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Abstract 7 

Direct measurement of carbon and water fluxes at high frequency makes eddy 8 

covariance (EC) as the most preferred technique to characterize water use efficiency (WUE). 9 

However, reliability of EC fluxes is largely hinged on energy balance ratio (EBR) and inclusion 10 

of low-frequency fluxes. This study is aimed at investigating the role of averaging period to 11 

represent EC fluxes and its propagation into WUE dynamics. Carbon and water fluxes were 12 

monitored in a drip-irrigated Maize field at 10 Hz frequency and are averaged over 1, 5, 10, 13 

15, 30, 45, 60, and 120 minutes considering daytime unstable conditions. Optimal averaging 14 

period to simulate WUE fluxes for each growth stage is obtained by considering cumulative 15 

frequency (Ogive) curves. A clear departure of EBR from unity was observed during dough 16 

and maturity stages of the crop due to ignorance of canopy heat storage. Deviation in 17 

representing water (carbon) fluxes relative to the conventional 30 min average is within ± 3 % 18 

(± 10 %) for 10-120 min averaging and is beyond ± 3 % (± 10 %) for other time-averages. 19 

Ogive plots conclude that optimal averaging period to represent carbon, water and WUE fluxes 20 

is 15-30 min for 6th leaf and silking stages, and is 45-60 min for dough and maturity stages. 21 

Dynamics of WUE considering optimal averaging periods are in the range of 1.49 ± 0.95, 1.37 22 

± 0.74, 1.39 ± 0.79, and 3.06 ± 0.69 μmol mmol-1 for the 6th leaf, silking, dough, and maturity 23 

stages respectively. Error in representing WUE with conventional 30 min averaging is marginal 24 

(< 1.5 %) throughout the crop period except for the dough stage (12.12 %). We conclude that 25 

the conventional 30 min averaging of EC fluxes is not appropriate for the entire growth stage. 26 

Our findings can help in developing efficient water management strategies by accurately 27 

characterizing WUE fluxes from the EC measurements. 28 
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Research Highlights: 31 

1. The time-averages that yield the most effective energy balance closure are identified as 32 

45 and 60 minutes. 33 

2. Insufficiently short time-averages such as 1 and 5 minutes, as well as excessively long-34 

time-averages such as 120 minutes, resulted in a high relative error in representing 35 

carbon and water fluxes. 36 

3. The conventional 30-minute averaging period proved to be insufficient in capturing 37 

low-frequency fluxes, necessitating the use of longer averaging periods.  38 

4. Different time averaging periods are to be considered to compute the EC fluxes 39 

considering the crop growth stage.  40 

1.0 INTRODUCTION 41 

Water use efficiency (WUE) is an important eco-hydrologic trait relating two important 42 

processes of plant metabolism namely carbon fixation (via photosynthesis) and water 43 

consumption (via transpiration) (Bramley, 2013). The need for achieving food security with 44 

diminishing water resources under changing climate has made WUE as the controlling 45 

parameter in planning and design of irrigation strategies (Tang, 2015). Depending on the scale 46 

of investigation, WUE can be quantified at: i) leaf, ii) plant, iii) ecosystem, or iv) regional 47 

scales (Medrano, 2015). Of these, ecosystem WUE has taken precedence in irrigation and 48 

agronomy due to: i) accurate and reliable measurement using micrometeorological techniques, 49 

ii) ability to evaluate the role of various water conservation techniques on ecosystem 50 

productivity, and iii) understand the relation between carbon and water cycles in response to 51 

changes in climate (Tang, 2015; Tong, 2014). 52 

Eddy covariance (EC) is a non-destructive, micrometeorological technique for direct 53 

measurement of water vapour (H2O) and carbon (CO2) fluxes between vegetation and 54 

atmosphere at high temporal frequency (Aubinet, 1999; Leclerc and Foken, 2014). EC method 55 

precisely measures the overall transfer of heat, mass, and momentum between the earth's 56 

surface (such as vegetation) and the atmosphere. This is achieved by estimating the covariance 57 

of turbulent fluctuations in vertical wind (referred to as eddies) with respect to the specific flux 58 

under consideration such as H2O, CO2, temperature. EC represents the scalar fluxes of interest 59 
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(representative of eco-hydrological processes) from a region upwind of the measurement 60 

known as the footprint. At ecosystem scale, WUE is estimated as the ratio of net primary 61 

product (NPP: proxy for photosynthesis) to evapotranspiration (ET: proxy for water 62 

consumption) (Peddinti, 2020). WUE is a key eco-hydrologic trait that is used to analyse the 63 

role of climate change, drought, deficit irrigation, and management strategies on ecosystem 64 

productivity.  Currently, EC is the most accurate and reliable method for estimating carbon and 65 

water exchanges, hence WUE at ecosystem scale (Tong, 2009). A number of studies have 66 

demonstrated the efficacy of EC in estimating WUE across a wide range of ecosystems (Tang, 67 

2015; Tong, 2014; Wang, 2017). Error sources that affect the accuracy of EC fluxes are 68 

grouped into: i) Unrepresentative (due to footprint heterogeneity, unsatisfied underlying 69 

theory), ii) Measurement uncertainties (due to random errors, interference and contamination, 70 

sensor drifts) and iii) Measurement biases in fluxes (tilt, frequency losses, air density 71 

fluctuations etc). Despite improvements in measurement accuracy, data sampling, and 72 

processing techniques, EC method still suffers from the drawback of lack of conservation 73 

among the energy terms, resulting in energy balance closure (EBC) problem (Charuchittipan, 74 

