln(S)

∂βp

∂αi,0
. . .

∂βp

∂αi,ni

∂βp

∂N∗
0,l,0

. . .
∂βp

∂N∗
0,l,nl

∂βp

∂αl,0
. . .

∂βp

∂αl,nl

∂Z0

∂N∗
0,i,0

. . .
∂Z0

∂N∗
0,i,mi

∂Z0

∂aln(S)

∂Z0

∂bln(S)

∂Z0

∂αi,0
. . .

∂Z0

∂αi,ni

∂Z0

∂N∗
0,l,0

. . .
∂Z0

∂N∗
0,l,nl

∂Z0

∂αl,0
. . .

∂Z0

∂αl,nl

...
. . .

...
...

...
...

. . .
...

...
. . .

...
...

. . .
...

∂Zq

∂N∗
0,i,0

. . .
∂Zq

∂N∗
0,i,mi

∂Zq

∂aln(S)

∂Zq

∂bln(S)

∂Zq

∂αi,0
. . .

∂Zq

∂αi,ni

∂Zq

∂N∗
0,l,0

. . .
∂Zq

∂N∗
0,l,nl

∂Zq

∂αl,0
. . .

∂Zq

∂αl,nl




(16)280

For better readability, the indices fwd of Z and β are not displayed, the ice and liq indices of N∗
0 and α are replaced respectively

by i and l indices and the natural logarithm of Z, β, N∗
0 and α are omitted. As for the state vector, we can divide the Jacobian

in two parts: the derivatives of lnZ and lnβ with respect to lnN∗
0,ice, aln(S), bln(S) and lnαice for the ice part (blue background

color on Eq. (16)) and the derivatives of lnZ and lnβ with respect to lnN∗
0,liq and lnαliq for the liquid part (red background

color). For the mixed-phase both liquid and ice parts are used. However, each part is retrieved with only one instrument.285

Indeed, the radar is not used to retrieve the supercooled water neither in pure liquid clouds nor in mixed-phase clouds, therefore
∂ ln(Zj)

∂ ln(N∗
0,liq,k)

and
∂ ln(Zj)

∂ ln(αliq,k)
are zero for any j and k. The lidar is used to retrieve ice clouds properties but not the ice part of

the mixed-phase. Then,
∂ ln(βj)

∂ ln(N∗
0,ice,k)

and
∂ ln(βj)

∂ ln(αice,k)
are zero for any j and k corresponding to mixed-phase gates.
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2.3 Cloud phase classification

Ice particles and liquid droplets are processed differently, meaning that the hydrometeors identification is an important input290

of the algorithm and more significantly regarding the mixed-phase. The retrieval of clouds properties requires to distinguish

the different hydrometeors detected by the instruments - here the radar and the lidar. Therefore, according to the sensitivity

of each instrument, a hydrometeor classification is established for each instrument. Lidar classification distinguishes aerosols

and cloud phases, while radar classification identifies precipitations and clouds. Consequently, combining the lidar and radar

classifications results in a more detailed cloud phase classification. These three classifications are additional inputs to the295

algorithm (box 3 of Fig. 1).

DARDAR-MASK v2.23 (Delanoë and Hogan, 2010) is a target categorisation made by the combination of the 2B-GEOPROF

CloudSat radar mask, the CALIPSO vertical lidar feature mask CAL-LID-L2-VFM and CALIPSO L1 measurements with a

multi-threshold decision tree (Ceccaldi et al., 2013; Cazenave et al., 2019). VarPy algorithms use it in order to select the gates to

process and how to process them. Table 4 shows the eighteen classes of the DARDAR-MASK v2.23 classification. The classes300

are not all processed. Currently, the algorithm process the “ice cloud”, the “spherical or 2D ice”, the “supercooled water”, the

