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Abstract. Data fusion of aerosol optical depth (AOD) datasets from the second generation of Geostationary Korea Multi-15 

Purpose Satellite (GEO-KOMPSAT-2, GK-2) series was undertaken using both statistical and deep neural network (DNN)-

based methods. The GK-2 mission includes an Advanced Meteorological Imager (AMI) onboard GK-2A and a 

Geostationary Environment Monitoring Spectrometer (GEMS) and Geostationary Ocean Color Imager-II onboard GK-2B. 

The statistical fusion method, Maximum Likelihood Estimation (MLE), corrected the bias of each aerosol product by 

assuming a Gaussian error distribution, and accounted for pixel-level uncertainties by weighting the root-mean-square error 20 

of each AOD product for every pixel. A DNN-based fusion model was trained to target Aerosol Robotic Network AOD 

values using fully connected hidden layers. The MLE and DNN AOD outperformed individual GEMS and AMI AOD 

datasets in East Asia (R = 0.888; RMSE = −0.188; MBE = −0.076; 60.6% within EE for MLE AOD; R = 0.905; RMSE = 

0.161; MBE = −0.060; 65.6% within EE for DNN AOD). The selection of AOD around Korean peninsula, which is 

incorporating all aerosol products including GOCI-II resulted in much better results (R = 0.911; RMSE = 0.113; MBE = 25 

−0.047; 73.3% within EE for MLE AOD; R = 0.912; RMSE = 0.102; MBE = −0.028; 78.2% within EE for DNN AOD). The 

DNN AOD effectively addressed the rapid increase in uncertainty at higher aerosol loadings. Overall, fusion AOD 

(particularly DNN AOD) showed improvements with less variance and a negative bias. Both fusion algorithms stabilized 

diurnal error variations and provided additional insights into hourly aerosol evolution. The application of aerosol fusion 

techniques to future geostationary satellite projects such as TEMPO, ABI, and GeoXO may facilitate the production of high-30 

quality global aerosol data. 
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1 Introduction 

Since the launch of the Advanced Very High-Resolution Radiometer (AVHRR) onboard the US National Oceanic and 

Atmospheric Administration (NOAA) satellite, various atmospheric aerosol remote sensing techniques have been developed 

using spaceborne sensors (Kaufman et al., 1990; King et al., 1999). Radiometers such as the AVHRR, the MODerate 35 

resolution Imaging Spectroradiometer (MODIS), and the Visible Infrared Imaging Radiometer Suite (VIIRS) observe 

spectral bands across the visible (VIS) to infrared (IR) range. Several algorithms have been developed for these instruments 

to quantify aerosol optical depth (AOD) on a global scale. The Dark Target (DT; Kaufman et al., 1997; Remer et al., 2005; 

Levy et al., 2013) and Deep Blue (DB; Sayer et al., 2013; Hsu et al., 2006, 2013) algorithms, designed for aerosol optical 

property retrieval from MODIS, have established a global standard for spaceborne AOD products. The Multi-Angle 40 

Implementation of Atmospheric Correction (MAIAC) conducts spatiotemporal combinations of observations to facilitate 

aerosol retrieval and atmospheric correction (Lyapustin et al., 2011a, b; 2012; 2018). These algorithms have also been 

adapted for use with the VIIRS, which has similar observation specifications to those of MODIS. The Multiangle Imaging 

Spectroradiometer (MISR) measures surface radiance from nine viewing angles, enabling aerosol optical property inversion, 

and providing much information about different aerosol types (Kahn et al., 2001). Previous studies have exploited the 45 

sensitivity of hyperspectral imaging capabilities in the ultraviolet (UV) to VIS range of instruments such as the Total Ozone 

Mapping Spectrometer (TOMS), the Ozone Monitoring Instrument (OMI), and the TROPOspheric Monitoring Instrument 

(TROPOMI) to detect absorbing aerosols such as smoke and dust (Torres et al., 1998, 2002, 2020; Ahn et al., 2014). These 

aerosol retrieval algorithms involved the UV Aerosol Index (UVAI) in identifying aerosol types and derive AOD using pre-

computed reflectance for the selected aerosol type; the algorithms employed by these instruments provide AOD as well as 50 

information on single scattering albedo (SSA), aerosol layer height (ALH), and above-cloud AOD (Torres et al., 2012; 

Jethva et al., 2018). The Deep Space Climate Observatory (DSCOVR) is located at the Lagrange-1 point, allowing 

continuous observation of Earth’s sunlit area. The Earth Polychromatic Imaging Camera (EPIC) onboard DSCOVR features 

10 bands spanning 317–779 nm. Lyapustin et al. (2021) demonstrated the capability of MAIAC in retrieving AOD and SSA 

from such instruments and further quantified the content of iron oxide in atmospheric mineral dust (Go et al., 2022). 55 

For the Geostationary Earth Orbit (GEO) observations in Asia, the GEO-Kompsat-1 (GK-1) satellite, also known as the 

Communication, Ocean, and Meteorological Satellite (COMS) was launched in June 2010, equipped with a Meteorological 

Instrument (MI) and a GOCI (Kim et al., 2007; Lee et al., 2010b). The first satellite of the second series, GK-2A, was 

launched in December 2018, featuring an Advanced Meteorological Imager (AMI; Kim, D. et al., 2021). GK-2B was 

launched in February 2020, carrying the successor to GOCI (GOCI-II) and a Geostationary Environment Monitoring 60 

Spectrometer (GEMS) (GOCI-II ref; Kim et al., 2020; Choi et al., 2021). As the retrieval skill of the aerosol algorithm for 

GK-1 has well been established (Kim et al., 2008; Lee et al., 2010b; Kim et al., 2016; Choi et al., 2016, 2018), the 

instruments onboard GK-2 continue aerosol monitoring with improved observation specifications. For GEMS, as the first 
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geostationary hyperspectral spectrometer, an aerosol algorithm based on a two-channel inversion with an optimal estimation 

approach has been developed (Kim et al., 2018). 65 

Aerosol retrieval algorithms vary in their application with the spectral specifications of the sensors they use. Employing 

multiple channels within the VIS to near-infrared (NIR) range enables aerosol inversion to capture information on aerosol 

size (Lin et al., 2021), whereas UV–VIS spectral observations are sensitive to aerosol absorption and layer height (Kim et al., 

2018). Variability of instrument sensitivity leads to distinct error characteristics in aerosol algorithms. For example, retrieval 

algorithms utilizing wavelengths less sensitive to ALH tend to be robust against assumptions about ALH during radiative 70 

transfer simulations. Moreover, observations across different wavelength ranges influence the spatial coverage of retrievals. 

As aerosol loading increases over a dark surface, atmospheric backscattering intensifies, causing more photons to reach 

satellite instruments. Conversely, over a bright surface, an elevated aerosol loading obscures signals reflected from the 

surface. The balance, where the increase in backscatter and disturbance of surface signals align, is termed the critical 

reflectance, which decreases with increasing wavelength (von Hoyningen-Huene, et al. 2011; Kim et al. 2014). As most land 75 

surfaces have lower reflectance at shorter wavelengths, aerosol retrieval at such wavelengths results in broader spatial 

coverage.  

Previous studies have shown that the use of multiple aerosol products addresses a systematic error tendency in AOD retrieval. 

MLE merging of AOD data from two or more satellites (or algorithms) has been explored in enhancing the accuracy of AOD 

quantification. Levy et al. (2013) and Wei et al. (2019) produced a merged MODIS DT–DB AOD product, accounting for 80 

systematic biases from each algorithm. Tang et al. (2016) employed the Bayesian maximum entropy method to merge AOD 

from MODIS and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) while considering the retrieval uncertainties 

associated with each AOD product. The optimal interpolation method iteratively updates AOD, factoring in MODIS, 

SeaWiFS, and MISR AOD uncertainties (Xue et al., 2014). Gupta et al. (2008) considered the point-spread function of each 

satellite footprint as a weighting factor for the merging of AOD from MODIS, MISR, and Clouds and the Earth’s Radiant 85 

Energy System (CERES). The Maximum Likelihood Estimation (MLE) technique, which maximizes a cost function defined 

by the Gaussian error distribution of satellite AOD products, is widely used in merging AOD data. This method was applied 

by Xu et al. (2015) to MODIS, SeaWiFS, and MISR data, and by Go et al. (2020) to OMI and MODIS data, accounting for 

uncertainties in each pixel. Xie et al. (2018) improved the methodology by correcting the systematic biases of the Advanced 

Along-Track Scanning Radiometer (AATSR). aerosol algorithms. Lim et al. (2021) employed the MLE method in 90 

considering pixel-level uncertainty and bias correction, resulting in merged AOD products from Advanced Himawari Imager 

(AHI), Geostationary Ocean Color Imager (GOCI), and TROPOMI systems. 

