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Abstract. Aerosol optical depth (AOD) data fusion of aerosol datasets from the Geostationary Korea Multi-Purpose Satellite 15 

(GEO-KOMPSAT, GK) series was undertaken using both statistical and deep neural network (DNN)-based methods. The GK 

mission includes an Advanced Meteorological Imager (AMI) onboard GK-2A and a Geostationary Environment Monitoring 

Spectrometer (GEMS) and Geostationary Ocean Color Imager-II onboard GK-2B. The statistical fusion method corrected the 

bias of each aerosol product by assuming a Gaussian error distribution. The Maximum Likelihood Estimation (MLE) fusion 

technique accounted for pixel-level uncertainties by weighting the root-mean-square error of each AOD product for every 20 

pixel. A DNN-based fusion model was trained to target Aerosol Robotic Network AOD values using fully connected hidden 

layers. The statistical and DNN-based fusion results generally outperformed individual GEMS and AMI AOD datasets in East 

Asia (R = 0.888; RMSE = −0.188; MBE = −0.076; 60.6% within EE for MLE AOD; R = 0.905; RMSE = 0.161; MBE = 

−0.060; 65.6% within EE for DNN AOD). The selection of AOD around Korean peninsula, which is incorporating all aerosol 

products including GOCI-II resulted in much better results (R = 0.911; RMSE = 0.113; MBE = −0.047; 73.3% within EE for 25 

MLE AOD; R = 0.912; RMSE = 0.102; MBE = −0.028; 78.2% within EE for DNN AOD). The DNN AOD effectively 

addressed the rapid increase in uncertainty at higher aerosol loadings. Overall, fusion AOD (particularly DNN AOD) most 

closely matched the performance of the Moderate Resolution Imaging Spectroradiometer Dark Target algorithm, with slightly 

less variance and a negative bias. Both fusion algorithms stabilized diurnal error variations and provided additional insights 

into hourly aerosol evolution. The application of aerosol fusion techniques to future geostationary satellite projects such as 30 

TEMPO, ABI, and GeoXO may facilitate the production of high-quality global aerosol data. 
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1 Introduction 

Since the launch of the Advanced Very High-Resolution Radiometer (AVHRR) onboard the US National Oceanic and 

Atmospheric Administration (NOAA) satellite, various atmospheric aerosol remote sensing techniques have been developed 

using spaceborne sensors (Kaufman et al., 1990; King et al., 1999). Spectrometers such as the AVHRR, the MODerate 35 

resolution Imaging Spectroradiometer (MODIS), and the Visible Infrared Imaging Radiometer Suite (VIIRS) observe spectral 

bands across the visible (VIS) to infrared (IR) range. Several algorithms have been developed for these instruments to quantify 

aerosol optical depth (AOD) on a global scale. The Dark Target (DT; Kaufman et al., 1997; Remer et al., 2005; Levy et al., 

2013) and Deep Blue (DB; Sayer et al., 2013; Hsu et al., 2006, 2013) algorithms, designed for aerosol optical property retrieval 

from MODIS, have established a global standard for spaceborne AOD products. The Multi-Angle Implementation of 40 

Atmospheric Correction (MAIAC) conducts spatiotemporal combinations of observations to facilitate aerosol retrieval and 

atmospheric correction (Lyapustin et al., 2011a, b; 2012; 2018). These algorithms have also been adapted for use with the 

VIIRS, which has similar observation specifications to those of MODIS. The Multiangle Imaging Spectroradiometer (MISR) 

measures surface radiance from nine viewing angles, enabling aerosol optical property inversion, and providing much 

information about different aerosol types (Kahn et al., 2001). Previous studies have exploited the sensitivity of hyperspectral 45 

imaging capabilities in the ultraviolet (UV) to VIS range of instruments such as the Total Ozone Mapping Spectrometer 

(TOMS), the Ozone Monitoring Instrument (OMI), and the TROPOspheric Monitoring Instrument (TROPOMI) to detect 

absorbing aerosols such as smoke and dust (Torres et al., 1998, 2002, 2020; Ahn et al., 2014). These aerosol retrieval algorithms 

involved the UV Aerosol Index (UVAI) in identifying aerosol types and derive AOD using pre-computed reflectance for the 

selected aerosol type; the algorithms employed by these instruments provide AOD as well as information on single scattering 50 

albedo (SSA), aerosol layer height (ALH), and above-cloud AOD (Torres et al., 2012; Jethva et al., 2018). The Deep Space 

Climate Observatory (DSCOVR) is located at the Lagrange-1 point, allowing continuous observation of Earth’s sunlit area. 

