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Abstract 7 

Direct measurement of carbon and water fluxes at high frequency makes eddy 8 

covariance (EC) as the most preferred technique to characterize water use efficiency (WUE). 9 

However, reliability of EC fluxes is largely hinged on energy balance ratio (EBR) and inclusion 10 

of low-frequency fluxes. This study is aimed at investigating the role of averaging period to 11 

represent EC fluxes and its propagation into WUE dynamics. Carbon and water fluxes were 12 

monitored in a drip-irrigated Maize field at 10 Hz frequency and are averaged over 1, 5, 10, 13 

15, 30, 45, 60, and 120 minutes considering daytime unstable conditions. Optimal averaging 14 

period to simulate WUE fluxes for each growth stage is obtained by considering cumulative 15 

frequency (Ogive) curves. A clear departure of EBR from unity was observed during dough 16 

and maturity stages of the crop due to ignorance of canopy heat storage, low frequency flux 17 

losses and inadequate averaging period. Deviation in representing water (carbon) fluxes 18 

relative to the conventional 30 min average is within ± 3 % (± 10 %) for 10-120 min averaging 19 

and is beyond ± 3 % (± 10 %) for other time-averages. Ogive plots conclude that optimal 20 

averaging period to represent carbon, water and WUE fluxes is 15-30 min for 6th leaf and 21 

silking stages, and is 45-60 min for dough and maturity stages. Dynamics of WUE considering 22 

optimal averaging periods are in the range of (µ ± σ:  1.49 ± 0.95, 1.37 ± 0.74, 1.39 ± 0.79, and 23 

3.06 ± 0.69 μmol mmol-1 for the 6th leaf, silking, dough, and maturity stages respectively. Error 24 

in representing WUE with conventional 30 min averaging is marginal (< 1.5 %) throughout the 25 

crop period except for the dough stage (12.12 %). We conclude that the conventional 30 min 26 

averaging of EC fluxes is not appropriate for representing WUE throughout the crop period. 27 

Our findings can help in developing efficient water management strategies by accurately 28 

characterizing WUE fluxes from the EC measurements. 29 
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Research Highlights: 32 

1. The time-averages that yield most effective energy balance closure are identified as 45 33 

and 60 minutes. 34 

2. Insufficiently short time-averages such as 1 and 5 minutes, as well as excessively long-35 

time-averages such as 120 minutes, resulted in a high relative error in representing 36 

carbon and water fluxes. 37 

3. The conventional 30-minute averaging period proved to be insufficient in capturing 38 

low-frequency fluxes, necessitating the use of longer averaging periods.  39 

4. Different time averaging periods are to be considered to compute the EC fluxes 40 

considering the crop growth stage.  41 

1.0 INTRODUCTION 42 

Water use efficiency (WUE) is an important eco-hydrologic trait relating two important 43 

processes of plant metabolism namely carbon fixation (via photosynthesis) and water 44 

consumption (via transpiration) (Bramley, 2013). The need for achieving food security with 45 

diminishing water resources under changing climate has made WUE as the controlling 46 

parameter in planning and design of irrigation strategies (Tang, 2015). Depending on the scale 47 

of investigation, WUE can be quantified at: i) leaf, ii) plant, iii) ecosystem, or iv) regional 48 

scales (Medrano, 2015). Of these, ecosystem WUE has taken precedence in irrigation and 49 

agronomy due to: i) accurate and reliable measurement using micrometeorological techniques, 50 

ii) ability to evaluate the role of various water conservation techniques on ecosystem 51 

productivity, and iii) understand the relation between carbon and water cycles in response to 52 

changes in climate (Tang, 2015; Tong, 2014). 53 

Eddy covariance (EC) is a non-destructive, micrometeorological technique for direct 54 

measurement of water vapour (H2O) and carbon (CO2) fluxes between vegetation and 55 

atmosphere at high temporal frequency (Aubinet, 1999; Leclerc and Foken, 2014). EC method 56 

precisely measures the overall transfer of heat, mass, and momentum between the earth's 57 

surface (such as vegetation) and the atmosphere. This is achieved by estimating the covariance 58 

of turbulent fluctuations in vertical wind (referred to as eddies) with respect to the specific flux 59 

under consideration such as H2O, CO2, temperature. EC represents the scalar fluxes of interest 60 
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(representative of eco-hydrological processes) from a region upwind of the measurement 61 

known as the footprint. At ecosystem scale, WUE is estimated as the ratio of net primary 62 

product (NPP: proxy for photosynthesis) to evapotranspiration (ET: proxy for water 63 

consumption) (Peddinti, 2020). WUE is a key eco-hydrologic trait that is used to analyse the 64 

role of climate change, drought, deficit irrigation, and management strategies on ecosystem 65 

productivity.  Currently, EC is the most accurate and reliable method for estimating carbon and 66 

water exchanges, hence WUE at ecosystem scale (Tong, 2009). A number of studies have 67 

demonstrated the efficacy of EC in estimating WUE across a wide range of ecosystems (Tang, 68 

2015; Tong, 2014; Wang, 2017). Error sources that affect the accuracy of EC fluxes are 69 

grouped into: i) Unrepresentative (due to footprint heterogeneity, unsatisfied underlying 70 

theory), ii) Measurement uncertainties (due to random errors, interference and contamination, 71 

sensor drifts) and iii) Measurement biases in fluxes (tilt, frequency losses, air density 72 

fluctuations etc). Despite improvements in measurement accuracy, data sampling, and 73 

processing techniques, EC method still suffers from the drawback of lack of conservation 74 

among the energy terms, resulting in energy balance closure (EBC) problem (Charuchittipan, 75 