Most satellite AOD data-fusion research has concentrated on Low Earth Orbit (LEO) satellite data with limited consideration 

of GEO data. Unlike the LEO satellites, hourly variations in retrieval uncertainty emerge when using continuous AOD data 

from GEO satellites, and accounting for diurnal variations in uncertainty in aerosol data fusion is challenging. Furthermore, 95 

error characteristics among different AOD products under different retrieval conditions complicate matters. Deep learning 

excels in capturing nonlinearities owing to its hierarchical architecture and activation functions in each layer, so a deep 



4 
 

neural network (DNN) approach may significantly enhance AOD fusion outcomes. However, exploration of deep learning 

approaches to AOD data fusion has been limited. In this study, both a conventional MLE AOD fusion algorithm and a DNN-

based AOD fusion algorithm have been developed and validated using aerosol products from GK-2 satellites. Due to 100 

differences in spatial domain of each instrument, fused datasets are validated separately in a region around the Korean 

peninsula (KO) and a region within the East Asia (EA). Section 2 briefly introduces the spaceborne AOD datasets used in 

this study, derived from aerosol retrieval algorithms and an AERONET AOD dataset. Each fusion method is described in 

Section 3, and Section 4 discusses the fused AOD products based on diagnostic and prognostic error analysis. Finally, 

Section 5 provides a summary of the overall results and outlines prospects for geostationary aerosol data fusion. 105 

2 Data  

2.1 GK-2 Satellite instruments  

An overview of instruments onboard GK-2 satellites and their aerosol products is provided in Table 1, and Fig. 1 illustrates 

the data coverage of each aerosol product.  

 110 

2.1.1 AMI/GK-2A 

As a meteorological imager, AMI has spectral channels in the VIS–IR range (Kim et al., 2021), which is 3 VIS channels, 1 

near-IR channel, and 10 IR channels from 0.47 𝜇𝜇m to 13.3 𝜇𝜇m. A 0.65 𝜇𝜇m channel has 0.5 km spatial resolution, and 0.47, 

0.51 𝜇𝜇m channels has 1.0 km spatial resolution. The IR channels has 2.0 km spatial resolution. AMI scans full-disk every 10 

minutes, and local area near Korean peninsula every 2 minutes. Similar to conventional aerosol algorithms for instruments 115 

with VIS–IR capabilities, such as MODIS, VIIRS, AHI, and Advanced Baseline Imager (ABI), the AMI aerosol algorithm 

employs the VIS and NIR channel for aerosol inversion while utilizing other channels for bright surface masking and surface 

reflectance estimation. 

 

2.1.2 GOCI-II/GK-2B 120 

GOCI-II, onboard the GK-2B, is a second generation instrument of GOCI. Compared to GOCI, GOCI-II features a better 

ground sampling distance, an extended field of regard covering the hemisphere, and more spectral bands covering 

wavelength from 380 to 865 nm. GOCI-II has 4 additional bands (380, 520, 620, and 709 nm) compared to GOCI. Moreover, 

a wideband channel of GOCI-II is used for star imaging to improve image navigation and registration quality. Image 

acquisition of GOCI-II around the Korean peninsula (2500 km × 2500 km)  is done by scanning 12 slots 10 times per day.  125 
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2.1.3 GEMS/GK-2B 

GEMS is the first UV-VIS hyperspectral instrument on GEO orbit. GEMS is designed to monitor air quality in Asia (5°S–

45°N, 75–145°E). GEMS observes reflected hyperspectral solar radiance from 300 to 500 nm wavelength range with a 

spectral resolution of 0.6 nm and a spatial resolution of 3.5 km × 7.7 km. GEMS scans sunlit part of the Earth during 130 

daytime. To obtain qualitative radiance data considering solar zenith angle, GEMS has 4 scanning scenarios of half-east, 

half-Korea, full-center, and full-west (Fig. 1). Since aerosol retrieval quality at high solar zenith angle depreciates, the half-

east scan data, which is performed in the early morning, is not used for aerosol fusion study. 

 

2.2 Aerosol retrieval algorithms for GK-2 instruments. 135 

2.2.1 Yonsei aerosol retrieval algorithm (AMI, GOCI-II) 

Lim et al. (2018) introduced the AHI Yonsei Aerosol Retrieval (YAER) algorithm, which was initially devised for ocean-

color imagers. In this study, the AMI aerosol product was retrieved using the AHI YAER algorithm with minor 

modifications (Kim et al., 2024). The AMI YAER algorithm has two AOD retrieval versions based on different surface 

reflectance estimation methods; i.e., the Minimum Reflectance Method (MRM) and the Estimated Surface Reflectance (ESR) 140 

method. The distinct advantages of AMI for aerosol retrieval include more accurate cloud and bright surface masking via its 

IR channels compared with other instruments. Furthermore, its Short-Wave Infrared (SWIR) observation capabilities enable 

the use of the ESR method for surface estimation, offering uncertainty characteristics that are distinct from those of the 

MRM. Ocean surface reflectance estimation uses the Cox and Munk method (Cox and Munk, 1954) to estimate water 

leaving radiance with consideration of wind speed and chlorophyll-a concentration. In addition, the AMI has high temporal 145 

resolution, with full-disk scans every 10 min. For the purpose of aerosol data fusion, a domain spanning 10°S–50°N and 

70°E–150°E of the AMI full-disk scan was chosen to encompass the GEMS field of regard. 

GOCI-II aerosol product is derived from the GOCI-II YAER algorithm (Lee et al., 2023) based on the GOCI YAER 

algorithm introduced by Lee et al. (2010b) and improved by Choi et al. (2016, 2018). The enhanced spatial resolution of 

GOCI-II compared to GOCI allows its aerosol products to be retrieved at a resolution of 2.5 km, capturing higher-resolution 150 

spatial aerosol features around the Korean peninsula. However, the smaller field of regard of GOCI-II restricts AOD fusion 

to within the GOCI-II domain when using aerosol products from all three instruments. Consequently, fusion AOD utilizing 

all three aerosol products was evaluated separately (Section 4). Due to the absence of SWIR channels, the GOCI-II YAER 

algorithm estimates surface reflectance using only the MRM, with the concentration of 12 spectral bands within the UV–NIR 

range contributing to the stability of AOD inversion. Ocean surface reflectance estimation is done as the same manner for 155 

AMI YAER algorithm using the Cox and Munk method. 

Aerosol size influences the spectral dependency of AOD within the UV-NIR spectral range. Therefore, both AMI and 

GOCI-II are sensitive to the potential misclassification of aerosol types related to their size. However, their reduced 
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sensitivity to aerosol absorption in the VIS range renders the YAER AOD products robust against uncertainties arising from 

aerosol absorptivity. Both the AMI and GOCI-II YAER algorithms consider four types of aerosol: black carbon (BC), non-160 

absorbing (NA), mixed (MX), and dust (DU) aerosol. Aerosol models utilized in the YAER algorithms were derived from 

climatology of AERONET inversion dataset with the classification developed by Lee et al. (2010a). The YAER algorithm 

first retrieves AODs at all wavelengths within UV-NIR range and converted to 550 nm for all aerosol types. Then, aerosol 

type that shows minimum variance at 550 nm are selected aerosol type for the corresponding inversion pixel. 

2.2.2 GEMS Aerosol retrieval algorithm 165 

The GEMS aerosol algorithm was initially developed by Kim et al. (2018) and Go et al. (2020) based on synthetic data from 

OMI observations. The operational GEMS aerosol algorithm, based on real observations, was subsequently established by 

Cho et al. (2023). GEMS performs hourly hyperspectral radiance observations of 300–500 nm with 0.6 nm spectral 

resolution during daytime. Its spatial resolution at nadir point is 3 km × 7.7 km. Distinct from other instruments on GK-2 

satellites, GEMS features near-UV measurement that can be utilized for aerosol inversion. The optically darker nature of 170 

desert surfaces in near-UV measurement serves as a favorable condition for the retrieval of aerosol signals from observed 

radiance. This allows unprecedented hourly aerosol monitoring over desert regions such as the Gobi and Taklamakan deserts. 