2014; Foken, 2011; Reed, 2018). Lack of EBC as observed in EC system is reported across 75 

diverse ecosystems ranging from simple bare soils (Oncley, 2007), to homogeneous grasslands 76 

(Twine, 2000), to heterogeneous croplands (Peddinti and Kambhammettu 2019), to complex 77 

forest ecosystem (Charuchittipan, 2014; Wilson, 2002). Apart from the errors associated with 78 

instrumentation, measurement, and neglected energy sinks, lack of EBC at the EC sites is also 79 

attributed to the omission of low frequency secondary circulations in the turbulent flux 80 

estimation (Wilson, 2002). This problem can be circumvented by choosing appropriate 81 

averaging period during flux estimation, the selection of which is based on: i) ‘ensemble block 82 

time-averaging method’ (Finnigan, 2003; Malhi, 2004; Sakai, 2001), and ii) ‘Ogive method’ 83 

(Berger, 2001). 84 

A number of studies have highlighted the importance of averaging period in quantifying 85 

the EC fluxes, with an objective to obtain optimal time-averaging period under various canopy 86 

and surface roughness conditions. While smaller averaging periods (15-30 min) are suitable 87 

for managed croplands, flux estimation from forest and tall canopies demand longer averaging 88 

periods (60-120 min) due to the presence of large-sized, slow moving eddies (Finnigan, 2003; 89 

Sakai, 2001; Sun, 2006). Zhang (2013) concluded that time-averaging of EC fluxes has to be 90 

done in accordance with the observation scale. In an analysis of Chengliu riparian forest in 91 

China, they found that lower time-averaging periods (15 min) are suitable for daily variation 92 
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of EC fluxes, whereas higher time-averaging periods (60 min) are suitable for long-term flux 93 

computations. A similar observation was made by Lee (2004)  over farmlands. In a wheat field 94 

in Yucheng, China, 10 min and 30 min averaging periods were found suitable for diurnal and 95 

long-term flux observations respectively.  Flux observations over a Maize crop at Daxing 96 

experimental station in China conclude that optimal time-averaging period has to be considered 97 

in accordance with crop growth stage (Feng, 2017). However, they observed a marginal (< 3 98 

%) error in representing the fluxes at conventional 30 min averaging relative to the optimal 99 

averaging obtained for each growth stage. 100 

Maize is the third most important cereal crop in India after rice and wheat, and accounts 101 

for about 10 % of total food production in the country (Sharma, 2018; Ficci 2014). Inspite of a 102 

huge area under cultivation (9.4 MHa), high production (23 million tons), and enormous water 103 

consumption (18 BCM), both crop productivity (2.5 t ha-1) and crop water productivity (CWP) 104 

(1.83 kg m-3) of Indian Maize are far lower than corresponding world averages (Sharma, 2018). 105 

Low CWP (hence, WUE) of Indian Maize can be attributed to: i) a high dependence (85 %) on 106 

erratic, uncertain rainfall, ii) low adoption of hybrid varieties, iii) improper drainage facilities 107 

leading to water logging, and iv) unscientific application of irrigation water without analysing 108 

soil-water-crop interactions (Shankar, 2012). Thus, an accurate quantification of WUE and its 109 

temporal variation during the crop cycle is essential for effective irrigation water management 110 

of Maize crop (Medrano, 2015). 111 

 While the effect of time-averaging on carbon and water fluxes measured at EC sites is 112 

reported, the effect on their interaction term, i.e. WUE, which is crucial in irrigation water 113 

management is unexplored. Evaluation of time-averaging period on WUE dynamics is 114 

necessary to understand the contribution of low and high frequency photosynthetic carbon and 115 

evaporative water fluxes generated from various field management strategies. Also, most of 116 

the EC flux studies are confined to data rich AmeriFLUX, EuroFLUX, and ChinaFLUX sites, 117 

with limited focus to Indian fragmented croplands. This motivates the present study, and the 118 

objectives of this study are as follows: i) investigate the role of time-averaging of EC fluxes on 119 

EBR and WUE dynamics, ii) compute optimal averaging period to simulate carbon and water 120 

(hence, WUE) fluxes of Maize crop, and iii) investigate the association of carbon, water, and 121 

WUE fluxes between multiple averaging periods. Results of this study can help in designing 122 

efficient management strategies using EC datasets in response to changes in WUE during the 123 

crop cycle. 124 
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 125 

2.0 MATERIALS AND METHODOLOGY 126 

2.1 Site Description and Instrumentation 127 

Controlled Maize plots situated at Professor Jaya Shankar Telangana State Agricultural 128 

University (PJTSAU), Hyderabad, Telangana, India (17°19′17″ N, 78°24′35″ E, 559 m above 129 

sea level) forms the study area. The region is composed of red gravel to sandy loam soils with 130 

field capacity and wilting point in the ranges of 17.92 - 19.56 % and 8.2 – 9.87% respectively. 131 

As per Koppen-Geiger's classification, the region falls under tropical savanna climate zone 132 