“supercooled water and ice”, the “highly concentrated crystals”, the “top of the convective tower” and the “multiple scattering

due to supercooled water” classes. They are highlighted in bold in the Table 4. For VarPy-ice, these classes form a single group

to be processed. On the other hand, two groups of classes have been defined for VarPy-mix. Table 5 presents the composition

of these groups. The group called “ice” is composed of the following classes: “ice clouds”, “spherical or 2D ice”, “supercooled305

water and ice”, “highly concentrated crystals” and “top of convective towers”. The “supercooled water”, “supercooled water

and ice” and “multiple scattering” classes define the “liquid” group. This distinction is necessary to process the different phases

of the clouds separately. Nevertheless the “supercooled water and ice” class, called hereafter “mixed-phase”, has the particular-

ity to be processed in both the ice and liquid groups. In the current versions of VarPy, an intermediate classification is created

with these groups, called the processed cloud phase classification. For the case used for this paper, the processed cloud phase310

classification is presented in Sect. 3 in Fig. 2 (c).

Supercooled water layers are detected and identified using the lidar signal. In order to distinguish between classes “super-

cooled water” an “supercooled water and ice”, the radar signal is used. On the one hand, if the radar detects ice, the cloud phase

classification identifies the area as “supercooled water and ice”. On the other hand, where the radar does not detect particles

(no radar signal) and the lidar backscatter is strong, it is categorized as “supercooled water” and the following gates are usually315

“multiple scattering due to supercooled water”. For these gates, retrievals are based only on lidar measurements and a priori

values.

To minimize misclassification, some adaptations of the cloud phase classification have been implemented. The first step

is to avoid isolated gates that bias the retrieval. A method has been created to erode isolated supercooled water and mixed-

phase gates. For supercooled water and multiple scattering phases, these gates are replaced by clear sky in the cloud phase320

classification and the same correction is made for the lidar classification. On the other hand for the mixed-phase, only the

cloud phase classification is modified and the gates are replaced by ice gates. Afterwards, the next step is to correct some
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Table 4. DARDAR-MASK v2.23 Classes. The phases currently processed in VarPy-mix are those indicated in bold.

Number Class

-2 Presence of liquid unknown

-1 Surface and subsurface

0 Clear sky

1 Ice clouds

2 Spherical or 2D ice

3 Supercooled water

4 Supercooled water and ice

5 Cold rain

6 Aerosol

7 Warm rain

8 Stratospheric clouds

9 Highly concentrated ice particles

10 Top of convective towers

11 Liquid clouds

12 Warm rain and liquid clouds

13 Cold rain and liquid clouds

14 Rain maybe mixed with liquid

15 Multiple scattering due to supercooled water

Table 5. Cloud phases processed by VarPy-ice and VarPy-mix. Single group for VarPy-ice and two groups (ice and liquid) for VarPy-mix.

Number Class VarPy-ice VarPy-mix

Group “ice” Group “liquid”

1 Ice clouds ✓ ✓
2 Spherical or 2D ice ✓ ✓
3 Supercooled water ✓
4 Supercooled water and ice ✓ ✓ ✓
9 Highly concentrated ice particles ✓ ✓
10 Top of convective towers ✓ ✓

15
Multiple scattering due

to supercooled water
✓

misclassification of the mixed-phase. A strong lidar backscatter signal (β532 > 2.10−5 m−1.sr−1; Delanoë and Hogan, 2010)

can be a detection of warm water, top of convective tower, highly concentrated ice particles or supercooled water. For CALIOP,
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DARDAR-MASK uses a decision tree to classify mixed-phase and differentiates it from highly concentrated ice particles, for325

a temperature range from −40 ◦C to 0 ◦C (Ceccaldi et al., 2013). In some cases, highly concentrated ice particles areas are

incorrectly classified as mixed-phase and need to be corrected for VarPy. These gates are then replaced by highly concentrated

ice particles in the cloud phase classification.