Furthermore, near-UV spectral region is known to be sensitive to aerosol absorption, contributing to distinct error 

characteristics in GEMS AOD relative to AMI and GOCI-II. In this study, a version 2 of the GEMS AOD at 550 nm was 

used to maintain consistency with AMI and GOCI-II AOD products. A version update of the GEMS aerosol algorithm was 175 

made public in November 2022, and earlier data were reprocessed accordingly.  

Unlike the AMI and GOCI-II YAER algorithms, the GEMS is more sensitive to misclassification of absorbing/scattering 

aerosol types. The GEMS aerosol retrieval algorithm initially performs aerosol type selection with UV aerosol index (UVAI) 

and VIS aerosol index (VISAI). The algorithm assigns NA type to pixels with low UVAI values. The other pixels are 

separated into highly-absorbing fine (HAF) type and DU type according to the VISAI values. The aerosol type classification 180 

of the GEMS AOD retrieval is superior to the other algorithms using visible wavelengths because of the sensitivity of UV 

wavelength to scattering characteristic of aerosols. Yet, relatively short range of observation wavelength in VIS region of 

GEMS compared to AMI and GOCI-II lacks sensitivity to aerosol size information. After the aerosol type classification, the 

algorithm performs a two-channel inversion used in OMI near-UV aerosol algorithm to derive first guess of AOD and SSA. 

Then, the first guesses are fed into the GEMS optimal estimation algorithm to retrieve AOD at 443 nm. The 443 nm AOD is 185 

converted to 550 nm AOD based on the selected aerosol type. 

 

2.3 AERONET 

The AErosol RObotic NETwork (AERONET) constitutes a global network of ground-based aerosol remote sensing 

instruments, with numerous sun photometer stations operating at various locations worldwide. The AERONET level 1.0 data 190 
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are unscreened measurement data. The cloud and pointing error screening is applied to level 1.0 data to produce a level 1.5 

dataset. The level 1.5 data series are raised to level 2.0 (quality-assured) series after final calibration values are applied and 

manual data inspection is completed. Here, AERONET version 3, level 2.0 AOD products served as the target AOD for both 

MLE and DNN-based methods (Section 3). However, in the validation of individual and fused AODs (Section 4), 

AERONET version 3, level 1.5 AODs were used owing to the limited application of pre- and post-calibration for only a few 195 

sites up to 2023; therefore, level 1.5 AODs were more suitable for validating relatively recent data. The estimated 

uncertainty in precision in AERONET AODs is known to be 0.010–0.021 depending on the wavelength (Holben et al., 1998; 

Eck et al., 1999; Giles et al., 2019; Sinyuk et al., 2020). Over the course of the error analysis and training period, 74 stations 

reported ground-based level 2.0 AOD data. For the validation period, 91 stations reported ground-based level 1.5 AOD, 

including 28 stations within the field of regard of GOCI-II. Table 2 lists the AERONET sites used in the study. To match 200 

AOD wavelengths with those of spaceborne AOD products, the AERONET 550 nm AOD was derived through quadratic 

interpolation from AODs measured at 340, 380, 440, 500, 675, 870, and 1020 nm. For spatiotemporal matching with 

AERONET measurements, satellite data within a 25 km radius of each AERONET site were averaged, and AERONET 

AODs within 30 min of each exact hour were also averaged for spatiotemporal collocation (Park et al., 2020). 

3 Methodology 205 

A flowchart of MLE fusion and DNN-based fusion processes is shown in Fig. 2. Each of these fusion methods requires a 

pre-calculation process involving bias and uncertainty calculations for MLE fusion and a model training process for DNN 

fusion. Data spanning one year (November 2021 to October 2022) were used in pre-calculation processes. The resultant 

fused AODs were generated and validated for the period November 2022 to April 2023. Throughout data pre-calculation, 

AERONET AOD served as the reference ground truth for both fusion methods. The AMI Normalized Difference Vegetation 210 

Index (NDVI) was used as both an uncertainty source and an input for both fusion approaches, as calculated using Eq. (1): 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁
𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁

           (1) 

where R represents AMI MRM surface reflectance. The MRM surface reflectance was used because aerosols may affect the 

NDVI when using observed reflectance. Spatiotemporal matching of AMI NDVI followed the same approach as AMI AOD. 

Henceforth, for the sake of simplicity, the statistically fused AOD is referred to as MLE AOD, and the DNN-based fused 215 

AOD as DNN AOD. 

3.1 Spatiotemporal matching and additional cloud masking with AMI IR observations 

Because each instruments observes the Earth radiance with distinct geolocation fields, the geolocations of aerosol products 

are different. Therefore, aerosol products were re-gridded into 0.05° × 0.05° grids by averaging AOD values from the three 

closest pixels located within a 0.15° radius of the center of each grid point. The choice of a 0.15° radius was intended to 220 

prevent grid pixels from becoming empty owing to the coarsening of spatial resolution near the scan edge (as in western 
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China). However, this approach may lead to smoothing of aerosol features in regions distant from scan edges. To counteract 

excessive smoothing and preserve small aerosol features after re-gridding, the strategy involved averaging the maximum 

three points regardless of how many points lay within the specified averaging radius. This spatial matching technique was 

intended to provide a balance, mitigating excessive smoothing while retaining finer aerosol features. The re-gridded aerosol 225 

products are also used for error analysis and DNN model training to account for small errors may induced from the re-

gridding process. 

Given the distinct scanning scenarios of each sensor, a distinct temporal matching strategy was employed for each AOD 

product to generate AODs for every precise hour between 00:00 UTC and 07:00 UTC. For temporal matching of 04:00 UTC 

fusion, GEMS AOD data scanned from 03:45 UTC to 04:15 UTC were utilized as the AOD representation for 04:00. In the 230 

case of AMI AOD, data were collected for a time span of 03:30−04:30 UTC from each precise hour and a median AOD was 

calculated. As for GOCI-II, data scanned at 03:15 and 04:15 were simply averaged. 

Aerosol retrieval algorithms inherently include a cloud masking process; however, GEMS and GOCI-II cloud masking may 

exhibit errors owing to challenges in distinguishing thin clouds such as cirrus from aerosols using only VIS channels. 

Therefore, a cloud detection database employing IR channels was extracted during the AMI YAER algorithm retrieval 235 

process and applied to the GEMS and GOCI-II aerosol products. The cloud-masking criteria of the AMI YAER algorithm 

are shown in Table 3, where the first two criteria in the list utilize the fixed geometry of GEO satellites. Because clouds 

change rapidly with time, the maximum brightness temperature (BT) within the previous 10 days served as an estimate of 

BT on a clear day. Pixels displaying a difference between maximum BT during the 10 days and observed BT in the 6.9 and 

11.2 μm channels of less than −28 K were thus identified as cloud pixels. This method was introduced by Kim et al. (2014) 240 

using MI and has proved effective and reliable with AHI (Lim et al., 2018). The 1.38 μm channel is highly sensitive to cirrus 

clouds (Roskovensky and Liou, 2003), so pixels exhibiting a top-of-atmosphere reflectance exceeding 0.35 in the 1.38 μm 

channel were masked as clouds. Detection of lower clouds involved the brightness-temperature difference (BTD) of the 13.3 

and 10.3 μm (known as the “atmospheric window”) bands (BTD10.3–13.3). Over clear pixels, the BT of the 13.3 μm 

channel is significantly lower than that of the 10.3 μm channel due to well-mixed CO2 in the troposphere, resulting in a 245 

substantial BTD10.3–13.3. The presence of clouds reduces BTD10.3–13.3, as the BT of the 10.3 μm channel is lower in 

cloud pixels. The detection of higher clouds followed a similar approach utilizing the 12.3 μm channel, which is sensitive to 

high-altitude water droplets and ice crystals. The IR-based masks applied to GOCI-II and GEMS AODs were implemented 

across all aspects of the study including error analysis, bias and uncertainty calculations, and DNN model training. 

The effects of a cloud mask in refining GEMS and GOCI-II AOD are shown in Fig. 3, where yellow boxes indicate cloud-250 

free regions that were not removed by the additional cloud mask, and magenta boxes highlight regions where the original 

GEMS or GOCI-II aerosol algorithms inaccurately detected clouds, leading to overestimated AOD values. An example for 

25 November 2022, over the arid region of northern China, is depicted in Fig. 3a–c; the Taklamakan desert is highlighted by 

the yellow box in Fig. 3a. In comparing the original GEMS AOD with that after application of the AMI IR cloud mask (Fig. 