The Earth Polychromatic Imaging Camera (EPIC) onboard DSCOVR features 10 bands spanning 317–779 nm. Lyapustin et 

al. (2021) demonstrated the capability of MAIAC in retrieving AOD and SSA from such instruments and further quantified 

the content of iron oxide in atmospheric mineral dust (Go et al., 2022). 55 

Aerosol retrieval algorithms vary in their application with the spectral specifications of the sensors they use. Employing 

multiple channels within the VIS to near-infrared (NIR) range enables aerosol inversion to capture information on aerosol size 

(Lin et al., 2021), whereas UV–VIS spectral observations are sensitive to aerosol absorption and layer height (Kim et al., 2018). 

Therefore, aerosol products derived from instruments with distinct spectral ranges yield varying optical properties including 

fine-mode fraction (FMF), SSA, and ALH. Recognizing the limitations of sensitivities of individual instruments, the 60 

synergistic use of multiple satellites to refine aerosol information has been extensively explored. Kim et al. (2007) combined 

MODIS AOD and FMF data with OMI aerosol index data to classify aerosol types. Go et al. (2020) calculated total dust 

confidence indices to enhance the OMI ALH product. In studies by Lee et al. (2015, 2021), aerosol SSA and ALH were jointly 

retrieved using VIIRS and OMPS data. In refining aerosol detection, Torres et al. (2013) integrated CO measurements from 
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Atmospheric Infrared Sounder (AIRS) to enhance carbonaceous aerosol detection with the OMI near-UV aerosol algorithm. 65 

In a different context, MODIS-derived aerosol information contributed to the mitigation of systematic bias in the mole fraction 

of column-averaged atmospheric CO2 (XCO2) product from NASA’s Orbiting Carbon Observatory-2 (OCO-2) (Hong et al., 

2023). 

Variability of instrument sensitivity leads to distinct error characteristics in aerosol algorithms. For example, retrieval 

algorithms utilizing wavelengths less sensitive to ALH tend to be robust against assumptions about ALH during radiative 70 

transfer simulations. Moreover, observations across different wavelength ranges influence the spatial coverage of retrievals. 

As aerosol loading increases over a dark surface, atmospheric backscattering intensifies, causing more photons to reach satellite 

instruments. Conversely, over a bright surface, an elevated aerosol loading obscures signals reflected from the surface. The 

balance, where the increase in backscatter and disturbance of surface signals align, is termed the critical reflectance, which 

decreases with increasing wavelength (von Hoyningen-Huene, et al. 2011; Kim et al. 2014). As most land surfaces have lower 75 

reflectance at shorter wavelengths, aerosol retrieval at such wavelengths results in broader spatial coverage. Previous studies 

have shown that the use of multiple aerosol products addresses a systematic error tendency in AOD retrieval. Statistical 

merging of AOD data from two or more satellites (or algorithms) has been explored in enhancing the accuracy of AOD 

quantification. Levy et al. (2013) and Wei et al. (2019) produced a merged MODIS DT–DB AOD product, accounting for 

systematic biases from each algorithm. Tang et al. (2016) employed the Bayesian maximum entropy method to merge AOD 80 

from MODIS and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) while considering the retrieval uncertainties associated 

with each AOD product. The optimal interpolation method iteratively updates AOD, factoring in MODIS, SeaWiFS, and MISR 

AOD uncertainties (Xue et al., 2014). Gupta et al. (2008) considered the point-spread function of each satellite footprint as a 

weighting factor for the merging of AOD from MODIS, MISR, and Clouds and the Earth’s Radiant Energy System (CERES). 

The Maximum Likelihood Estimation (MLE) technique, which maximizes a cost function defined by the Gaussian error 85 

distribution of satellite AOD products, is widely used in merging AOD data. This method was applied by Xu et al. (2015) to 

MODIS, SeaWiFS, and MISR data, and by Go et al. (2020) to OMI and MODIS data, accounting for uncertainties in each 

pixel. Xie et al. (2018) improved the methodology by correcting the systematic biases of the Advanced Along-Track Scanning 

Radiometer (AATSR). aerosol algorithms. Lim et al. (2021) employed the MLE method in considering pixel-level uncertainty 

and bias correction, resulting in merged AOD products from Advanced Himawari Imager (AHI), Geostationary Ocean Color 90 

Imager (GOCI), and TROPOMI systems. 