2.4 Summary of the methodology

In this subsection, we summarize the key aspects of our method:330

1. The radar reflectivity and the lidar backscatter measurements are used as inputs to the algorithm. In addition, they provide

a cloud phase classification. This information is essential, as supercooled droplets and ice particles are not processed in

the same way in our approach. We improve, correct and extend the classification to supercooled water (pure or in mixed-

phase).

2. The state vector is composed of variables linked to both the measurements and the microphysical properties to be re-335

trieved. We propose a state vector structure that allows us to simultaneously retrieves both ice particle and supercooled

water droplet properties, either pure or in mixed-phase.

3. We assume that the lidar ratio of liquid water is constant with a value of 18.6 sr.

4. Based on the radar and lidar sensitivity, the ice part of the mixed-phase are retrieved with the radar signal and the liquid

part with the lidar signal. Consequently, this influences the Jacobian structure, which is calculated by the radar and lidar340

forwards models.

5. The parameterization (errors, a priori, first guess, LUT, smoothing parameters, etc.) to retrieve ice microphysical prop-

erties comes from the VarPy-ice version. For supercooled water properties, a new parametrization is applied and a new

LUT is created based on a log-normal distribution.

3 Example of retrieval and comparison with collocated in situ measurements345

During the Arctic Study of Tropospheric Aerosol, Cloud and Radiation (ASTAR, Gayet et al., 2009; Ehrlich et al., 2009)

campaign, four legs coming from the same flight were performed on the 7th of April 2007 over the ocean near Svalbard

archipelago. The case presented in this study is one of the rare CloudSat-CALIPSO transect with collocated airborne in situ

measurements of mixed-phase clouds. The in situ data from three probes is compared in this study to VarPy-mix retrievals.

This comparison is possible because cloud detection as well as phase identification between DARDAR-MASK and in situ350

observations are in overall good agreement. Indeed, Mioche and Jourdan (2018) shows that 91 % of clear sky events and 86

% of the cloudy gates of DARDAR-MASK match with the Polar Nephelometer in situ probe from samples collected during

the ASTAR 2007 and POLARCAT 2008 (see the Special Issue on POLARCAT in Atmos. Chem. Phys.) campaigns. The Polar
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Figure 2. Selected profiles of CALIPSO attenuated backscatter (a), CloudSat reflectivity (b), processed cloud phase classification (c) and

instrument synergy (d). The trajectory and direction of Polar-2 are shown by respectively magenta line and arrow.

Nephelometer can also be used to estimate the cloud phase observed (ice, liquid water and mixed-phase) thanks to thresholds

on the asymmetry parameter g (Jourdan et al., 2010). Using the Polar Nephelometer as a reference, Mioche and Jourdan (2018)355

shows that 61 % of DARDAR-MASK classification corresponding to ice phase match with Polar Nephelometer data, 67 %

for liquid phase while 24 % for mixed-phase. This identification difference may be due to the temporal and spatial difference

between satellite and in situ observations, or to the detection limit of supercooled water by lidar due to attenuation.

3.1 Remote sensing and in situ measurements

For this comparison, the radar and lidar measurements and the classifications come from the DARDAR-MASK v2.23 product360

(Cazenave et al., 2019). The selected latitude range is shown in Fig. 2 panels, which present the profiles of the lidar backscatter

measurements (a), the radar reflectivity (b), the processed cloud phase classification (c) and the instrument flag to know which

instrument is used for the retrieval (d). The strong lidar backscatter signal at the top of the cloud means that there is a large

amount of small particles like supercooled water droplets. As the radar also detects particles in this part of the cloud this

means that there are also ice particles. The processed cloud phase classification then shows the presence of an ice cloud with365

mixed-phase layer at the top. As presented in Fig. 2 (d), the mixed-phase is retrieved with both radar and lidar and the ice cloud

below is mainly retrieved with radar only, as the lidar is strongly attenuated and extinguished due to the supercooled water

of the mixed-phase. As a result, note that the base of the supercooled liquid layer within the mixed-phased cloud cannot be

determined unequivocally.