2014; Foken, 2011; Reed, 2018). Lack of EBC as observed in EC system is reported across 76 

diverse ecosystems ranging from simple bare soils (Oncley, 2007), to homogeneous grasslands 77 

(Twine, 2000), to heterogeneous croplands (Peddinti, 2020), to complex forest ecosystem 78 

(Charuchittipan, 2014; Wilson, 2002). Apart from the errors associated with instrumentation, 79 

measurement, and neglected energy sinks, lack of EBC at the EC sites is also attributed to the 80 

omission of low frequency secondary circulations in the turbulent flux estimation (Wilson, 81 

2002). This problem can be circumvented by choosing appropriate averaging period during 82 

flux estimation, the selection of which is based on: i) ‘ensemble block time-averaging method’ 83 

(Finnigan, 2003; Malhi, 2004; Sakai, 2001), and ii) ‘Ogive method’ (Berger, 2001). 84 

A number of studies have highlighted the importance of averaging period in quantifying 85 

the EC fluxes, with an objective to obtain optimal time-averaging period under various canopy 86 

and surface roughness conditions. While smaller averaging periods (15-30 min) are suitable 87 

for managed croplands, flux estimation from forest and tall canopies demand longer averaging 88 

periods (60-120 min) due to the presence of large-sized, slow moving eddies (Finnigan, 2003; 89 

Sakai, 2001; Sun, 2006). Zhang (2013) concluded that time-averaging of EC fluxes has to be 90 

done in accordance with the observation scale. In an analysis of Chengliu riparian forest in 91 

China, they found that lower time-averaging periods (15 min) are suitable for daily variation 92 

of EC fluxes, whereas higher time-averaging periods (60 min) are suitable for long-term flux 93 
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computations. A similar observation was made by Lee (2004)  over farmlands. In a wheat field 94 

in Yucheng, China, 10 min and 30 min averaging periods were found suitable for diurnal and 95 

long-term flux observations respectively.  Flux observations over a Maize crop at Daxing 96 

experimental station in China conclude that optimal time-averaging period has to be considered 97 

in accordance with crop growth stage (Feng, 2017). However, they observed a marginal (< 3 98 

%) error in representing the fluxes at conventional 30 min averaging relative to the optimal 99 

averaging obtained for each growth stage. 100 

Maize is the third most important cereal crop in India after rice and wheat, and accounts 101 

for about 10 % of total food production in the country (Sharma, 2018; Ficci 2014). Inspite of a 102 

huge area under cultivation (9.4 MHa), high production (23 million tons), and enormous water 103 

consumption (18 BCM), both crop productivity (2.5 t ha-1) and crop water productivity (CWP) 104 

(1.83 kg m-3) of Indian Maize are far lower than corresponding world averages (Sharma, 2018). 105 

Low CWP (hence, WUE) of Indian Maize can be attributed to: i) a high dependence (85 %) on 106 

erratic, uncertain rainfall, ii) low adoption of hybrid varieties, iii) improper drainage facilities 107 

leading to water logging, and iv) unscientific application of irrigation water without analysing 108 

soil-water-crop interactions (Shankar, 2012). Thus, an accurate quantification of WUE and its 109 

temporal variation during the crop cycle is essential for effective irrigation water management 110 

of Maize crop (Medrano, 2015). 111 

 While the effect of time-averaging on carbon and water fluxes measured at EC sites is 112 

reported, the effect on their interaction term, i.e. WUE, which is crucial in irrigation water 113 

management is unexplored. Evaluation of time-averaging period on WUE dynamics is 114 

necessary to understand the contribution of low and high frequency photosynthetic carbon and 115 

evaporative water fluxes generated from various field management strategies. Also, most of 116 

the EC flux studies are confined to data rich AmeriFLUX, EuroFLUX, and ChinaFLUX sites, 117 

with limited focus to Indian fragmented croplands. This motivates the present study, and the 118 

objectives of this study are as follows: i) investigate the role of time-averaging of EC fluxes on 119 

EBR and WUE dynamics, ii) identify optimal averaging period to evaluate carbon and water 120 

(hence, WUE) fluxes of Maize crop, and iii) investigate the association of carbon, water, and 121 

WUE fluxes between multiple averaging periods. Results of this study can help in designing 122 

efficient management strategies using EC datasets in response to changes in WUE during the 123 

crop cycle. 124 

 125 
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2.0 MATERIALS AND METHODOLOGY 126 

2.1 Site Description and Instrumentation 127 

Controlled Maize plots situated at Professor Jaya Shankar Telangana State Agricultural 128 

University (PJTSAU), Hyderabad, Telangana, India (17°19′17″ N, 78°24′35″ E, 559 m above 129 

sea level) forms the study area. The region is composed of red gravel to sandy loam soils with 130 

field capacity and wilting point in the ranges of 17.92 - 19.56 % and 8.2 – 9.87% respectively. 131 

As per Koppen-Geiger's classification, the region falls under tropical savanna climate zone 132 

(Aw) characterized by long dry and short wet seasons (Kottek, 2006). Mean annual 133 

precipitation of the region is 900 mm (IMD, 2019) with more than 80% occurring during the 134 

monsoon months (Jun-Sep). Temperatures are high during summer (mean ± standard deviation: 135 