3b–c), it is evident that the cloud mask did not mistakenly classify bright surfaces as clouds. The magenta box in Fig. 3b 255 
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indicates areas where the GEMS aerosol algorithm retrieved AOD values over thin clouds, leading to significantly elevated 

values of up to 1.2, while values near the clouds remained below 0.2. Some pixels even had AOD values exceeding 2.0. 

These problematic pixels were removed in Fig. 3c, leading to spatially consistent AOD results for GEMS after application of 

the additional cloud mask. The additional cloud mask was applied to GOCI-II AOD on 9 March 2023 (Fig. 3d–f), when a 

substantial aerosol plume was being transported across the Southern Ocean toward the Korean peninsula. The hazy 260 

atmosphere extended over Japan and into the western Pacific Ocean. However, the GOCI-II YAER algorithm failed to 

accurately detect thin clouds (magenta box, Fig. 3e). Application of the AMI IR cloud mask (Fig. 3f) effectively removed 

cloud-contaminated AOD values. The yellow box (Fig. 3d) highlights a dense aerosol plume. GOCI-II AOD values over the 

plume remained intact after application of the additional cloud mask, demonstrating that the cloud mask based on IR 

channels was proficient in distinguishing thin clouds from thick aerosol plumes. 265 

 

3.2 Statistical aerosol fusion: MLE AOD 

MLE aerosol data fusion employed an MLE method that accounted for the pixel-level uncertainty of each aerosol product. 

The MLE method operates under the assumption that its input AODs have unbiased random errors. Typical AOD 

distributions, which are often lognormal, tend to have a Gaussian uncertainty distribution (Sayer et al., 2020). However, the 270 

actual mean error does not always coincide with zero, contradicting the assumption made by the MLE method. To enhance 

the MLE input data quality, a preliminary bias correction for each AOD product was undertaken before initiating the fusion 

process. Here, AOD bias was defined as the mean of a Gaussian distribution fitted to the AOD error, as compared with the 

collocated AERONET AOD. To account for bias characteristics attributed to optical path variations and surface conditions, 

AOD bias values were computed for each hour, aerosol type, and NDVI bin.  275 

Based on a zero-mean Gaussian error assumption after bias correction, a log-likelihood function 𝜌𝜌(𝜏𝜏) was written as follows: 

𝜌𝜌(𝜏𝜏) = ∑ 1
𝑅𝑅𝑖𝑖√2𝜋𝜋

(−0.5 �𝜏𝜏−𝜏𝜏𝑖𝑖
𝑅𝑅𝑖𝑖
�
2

)𝑖𝑖  ,          (2) 

where 𝜏𝜏𝑖𝑖 is a bias corrected AOD from instrument 𝑖𝑖, and 𝑅𝑅𝑖𝑖 is the uncertainty of 𝜏𝜏𝑖𝑖. Then, a derivative of the above log-

likelihood function was written as follows: 

𝜕𝜕𝜕𝜕(𝜏𝜏)
𝜕𝜕𝜕𝜕

= ∑ 𝜏𝜏−𝜏𝜏𝑖𝑖
𝑅𝑅𝑖𝑖
2𝑖𝑖  .            (3) 280 

Finally, the AOD that maximized the log-likelihood function had a 𝜏𝜏 value that made the above derivative zero: 

𝜏𝜏 = ∑𝜏𝜏𝑖𝑖𝑅𝑅𝑖𝑖
−2

∑𝑅𝑅𝑖𝑖
−2              (4) 

The above Eq. (4) can be interpreted as an uncertainty-weighted mean of AOD products. Here, the uncertainty associated 

with each aerosol product was represented by the root-mean-square error (RMSE) of the AOD products relative to 



10 
 

AERONET AOD measurements. As shown in Fig. 5-7, retrieval error does not increase (or decrease) linearly. Therefore, 285 

merging AOD datasets using the same RMSE value for all pixels is not desirable. The MLE fusion method linearizes the 

error characteristics by categorizing potential error sources such as AOD values, aerosol types, NDVI values, and 

observation times. The potential error source variables are selected based on the following logistics. First, AOD value itself 

and aerosol type is selected because as aerosol loading increases, aerosol model assumption affects retrieval performance. 

Complex aerosol mixture at high aerosol loading leads to high uncertainty and aerosol retrieval algorithms have distinct 290 

aerosol model assumptions. NDVI is selected as possible error source to represent surface condition. Different surface types 

have different surface reflectance and surface types differentiate by vegetation amount and types (Hsu et al., 2013). 

Observation time difference in GEO measurements leads to distinct optical path of observed radiance. Therefore, GEO 

satellite AOD products have diurnal error variations (Lim et al., 2018; Zhang et al., 2020; Fu et al., 2023; Cho et al., 2024). 

To deal with the uncertainty from this, observation time is selected as the possible error source. Based on this analysis, the 295 

bias of each AOD product was subtracted according to the NDVI value, selected aerosol type (ancillary output of each 

aerosol products), and observation time. Following this bias correction, the RMSE for the MLE procedure was computed. 

The output of the fusion process was then categorized in accordance with AOD data availability, as shown in Table 4. 

3.3 Deep neural network-based aerosol fusion: DNN AOD 

A DNN is a powerful tool for capturing non-linear relationships among physical variables. Although ground-based and 300 

spaceborne AODs exhibit linear relationships owing to their fundamentally similar physical meanings, their error 

characteristics under diverse retrieval conditions can introduce nonlinearity. The MLE AOD fusion method attempts to 

address this nonlinearity by considering pixel-level uncertainty associated with each aerosol product. However, certain 

unexplained nonlinearities remain, and a DNN-based AOD fusion algorithm was formulated as follows. 

The DNN model was constructed to predict AERONET AOD as the target variable, employing the same input data as the 305 

MLE AOD fusion approach. To improve model convergence and enhance the overall performance of the DNN, a 

preprocessing step was necessary for the input data. This involved standardization of the NDVI, hour, and aerosol type index 

(for GEMS, 1 = HAF, 2 = DU, 3 = NA; for AMI and GOCI-II, 1 = BC, 2 = NA, 3 = MIX, 4 = DU). The standardization 

process was implemented using Eq. (5): 

 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑥𝑥−𝜇𝜇𝑥𝑥
𝜎𝜎𝑥𝑥

 ,            (5) 310 

where 𝜇𝜇𝑥𝑥 and 𝜎𝜎𝑥𝑥 represent the mean and standard deviation of input data 𝑥𝑥, respectively. The AOD follows a lognormal 

distribution skewed toward higher values. To address this distribution characteristic, a Box–Cox transformation was 

implemented for standardizing AOD products derived from the three instruments and AERONET. This transformation, 

based on the concept initially introduced by Tukey (1957), has been adapted and shown to be effective for data 

normalization (Box and Cox, 1982; Sakia, 1992). 315 
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A simplified architecture of a fully connected feed-forward neural network model is illustrated in Fig. 2. This DNN model 

comprises three hidden layers, with each being fully connected. Within each hidden layer, batch normalization was 

implemented to avoid overfitting by bringing numerical data onto a common scale. In addition, the rectified linear unit 

(ReLU) served as the activation function. Weighting coefficients of the neural network were optimized by minimizing the 

mean-square-error (MSE) loss. During training, the backpropagation technique was applied, adjusting the weight coefficients 320 

based on the gradient of the loss function. Hyperparameters including batch size, number of neurons, and learning rate were 

determined using the asynchronous successive halving algorithm (ASHA; Li et al., 2020). For the ASHA optimization 

process, a maximum of 1000 trials were set, with a minimum of 100 trials. In each trial, half of the configurations were 

eliminated. Following optimization, the DNN model was trained for each case of AOD availability, as outlined in Table 4. 