The three in situ instruments onboard the Polar-2 aircraft were the Cloud Particle Imager (CPI; Lawson et al., 1998), the370

Forward Scattering Spectrometer Probe (FSSP-100; Dye and Baumgardner, 1984; Gayet et al., 2007) and the Polar Neph-

elometer (PN; Gayet et al., 1997). As the aircraft was not flying exactly along the satellites trajectory, nor at the same time, the

collocation is quite challenging. Among the four legs, the third one is temporarily the closest to the satellites overpass with less
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Figure 3. CPI, FSSP and PN range sensitivities.

than ten minutes delay (shown on the top x axis of Fig. 2). We focus this study on this leg to compare VarPy-mix retrievals to

the in situ measurements. The altitude of the aircraft is shown by the magenta line in Fig. 2, where each point corresponds to a375

30 second averaged probe measurements and the magenta arrow indicates the direction of the flight. As the aircraft flew above

the cloud before going inside the cloud and passing through the mixed-phase layer twice, we have then a vertical description

of the cloud and the comparison with VarPy-mix retrieval is more complete.

The size range sensitivity of each probe is presented in Fig. 3. We assume here that the CPI provides information on ice

particles, while the FSSP provides information on liquid water. We cannot exclude that the FSSP also detects secondary ice380

particles (Costa et al., 2017) or could be more likely contaminated by ice crystal shattered on the instrument tips. However,

Costa et al. (2017) showed that secondary ice particles are not frequent in Arctic mixed-phase clouds. The temperature range at

which cloud were probe (between −21 ◦C and −14 ◦C) does not point towards possible secondary ice production mechanisms

(above −10 ◦C). Additionally, Febvre et al. (2012) showed that when ice crystals are measured by the FSSP, the asymmetry

parameter measured by the PN decreases compared to what would be expected for water droplets only. In our case study, the385

asymmetry parameter g is mostly greater than 0.84 in the upper cloud layer which is indicative of a layer composed quasi-

exclusively of water droplets. Consequently, we are quite confident that the presence of small ice crystals does not significantly

impact the results.

For this study, we derive the ice cloud extinction αCPI, the ice water content IWCCPI, the ice effective radius re,CPI and the

ice number concentration NCPI from the CPI. The mass-size relationship to calculate the ice particle properties is given by390

Equation 17 (model B for 0.2 kg.m−2 in Leinonen and Szyrmer, 2015). It corresponds to moderate riming and gives the best

agreement over the whole flight.

m= 0.033×D1.94 (17)

The liquid cloud extinction αFSSP, liquid water content LWCFSSP, the liquid effective radius re,FSSP and the liquid number

concentration NFSSP are provided by the FSSP. By summing extinctions, water contents and concentrations from both instru-395

ments, the total extinction αCPI+FSSP, the total water content TWCCPI+FSSP and the total number concentration NCPI+FSSP can be

obtained. In addition, the PN provides the total extinction αPN. These in situ measurements are shown in the next subsection in

Fig. 4, 5, 6 and 7, and are detailed in the comparison in Sect. 3.3. The uncertainties of all measurements are presented in Table

6 (Mioche et al., 2017).
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Table 6. Uncertainties of cloud properties derived from CPI, FFSP and PN probes from Mioche et al. (2017).

Properties CPI FSSP PN

Extinction α 55 % 35 % 25 %

Water Content (IWC or LWC) 60 % 20 % -

Number concentration N 50 % 10 % -

Asymmetry parameter g - - 4 %

3.2 VarPy-mix retrievals400

The cloud phase classification has been adapted by eroding isolated supercooled gates. In this study, we chose to retrieve ice

properties with the HC LUT. This implies that AHC , BHC and γHC values are used for the a priori and first guess values

of ln(N∗
0,ice). For the liquid LUT, the only parameter of the size distribution that can vary is the geometric standard deviation