38.33 ± 2.12 oC) and low during winter (30 ± 2.20 oC) months. Humidity of the region varies 136 

from 35% in summer to 73% in monsoon (CGWB, 2013). Mean seasonal wind speed is in the 137 

range of 1.5 to 2.7 m/s (Peddinti, 2020). Hydro-geologically, the study area forms part of the 138 

Deccan plateau characterized by multiple layers of solidified flood basalt resulting from 139 

volcanic eruptions. Depth to groundwater ranges from 12 m (pre-monsoon) to 6 m (post-140 

monsoon) (CGWB, 2013). 141 

Meteorological parameters and turbulent fluxes were obtained for one crop season, i.e. 142 

26 May to 06 Sep, 2019 using an open path eddy covariance (EC) flux tower. The flux system 143 

is composed of integrated CO2/H2O open-path gas analyzer and 3D sonic anemometer 144 

(IRGASON-EB-NC, Campbell Sci. Inc., USA) to measure CO2 and H2O concentrations at 3 145 

m above the canopy. Raw data was collected with a logger (CR1000, Campbell Sci. Inc., USA) 146 

at 10 Hz frequency. Additionally, slow response meteorological variables including 147 

precipitation (TE525-L-PTL, Tipping Bucket, Campbell Sci. Inc., USA), soil heat flux 148 

(HFP01SC-L-PTL, Campbell Sci. Inc., USA), solar radiation (CNR 4, Campbell Sci. Inc., 149 

USA), and soil moisture (CS616-L-PT-L, Campbell Sci. Inc., USA) were obtained at 10 min 150 

intervals. 151 

 152 

2.2 Data Collection and Processing 153 

Table 1 shows the phenological stages of the Maize crop in the study area (Soujanya, 154 

2021). Additionally, leaf-area index (LAI) and mean plant height were monitored during the 155 

crop cycle (Table 1). The LAI was measured using the plant canopy analyser, whereas the plant 156 
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height was measured using a ruler from the base of the plant to its crown. Maize crops of the 157 

experimental fields are sown on 25th May 2019 and harvested on 6th September 2019 with a 158 

base period of 104 days.     159 

Table 1: Phenological growth stages and physical properties of the Maize crop 160 

S. 

No. 
Growth stage Start date  End date  

Period 

Length 

(days) 

Leaf Area Index 

(m2m-2) 

Plant height 

(cm) 

1 6th leaf 26/05/2019 12/06/2019 18 0.61 46.8 

2 Silking 13/06/2019 19/07/2019 37 1.56 75.2 

3 Dough 20/07/2019 12/08/2019 24 3.46 133 

4 Maturity 13/08/2019 06/09/2019 25 3.03 134 

 161 

           Data from the EC system at 10 Hz frequency was converted to ASCII format using 162 

LoggerNet (4.3) software (Campbell Scientific Inc., Logan, Utah, USA), and further 163 

aggregated to various averaging periods (1, 5, 10, 15, 30, 45, 60, and 120 minutes). Post data 164 

processing was done using EddyPro post‐processing software (version 7.0.8, LI‐COR, USA). 165 

Primary corrections performed on the raw dataset include tilt corrections, turbulent 166 

fluctuations, density fluctuations, frequency corrections and quality checks. Tilt corrections 167 

were made by the double axis rotation method for each averaging period. Either block average 168 

method or linear trending method were considered to compute the turbulent fluctuations. Block 169 

averaging method was used for detrending the fluxes at 1, 5, 10, 30, 45, and 60 min averaging 170 

periods. Longer averaging periods (e.g. 120 min) has resulted in inconsistency in the obtained 171 

fluxes, which is a weakness of the block averaging (Renhua, 2005; Sun et al., 2006). Hence, 172 

linear trend removal method was used to compute the fluxes for 120 min averaging period. 173 

Density fluctuation corrections were done using Webb–Pearman–Leuning (WPL) 174 

method. Quality checks were performed following a flagging policy proposed by Mauder and 175 

Foken (2006)  (0-1-2 system). Flag set to "0" corresponds to the best quality fluxes, "1" 176 

corresponds to fluxes acceptable for general analysis, and "2" corresponds to poor quality 177 

fluxes that should be removed from the dataset. The resulting fluxes may exhibit spikes, 178 
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discontinuity, randomness etc. There is a need to perform secondary corrections on the data 179 

that include flux spike removal (Vickers and Mahrt 1997), friction velocity corrections (to filter 180 

night time observations), gap filling and uncertainty analysis (Finkelstein, 2001), skewness & 181 

kurtosis removal, spectral corrections, and frequency corrections. To correct flux estimates for 182 

low and high frequency losses due to instrument setup, intrinsic sampling limits of the devices, 183 

and various data processing decisions, spectral corrections are performed. Additionally, slow 184 

sensor meteorological data obtained at 1 min interval were processed for different time-185 

averaging periods using the EddyPro post‐processing software (version 7.0.8, LI‐COR, USA).  186 

 187 

2.3 Effect of time-averaging on EBR and EC fluxes 188 

Violation of law of conservation of energy resulting from the EC observed energy terms 189 

is referred as energy balance closure (EBC). The available energy (Rn-G) is generally higher 190 

than the turbulent fluxes (H+LE), resulting in a positive balance (Eshonkulov, 2019) where Rn, 191 