(Aw) characterized by long dry and short wet seasons (Kottek, 2006). Mean annual 133 

precipitation of the region is 900 mm (IMD, 2019) with more than 80% occurring during the 134 

monsoon months (Jun-Sep). Temperatures are high during summer (38.33 ± 2.12 oC) and low 135 

during winter (30 ± 2.20 oC) months. Humidity of the region varies from 35% in summer to 136 

73% in monsoon (CGWB, 2013). Mean seasonal wind speed is in the range of 1.5 to 2.7 m/s 137 

(Peddinti and Kambhammettu 2019). Hydro-geologically, the study area forms part of the 138 

Deccan plateau characterized by multiple layers of solidified flood basalt resulting from 139 

volcanic eruptions. Depth to groundwater ranges from 12 m (pre-monsoon) to 6 m (post-140 

monsoon) (CGWB, 2013). 141 

Meteorological parameters and turbulent fluxes were obtained for one crop season, i.e. 142 

26 May to 06 Sep, 2019 using an open path eddy covariance (EC) flux tower. The flux system 143 

is composed of integrated CO2/H2O open-path gas analyzer and 3D sonic anemometer 144 

(IRGASON-EB-NC, Campbell Sci. Inc., USA) to measure CO2 and H2O concentrations at 3 145 

m above the canopy. Raw data was collected with a logger (CR1000, Campbell Sci. Inc., USA) 146 

at 10 Hz frequency. Additionally, slow response meteorological variables including 147 

precipitation (TE525-L-PTL, Tipping Bucket, Campbell Sci. Inc., USA), soil heat flux 148 

(HFP01SC-L-PTL, Campbell Sci. Inc., USA), solar radiation (CNR 4, Campbell Sci. Inc., 149 

USA), and soil moisture (CS616-L-PT-L, Campbell Sci. Inc., USA) were obtained at 10 min 150 

intervals. 151 

 152 

2.2 Data Collection and Processing 153 

Table 1 shows the phenological stages of the Maize crop in the study area (Soujanya, 154 

2021). Additionally, leaf-area index (LAI) and mean plant height were monitored during the 155 
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crop cycle (Table 1). The LAI was measured using the plant canopy analyser, whereas the plant 156 

height was measured using a ruler from the base of the plant to its crown. Maize crops of the 157 

experimental fields are sown on 25th May 2019 and harvested on 6th September 2019 with a 158 

base period of 104 days.     159 

Table 1: Phenological growth stages and physical properties of the Maize crop 160 

S. 

No. 
Growth stage Start date  End date  

Period 

Length 

(days) 

Leaf Area Index 

(m2m-2) 

Plant height 

(cm) 

1 6th leaf 26/05/2019 12/06/2019 18 0.61 46.8 

2 Silking 13/06/2019 19/07/2019 37 1.56 75.2 

3 Dough 20/07/2019 12/08/2019 24 3.46 133 

4 Maturity 13/08/2019 06/09/2019 25 3.03 134 

 161 

           Data from the EC system at 10 Hz frequency was converted to ASCII format using 162 

LoggerNet (4.3) software (Campbell Scientific Inc., Logan, Utah, USA), and further 163 

aggregated to various averaging periods (1, 5, 10, 15, 30, 45, 60, and 120 minutes). Post data 164 

processing was done using EddyPro post‐processing software (version 7.0.8, LI‐COR, USA). 165 

Primary corrections performed on the raw dataset include tilt corrections, turbulent 166 

fluctuations, density fluctuations, frequency corrections and quality checks. Tilt corrections 167 

were made by the double axis rotation method for each averaging period. Either block average 168 

method or linear trending method were considered to compute the turbulent fluctuations. Block 169 

averaging method was used for detrending the fluxes at 1, 5, 10, 30, 45, and 60 min averaging 170 

periods. Longer averaging periods (e.g. 120 min) has resulted in inconsistency in the obtained 171 

fluxes, which is a weakness of the block averaging (Renhua, 2005; Sun et al., 2006). Hence, 172 

linear trend removal method was used to compute the fluxes for 120 min averaging period. 173 

Density fluctuation corrections were done using Webb–Pearman–Leuning (WPL) 174 

method. Quality checks were performed following a flagging policy proposed by Mauder and 175 

Foken (2006)  (0-1-2 system). Flag set to "0" corresponds to the best quality fluxes, "1" 176 

corresponds to fluxes acceptable for general analysis, and "2" corresponds to poor quality 177 
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fluxes that should be removed from the dataset. The resulting fluxes may exhibit spikes, 178 

discontinuity, randomness etc. There is a need to perform secondary corrections on the data 179 

that include flux spike removal (Vickers and Mahrt 1997), friction velocity corrections (to filter 180 

night time observations), gap filling and uncertainty analysis (Finkelstein, 2001), skewness & 181 

kurtosis removal, spectral corrections, and frequency corrections. To correct flux estimates for 182 

low and high frequency losses due to instrument setup, intrinsic sampling limits of the devices, 183 

and various data processing decisions, spectral corrections are performed. Additionally, slow 184 

sensor meteorological data obtained at 1 min interval were processed for different time-185 

averaging periods using the EddyPro post‐processing software (version 7.0.8, LI‐COR, USA).  186 