In June 2010, South Korea launched the GK-1 satellite as an initiation of the GK series. GK-1, also known as the 

Communication, Ocean, and Meteorological Satellite (COMS), is equipped with a Meteorological Instrument (MI) and a GOCI 

(Kim et al., 2007; Lee et al., 2010b). The first satellite of the second series, GK-2A, was launched in December 2018, featuring 

an Advanced Meteorological Imager (AMI; Kim et al., 2021). In February 2020, GK-2B was launched, carrying the successor 95 

to GOCI (GOCI-II) and a Geostationary Environment Monitoring Spectrometer (GEMS) (Kim et al., 2020; Choi et al., 2021). 

As the retrieval skill of the aerosol algorithm for GK-1 has well been established (Lee et al., 2010b; Kim et al., 2016; Choi et 

al., 2016, 2018), the instruments onboard GK-2 continue aerosol monitoring with improved observation specifications. For 
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GEMS, as the first geostationary hyperspectral spectrometer, an aerosol algorithm based on a two-channel inversion with an 

optimal estimation approach has been developed (Kim et al., 2018). 100 

Most satellite AOD data-fusion research has concentrated on Low Earth Orbit (LEO) satellite data with limited consideration 

of Geostationary Earth Orbit (GEO) data. Unlike the LEO satellites, hourly variations in retrieval uncertainty emerge when 

using continuous AOD data from GEO satellites, and accounting for diurnal variations in uncertainty in aerosol data fusion is 

challenging. Furthermore, error characteristics among different AOD products under different retrieval conditions complicate 

matters. Deep learning excels in capturing nonlinearities owing to its hierarchical architecture and activation functions in each 105 

layer, so a deep neural network (DNN) approach may significantly enhance AOD fusion outcomes. However, exploration of 

deep learning approaches to AOD data fusion has been limited. In this study, both a conventional statistical AOD fusion 

algorithm and a DNN-based AOD fusion algorithm have been developed and validated using aerosol products from GK-2 

satellites. Due to differences in spatial domain of each instruments, fused dataset are validated separately in a region around 

the Korean peninsula (KO) and a region within the East Asia (EA). Section 2 briefly introduces the spaceborne AOD datasets 110 

used in this study, derived from aerosol retrieval algorithms and an AERONET AOD dataset. Each fusion method is described 

in Section 3, and Section 4 discusses the fused AOD products based on diagnostic and prognostic error analysis. Finally, 

Section 5 provides a summary of the overall results and outlines prospects for geostationary aerosol data fusion. 

2 Data  

2.1 GK-2 instruments and aerosol products 115 

2.1.1 GK-2A/AMI, GK-2B/GOCI-II, and YAER algorithms 

An overview of instruments onboard GK-2 satellites is provided in Table 1, and Fig. 1 illustrates the data coverage of each 

aerosol product. As a meteorological imager, AMI has spectral channels in the VIS–IR range (Kim et al., 2021). Similar to 

conventional aerosol algorithms for instruments with VIS–IR capabilities, such as MODIS, VIIRS, AHI, and Advanced 

Baseline Imager (ABI), the AMI aerosol algorithm employs the VIS and NIR channel for aerosol inversion while utilizing 120 

other channels for bright surface masking and surface reflectance estimation. Lim et al. (2018) introduced the AHI Yonsei 

AErosol Retrieval (YAER) algorithm, which was initially devised for ocean-color imagers. In this study, the AMI aerosol 

product was retrieved using the AHI YAER algorithm with minor modifications (Kim et al., 2023). The AMI YAER algorithm 

has two AOD retrieval versions based on different surface reflectance estimation methods; i.e., the Minimum Reflectance 

Method (MRM) and the Estimated Surface Reflectance (ESR) method. The distinct advantages of AMI for aerosol retrieval 125 

include more accurate cloud and bright surface masking via its IR channels compared with other instruments. Furthermore, its 

Short-Wave Infrared (SWIR) observation capabilities enable the use of the ESR method for surface estimation, offering 

uncertainty characteristics that are distinct from those of the MRM. In addition, the AMI has high temporal resolution, with 
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full-disk scans every 10 min. For the purpose of aerosol data fusion, a domain spanning 10°S–50°N and 70°E–150°E of the 

AMI full-disk scan was chosen to encompass the GEMS field of regard. 130 

GOCI-II features 13 bands across a spectral range of UV–NIR, and its aerosol product is derived from the GOCI-II YAER 

algorithm (Lee et al., 2023) based on the GOCI YAER algorithm introduced by Lee et al. (2010b) and improved by Choi et al. 