G, H and LE correspond to net radiation, soil heat flux, sensible heat and latent heat 192 

respectively. Apart from instrument and measurement issues, this lack of energy closure is 193 

thought to be partly from averaging periods and coordinate systems (Finnigan, 2003; Finnigan, 194 

2004; Gerken, 2018). The energy closure fraction, commonly termed as energy balance ratio 195 

(EBR) is used to evaluate the quality of EC data by examining energy fluxes at the surface 196 

(Chen and Li 2012), given by: 197 

𝐸𝐵𝑅 =
𝐻+𝐿𝐸

𝑅𝑛−𝐺
            (1) 198 

H = ρa Cp𝑤 ′𝑇′̅̅ ̅̅ ̅̅             (2) 199 

LE = Lv 𝑤 ′𝑣′
̅̅ ̅̅ ̅̅ ̅            (3) 200 

where ρa is the air density; Cp  is the specific heat of air, 𝑤 ′ is the wind velocity fluctuation,  𝑇′ 201 

is the temperature fluctuation, Lv is the latent heat of vaporization and 
𝑣
′ is the H2O gas 202 

concentration fluctuation. 203 

EBR helps to determine the averaging period required to calculate H and LE fluxes over a 204 

range of landscapes (Chen and Li 2012). A high EBR (EBR ≥ 0.7) ensures reliability of EC 205 

observations for use with flux estimation (Barr et al., 2006; Kidston et al., 2010). 206 



8 
 

 Eddy fluxes are computed as the covariance between instantaneous deviation in vertical 207 

wind speed (𝑤 ′) and scalar component of interest (𝑠′) from their respective means, given by 208 

F ≈ 𝜌𝑎𝑤′𝑠′̅̅ ̅̅ ̅̅ ̅̅ ̅                                                                             (4) 209 

where 𝜌𝑎̅̅ ̅ is the mean air density, and the overbar represents the time-average of eddy fluxes, 210 

which is of interest in the present study. Depending on the scalar component considered (ex: 211 

temperature, water vapour (H2O), carbon dioxide (CO2) concentration), corresponding eddy 212 

fluxes (ex: sensible heat, latent heat, carbon flux) are computed as below.  213 

𝐹𝐶𝑂2  ≈ 𝜌𝑎𝑤′𝐶𝑂2′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                                                                                                         (5) 214 

𝐹𝐻2𝑂 ≈ 𝜌𝑎𝑤′𝐻2𝑂′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                                                                                                         (6) 215 

Ecosystem WUE is then estimated as the ratio of daytime carbon (net primary product) to water 216 

fluxes (evapotranspiration), observed considering daytime unstable atmospheric conditions 217 

(08:00 am to 04:00 pm) given by: 218 

𝑊𝑈𝐸 =
𝑁𝑃𝑃

𝐸𝑇
=

𝐹𝐶𝑂2
𝐹𝐻2𝑂

                  (7) 219 

Fluxes originating from real-world sites are composed of both high frequency (turbulence) and 220 

low frequency (advection) fluctuations, with a spectral gap in between. Isolating local 221 

turbulence component for use with flux studies is achieved by choosing an appropriate 222 

averaging period, T1 (typically 30 minutes) on fast response measurements operating at high 223 

frequency T2 (Manon and Kristian 2020). Optimal averaging period (T1) should be long enough 224 

to reduce random error (Berger, 2001) and short enough to avoid non-stationarity associated 225 

with advection (Foken & Wichura, 1996). The flux estimates (eq. 2) are further decomposed 226 

into frequency dependent contributions, known as co-spectra Cows (f) between vertical wind 227 

velocity (w) and scalar of interest (s) for frequencies ‘f’ (Manon and Kristian 2020). For an 228 

accurate estimation of the flux, it is essential that the EC method is applied under conditions 229 

where the flow is stationary, and all eddies carrying flux are sampled.  Given that the flow 230 

remains stationary, an ‘Ogive’ serves as a check for the essential requirement to sample all 231 

scales carrying the flux. Ogive function is well proposed to check if all low frequency fluxes 232 

are included in the turbulent flux measured with the EC method (Foken & Wichura, 1996; 233 

Foken et al., 2005). It is used to investigate the energy balance losses caused by low frequency 234 

fluxes. Ogive analysis is performed to investigate the flux contribution from each frequency 235 
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range and to arrive at most suitable averaging period to capture most of the turbulent fluxes  236 

(Desjardans, 1989; Charuchittipan, 2014). Ogive function thus provides the cumulative sum of 237 

co-spectral energy starting from the highest frequency, given by: 238 

Ogws(f0) =∫ Cows(𝑓)d𝑓
∞

𝑓0
                          (8) 239 

The point of convergence on the Ogive plot to an asymptote corresponds to optimal averaging 240 

period (T1) for use with averaging of high frequency turbulence fluxes. In other words, the 241 

point at which the Ogive plot flattens out represents the optimal averaging period. A total of 242 

eight averaging periods, i.e., 1, 5, 10, 15, 30, 45, 60, and 120 minutes were considered to 243 

investigate the role of time-averaging on EBR, EC and WUE fluxes, and further to arrive at the 244 

optimum averaging period for use with WUE estimation. The biophysical and physiological 245 

characteristics such as plant height, crop water requirement, LAI, etc. changes with respect to 246 

the crop growth stage (Chintala et al., 2024) and have a significant effect on the EC fluxes. 247 