 187 

2.3 Effect of time-averaging on EBR and EC fluxes 188 

Violation of law of conservation of energy resulting from the EC observed energy terms 189 

is referred as energy balance closure (EBC). The available energy (Rn-G) is generally higher 190 

than the turbulent fluxes (H+LE), resulting in a positive balance (Eshonkulov, 2019) where Rn, 191 

G, H and LE correspond to net radiation, soil heat flux, sensible heat and latent heat 192 

respectively. Apart from instrument and measurement issues, this lack of energy closure is 193 

thought to be partly from averaging periods and coordinate systems (Finnigan, 2003; Finnigan, 194 

2004; Gerken, 2018). The energy closure fraction, commonly termed as energy balance ratio 195 

(EBR) is used to evaluate the quality of EC data by examining energy fluxes at the surface 196 

(Chen and Li 2012), given by: 197 

𝐸𝐵𝑅 =
𝐻+𝐿𝐸

𝑅𝑛−𝐺
            (1) 198 

H = ρa Cp𝑤 ′𝑇′̅̅ ̅̅ ̅̅             (2) 199 

LE = Lv 𝑤 ′𝑣′̅̅ ̅̅ ̅̅ ̅            (3) 200 

where ρa is the air density; Cp  is the specific heat of air, 𝑤 ′ is the wind velocity fluctuation,  𝑇′ 201 

is the temperature fluctuation, Lv is the latent heat of vaporization and 
𝑣

′ is the H2O gas 202 

concentration fluctuation. 203 

EBR helps to determine the averaging period required to calculate H and LE fluxes over a 204 

range of landscapes (Chen and Li 2012). A high EBR (EBR ≥ 0.7) ensures reliability of EC 205 

observations for use with flux estimation (Barr et al., 2006; Kidston et al., 2010). 206 
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 Eddy fluxes are computed as the covariance between instantaneous deviation in vertical 207 

wind speed (𝑤 ′) and scalar component of interest (𝑠′) from their respective means, given by 208 

F ≈ 𝜌𝑎𝑤′𝑠′̅̅ ̅̅ ̅̅ ̅̅ ̅                                                                             (4) 209 

where 𝜌𝑎̅̅ ̅ is the mean air density, and the overbar represents the time-average of eddy fluxes, 210 

which is of interest in the present study. Depending on the scalar component considered (ex: 211 

temperature, water vapour (H2O), carbon dioxide (CO2) concentration), corresponding eddy 212 

fluxes (ex: sensible heat, latent heat, carbon flux) are computed as below.  213 

𝐹𝐶𝑂2
 ≈ 𝜌𝑎𝑤′𝐶𝑂2′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                                                                                                         (5) 214 

𝐹𝐻2𝑂 ≈ 𝜌𝑎𝑤′𝐻2𝑂′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                                                                                                         (6) 215 

Ecosystem WUE is then estimated as the ratio of daytime carbon (net primary product) to water 216 

fluxes (evapotranspiration), observed considering daytime unstable atmospheric conditions 217 

(08:00 am to 04:00 pm) given by: 218 

𝑊𝑈𝐸 =
𝑁𝑃𝑃

𝐸𝑇
=

𝐹𝐶𝑂2

𝐹𝐻2𝑂
                  (7) 219 

Fluxes originating from real-world sites are composed of both high frequency (turbulence) and 220 

low frequency (advection) fluctuations, with a spectral gap in between. Isolating local 221 

turbulence component for use with flux studies is achieved by choosing an appropriate 222 

averaging period, T1 (typically 30 minutes) on fast response measurements operating at high 223 

frequency T2 (Manon and Kristian 2020). Optimal averaging period (T1) should be long enough 224 

to reduce random error (Berger, 2001) and short enough to avoid non-stationarity associated 225 

with advection (Foken & Wichura, 1996). The flux estimates (eq. 2) are further decomposed 226 

into frequency dependent contributions, known as co-spectra Cows (f) between vertical wind 227 

velocity (w) and scalar of interest (s) for frequencies ‘f’ (Manon and Kristian 2020). For an 228 

accurate estimation of the flux, it is essential that the EC method is applied under conditions 229 

where the flow is stationary, and all eddies carrying flux are sampled.  Given that the flow 230 

remains stationary, an ‘Ogive’ serves as a check for the essential requirement to sample all 231 

scales carrying the flux. Ogive function is well proposed to check if all low frequency fluxes 232 

are included in the turbulent flux measured with the EC method (Foken & Wichura, 1996; 233 

Foken et al., 2005). It is used to investigate the energy balance losses caused by low frequency 234 

fluxes. Ogive analysis is performed to investigate the flux contribution from each frequency 235 
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range and to arrive at most suitable averaging period to capture most of the turbulent fluxes  236 

(Desjardans, 1989; Charuchittipan, 2014). Ogive function thus provides the cumulative sum of 237 

co-spectral energy starting from the highest frequency, given by: 238 

Ogws(f0) =∫ Cows(𝑓)d𝑓
∞

𝑓0
                          (8) 239 

The point of convergence on the Ogive plot to an asymptote corresponds to optimal averaging 240 

period (T1) for use with averaging of high frequency turbulence fluxes. In other words, the 241 

point at which the Ogive plot flattens out represents the optimal averaging period. A total of 242 

eight averaging periods, i.e., 1, 5, 10, 15, 30, 45, 60, and 120 minutes were considered to 243 

investigate the role of time-averaging on EBR, EC and WUE fluxes, and further to arrive at the 244 

optimum averaging period for use with WUE estimation. The biophysical and physiological 245 

characteristics such as plant height, crop water requirement, LAI, etc. changes with respect to 246 

the crop growth stage (Chintala et al., 2024) and have a significant effect on the EC fluxes. 247 