4 Results and discussion 325 

4.1 Error analysis of GEMS, AMI, and GOCI-II AOD products. 

Error analysis of original AOD products gives intuition of expected contributions of each AOD products and helps to 

interpret the outcome. Here, we used spatiotemporally matched AOD products to minimize the effect of re-gridding and 

temporal matching to the input AOD value. Wavelength of AOD used for error analysis and data fusion are at 550 nm. Also, 

additional IR cloud masking is applied to GEMS and GOCI-II AOD products. Fig. 4 depicts 2-dimensional histograms 330 

illustrating the match between individual AOD products and AERONET AOD measurements. The expected error envelope 

(EE envelope; ±(0.05 + 0.15AOD)) of AOD was established by Levy et al. (2013). GEMS AODs exhibited a tendency to 

underestimate AOD at high aerosol loadings (Fig. 4a), with a slope of 0.429 relative to AERONET AOD. Cho et al. (2023) 

reported that the latest version of GEMS AOD at 443 nm does not have such a low slope, implying that the underestimation 

of GEMS 550 nm AOD in the version 2 algorithm may be due to either an algorithm issue or errors during wavelength 335 

conversion. Despite this underestimation, GEMS AODs were strongly correlated with AERONET AODs, with a Pearson’s 

correlation coefficient (R) of 0.715. GOCI-II AODs yielded the most comparable outcomes to AERONET AODs among the 

four aerosol products (Fig. 4b). The stable inversion of AOD achieved through utilizing 12 UV–NIR channels likely 

contributed to the robustness of the GOCI-II YAER algorithm. The Mean Bias Error (MBE) of GOCI-II AODs was negative, 

mainly because of a clustering of slight underestimations at low aerosol loadings. This underestimation at low AOD is a 340 

known issue when using MRM surface reflectance because of the assumption that at least one aerosol-free day exists within 

a 30-day period, which is not universally valid because of background AOD as indicated in Lee et al. (2023). A comparable 

issue with low aerosol loadings was evident with AMI–MRM AOD (Fig. 4c). Both AMI–MRM and AMI–ESR AODs (Fig. 

4c–d) displayed scattered patterns relative to GOCI-II AODs. The overestimation of low AOD values observed in both 

AMI–MRM and AMI–ESR AODs may be attributed to insufficient cloud masking over land. Comparison of the two AMI 345 

AOD products indicated that AMI–ESR AOD yields slightly superior outcomes, likely because of the enhanced surface 
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reflectance estimation over urban regions with the ESR method, as indicated in previous studies (Lim et al., 2018; Kim, M. 

et al., 2021). 

The biases in GEMS AOD products with AOD, NDVI, aerosol type, and observation time are illustrated in Fig. 5, where 

blue numbers in each plot indicate the count of collocated data in the respective box–whisker, and green dashed lines in each 350 

panel correspond to the y-axis range of the corresponding panels in the GOCI-II error analysis (Fig. 6). As AERONET AOD 

values increased, the GEMS AOD acquired an increasingly negative bias. Conversely, at low aerosol loadings (AERONET 

AOD < 0.2), GEMS AOD displayed a positive skewness, implying that it tends to overestimate low AOD values while 

simultaneously overestimating high AOD values. Where NDVI < 0.5, the error in GEMS AOD consistently demonstrated a 

negative skewness and bias. However, in high-NDVI regions, usually associated with dark surfaces, the bias is nearer zero. 355 

The negative error of GEMS AOD for HAF aerosols may be induced by errors in aerosol optical properties of the model 

(Cho et al., 2023). However, aerosol type selection is not absolutely independent of surface conditions. In winter, the NDVI 

in Southeast Asia falls to 0.3–0.4 (Ji et al., 2017), with massive HAF aerosols being emitted by biomass burning (Yin, 2020). 

Then, GEMS AOD displays an M-shaped diurnal variation that is consistently negatively biased, except for at 01 UTC. 

Diurnal variations in GEMS AOD may be influenced by the relatively short atmospheric path length at noon (04 UTC). 360 

Furthermore, variations among collocated AERONET sites, which are due to differing scan scenarios throughout the day, 

may also contribute to the observed diurnal error variations. 

The same error analysis applied to GOCI-II AOD is illustrated in Fig. 6. The GOCI-II AOD error relative to AERONET 

AOD displayed a pattern of underestimation with increasing aerosol loading (Fig. 6a), although the magnitude of this error 

was notably smaller than that observed with GEMS AOD. In terms of NDVI (Fig. 6b), GOCI-II AOD seemed to exhibit 365 

consistent behavior regardless of land surface conditions. Over ocean areas (NDVI <0) the GOCI-II YAER algorithm 

delivered unbiased retrievals, and bias characteristics were similar across different aerosol types. The MX-type aerosol (the 

most frequently selected type in the GOCI-II YAER algorithm) yielded the most stable results with the shortest range of 

whiskers (Fig. 6b). Conversely, the NA aerosol had the greatest whisker range, indicating potential issues with the NA model 

in the algorithm. Asian dust is associated with high aerosol loadings, and results for DU aerosols are slightly more negative 370 

(Fig. 6c). Diurnal variations in GOCI-II error appeared stable, with slight underestimation during mornings and late 

afternoons. As the GOCI-II field of regard is smaller than those of GEMS and AMI, geometrical conditions may have had 

less impact on its performance. 

Error analysis results for the two versions of AMI AODs are depicted in Fig. 7, which shows that both AMI–MRM (Fig. 7a) 

and AMI–ESR (Fig. 7e) AOD biases tend to decrease with increasing AERONET AOD values. This bias pattern may be 375 

attributed to the difference in surface reflectance estimation methods used by the two AOD versions. This distinction became 

more evident with low aerosol loadings, where the surface signal contributes substantially to the observed radiance. A 

comparison of the initial box–whisker plots for each AMI AOD version suggested that the AMI–ESR AOD bias is closer to 

zero with low aerosol loadings. Furthermore, the shorter lengths of the box–whisker plots across various NDVI values (Fig. 

7f) indicate that the AMI–ESR YAER algorithm provided a more consistent estimate of surface reflectance than that of the 380 
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AMI–MRM YAER. Considering that both versions of the AMI YAER algorithm employ the same aerosol models, the 

variations in AOD bias between the two were similar (Fig. 7c, g). The diurnal error variation (Fig. 7d, h) was not notably 

different between the two AMI AOD products. This similarity in diurnal error variations suggests that the choice of surface-

reflectance estimation method has limited impact on error characteristics based on observation time. 

4.2 Fusion data evaluation 385 

4.2.1 Validation of the fused AOD with AERONET 

Based on the error analysis and DNN model training for the period from November 2021 to October 2022, AOD data were 

fused for six months spanning November 2022 to April 2023. The GOCI-II field of regard focusing on KO was smaller than 

those covering EA, so the fused AOD utilizing GOCI-II AOD was confined within the domain. Therefore, two groups of 

fused AOD products were generated: one involving the entire EA domain (AOD-EA), and the other focusing exclusively 390 

within KO (AOD-KO), which is the domain covered by GOCI-II. Validation results of both MLE and DNN-based fused 

AODs are shown in Fig. 8, where columns represent the validation results of MLE and DNN AODs, and rows denote the 

results for AOD-EA and -KO. Overall, the validation metrics exhibited notable improvement after the MLE fusion process 

(including bias correction and MLE fusion) relative to the results of individual GEMS and AMI AOD products (Fig. 8a). 

The MLE fusion significantly enhanced AOD quality (R = 0.888; RMSE = −0.188; MBE = −0.076; 60.6% within EE). In 395 

EA, DNN-based fusion outperformed the MLE fusion, with a substantial enhancement in AOD quality (R = 0.905; RMSE = 

0.161; MBE = −0.060; 65.6% within EE). The improvement at low AOD contributed to the notable increase in the 

percentage of AOD values within the EE. Furthermore, DNN fusion seemed to improve the underestimation of GEMS and 

AMI AOD at high aerosol loading better than MLE fusion. Fused AOD incorporating data from all three satellite 

instruments (for AOD-KO) are depicted in Fig. 8c, d. Although the impact of high-AOD underestimation by GEMS and 400 

AMI influenced the MLE AOD results, the validation metrics were notably superior to those of individual satellite AOD 

products including GOCI-II (R = 0.911; RMSE = 0.113; MBE = −0.047; 73.3% within EE). By merging the original AOD 

dataset according to retrieval error compared to AERONET in different retrieval conditions (NDVI, observation time, 

aerosol loading and type), the MLE fusion approach thus effectively accommodated nonlinearity in retrieval uncertainty, 

despite possibly not capturing all complexity in the data. DNN-KO yielded more improved outcome (R = 0.912; RMSE = 405 

0.102; MBE = −0.028; 78.2% within EE). As was in the validation of DNN-EA, the better result of DNN AOD comes from 

improvement in high AOD (AOD >0.5). Further incorporation of relevant information may enhance the performance of 

DNN AOD products, but such considerations are beyond the scope of this study. Validation results of the original AOD 

products and fused AOD in the separate regions of -EA and -KO are listed in Table 5 and Table 6. 
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4.2.2 Aerosol product evaluation 410 

The prognostic error (or, uncertainty) evaluation methodology was based on the framework of Sayer et al. (2020). A 

comparison of 1𝜎𝜎  retrieval error (68th percentile of absolute AOD error against AERONET, |Δ𝑆𝑆|68 ; 1σ of Gaussian 

distribution) according to AOD is shown in Fig. 9. The |Δ𝑆𝑆|68 values represent estimates of the AOD products’ uncertainty. 