Since these factors vary over growth stages, time-averaging of EC fluxes is separated based on 248 

crop growth stage. 249 

 250 

2.4 Performance Evaluation 251 

The ability of various averaging periods to close the energy balance and compute the 252 

EC fluxes is evaluated using three goodness of fit indicators, namely: a) coefficient of 253 

determination (R2), b) root mean squared error (RMSE), and c) relative error (RE). While R2 254 

and RMSE aim to quantify the error in closing the energy balance, RE is aimed to compute the 255 

error in estimating EC fluxes with conventional 30 min averaging period relative to optimal 256 

averaging period.  257 

Root mean square error (RMSE) measures overall accuracy in closing the energy balance for 258 

a given averaging period by penalizing large errors heavily, given by:                 259 

𝑅𝑀𝑆𝐸 =  [
∑ ((𝑅𝑛−𝐺)𝑖−(𝐻+𝐿𝐸)𝑖
𝑛
𝑖=1 )

2
 

𝑛
]

0.5

                                                                             (9) 260 

where n is the number of observations. 261 

Coefficient of determination (R2) and Pearson correlation coefficient (r) are the measures of 262 

the strength of linear association between turbulent fluxes and available energy, given by: 263 

                                                                     (10)                                                                 264 
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𝑅2 =

{
 

 

 
∑ [(𝑅𝑛− 𝐺)𝑖 − (𝑅𝑛− 𝐺)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] [(𝐻 + 𝐿𝐸)𝑖 − (𝐻 + 𝐿𝐸)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 𝑛

𝑖=1

√∑[(𝑅𝑛 −𝐺)𝑖 − (𝑅𝑛− 𝐺)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]

2
[(𝐻 + 𝐿𝐸)𝑖 − (𝐻 + 𝐿𝐸)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]
2

}
 

 
2

 265 

𝑟 = { 
∑ [(𝑅𝑛−𝐺)𝑖−(𝑅𝑛−𝐺)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] [(𝐻+𝐿𝐸)𝑖−(𝐻+𝐿𝐸)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]𝑛

𝑖=1

√∑[(𝑅𝑛−𝐺)𝑖−(𝑅𝑛−𝐺)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]

2
[(𝐻+𝐿𝐸)𝑖−(𝐻+𝐿𝐸)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]
2
}                  (11) 266 

Relative error (RE) provides the disparity in the fluxes estimated with conventional (30 min) 267 

relative to the fluxes estimated with optimal averaging period, given by: 268 

𝑅𝐸 = [
{𝐹𝑜𝑝𝑡−𝐹30𝑚𝑖𝑛}

𝐹𝑜𝑝𝑡
] × 100                                                                                                   (12) 269 

where Fopt and F30 are the flux of interest considering optimal and conventional (30 min) 270 

averaging periods.                                                                   271 

Averaging period corresponding to high R2 (close to 1), low RMSE (close to zero) is considered 272 

to be the optimal choice in representing the EC fluxes. 273 

 274 

3.0 RESULTS AND DISCUSSION 275 

3.1 Diurnal variations in energy balance components 276 

        To understand the energy variation in response to rapid changes in meteorological 277 

conditions, we analysed the diurnal variations in energy balance components. Figure 1 shows 278 

 279 
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Figure 1: Diurnal variations in energy balance components (available energy: Rn-G and turbulent fluxes: 280 

H+LE) during the crop cycle with different averaging periods. Inset: Scatter-plots between the two 281 

datasets. 282 

the diurnal variations in available energy (Rn-G) and turbulent fluxes (H+LE) averaged over 283 

the crop cycle for various time-averages. The diurnal variations of (Rn-G) and (H+LE) are bell-284 

shaped, with peak occurring at around noon (480.16 ± 14.15 Wm-2, 356.23 ± 18.51 Wm-2) 285 

(Figure 1). The energy balance difference (shaded areas of the figure) is found to be positive 286 

(76.88 ± 43.14 Wm-2) during daylight hours (08:00 am to 06:00 pm) and is negative (-24 ± 287 

11.65 Wm-2) for the remaining time. The vertical offset between the two curves, representing 288 

the residual of energy balance is highest around the noon (142.39 ± 19.42 Wm-2), and is 289 

consistent between the averaging periods. For an average site-day, the cumulative energy 290 

balance difference was found to be constant with a mean of 1811 Wm-2 at all averaging periods. 291 

The cumulative energy balance difference is crossing the ‘zero’ line at around 11:30 am. The 292 

variation is rough at lower averaging periods due to a high sample size (n= 10859 at T = 1 min) 293 

and is gradually smoothened towards higher averaging periods (n= 811 at T = 120 min). The 294 

shorter averaging periods has introduced random uncertainty in the datasets during coordinate 295 

rotation correction. The slope of regression lines between (H+LE) and (Rn-G) considering all 296 

averaging periods are in the range of 0.59 to 0.71 with a mean of 0.65. The intercept is ranged 297 

from 19.01 to 31.56 Wm-2. The best slope (≥ 0.70) and intercept (≤ 20 Wm-2) were achieved 298 

with 45 and 60 minutes averaging periods, which is consistent with literature (Gao, 2017; 299 