σ. Fielding et al. (2014, 2015) set this value to σ = 0.3 ± 0.1 and Frisch et al. (1995) at σ = 0.35. We chose here to set the

geometric standard deviation to σ = 0.3.405

First, the liquid and ice extinctions retrieved by VarPy-mix are shown by curtain in Fig. 4 (a) and (b), and are used to access

more liquid and ice properties via LUTs. Figures 5 (a) and (b) show the LWC and IWC, Fig. 6 (a) and (b) show re,liq and re,ice

and Fig. 7 (a) and (b) show Nliq and Nice. For each microphysical properties, the ice and liquid parts are retrieved, according

to the classification. For the ice cloud between 0.5 and 1 km, only the ice properties are available. Ice and liquid properties are

both retrieved for the mixed-phase gates.410

Table 7 presents the mean values in all selected pixels of all retrieved properties. These values allow us to observe trends

for each variable. The extinction of liquid droplets is stronger than ice particles by a factor of 7. The same trends is observed

between LWC and IWC with average values 30 % larger for LWC. The ice particles are larger than liquid droplets by a factor

of 5 for the mean values. The liquid number concentration is much higher than ice number concentration by a factor 103. All

retrieved variables can be compared with in situ measurements. For extinction, water content and concentration, it is possible415

to sum the ice and liquid variables to obtain the total extinction αtot (curtain in Fig. 4 (c)), the total water content TWC (curtain

in Fig. 5 (c)) and the total number concentration Ntot (curtain in Fig. 7 (c)).

3.3 Comparison

The retrieved total extinction of the mixed-phase layer is higher than the ice layer due to the presence of supercooled droplets.

The extinctions from the CPI and FSSP have been summed in order to compare it to the total extinction of VarPy-mix and420

the one from the PN. These results are presented in Fig. 4 (c) by the dots and share the same colorscale as VarPy-mix curtain.

Above the cloud, where it is clear sky for VarPy-mix (coming from radar and lidar measurements and classifications), the PN

detects no particle and CPI+FSSP total extinction is very low (10−8 m−1 for the FSSP). Inside the cloud, we can observe the
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Figure 4. The panels (a) to (c) represent the liquid (a), ice (b) and total (c) extinctions from VarPy-mix retrievals (curtain) and in situ probes

(dots) regarding the latitude and the height. The panels (d) to (f) represent the liquid (d), ice (e) and total (f) extinctions from VarPy-mix

retrievals and in situ probes regarding the latitude. The error bars of in situ measurements (uncertainties from Table 6) are displayed in panels

(d) to (f). The yellow and purple shading represents the latitude range where mixed-phase retrievals are compared with in situ.

same trend between VarPy-mix retrieval and probe results, which is mainly different between ice only area and the mixed-phase

layer.425

In order to provide a more detailed comparison, we keep only the gates from VarPy-mix that are closest to the in situ

measurements. Figure 4 (f) displays by dots and lines the total extinction from the probes and from VarPy-mix. The points

corresponding to the mixed-phase layer are highlighted on all figures by yellow and purple vertical shading and the others

correspond to the ice cloud. Between 77.52 and 77.64◦ N in Fig. 4 (f), there is no data for VarPy-mix because these points

corresponds to ground clutter (ocean) area for the radar. The extinction for mixed-phase is higher than for the ice cloud, and430

this trend is observed for all results. In general, VarPy-mix total extinction is lower than total extinction from probes, especially

in regions where cloud phase classification is defined as ice. In these regions the FSSP detects liquid droplets while CALIOP

signal cannot be used because of the attenuation (extinguished). This can explain why αVarPy is lower than αCPI+FSSP.

In mixed-phase layer, IWC and LWC are both retrieved by VarPy-mix and can be compared to in situ data, respectively from

the CPI and the FSSP. The TWC is also used in this comparison. The results are shown in all panels of Fig. 5. In both regions435

of mixed-phase measurements, the LWC retrieved by VarPy-mix is between 2×10−2 and 2×10−1 g.m−3 and agree well with

the FSSP. Regarding the IWC, both CPI and VarPy-mix retrieve similar trends in these regions. In the region below, due to the
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Figure 5. As Fig. 4 for LWC, IWC and TWC.