Since these factors vary over growth stages, time-averaging of EC fluxes is separated based on 248 

crop growth stage. 249 

 250 

2.4 Performance Evaluation 251 

The ability of various averaging periods to close the energy balance and compute the 252 

EC fluxes is evaluated using three goodness of fit indicators, namely: a) coefficient of 253 

determination (R2), b) root mean squared error (RMSE), and c) relative error (RE). While R2 254 

and RMSE aim to quantify the error in closing the energy balance, RE is aimed to compute the 255 

error in estimating EC fluxes with conventional 30 min averaging period relative to optimal 256 

averaging period.  257 

Root mean square error (RMSE) measures overall accuracy in closing the energy balance for 258 

a given averaging period by penalizing large errors heavily, given by:                 259 

𝑅𝑀𝑆𝐸 =  [
∑ ((𝑅𝑛−𝐺)𝑖−(𝐻+𝐿𝐸)𝑖

𝑛
𝑖=1 )

2
 

𝑛
]

0.5

                                                                             (9) 260 

where n is the number of observations. 261 

Coefficient of determination (R2) and Pearson correlation coefficient (r) are the measures of 262 

the strength of linear association between turbulent fluxes and available energy, given by: 263 
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𝑅2 = { 
∑ [(𝑅𝑛−𝐺)𝑖 −(𝑅𝑛−𝐺)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]

2
[(𝐻+𝐿𝐸)𝑖−(𝐻+𝐿𝐸)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]

2𝑛
𝑖=1

√∑[(𝑅𝑛−𝐺)𝑖 −(𝑅𝑛−𝐺)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]
2

[(𝐻+𝐿𝐸)𝑖−(𝐻+𝐿𝐸)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]
2

}

2

                                                                     (10)                                                                 264 

𝑟 = { 
∑ [(𝑅𝑛−𝐺)𝑖−(𝑅𝑛−𝐺)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] [(𝐻+𝐿𝐸)𝑖−(𝐻+𝐿𝐸)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]𝑛

𝑖=1

√∑[(𝑅𝑛−𝐺)𝑖 −(𝑅𝑛−𝐺)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]
2

[(𝐻+𝐿𝐸)𝑖−(𝐻+𝐿𝐸)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]
2
}                  (11) 265 

Relative error (RE) provides the disparity in the fluxes estimated with conventional (30 min) 266 

relative to the fluxes estimated with optimal averaging period, given by: 267 

𝑅𝐸 = [
{𝐹𝑜𝑝𝑡−𝐹30𝑚𝑖𝑛}

𝐹𝑜𝑝𝑡
] × 100                                                                                                   (12) 268 

where Fopt and F30 are the flux of interest considering optimal and conventional (30 min) 269 

averaging periods.                                                                   270 

Averaging period corresponding to high R2 (close to 1), low RMSE (close to zero) is considered 271 

to be the optimal choice in representing the EC fluxes. 272 

 273 

3.0 RESULTS AND DISCUSSION 274 

3.1 Diurnal variations in energy balance components 275 

        To understand the energy variation in response to rapid changes in meteorological 276 

conditions, we analysed the diurnal variations in energy balance components. Figure 1 shows 277 

 278 
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Figure 1: Diurnal variations in energy balance components (available energy: Rn-G and turbulent fluxes: 279 

H+LE) during the crop cycle with different averaging periods. Inset: Scatter-plots between the two 280 

datasets. 281 

the diurnal variations in available energy (Rn-G) and turbulent fluxes (H+LE) averaged over 282 

the crop cycle for various time-averages. The diurnal variations of (Rn-G) and (H+LE) are bell-283 

shaped, with peak occurring at around noon (480.16 ± 14.15 Wm-2, 356.23 ± 18.51 Wm-2) 284 

(Figure 1). The energy balance difference (shaded areas of the figure) is found to be positive 285 

(76.88 ± 43.14 Wm-2) during daylight hours (08:00 am to 06:00 pm) and is negative (-24 ± 286 

11.65 Wm-2) for the remaining time. The vertical offset between the two curves, representing 287 

the residual of energy balance is highest around the noon (142.39 ± 19.42 Wm-2), and is 288 

consistent between the averaging periods. For an average site-day, the cumulative energy 289 

balance difference was found to be constant with a mean of 1811 ± 91.56 Wm-2 at all averaging 290 

periods. The cumulative energy balance difference is crossing the ‘zero’ line at around 11:30 291 

am. The variation is rough at lower averaging periods due to a high sample size (n= 10859 at 292 

T = 1 min) and is gradually smoothened towards higher averaging periods (n= 811 at T = 120 293 

min). The slope of regression lines between (H+LE) and (Rn-G) considering all averaging 294 

periods are in the range of 0.59 to 0.71 with a mean of 0.65 ± 0.041. The intercept is ranged 295 

from 19.01 to 31.56 Wm-2. The best slope (≥ 0.70) and intercept (≤ 20 Wm-2) were achieved 296 

with 45 and 60 minutes averaging periods, which is consistent with literature (Gao, 2017; 297 