Leuning, 2012). This conclude that, longer averaging periods have a good closure over shorter 300 

averaging periods. The strength of linear association between (Rn-G) and (H+LE) around the 301 

best fit line, explained by r is high (0.80 < r ≤ 0.9) at low averaging periods, i.e., 1, 5, 10 302 

minutes, and is very high (r > 0.9) for other averaging periods (Table 2). However, the departure 303 

of the data from 1:1 line is relatively low both at short and long averaging periods. Our findings 304 

show that averaging period has minimal influence in representing the energy balance terms. 305 

However, data scatter around 1:1 line is high for shorter time-averages due to large sample size 306 

and data randomness.  307 

Table 2: Summary of linear regression parameters in closing the energy balance with different 308 

averaging periods. 309 

Averaging Period Slope R2 
Intercept 

(Wm-2) 
r N 

RMSE 

(Wm-2) 
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1min 0.63 0.66 30.31 0.81 10859 98.38 

5min 0.59 0.74 31.56 0.86 10785 76.47 

10min 0.60 0.80 28.94 0.90 10753 64.41 

15min 0.63 0.84 26.56 0.92 7150 58.18 

30min 0.66 0.93 20.49 0.96 3554 38.33 

45min 0.70 0.94 19.99 0.97 2355 36.30 

60min 0.71 0.94 19.01 0.97 1765 35.07 

120min 0.67 0.93 20.77 0.96 811 39.95 

 310 

3.2 Effect of averaging period on EBR and EC fluxes 311 

            The variation in energy balance ratio (EBR) with averaging period for individual 312 

growth stages of the crop is presented in Figure 2. We observed a clear departure of EBR from 313 

 314 

Figure 2: Variation in energy balance ratio (EBR) with averaging period for different growth stages. (Solid 315 

verticals from left to right correspond to the averaging periods of 1 min, 5 min, 10 min, 15 min, 30 min, 45 316 

min, 60 min, and 120 min respectively). 317 
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unity for all growth stages, particularly with dough and maturity stages due to ignorance of 318 

canopy heat storage, low frequency flux losses and inadequate averaging period (Meyers and 319 

Hollinger, 2004; Rahman et al., 2019). EBR is fluctuating between 0.70 and 0.90 at low (1 – 320 

30 min) averaging periods and is fairly constant (mean: 0.75) at high (≥ 30 min) averaging 321 

periods. Our reported values of EBR during the crop growth are within the typically found 322 

range of 0.65 to 1.2 for most of the crops (Feng, 2017; Finnigan, 2003; Wilson, 2002). The 323 

mean EBR with conventional 30 min averaging period is found to be 0.74, 0.76, 0.71, and 0.74 324 

during 6th leaf, silking, dough, and maturity stages respectively. Low EBR during the crop 325 

cycle can also be attributed to the ignorance of energy transport associated with large eddies 326 

from landscape heterogeneity (Meyers and Hollinger, 2004; Rahman et al., 2019). However, 327 

EC method assumes the landscape within the footprint of measurement to be flat and 328 

homogenous. We did not observe variations in optimal averaging time due to changes in wind 329 

speed and direction, hence meteorological conditions were not analysed in this study. Changes 330 

in daytime mean carbon and water fluxes with averaging period for different growth stages of 331 

the crop is shown in Figure 3. Carbon fluxes (sink) have a very low mean (1.81 µmol m-2s-1) 332 

during 6th leaf stage, low mean during silking (3.48 µmol m-2s-1) and dough (3.03 µmol m-2s-1) 333 

stages, and a high mean (15.44 µmol m-2s-1) during maturity stage. 334 

 335 

Figure 3a: Variation in mean carbon fluxes with averaging period for different growth stages (Solid verticals 336 

from left to right correspond to the averaging periods of 1 min, 5 min, 10 min, 15 min, 30 min, 45 min, 60 337 

min, and 120 min respectively). 338 

 339 
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 340 

Figure 3b: Variation in mean water fluxes with averaging period for different growth stages (Solid verticals 341 

from left to right correspond to the averaging periods of 1 min, 5 min, 10 min, 15 min, 30 min, 45 min, 60 342 

min, and 120 min respectively). 343 

Mean carbon fluxes during 6th leaf and silking stage are mostly unaffected by averaging period. 344 

We observed a gradual increase in water vapour fluxes during the crop cycle from 6th leaf (2.52 345 

± 0.13 mmol s-1m-2) to maturity (5.02 ± 0.29 mmol s-1m-2). From the mean CO2 and H2O flux 346 

dynamics, it is observed that the drip irrigated Maize crop is acting as a carbon sink in the entire 347 

crop season especially in the latter stages of the crop i.e. maturity stage with a mean of 15.44 348 

µmol m-2s-1.  This is clearly evident from the increasing trend of LAI and plant height during 349 

the crop season. Such an increase is highlighted by previous studies of Guo et al., 2021. At the 350 

same time, mean H2O fluxes were increased towards the end of crop growing season due to 351 

increased crop water demand. As the averaging period is increased, the mean water vapour flux 352 

is decreased, with an exception at 45 min averaging period. Deviation in representing carbon 353 

and water fluxes at different averaging periods, relative to the conventional 30 min averaging 354 

period i.e. relative error (RE) is presented in Figure 4. The RE is obtained by considering daily 355 

averages in the deviations for each growth stage. During 6th leaf and silking stages, RE in 356 

estimating carbon fluxes is high (~ -15 %) with low averaging periods, and is gradually 357 