Figure 6. As Fig. 4 for re,liq and re,ice.

extinction of the lidar signal, only ice properties are retrieved by VarPy but the FSSP detects also liquid in this region which

impacts the comparison of the TWC. For that reason, we only compare in this region the IWC retrieved by VarPy-mix to the
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Figure 7. As Fig. 4 for Nliq, Nice and Ntot.

Table 7. Mean values of retrieved properties.

Properties Mean

αice 1.03× 10−3 m−1

αliq 7.28× 10−3 m−1

αtot 4.91× 10−3 m−1

IWC 5.32× 10−2 g.m−3

LWC 6.89× 10−2 g.m−3

TWC 8.99× 10−2 g.m−3

re,ice 75.2 µm

re,liq 13.5 µm

Nice 2.01× 10−2 cm−3

Nliq 3.73× 101 cm−3

Ntot 1.99× 101 cm−3

IWC from CPI, which are close to each other (40 % mean percent error). The region between 77.52 and 77.64◦ N cannot be440

compared, for the same reason as for the extinction.
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Table 8. Mean absolute error and mean percent error regarding in situ for each property.

Properties
Mean values

for VarPy-mix

selected gates

Mean values

for in situ

Mean absolute

error

Mean percent

error

αice 8.1× 10−4 m−1 6.8× 10−4 m−1 7.2× 10−4 m−1 398 %

αliq 6.7× 10−3 m−1 3.3× 10−3 m−1 4.3× 10−3 m−1 39 %

αtot (CPI+FSSP) 4.2× 10−3 m−1 4.1× 10−3 m−1 3.4× 10−3 m−1 50 %

αtot (PN) 4.2× 10−3 m−1 6.2× 10−3 m−1 4.2× 10−3 m−1 56 %

IWC 2.9× 10−2 g.m−3 3.4× 10−2 g.m−3 5.0× 10−2 g.m−3 75 %

LWC 2.6× 10−2 g.m−3 5.2× 10−2 g.m−3 1.4× 10−2 g.m−3 49 %

TWC 3.0× 10−2 g.m−3 6.0× 10−2 g.m−3 4.7× 10−2 g.m−3 39 %

re,ice 69.7 µm 177.5 µm 128.2 µm 54 %

re,liq 12.2 µm 5.56 µm 6.40 µm 122 %

Nice 3.40× 10−2 cm−3 2.02× 10−2 cm−3 3.24× 10−2 cm−3 280 %

Nliq 1.73× 101 cm−3 2.59× 101 cm−3 6.10× 101cm−3 77 %

Ntot 8.69 cm−3 3.59× 101 cm−3 4.51× 101cm−3 89 %

The same comparison between VarPy-mix retrievals and in situ measurements can be done for effective radii and concen-

trations, and is illustrated in all panels of Fig. 6 and 7 respectively. We can see on panel (a) and (c) of Fig. 6 that the liquid

effective radius retrieved by VarPy-mix is higher than that from the FSSP. On the other hand, the ice effective radius from

VarPy-mix is very close to the CPI effective radius in the mixed-phase layer indicated by the yellow shading (panels (b) and445

(e)). However, the values retrieved by VarPy-mix is much lower for the mixed-phase region indicated by the purple shading.

In this region, the CPI gives ice effective radius between 200 and 600 µm while VarPy-mix retrieves values around 70 µm.

This difference may be due to the different mass-size relationships applied. Regarding the concentrations (Fig. 7), VarPy-mix

retrieved less concentrated liquid particles than the FSSP and follow the same trend. For ice number concentration, the values

are lower for VarPy-mix in the mixed-phase layer indicated by the yellow shading and higher in the one indicated by purple450

shading. On panel (f) of Fig. 7, the same trend as for the total extinction is obtain with higher values in the mixed-phase layer

and very low values below it. The explanations are the same as for extinction.