Fig 9a shows a prognostic error evaluation of AOD products in East. Asia (AOD-EA). At low AOD, the three original 

satellite AOD products (GEMS, AMI–MRM, AMI–ESR) displayed large uncertainty that is decreasing rapidly as AOD 415 

increases to 0.1. This implies that at low AOD values, the satellite AOD products had relatively high uncertainties, which 

can likely be attributed to weak aerosol signals and/or cloud contamination issues. With increasing aerosol loading, the 

uncertainty gradually increases. Among the three original AOD products in EA, GEMS AOD demonstrated the largest 

uncertainty, which was 0.708 at AOD of 0.638. Uncertainty of the GEMS 550 nm AOD was even larger at 550 nm due to 

underestimation of AOD and error due to the extrapolation from 443 nm. The prognostic error of GEMS AOD at 550 nm in -420 

EA region was estimated as 0.03 + 0.82AOD. The AMI–ESR AOD had lower uncertainty compared to GEMS AOD, and the 

AMI–MRM AOD products showed slightly larger uncertainty than AMI–ESR AOD. The prognostic error estimates of 

AMI–MRM and –ESR AOD product were 0.07 + 0.25AOD and 0.08 + 0.20AOD, respectively. The two fused AOD 

products in EA (triangle markers, Fig. 9a) indicate that aerosol fusion effectively reduced AOD uncertainty at lower aerosol 

loadings. As the loading increased, the uncertainties of both MLE-EA and DNN-EA AOD products showed similar retrieval 425 

errors as AOD increases to ~0.3. At higher aerosol loading, the MLE-EA AOD showed uncertainties in between GEMS 

AOD and AMI AODs. Meanwhile, uncertainties of the DNN-EA were even lower than AMI–ESR. The prognostic error 

estimates for MLE AOD and DNN AOD were 0.02 + 0.43 AOD and 0.05 + 0.23 AOD, respectively. AOD products in -KO 

region generally showed lower uncertainty than in -EA region (Fig. 9b). Among the four original AOD products, GOCI-II 

showed lowest uncertainty at high aerosol loading. In the KO, the two AMI AOD products had similar results. This seems to 430 

be because the effect of difference in surface reflectance estimation diminishes as the -KO domain contains AERONET sites 

(e.g., Beijing) with frequent severe haze events. However, relatively higher uncertainty at low aerosol loading still remains 

for AOD <0.1, even for GOCI-II. The prognostic error estimates for GEMS, GOCI-II, AMI–MRM, and AMI–ESR AOD 

products are 0.01 + 0.71AOD, 0.05 + 0.17AOD, 0.05 + 0.21AOD, and 0.06 + 0.19AOD, respectively. The MLE-KO AOD 

showed similar uncertainties with AMI AOD products at high aerosol loading with uncertainty estimate of 0.02 + 0.28AOD. 435 

However, the slope of the prognostic error was higher than AMI–MRM AOD because of lower uncertainty at low aerosol 

loading. Meanwhile, the DNN AOD-KO had the lowest uncertainties among all AOD products with uncertainty estimate of 

0.03 + 0.18AOD. 

Means and standard deviations of the normalized error (Δ𝑁𝑁) of AOD and fused AOD products are shown in Fig. 10, where 

the AOD error was normalized using Eq. (6): 440 

Δ𝑁𝑁 = Δ𝑆𝑆
𝜖𝜖𝑇𝑇

= 𝜏𝜏𝑆𝑆−𝜏𝜏𝐴𝐴

�𝜖𝜖𝑆𝑆
2+𝜖𝜖𝐴𝐴

2
≅ 𝜏𝜏𝑆𝑆−𝜏𝜏𝐴𝐴

|𝜖𝜖𝑆𝑆|
           (6) 
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where 𝜖𝜖𝑇𝑇 denotes a total expected discrepancy; i.e., a root of the squared sum of expected discrepancies of satellite and 

AERONET. Values of ΔN with a Gaussian distribution of zero mean (𝜇𝜇Δ𝑁𝑁) and unity standard deviation (𝜎𝜎Δ𝑁𝑁) implies that 

satellite AODs were calculated appropriately with perfectly characterized errors (Sayer et al., 2020). Here, the satellite 

expected discrepancy (𝜖𝜖𝑆𝑆) assumed to be the EE of MODIS DT land retrieval. Therefore, points near the intersection of mean 445 

zero and variance unity lines (Fig. 10) imply that the accuracy and precision of AOD product uncertainty can be explained 

by the EE of the MODIS DT. 

Means and standard deviations of the normalized error of each AOD product collocated at four different AERONET sites are 

plotted in Fig. 10. Beijing_RADI and Anmyon sites represent polluted atmosphere over land and coast, respectively. Beijing 

is one of the largest cities in East Asia, and Anmyon is located near the Yellow Sea, over which long-range aerosol transport 450 

passes (Lee et al., 2019). AERONET sites remote from large cities in Japan, TGF_Tsukuba and Okinawa_Hedo were 

selected to demonstrate results for relatively clear atmosphere over land and coast, respectively. Over the polluted land site, 

the original AOD products showed negative bias. AMI–MRM, AMI–ESR, and GOCI-II AOD had 𝜎𝜎Δ𝑁𝑁 close to unity, while 

that of the GEMS AOD was higher. Both fused AOD products had smaller 𝜎𝜎Δ𝑁𝑁 values than unity, meaning that the fused 

AOD products have higher precision than MODIS DT over polluted atmosphere. Among the two fused AOD, DNN showed 455 

better performance with better accuracy (𝜇𝜇Δ𝑁𝑁 closer to zero) and higher precision (lower 𝜎𝜎Δ𝑁𝑁), due to better estimation of 

high AOD as shown in discussions regarding Fig. 8. Over clear land site, among original AOD products, GEMS AOD had 

highest precision and GOCI-II AOD had highest accuracy. Both AMI AOD products had low precision, with positive bias of 

AMI–MRM AOD and negative bias of AMI–ESR AOD. The MLE AOD showed improvement in precision but had positive 

bias after fusion. This seems to be because the bias correction procedure is applied regardless of AOD value. For the case of 460 

GEMS AOD, small bias over clear atmosphere may be overcorrected to have positive bias before MLE fusion. DNN AOD 

does not seem to have such a problem, with even better precision than at the polluted site. AMI AOD collocated at the 

Anmyon site had a strong positive bias (Fig. 10b) due to overestimation of AOD over turbid water. Over clear coastal areas, 

AMI–MRM, AMI–ESR and GOCI-II AOD products displayed relatively high precision with positive bias. Cloud 

contamination may cause the positive bias. Over both coastal sites, MLE-KO AOD outperformed DNN-KO AOD. 465 

Relatively consistent retrieval conditions of ocean surface than land surface may lead to better quantification of uncertainty 

for MLE fusion. 

4.2.3 Diurnal variation during aerosol transport in East Asia 

A case of long-range aerosol transport over the Yellow Sea is described in Fig. 11. A scattering aerosol plume originating 

from the Shandong Peninsula was transported toward Japan, penetrating South Korea. Three AERONET sites were chosen 470 

to assess diurnal variations of AOD during this event. The diurnal variations of AERONET AOD were similar at 

Yonsei_University (37.6 °N, 126.9 °N) and KORUS_UNIST_Ulsan (35.6 °N, 129.2 °E) (Fig. 11b–c), characterized by a 

peak at around 01:30 UTC followed by a gradual decline throughout the day. At the Yonsei_University site (Fig. 11b), 

AERONET AOD data for the 00–02 UTC period were absent due to cloud cover. GEMS AOD exhibited a diurnal pattern 
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similar to that of AERONET but, as established in earlier analyses, GEMS tends to underestimate AOD, particularly with 475 

high aerosol loadings. AMI–MRM AOD captured AERONET AOD well until 02 UTC, after which it underestimated AOD. 

AMI–ESR AOD displayed similar trends but with the most negatively biased retrieval among all AOD products, consistent 

with the negative bias observed in error analysis (Fig. 7d, h). GOCI-II AOD demonstrated the most accurate performance 

during this event. After MLE fusion, MLE AOD closely followed the diurnal AOD variation of AERONET, with slight 

underestimation. Due to the greater uncertainty of GEM AOD under high aerosol loadings, its weight in the MLE fusion was 480 

lower than those of other satellite AOD products, with MLE AOD being more similar to other AOD products. The MLE 

fusion method successfully combined each AOD product by considering retrieval uncertainties under various conditions. 