Leuning, 2012). This conclude that, longer averaging periods have a good closure over shorter 298 

averaging periods. The strength of linear association between (Rn-G) and (H+LE) around the 299 

best fit line, explained by r is high (0.80 < r ≤ 0.9) at low averaging periods, i.e., 1, 5, 10 300 

minutes, and is very high (r > 0.9) for other averaging periods (Table 2). However, the departure 301 

of the data from 1:1 line is relatively low both at short and long averaging periods. Our findings 302 

show that averaging period has minimal influence in representing the energy balance terms. 303 

However, data scatter around 1:1 line is high for shorter time-averages due to large sample size 304 

and data randomness.  305 

Table 2: Summary of linear regression parameters in closing the energy balance with different 306 

averaging periods. 307 

Averaging Period Slope R2 
Intercept 

(Wm-2) 
r N 

RMSE 

(Wm-2) 

1min 0.63 0.66 30.31 0.81 10859 98.38 
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5min 0.59 0.74 31.56 0.86 10785 76.47 

10min 0.60 0.80 28.94 0.90 10753 64.41 

15min 0.63 0.84 26.56 0.92 7150 58.18 

30min 0.66 0.93 20.49 0.96 3554 38.33 

45min 0.70 0.94 19.99 0.97 2355 36.30 

60min 0.71 0.94 19.01 0.97 1765 35.07 

120min 0.67 0.93 20.77 0.96 811 39.95 

 308 

3.2 Effect of averaging period on EBR and EC fluxes 309 

            The variation in energy balance ratio (EBR) with averaging period for individual 310 

growth stages of the crop is presented in Figure 2. We observed a clear departure of EBR from 311 

 312 

Figure 2: Variation in energy balance ratio (EBR) with averaging period for different growth stages. (Solid 313 

verticals from left to right correspond to the averaging periods of 1 min, 5 min, 10 min, 15 min, 30 min, 45 314 

min, 60 min, and 120 min respectively). 315 

unity for all growth stages, particularly with dough and maturity stages due to ignorance of 316 

canopy heat storage. EBR is fluctuating between 0.70 and 0.90 at low (1 – 30 min) averaging 317 
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periods and is fairly constant (0.75 ± 0.03) at high (≥ 30 min) averaging periods. Our reported 318 

values of EBR during the crop growth are within the typically found range of 0.65 to 1.2 for 319 

most of the crops (Feng, 2017; Finnigan, 2003; Wilson, 2002). The mean EBR with 320 

conventional 30 min averaging period is found to be 0.74, 0.76, 0.71, and 0.74 during 6th leaf, 321 

silking, dough, and maturity stages respectively. Low EBR during the crop cycle can also be 322 

attributed to the ignorance of energy transport associated with large eddies from landscape 323 

heterogeneity. However, EC method assumes the landscape within the footprint of 324 

measurement to be flat and homogenous. This violation might have lowered the EBR. We 325 

could not observe any significant differences in temporal trends of ‘wind speed’ and ‘wind 326 

direction’ between the averaging periods, hence meteorological conditions were not analysed 327 

by varying time-average. Changes in daytime mean carbon and water fluxes with averaging 328 

period for different growth stages of the crop is shown in Figure 3. Carbon fluxes (sink) have 329 

a very low mean (1.81 ± 0.06 µmol m-2s-1) during 6th leaf stage, low mean during silking (3.48 330 

± 0.07 µmol m-2s-1) and dough (3.03 ± 0.87 µmol m-2s-1) stages, and a high mean (15.44 ± 0.75 331 

µmol m-2s-1) during maturity stage. 332 

 333 

Figure 3a: Variation in mean carbon fluxes with averaging period for different growth stages (Solid verticals 334 

from left to right correspond to the averaging periods of 1 min, 5 min, 10 min, 15 min, 30 min, 45 min, 60 335 

min, and 120 min respectively). 336 

 337 
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 338 

Figure 3b: Variation in mean water fluxes with averaging period for different growth stages (Solid verticals 339 

from left to right correspond to the averaging periods of 1 min, 5 min, 10 min, 15 min, 30 min, 45 min, 60 340 

min, and 120 min respectively). 341 

Mean carbon fluxes during 6th leaf and silking stage are mostly unaffected by averaging period. 342 

We observed a gradual increase in water vapour fluxes during the crop cycle from 6th leaf (2.52 343 

± 0.13 mmol s-1m-2) to maturity (5.02 ± 0.29 mmol s-1m-2). As the averaging period is increased, 344 

the mean water vapour flux is decreased, with an exception at 45 min averaging period. 345 

Deviation in representing carbon and water fluxes at different averaging periods, relative to the 346 

conventional 30 min averaging period i.e. relative error (RE) is presented in Figure 4. The RE 347 

is obtained by considering daily averages in the deviations for each growth stage. During 6th 348 

leaf and silking stages, RE in estimating carbon fluxes is high (~ -15 %) with low averaging 349 

periods, and is gradually diminishing towards higher averaging periods, with an exception at 350 

very high (120 min) average period. For dough and maturity stages, RE is found to be 351 

significant with higher averaging periods (60-120 min). RE in estimating water vapour fluxes 352 

is found to be insignificant at all averaging periods for the 6 th leaf and silking stages. However, 353 

dough and maturity stages have shown a large variation in RE considering either too-short (1, 354 