For all variables, the mean absolute error (the mean of the absolute difference between each value of VarPy-mix and in situ)

and the mean percent error regarding in situ (the mean of the absolute difference between each value of VarPy-mix and in

situ divided by in situ value and expressed as a percentage) are calculated and are presented in Table 8. The liquid extinction455

retrieved by VarPy-mix differs from in situ by 39 %, which is similar to in situ uncertainties (35 %), and is the closest to the

in situ measurements. On the contrary, the mean percent error of ice extinction is 398 %. This can be explained by the large

difference around 77.75◦ N, shown by the purple shading. The uncertainties of in situ probes (Table 6) also need to be taken

into account.
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The comparison between VarPy-mix retrieval and the in situ measurements is limited for many reasons. First the collocation460

in space is not perfect which can lead to biases and restrain this study to one case. The Polar 2 aircraft flew almost exactly under

CloudSat and CALIPSO trajectory during the third leg by crossing it around 77.6◦ N. If we do not consider the measurement

points above the clouds, the maximum spatial shifts are 1.68 km around 77.44◦ N and 1.34 km around 77.78◦ N. The temporal

shift is also the best for the third leg with less than ten minutes between the two platforms. Nevertheless, the sampling volumes

of the probes are much smaller than those of the remote sensing instruments. Moreover, the vertical (60 m) and horizontal (1.4465

km) resolutions of VarPy-mix products are larger than the probe sampling volume.

Another source of bias comes from the partial synergy of the VarPy-mix version in the mixed-phase. Indeed, the retrieval

relies more strongly on the a priori values than when both instruments are used to retrieve ice clouds properties (Delanoë et al.,

2013). In addition, the ice cloud is mainly retrieved with radar only and therefore with a priori values, which are temperature

dependent. Furthermore, the main advantage of VarPy is the ability to retrieve full cloud profiles.470

4 Summary and discussion

In this paper, we propose a method to retrieve microphysical properties of ice, supercooled and mixed-phase clouds simulta-

neously, called VarPy-mix. This variational method can use radar reflectivity at 35 or 95 GHz and lidar backscatter at 532 nm

from spaceborne or satellite platform to get vertical profiles of extinctions, ice and liquid water contents, effective radii and

number concentrations. Radar and lidar have different sensitivities to hydrometeors, due to their wavelength and therefore this475

difference is used to retrieve the mixed-phase. On the one hand, the lidar is very sensitive to small and highly concentrated

particles such as liquid droplets. On the other hand, the radar is sensitive to the particle size meaning that the signal is stronger

for ice particles than for liquid droplets. Consequently, the ice clouds are retrieved with both instruments while the mixed-phase

retrieval is divided in two parts: the ice particles are retrieved with the radar signal and the supercooled water with the lidar

signal. Therefore, the retrieval relies strongly on a priori and errors values.480

VarPy-mix is based on the algorithm VarCloud (Delanoë and Hogan, 2008) that retrieves ice cloud properties with radar,

lidar and radiometric data. The variational method is the same, but the structure of the algorithm has been adapted to deal with

supercooled water and mixed-phase clouds. The main modification comes from the state vector composition, which is divided

into two parts, allowing ice and liquid to be processed separately as required. All matrices related to the state vector have been

adapted to it. Moreover, a new look up table dedicated to liquid properties has been created. Based on a log-normal droplet size485

distribution, it is used to retrieve supercooled water clouds and the liquid part of the mixed-phase. For the ice clouds and the

ice part of mixed-phase clouds, two look up tables are implemented: one is using the T-matrix and the mass-size relationship

from Heymsfield et al. (2010) and the second one is a combination of Brown and Francis (1995) and Mitchell (1996) mass-size

relationships. It is important to know the phase of the cloud in order to process each gate appropriately. For this, an intermediate

classification has been implemented. It distinguishes between ice clouds, supercooled water and the mixed-phase. Adaptations490

have been made on this classification to improve the retrieval (reduce biases) and be consistent with the measurements.
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The retrieved properties can be divided into two parts, with ice properties on one side and those of the liquid on the other.