(2016, 2018). The enhanced spatial resolution of GOCI-II compared to GOCI allows its aerosol products to be retrieved at a 

resolution of 2.5 km, capturing higher-resolution spatial aerosol features around the Korean peninsula. However, the smaller 

field of regard of GOCI-II restricts AOD fusion to within the GOCI-II domain when using aerosol products from all three 135 

instruments. Consequently, fusion AOD utilizing all three aerosol products was evaluated separately (Section 4). Due to the 

absence of SWIR channels, the GOCI-II YAER algorithm estimates surface reflectance using only the MRM, with the 

concentration of 12 spectral bands within the UV–NIR range contributing to the stability of AOD inversion. 

Aerosol size influences the spectral dependency of AOD within the VIS spectral range. From the perspective of aerosol 

retrieval, both AMI and GOCI-II are sensitive to the potential misclassification of aerosol types based on size. However, their 140 

reduced sensitivity to aerosol absorption in the VIS range renders the YAER AOD products robust against uncertainties arising 

from aerosol absorptivity. Both the AMI and GOCI-II YAER algorithms consider four types of aerosol: black carbon (BC), 

non-absorbing (NA), mixed (MX), and dust (DU) aerosol. Aerosol models utilized in the YAER algorithms were derived from 

the classification developed by Lee et al. (2010a) 

2.1.2 GK-2B/GEMS and the GEMS aerosol algorithm 145 

The GEMS aerosol algorithm was initially developed by Kim et al. (2018) and Go et al. (2020) based on synthetic data from 

OMI observations. The operational GEMS aerosol algorithm, based on real observations, was subsequently established by Cho 

et al. (2023). GEMS performs hourly hyperspectral observations of 300–500 nm with 0.6 nm spectral resolution during daytime. 

Its spatial resolution at nadir point is 3 km × 7.7 km. Distinct from other instruments on GK-2 satellites, GEMS features near-

UV measurement that can be utilized for aerosol inversion. The optically darker nature of desert surfaces in near-UV 150 

measurement serves as a favorable condition for the retrieval of aerosol signals from observed radiance. This allows 

unprecedented hourly aerosol monitoring over desert regions such as the Gobi and Taklamakan deserts. Furthermore, near-

UV spectral region is known to be sensitive to aerosol absorption, contributing to distinct error characteristics in GEMS AOD 

relative to AMI and GOCI-II. In this study, version 2 of the GEMS AOD at 550 nm was used to maintain consistency with 

AMI and GOCI-II AOD products. A version update of the GEMS aerosol algorithm was made public in November 2022, and 155 

earlier data were reprocessed accordingly. GEMS aerosol retrieval algorithm initially performs a two-channel inversion used 

in OMI near-UV aerosol algorithm to derive first guess of AOD and SSA. Then, the first guesses are fed into the GEMS 

optimal estimation algorithm to retrieve AOD at 443 nm. The 443 nm AOD is converted to 550 nm AOD based on the selected 

aerosol type.  
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2.2 AERONET 160 

The AErosol RObotic NETwork (AERONET) constitutes a global network of ground-based aerosol remote sensing 

instruments, with numerous sun photometer stations operating at various locations worldwide. Here, AERONET version 3, 

level 2.0 AOD products served as the target AOD for both statistical and DNN-based methods (Section 3). However, in the 

validation of individual and fused AODs (Section 4), AERONET version 3, level 1.5 AODs were used owing to the limited 

application of pre- and post-calibration for only a few sites up to 2023; therefore, level 1.5 AODs were more suitable for 165 

validating relatively recent data. Uncertainty in AERONET AODs is known to be 0.01–0.02 (Holben et al., 1998; Eck et al., 

1999; Giles et al., 2019). Over the course of the error analysis and training period, 74 stations reported ground-based level 2.0 

AOD data. For the validation period, 91 stations reported ground-based level 1.5 AOD, including 28 stations within the field 

of regard of GOCI-II. To match AOD wavelengths with those of spaceborne AOD products, the AERONET 550 nm AOD 

was derived through quadratic interpolation from AODs measured at 340, 380, 440, 500, 675, 870, and 1020 nm. For 170 

spatiotemporal matching with AERONET measurements, satellite data within a 25 km radius of each AERONET site were 

averaged, and AERONET AODs within 30 min of each exact hour were also averaged for spatiotemporal collocation. 