diminishing towards higher averaging periods, with an exception at very high (120 min) 358 

average period. For dough and maturity stages, RE is found to be significant with higher 359 

averaging periods (60-120 min). RE in estimating water vapour fluxes is found to be 360 

insignificant at all averaging periods for the 6th leaf and silking stages. However, dough and 361 

maturity stages have shown a large variation in RE considering either too-short (1, 5 min) or 362 

too-long (60, 120 min) time averages. A high variation in RE for time scales larger than 45 min 363 
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indicate the effects of sub mesoscale (non-turbulent) motions. Hence, 45 min average period 364 

can be considered as optimal in isolating the turbulence components for use with flux 365 

representation. 366 

 367 

 368 

Figure 4a: Whisker plots showing the distribution of error in estimating carbon fluxes with various 369 

averaging periods relative to the conventional 30 min averaging. 370 

 371 

 372 
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 373 

Figure 4b: Whisker plots showing the distribution of error in estimating water fluxes with various averaging 374 

periods relative to the conventional 30 min averaging. 375 

 376 

3.3 Selection of Optimal averaging period 377 

              Ogive functions representing the cumulative integral of the co-spectral energy starting 378 

with highest frequency, i.e., 0.016 Hz (T = 1 min) for carbon, water, and WUE fluxes are 379 

presented 380 

 381 
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Figure 5a: Ogive plots of carbon fluxes for different growth stages of the Maize crop. (Solid verticals from 382 

left to right extremes correspond to the averaging periods of 120 min, 60 min, 45 min, 30 min, 15 min, 10 383 

min, 5min and 1 min respectively). 384 

 385 

Figure 5b: Ogive plots of water fluxes for different growth stages of the Maize crop. (Solid verticals from 386 

left to right extremes correspond to the averaging periods of 120 min, 60 min, 45 min, 30 min, 15 min, 10 387 

min, 5min and 1 min respectively) 388 

 389 

Figure 5c: Ogive plots of water use efficiency for different growth stages of the Maize crop. (Solid verticals 390 

from left to right extremes correspond to the averaging periods of 120 min, 60 min, 45 min, 30 min, 15 min, 391 

10 min, 5min and 1 min respectively) 392 

in Figure 5. Shorter time periods corresponding to daytime unstable atmospheric conditions 393 

(08:00 am to 04:00 pm) for various growth stages were investigated. Ogive plots of carbon 394 

fluxes for 6th leaf and silking stages showed an increasing trend up to 0.011 Hz (15 min) and 395 

remained fairly constant before 0.0055 Hz (30 min). This concludes that whole turbulent 396 
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spectrum can be covered with 15 to 30 min averaging, with negligible flux contribution from 397 

longer frequencies. Ogive plots of carbon fluxes for dough and maturity stages showed a 398 

continuous increasing trend without a defined plateau (horizontal asymptote) in between. This 399 

conclude that the conventional 30 min averaging period is inadequate to capture the low 400 

frequency fluxes, thus demanding for higher averaging periods. We observed a similar 401 

behaviour with water fluxes (Figure 5b). The flat part of the Ogive curve representing the 402 

optimal averaging period was found to vary across the crop cycle. While 15-30 min time-403 

average is suitable for aggregating the EC fluxes during 6th leaf and silking stages, 45-60 min 404 

averaging is more appropriate for dough and maturity stages. Similar to carbon and water 405 

fluxes, the Ogive plots for WUE were presented in Figure 5c. From this, it is observed that the 406 

flat part of Ogive is achieved at 15 min time average period for the stages of 6th leaf and silking 407 

and 45 min time average for the dough and maturity stages which is similar to the carbon and 408 

water fluxes. This concludes that the WUE co-spectrum followed a similar behaviour as its 409 

individual fluxes i.e. carbon and water fluxes in achieving optimal time averages. The crop 410 

biophysical factors like LAI and plant height are minimum during 6 th leaf and silking stages 411 

contributes low quantity of CO2 and H2O fluxes (refer figure 3a & 3b) whereas they are 412 

maximum in the later stages of the crop i.e., dough and maturity contributing to high quantities 413 

of CO2 and H2O fluxes (refer figure 3a & 3b). Our results are in accordance with the previous 414 

studies of Fong et al., 2020 on Cotton, where the responses in NPP and ET were related 415 

seasonally to plant growth stages. The previous studies on various crops revealed that the NPP 416 

and ET fluxes were initially low in the early stages and increases towards maturity stage due 417 

to crop phenology and management practices. To capture these low quantity fluxes, low 418 

averaging periods i.e., 15 min is sufficient, whereas 45 min time-averaging period can capture 419 

high quantity fluxes that are prevalent during later growth stages of the crop. As the crop 420 

characteristics are dependent on crop growth stages, a single time-averaging period is not 421 

appropriate to capture the dynamics of CO2 and H2O fluxes as well their ratio, WUE. This 422 

clearly demonstrates that, as the plant achieves its higher stage, flux contribution from low-423 

frequency components becomes more predominant. Very low averaging periods (ex: 1 min, 5 424 

min) were found unsuitable to capture low-frequency flux components, which is in agreement 425 

with literature (Feng, 2017). 426 

 427 

3.4 Dynamics of Water use efficiency 428 
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 Daily means of water use efficiency (WUE) estimated with conventional 30 min and 429 

growth specific optimal averaging periods is presented in Figure 6. Mean WUE fluxes for 6th  430 