The results are vertical profiles of:

- ice and liquid extinctions, αice and αliq [m−1], which can be used to estimate total extinction αtot ;

- ice and liquid water contents, IWC and LWC [kg.m−3], which can be used to estimate total water content TWC ;495

- ice and liquid number concentrations, Nice and Nliq [m−3], which can be used to estimate total number concentration

Ntot ;

- and ice and liquid effective radius, re,ice and re,liq [m].

The case presented in this study is a mixed-phase layer on top of ice boundary layer cloud, at high latitudes. Therefore, ice

and liquid properties are retrieved on top of cloud and then ice properties for the ice cloud below. By comparing with in situ500

measurements from the ASTAR campaign, we can see that the cloud microphysical properties retrieved with VarPy-mix follow

similar trends as in situ measurements and that the retrieval produces correct results.

However, this comparison shows some limitations. First, the lower part of the cloud is missing which compromises part of

the comparison. In fact, the lidar is attenuated by the liquid droplets of the mixed-phase layer and extinguished after it. The

radar does not detect down to the ocean because of the clutter and therefore cannot see the cloud base. Then, the spatial and505

temporal shifts between the aircraft and the satellites need to be taken into account, which are respectively less than 1.7 km and

10 min for the chosen case. Moreover, the sampling volume is not the same between in situ probes and CloudSat-CALIPSO

(60 m vertical resolution). This makes it difficult to compare precisely a VarPy-mix gate to an in situ measurement. Finally,

the ice cloud retrieval is mainly done with radar signal only and each part of the mixed-phase is also retrieved with single

instrument. The retrieval in this case relies strongly on a priori values and the look up table, which includes some bias in the510

comparison with in situ. A fully synergistic retrieval would be much more reliable, with both instruments retrieving each part

of the mixed-phase. Another possible improvement would be to optimize the a priori and first guess values for liquid with in

situ statistics. Moreover, this study focuses on only one case of mixed-phase at high latitude, above the ocean, which does not

allow to know how the algorithm would retrieve globally the mixed-phase and the supercooled water.

In this study, VarPy-mix is used to retrieve clouds properties with CloudSat and CALIPSO data. Nevertheless, it can also515

be apply to observations from other platforms. The french RALI airborne platform with the RASTA radar (95 GHz) and LNG

lidar (multi-wavelength, 355, 532 and 1064 nm, and High Spectral Resolution - HSR - at 355 nm) offers more possibilities for

comparison with in situ measurements. During the RALI-THINICE campaign that took place in August 2022 near the Svalbard

archipelago, the ATR42 from SAFIRE flown over and inside several mixed-phase cases, with RALI and in situ probes. VarPy-

mix will be applied on RALI data and some comparison with in situ can be done to evaluate, validate and improve VarPy-mix520

parameterization. The same can be applied on other campaigns like HALO-(AC)3, which took place in March and April 2022

in the Arctic near the Svalbard archipelago. During this campaign, the HALO platform, consisting of the radar MIRA (35

GHz) and the lidar WALES (532, 1064 nm and HSR at 532 nm) flew over mixed-phase clouds. Some collocation with aircraft

performing in situ measurements was conducted during this campaign. More information on both campaigns can be found
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in their website (RALI-THINICE, HALO-AC3). In addition, VarPy-mix can use data from the EarthCARE satellite platform,525

which is planned for launch in 2024 and includes Cloud Profiling Radar (CPR) at 94 GHz and ATmospheric LIDar (ATLID)

at 355 nm with HSR.

Data availability. DARDAR-MASK v2.23 products are publicly available on the AERIS/ICARE website (http://www.icare.univ-lille1.fr/,

last access: 1 December 2023).
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