DNN AOD exhibited a closer value of AOD compared to MLE AOD, as expected based on former discussions. However, 

with DNN AOD, diurnal AOD variation may be misunderstood to be consistently increasing after 04 UTC, while the 

AERONET AOD is decreasing again after 05 UTC (Fig. 11b). Collocated results from the Gosan_SNU site (33.3 °N, 485 

126.2 °E) (Fig. 11d), which was located outside the main plume, had a moderately high aerosol loading with an average 

AERONET AOD of ~0.4. GEMS consistently underestimated AOD throughout the day, whereas both AMI–AOD products 

overestimated AOD slightly in the early morning (00–02 UTC). Both MLE and DNN AOD showed almost the same AOD 

values throughout the day at Gosan_SNU site. 

5 Conclusion 490 

Individual AOD products from GEMS, AMI, and GOCI-II were validated over the period of November 2022 to April 2023 

using AERONET level 1.5 AOD as a reference. Linear regression line of GEMS AOD and AERONET AOD exhibited a 

slope of 0.368, indicating underestimation of high aerosol loading relative to AERONET AOD. The GOCI-II YAER 

algorithm yielded better performance than GEMS and AMI. Within AMI YAER algorithms, the validation of AMI–ESR 

AOD was slightly more accurate than that of AMI–MRM AOD due to the better estimation of urban surface reflectance in 495 

the former. Two AOD data fusion methods were developed using the same input variables—GEMS, AMI (–MRM and –

ESR), and GOCI-II AOD—with NDVI, observation time, and selected aerosol type from each algorithm. For MLE fusion, 

pixel-level biases and RMSEs of aerosol algorithms were calculated by comparing individual satellite AODs with level 2.0 

AERONET AODs for November 2021 to October 2022, with this period being used also for DNN model training. Fusion 

outcomes were categorized into two groups based on the individual AODs used in fusion and then evaluated. The fused 500 

AOD-EA from both MLE and DNN-based fusion yielded better results relative to GEMS and AMI AOD products. DNN 

AOD outperformed MLE AOD, particularly in terms of quantifying AOD at high aerosol loading. Due to small spatial 

domain of the GOCI-II observation, fused AOD-KO was selected for evaluation of fusion involving GOCI-II AOD. Both 

MLE and DNN AOD-KO yielded better results than GOCI-II AOD. MLE AOD retained underestimation owing to the 

GEMS tendency to underestimate high aerosol loadings. This issue was not observed with DNN AOD-KO. Evaluation of 505 

AOD bias with respect to observation time indicated that both fusion algorithms stabilized diurnal error variations, 
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suggesting that fusion AOD enhances our understanding of the hourly evolution of aerosol distributions. The performance of 

each AOD product was assessed by comparing prognostic errors. At lower aerosol loadings, the fused AOD products yielded 

low uncertainties, overcoming large uncertainty of individual AOD products. The MLE AOD uncertainty increased sharply 

with aerosol loading; DNN AOD did not display such a behavior. Prognostic error analysis revealed that DNN-KO yielded 510 

the best performance, with lower uncertainty. A case of long-range aerosol transport was chosen for diurnal monitoring. 

MLE fusion, accounting for retrieval uncertainty from each aerosol algorithm, improved the hourly AOD distribution when 

compared with AERONET AOD. DNN AOD tracked AERONET AOD closely, yielding AOD estimates that were more 

closely aligned with AERONET values. The performance of aerosol data fusion can be improved with more dataset in the 

future study. For the MLE fusion, more sample leads to better representativeness of uncertainty weight. On the other hand, 515 

more dataset leads to better train performance of the DNN model. Moreover, DNN model in the future study will include 

more variables to predict optimal AOD. In April 2023, the US National Aeronautics and Space Administration launched the 

next series of global geostationary environmental constellation instruments, TEMPO; the European Space Agency launched 

FCI in December 2022 and is planning to launch Sentinel-4 in 2025; and the NOAA GEOstationary eXtended Observations 

(GeoXO) satellite system is planned to form a constellation of geostationary satellite instruments. The application of aerosol 520 

fusion described here to these geostationary satellite projects may enable global production of high-quality aerosol data. 
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Figure 1. Fields of regard for GEMS, AMI, and GOCI-II. AMI AOD were retrieved only within the 70°E–150°E, 10°S–50°N area 
to match the GEMS field of regard. 
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Figure 2. Flowchart of the fusion algorithm. Red- and yellow-colored boxes represent commonly used modules for both 
preprocessing and data fusion procedures. The Normalized Differential Vegetation Index (NDVI) databasea was generated using 
AMI Minimum Reflectance Method (MRM) surface reflectance in green, red, and Near-Infrared (NIR) channels. 
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Figure 3. Examples of additional Infrared (IR) cloud masking for GEMS and GOCI-II AOD. (a–c) A case of GEMS AOD on 25 
November 2022; (d–f) A case of GOCI-II AOD on 09 March 2023. Each column shows an AMI true color image, original AOD, 
and AOD with additional cloud mask of corresponding cases. Yellow boxes correspond to cloud-free zones; magenta boxes 
correspond to areas in which GEMS or GOCI-II misidentified cloud pixels.  780 
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Figure 4. 2-dimensional histograms of AERONET AOD vs. GEMS (a), GOCI-II (b), AMI–MRM (c), and AMI–ESR AOD (d) 
frequencies. The number of collocated points (N), linear regression equations, Pearson’s correlation coefficient (R), root mean 
squared errors (RMSE), mean bias errors (MBE), and percentage within the expected error envelope (% within EE; EE: 785 
±(0.05+0.15 𝝉𝝉𝑨𝑨)) is shown. Dashed line and dotted lines indicate one-to-one line and expected error envelopes. Blue line indicates 
linear regression line of the satellite AOD and AERONET AOD 

 



29 
 

 
Figure 5. AOD bias of GEMS AOD relative to AERONET AOD (a), NDVI (b), selected aerosol type (c), and observation time (d). 790 
Whisker ends correspond to the 10th and 90th percentiles of the bin. Box ends correspond to the 25th and 75th percentiles. 
Horizontal lines in each box indicate bin median. Green dashed line indicates the y-axis range of GOCI-II AOD in corresponding 
panels. Numbers and bar plots in blue indicate the number of collocated AOD points in each box–whisker. 
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Figure 6. As for Fig. 5, but for GOCI-II AOD. 

 

 
Figure 7. As for Fig. 5, but for AMI–MRM and AMI–ESR AOD. 
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Figure 8. As for Fig. 4, but for Maximum Likelihood Estimation (MLE) AOD-EA (a), Deep Neural Network (DNN) AOD-EA (b), 
MLE AOD-KO (c), and DNN AOD-KO (d). 
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Figure 9. Changes in uncertainty of AOD products with increasing AOD. 68th percentile value of retrieval error is defined as 1𝝈𝝈 
retrieval error and plotted against AOD value. Vertical lines of each marker represent the difference of 67th and 69th percentiles, 
thus indicating the error of 1𝝈𝝈 retrieval error. Dashed lines show linear regression (uncertainty estimates) of 1𝝈𝝈 retrieval error. 

 810 

 
Figure 10. Mean and standard deviation of normalized error for each AOD product collocated at selected land (a) and coastal (b) 
AERONET sites. The Bejijing_RADI and TGF_Tsukuba sites were chosen to represent polluted atmosphere over land and ocean, 
respectively. The Anmyon and Okinawa_Hedo sites were chosen to represent clear atmosphere over land and ocean, respectively. 
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Figure 11. A case of aerosol transport over the Korean Peninsula on 07 March 2023. (a) AMI true color image at 04 UTC. (b)–(d) 
correspond to AERONET sites marked in (a). Gray triangles indicate AERONET AOD; original satellite AOD products are 
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indicated by × symbols in different colors; fused AOD products around the Korean Peninsula (AOD-KO) are indicated by circles 
in different colors. 820 

 
Table 1: Specification of instruments in Geo Kompsate-2 (GK-2) mission.  