 431 

Figure 6: Seasonal variations in daily mean WUE fluxes obtained with conventional 30 min (solid) and 432 

optimal averaging periods (dotted) during the crop cycle. 433 

leaf, silking, dough and maturity stages with conventional 30 min averaging are 1.48, 1.36, 434 

1.38 and 3.184 μmol mmol-1 respectively. Corresponding fluxes with stage specific optimal 435 

averaging periods are 1.49, 1.37, 1.39 and 3.06 μmol mmol-1 respectively. Error in estimating 436 

mean daily WUE fluxes with 30 min averaging is very low (< 1.45%) during 6th leaf and silking 437 

stages, low (8.56 to 9.04 %) during maturity stage, and is moderate (11.84 to 12.12 %) during 438 

dough stage. This conclude that, choice of optimal averaging period is more crucial for late 439 

stage growth periods of the crop. Distribution of error in estimating WUE fluxes with various 440 

averaging periods relative to conventional 30 min average period (RE) is presented in Figure 441 

7. A close to zero RE with all averaging periods during 6th leaf and silking stages conclude 442 

that, choice of averaging period has insignificant role in estimating the WUE fluxes, 443 

particularly during early growth stages. A slightly high RE (~ -5.4%) during dough and 444 

maturity stages conclude that, choice of averaging period matters for WUE estimation during 445 

late stage periods. Hence, conventional 30 min averaging period can be considered for 446 

estimating WUE fluxes during 6th leaf and silking stages, whereas optimal averaging period 447 

need to be considered for estimating WUE fluxes during dough and maturity stages. 448 

Correlation charts showing the linear association considering daily means of carbon, water, 449 

and WUE fluxes at different averaging periods is represented in Figure 8. For ease with 450 

comparison, data for the entire crop cycle was considered. Linear association  451 
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 452 

Figure 7: Whisker plots showing the distribution of error in estimating WUE fluxes with various averaging 453 

periods relative to the conventional 30 min averaging. 454 

between any two averaging periods is positive (r > 0.56) for carbon and water fluxes. Except 455 

with 120 min time-averaging, all other averaging periods are strongly correlated (r > 0.87) with 456 

30 min averaging period. Surprisingly, a poor linear association in WUE fluxes was observed 457 

between any two averaging periods, which is attributed to a larger variation in individual WUE 458 

fluxes between averaging periods. However, the corresponding individual carbon and water 459 

fluxes have recorded low variations between time averages. This conclude that, the need for 460 

optimal averaging period is more crucial in representing WUE fluxes rather than individual 461 

carbon and water fluxes. Our findings can improve representation of WUE fluxes using EC 462 

data, thereby help in developing efficient water management strategies in response to WUE 463 

changes. 464 

 465 

a) b) c) 
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Figure 8: Correlation charts showing the linear association of a) Carbon fluxes, b) Water fluxes, and c) 466 

WUE fluxes estimated with different averaging periods. Circle size represents the correlation magnitude 467 

and the color sign from white to black represents the negative to positive corelations respectively. 468 

 469 

4.0 CONCLUSIONS 470 

This study explores the effect of averaging period of EC fluxes on EBR dynamics and 471 

WUE in semi-arid Indian conditions. The proposed methodology was applied on drip-irrigated 472 

Maize field for one crop period (May-Sept 2019). Major findings of this study are: 473 

• EBR was found to vary marginally at low averaging periods and less significant during 474 

higher averaging periods.  475 

• With reference to conventional 30 min averaging period, relative error is within 12% 476 

for 10-45 min averaging periods for carbon fluxes and is within 5% for 15-45 averaging 477 

periods for water fluxes.  478 

• From Ogive analysis we found the optimal averaging period as 15 - 30 min for the 6th 479 

leaf, and silking stages, and as 45 – 60 min for the dough and maturity stages.  480 

• The mean carbon fluxes are increasing from 1.81 µmol+1m-2s-1 (6th leaf stage) to 15.44 481 

µmol+1m-2s-1 (maturity stage) which indicates that carbon sink is a function of crop 482 

growth period. In case of water fluxes, it increased from 2.52 mmol+1m-2s-1 (6th leaf 483 

stage) to 5.02 mmol+1m-2s-1 (maturity stage). Variation of carbon and water fluxes are 484 

directly influencing WUE dynamics. 485 

• The variation in WUE was increased subsequently with the plant growth and achieved 486 

its maximum value of 5.17 μmol mmol-1 in between dough to maturity stages which 487 

concludes that, crop consumes more carbon than water as the crop period progresses. 488 

• The correlation between CO2 and H2O fluxes for all averaging periods was found to be 489 

high. However, WUE, which is calculated as the ratio of CO2 and H2O fluxes, is not 490 

following the same pattern. While 45 min and 15 min averaged WUE exhibits a good 491 

correlation, 30 min averaged WUE is not correlated with other averaging periods. 492 

Averaging period is found to be an influencing factor in controlling WUE, hence should 493 

be considered with caution during the crop growth. 494 

This study is limited to understand the role of different time-averaging periods on EC   observed 495 

carbon, water fluxes as well as EC derived WUE fluxes contributed by homogeneous Maize 496 

crop which is having relatively smaller flux footprint in an unstable atmospheric condition. 497 
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Study findings can help to accurately characterise WUE of Maize crop considering growth 498 

stages for effective implementation of irrigation strategies. 499 
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