5 min) or too-long (60, 120 min) time averages. A high variability in RE for time scales larger 355 

than 45 min indicate the effects of sub mesoscale (non-turbulent) motions. Hence, 45 min 356 

average period can be considered as optimal in isolating the turbulence components for use 357 

with flux representation. 358 

 359 
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 360 
Figure 4a: Whisker plots showing the distribution of error in estimating carbon fluxes with various 361 

averaging periods relative to the conventional 30 min averaging. 362 

 363 

 364 

Figure 4b: Whisker plots showing the distribution of error in estimating water fluxes with various averaging 365 

periods relative to the conventional 30 min averaging. 366 

 367 
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3.3 Selection of Optimal averaging period 368 

              Ogive functions representing the cumulative integral of the co-spectral energy starting 369 

with highest frequency, i.e., 0.016 Hz (T = 1 min) for carbon, water, and WUE fluxes are 370 

presented 371 

 372 

Figure 5a: Ogive plots of carbon fluxes for different growth stages of the Maize crop. (Solid verticals from 373 

left to right extremes correspond to the averaging periods of 120 min, 60 min, 45 min, 30 min, 15 min, 10 374 

min, 5min and 1 min respectively). 375 

 376 

Figure 5b: Ogive plots of water fluxes for different growth stages of the Maize crop. (Solid verticals from 377 

left to right extremes correspond to the averaging periods of 120 min, 60 min, 45 min, 30 min, 15 min, 10 378 

min, 5min and 1 min respectively) 379 
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 380 

Figure 5c: Ogive plots of water use efficiency for different growth stages of the Maize crop. (Solid verticals 381 

from left to right extremes correspond to the averaging periods of 120 min, 60 min, 45 min, 30 min, 15 min, 382 

10 min, 5min and 1 min respectively) 383 

in Figure 5. Shorter time periods corresponding to daytime unstable atmospheric conditions 384 

(08:00 am to 04:00 pm) for various growth stages were investigated. Ogive plots of carbon 385 

fluxes for 6th leaf and silking stages showed an increasing trend up to 0.011 Hz (15 min) and 386 

remained fairly constant before 0.0055 Hz (30 min). This concludes that whole turbulent 387 

spectrum can be covered with 15 to 30 min averaging, with negligible flux contribution from 388 

longer frequencies. Ogive plots of carbon fluxes for dough and maturity stages showed a 389 

continuous increasing trend without a defined plateau (horizontal asymptote) in between. This 390 

conclude that the conventional 30 min averaging period is inadequate to capture the low 391 

frequency fluxes, thus demanding for higher averaging periods. We observed a similar 392 

behaviour with water fluxes (Figure 5b). The flat part of the Ogive curve representing the 393 

optimal averaging period was found to vary across the crop cycle. While 15-30 min time-394 

average is suitable for aggregating the EC fluxes during 6th leaf and silking stages, 45-60 min 395 

averaging is more appropriate for dough and maturity stages. Similar to carbon and water 396 

fluxes, the Ogive plots for WUE were presented in Figure 5c. From this, it is observed that the 397 

flat part of Ogive is achieved at 15 min time average period for the stages of 6th leaf and silking 398 

and 45 min time average for the dough and maturity stages which is similar to the carbon and 399 

water fluxes. It concludes that the WUE followed a similar behaviour as its individual fluxes 400 

i.e. carbon and water fluxes in achieving optimal time averages. The crop biophysical factors 401 

like LAI and plant height are minimum during 6th leaf and silking stages contributes low 402 

quantity of CO2 and H2O fluxes (refer figure 3a & 3b) whereas they are maximum in the later 403 
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stages of the crop i.e., dough and maturity contributing to high quantities of CO2 and H2O 404 

fluxes (refer figure 3a & 3b). Our results are in accordance with the previous studies of Fong 405 

et al., 2020 on Cotton, where the responses in NPP and ET were related seasonally to plant 406 

growth stages. The previous studies on various crops revealed that the NPP and ET fluxes were 407 

initially low in the early stages and increases towards maturity stage due to crop phenology and 408 

management practices. To capture these low quantity fluxes, low averaging periods i.e., 15 min 409 

is sufficient, whereas 45 min time-averaging period can capture high quantity fluxes that are 410 

prevalent during later growth stages of the crop. As the crop characteristics are dependent on 411 

crop growth stages, a single time-averaging period is not appropriate to capture the dynamics 412 

of CO2 and H2O fluxes as well their ratio, WUE. This clearly demonstrates that, as the plant 413 

achieves its higher stage, flux contribution from low-frequency components becomes more 414 

valuable. Very low averaging periods (ex: 1 min, 5 min) were found unsuitable to capture low-415 

frequency flux components, which is in agreement with literature (Feng, 2017). 416 

 417 

3.4 Dynamics of Water use efficiency 418 

 Daily means of water use efficiency (WUE) estimated with conventional 30 min and 419 

growth specific optimal averaging periods is presented in Figure 6. Mean WUE fluxes for 6th  420 

 421 

Figure 6: Seasonal variations in daily mean WUE fluxes obtained with conventional 30 min (solid) and 422 

optimal averaging periods (dotted) during the crop cycle. 423 
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leaf, silking, dough and maturity stages with conventional 30 min averaging are 1.48 ± 0.96, 424 