Satellite GK-2A GK-2B 

Payload AMI GOCI-II GEMS 

Channels 16 14 1,024 

Spatial resolution of 

radiance 

0.5 km (red), 1 km (VIS), 2 

km (IR) 
0.25 km 3.5 km × 7.7 km 

Temporal resolution 10 min (full-disk scan) 1 h 1 h 

Wavelength range 0.4–13 μm 375–860 nm 300–500 nm 

FWHM 10–20 nm 10–20nm 0.6 nm 

Launch December 2018 February 2020 

Lifetime 10 years 

Location 128.2° 

Details of aerosol products 

Aerosol algorithm 
AMI YAER algorithm (Kim 

et al., 2024) 

GOCI-II YAER algorithm 

(Lee et al., 2023) 

GEMS AERAOD retrieval 

algorithm (Cho et al., 2023) 

Spatial resolution of aerosol 

product 
6 km 2.5 km 3.5 km × 7.7 km 

Land surface reflectance 

estimation 

MRM & Estimation from 

SWIR channel 
Minimum reflectance method (MRM) 

Ocean surface reflectance 

estimation 
Cox & Munk method (Cox and Munk, 1954) MRM 

Inversion channels VIS-NIR 4 bands UV-NIR 12 bands 
UV-VIS 6 spectrally binned 

bands 

Algorithm version Research algorithm Ver. 1.1 Ver. 2.0 
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Table 2 The AERONET site information used in this study. All sites had valid collocation at level 1.5 with spaceborne AOD product from November, 
2022 to April, 2023. Site names with asterisk (*) refers to sites where level 2.0 data from November, 2021 to October, 2022 are used for pre-processing. 

# Site name Longitude 
(°E) 

Latitude 
(°N) 

Elevation 
(m) 46 *Gwangju_GIST 126.843 35.228 52 

1 AOE_Baotou 109.629 40.852 1314 47 *Hankuk_UFS 127.266 37.339 167 

2 *ARIAKE_TOWER 130.272 33.104 15 48 *Hokkaido_University 141.341 43.075 59 

3 *Amity_Univ_Gurgaon 76.916 28.317 285 49 *Hong_Kong_PolyU 114.18 22.303 30 

4 *Anmyon 126.33 36.539 47 50 *Hong_Kong_Sheung 114.117 22.483 40 

5 *BMKG_GAW_PALU 120.183 -1.65 1370 51 *IIT_Delhi 77.193 28.545 15 

6 Baengnyeong 124.63 37.966 136 52 *Jaipur 75.806 26.906 450 

7 *Bangkok 100.518 13.749 57 53 *Jambi 103.642 -1.632 30 

8 Beijing-CAMS 116.317 39.933 106 54 *KORUS_UNIST_Ulsan 129.19 35.582 106 

9 Beijing 116.381 39.977 92 55 *Kanpur 80.232 26.513 123 

10 Beijing_PKU 116.31 39.992 53 56 *Kaohsiung 120.292 22.676 15 

11 Beijing_RADI 116.379 40.005 59 57 *Kemigawa_Offshore 140.023 35.611 8 

12 *Bhola 90.756 22.227 7 58 *Lahore 74.264 31.48 209 

13 Bidur 85.14 27.895 576 59 *Lulin 120.874 23.469 2868 

14 *Bukit_Kototabang 100.318 -0.202 864 60 *Makassar 119.572 -4.998 16 

15 *Cape_Fuguei_Station 121.538 25.297 40 61 Mandalay_MTU 96.186 21.973 104 

16 *Chachoengsao 101.45 13.5 60 62 *Manila_Observatory 121.078 14.635 63 

17 Chen-Kung_Univ 120.205 22.993 50 63 *NAM_CO 90.962 30.773 4746 

18 Chiang_Dao 98.961 19.455 450 64 *ND_Marbel_Univ 124.843 6.496 70 

19 *Chiang_Mai_Met_Sta 98.972 18.771 312 65 *Niigata 138.942 37.846 10 

20 *Chiba_University 140.104 35.625 60 66 *Nong_Khai 102.717 17.877 175 

21 *DRAGON_Hakuba 137.864 36.701 703 67 *Noto 137.137 37.334 200 

22 *DRAGON_Iida 137.842 35.517 490 68 Okinawa_Hedo 128.249 26.867 60 

23 *DRAGON_Ina 137.961 35.847 683 69 *Osaka 135.591 34.651 50 

24 *DRAGON_Kofu 138.572 35.679 314 70 *Palangkaraya 113.946 -2.228 27 

25 *DRAGON_Matsumoto 137.978 36.251 626 71 *Pokhara 83.975 28.187 800 
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26 *DRAGON_Minowa 137.981 35.915 713 72 *Pontianak 109.191 0.075 2 

27 *DRAGON_Mt_Happo 137.798 36.697 1846 73 *QOMS_CAS 86.948 28.365 4276 

28 *DRAGON_Mt_Haruna 138.878 36.475 1359 74 *Seoul_SNU 126.951 37.458 116 

29 *DRAGON_Mt_Krigamine 138.168 36.098 1674 75 Shirahama 135.357 33.693 10 

30 *DRAGON_Omachi 137.851 36.503 751 76 Silpakorn_Univ 100.041 13.819 72 

31 *DRAGON_Suwa 138.109 36.046 766 77 *Singapore 103.78 1.298 30 

32 *DRAGON_Takayama 137.304 36.253 1296 78 *Socheongcho 124.738 37.423 28 

33 *Dalanzadgad 104.419 43.577 1470 79 Songkhla_Met_Sta 100.605 7.184 15 

34 *Dhaka_University 90.398 23.728 34 80 *Sorong 131.268 -0.875 127 

35 *Dibrugarh_Univ 94.897 27.451 119 81 *Sra_Kaeo 102.504 13.689 68 

36 *Doi_Ang_Khang 99.045 19.932 1536 82 *TASA_Taiwan 121.001 24.784 99 

37 *Dongsha_Island 116.729 20.699 5 83 *TGF_Tsukuba 140.096 36.114 25 

38 Douliu 120.545 23.712 60 84 *Tai_Ping 114.362 10.376 4 

39 *EPA-NCU 121.185 24.968 144 85 *Taipei_CWB 121.538 25.015 26 

40 Erlin 120.41 23.925 16 86 *USM_Penang 100.302 5.358 51 

41 *Fukue 128.682 32.752 80 87 Ubon_Ratchathani 104.871 15.246 120 

42 *Fukuoka 130.475 33.524 30 88 *Ussuriysk 132.163 43.7 280 

43 *Gandhi_College 84.128 25.871 60 89 *XiangHe 116.962 39.754 36 

44 *Gangneung_WNU 128.867 37.771 60 90 *Xitun 120.617 24.162 91 

45 *Gosan_NIMS_SNU 126.206 33.3 52 91 *Yonsei_University 126.935 37.564 97 
 825 

 



37 
 

Table 3: Cloud masking tests of AMI Yonsei AErosol Retrieval (YAER) algorithm.  

Cloud detection test Threshold Surface type 

BTD 9 max <−28 
Only over land 

BTD 14 max <−28 

Reflectance 1.3 >0.025 

Over both land and ocean BTD 15, 16 <10 

BTD 13, 16 ≤11 

 

 
Table 4: Different cases of AOD availability in the fusion process and corresponding data fusion strategies. 830 

 GEMS 
AMI 

(MRM, ESR) 
GOCI-II MLE fusion  

 

DNN fusion 

AOD 

availability 

○ ○ ○ 

Bias-corrected + MLE 

Separate DNN model 

for each case 

○ ○  

○  ○ 

 ○ ○ 

○   

Bias-corrected  ○  

  ○ 

 
Table 5: Validation statistics of original AOD products and fused AOD products in -EA region. Validation period is from 
November 2022 to April 2023.  

 Original AOD products Fused AOD products 

 GEMS AMI-MRM AMI-ESR MLE AOD DNN AOD 

R 0.800 0.834 0.860 0.888 0.905 

RMSE 0.287 0.201 0.187 -0.188 0.161 

MBE -0.154 -0.045 -0.045 -0.076 -0.060 

% within EE 39.5 52.1 53.3 60.6 65.6 

 
Table 6: Validation statistics of original AOD products and fused AOD products in -KO region. 835 

 Original AOD products Fused AOD products 
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 GEMS AMI-MRM AMI-ESR GOCI-II MLE AOD DNN AOD 

R 0.807 0.878 0.867 0.901 0.911 0.912 

RMSE 0.187 0.129 0.129 0.114 0.113 0.102 

MBE -0.086 0.017 -0.002 -0.038 -0.047 -0.028 

% within EE 51.7 63.1 58.8 67.1 73.3 78.2 
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