1.36 ± 0.73, 1.38 ± 0.95 and 3.184 ± 0.78 μmol mmol-1 respectively. Corresponding fluxes 425 

with stage specific optimal averaging periods are 1.49 ± 0.95, 1.37 ± 0.74, 1.39 ± 0.79 and 3.06 426 

± 0.69 μmol mmol-1 respectively. Error in estimating mean daily WUE fluxes with 30 min 427 

averaging is very low (< 1.45%) during 6th leaf and silking stages, low (8.56 to 9.04 %) during 428 

maturity stage, and is moderate (11.84 to 12.12 %) during dough stage. This conclude that, 429 

choice of optimal averaging period is more crucial for late stage growth periods of the crop. 430 

Distribution of error in estimating WUE fluxes with various averaging periods relative to 431 

conventional 30 min average period (RE) is presented in Figure 7. A close to zero RE with all 432 

averaging periods during 6th leaf and silking stages conclude that, choice of averaging period 433 

has insignificant role in estimating the WUE fluxes, particularly during early growth stages. A 434 

slightly high RE (~ -5.4%) during dough and maturity stages conclude that, choice of averaging 435 

period matters for WUE estimation during late stage periods. Hence, conventional 30 min 436 

averaging period can be considered for estimating WUE fluxes during 6th leaf and silking 437 

stages, whereas optimal averaging period need to be considered for estimating WUE fluxes 438 

during dough and maturity stages. Correlation charts showing the linear association within 439 

carbon, water, and WUE fluxes represented at different averaging periods is presented in Figure 440 

8. For ease with comparison, data for the entire crop cycle was considered. Linear association  441 

 442 
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 443 

Figure 7: Whisker plots showing the distribution of error in estimating WUE fluxes with various averaging 444 

periods relative to the conventional 30 min averaging. 445 

between any two averaging periods is positive (ρ > 0.56) for carbon and water fluxes. Except 446 

with 120 min time-averaging, all other averaging periods are strongly correlated (ρ > 0.87) 447 

with 30 min averaging period. However, a poor linear association in WUE fluxes was observed 448 

between any two averaging periods, which is attributed to a larger variation in individual WUE 449 

fluxes between averaging periods. However, the corresponding individual carbon and water 450 

fluxes have recorded low variations between time averages. This conclude that, the need for 451 

optimal averaging period is more crucial in estimating WUE fluxes rather than individual 452 

carbon and water fluxes. Our findings can improve representation of WUE fluxes using EC 453 

data, thereby help in developing efficient water management strategies in response to WUE 454 

changes. 455 

 456 
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Figure 8: Correlation charts showing the linear association of a) Carbon fluxes, b) Water fluxes, and c) 457 

WUE fluxes estimated with different averaging periods. 458 

 459 

4.0 CONCLUSIONS 460 

This study explores the effect of averaging period of EC fluxes on EBR dynamics and 461 

WUE in semi-arid Indian conditions. The proposed methodology was applied on drip-irrigated 462 

Maize field for one crop period (May-Sept 2019). Major findings of this study are: 463 

• EBR was found vary marginally at low averaging periods and less significant during 464 

higher averaging periods.  465 

• With reference to conventional 30 min averaging period, relative error is within 12% 466 

for 10-45 min averaging periods for carbon fluxes and is within 5% for 15-45 averaging 467 

periods for water fluxes.  468 

• From Ogive analysis we found the optimal averaging period as 15 - 30 min for the 6th 469 

leaf, and silking stages, and as 45 – 60 min for the dough and maturity stages.  470 

• The mean carbon fluxes are increasing from 1.81 ± 0.06 µmol+1m-2s-1 (6th leaf stage) 471 

to 15.44 ± 0.75 µmol+1m-2s-1 (maturity stage) which indicates that carbon sink is a 472 

function of crop growth period. In case of water fluxes, it increased from 2.52 ± 0.13 473 

mmol+1m-2s-1 (6th leaf stage) to 5.02 ± 0.29 mmol+1m-2s-1 (maturity stage). Variation of 474 

carbon and water fluxes are directly influencing WUE dynamics. 475 

• The variation in WUE was increased subsequently with the plant growth and achieved 476 

its maximum value of 5.17 μmol mmol-1 in between dough to maturity stages which 477 

concludes that, crop consumes more carbon than water as the crop period progresses. 478 

• The correlation between CO2 and H2O fluxes for all averaging periods was found to be 479 

high. However, WUE, which is calculated as the ratio of CO2 and H2O fluxes, is not 480 

following the same pattern. While 45 min and 15 min averaged WUE exhibits a good 481 

correlation, 30 min averaged WUE is not correlated with other averaging periods. 482 

Averaging period is found to be an influencing factor in controlling WUE, hence should 483 

be considered with caution during the crop growth. 484 

This study is limited to understand the role of different time-averaging periods on EC   observed 485 

carbon, water fluxes as well as EC derived WUE fluxes contributed by homogeneous Maize 486 

crop which is having relatively smaller flux footprint in an unstable atmospheric condition. 487 
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Study findings can help to accurately characterise WUE of Maize crop considering growth 488 

stages for effective implementation of irrigation strategies. 489 
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