3 Methodology 

A flowchart of MLE fusion and DNN-based fusion processes is shown in Fig. 2. Each of these fusion methods requires a pre-

calculation process involving bias and uncertainty calculations for statistical fusion and a model training process for DNN 175 

fusion. Data spanning one year (November 2021 to October 2022) were used in pre-calculation processes. The resultant fused 

AODs were generated and validated for the period November 2022 to April 2023. Throughout data pre-calculation, AERONET 

AOD served as the reference ground truth for both fusion methods. The AMI Normalized Difference Vegetation Index (NDVI) 

was used as both an uncertainty source and an input for both fusion approaches, as calculated using Eq. (1): 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁
𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁

           (1) 180 

where R represents AMI MRM surface reflectance. The MRM surface reflectance was used because aerosols may affect the 

NDVI when using observed reflectance. Spatiotemporal matching of AMI NDVI followed the same approach as AMI AOD. 

Henceforth, for the sake of simplicity, the statistically fused AOD is referred to as MLE AOD, and the DNN-based fused AOD 

as DNN AOD. 

3.1 Spatiotemporal matching and additional cloud masking with AMI IR observations 185 

Aerosol products were re-gridded into 0.05° × 0.05° grids by averaging AOD values from the three closest pixels located 

within a 0.15° radius of the center of each grid point. The choice of a 0.15° radius was intended to prevent grid pixels from 

becoming empty owing to the coarsening of spatial resolution near the scan edge (as in western China). However, this approach 

may lead to smoothing of aerosol features in regions distant from scan edges. To counteract excessive smoothing and preserve 
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small aerosol features after re-gridding, the strategy involved averaging the maximum three points regardless of how many 190 

points lay within the specified averaging radius. This spatial matching technique was intended to provide a balance, mitigating 

excessive smoothing while retaining finer aerosol features. 

Given the distinct scanning scenarios of each sensor, a distinct temporal matching strategy was employed for each AOD 

product to generate AODs for every precise hour between 00:00 UTC and 07:00 UTC. For GEMS, AOD data scanned from 

HH-1:45 UTC to HH:15 UTC were utilized as the AOD representation for HH:00. In the case of AMI AOD, data were collected 195 

for a time span of ±30 min from each precise hour and a median AOD was calculated. As for GOCI-II, data scanned at HH-

1:45 and HH:15 were simply averaged. 

Aerosol retrieval algorithms inherently include a cloud masking process; however, GEMS and GOCI-II cloud masking may 

exhibit errors owing to challenges in distinguishing thin clouds such as cirrus from aerosols using only VIS channels. Therefore, 

a cloud detection database employing IR channels was extracted during the AMI YAER algorithm retrieval process and applied 200 

to the GEMS and GOCI-II aerosol products. The cloud-masking criteria of the AMI YAER algorithm are shown in Table 2, 

where the first two criteria in the list utilize the fixed geometry of GEO satellites. Because clouds change rapidly with time, 

the maximum brightness temperature (BT) within the previous 10 days served as an estimate of BT on a clear day. Pixels 

displaying a difference between maximum BT during the 10 days and observed BT in the 6.9 and 11.2 μm channels of less 

than −28 K were thus identified as cloud pixels. This method was introduced by Kim et al. (2014) using MI and has proved 205 

effective and reliable with AHI (Lim et al., 2018). The 1.38 μm channel is highly sensitive to cirrus clouds (Roskovensky and 

Liou, 2003), so pixels exhibiting a top-of-atmosphere reflectance exceeding 0.35 in the 1.38 μm channel were masked as 

clouds. Detection of lower clouds involved the brightness-temperature difference (BTD) of the 13.3 and 10.3 μm bands 

(BTD10.3–13.3), also known as the “atmospheric window”. Over clear pixels, the BT of the 13.3 μm channel is significantly 

lower than that of the 10.3 μm channel due to well-mixed CO2 in the troposphere, resulting in a substantial BTD10.3–13.3. 210 

The presence of clouds reduces BTD10.3–13.3, as the BT of the 10.3 μm channel is lower in cloud pixels. The detection of 

higher clouds followed a similar approach utilizing the 12.3 μm channel, which is sensitive to high-altitude water droplets and 

ice crystals. The IR-based masks applied to GOCI-II and GEMS AODs were implemented across all aspects of the study 

including error analysis, bias and uncertainty calculations, and DNN model training. 

3.2 Statistical aerosol fusion: MLE AOD 215 

Statistical aerosol data fusion employed an MLE method that accounted for the pixel-level uncertainty of each aerosol product. 

The MLE method operates under the assumption that its input AODs have unbiased random errors. Typical AOD distributions, 

which are often lognormal, tend to have a Gaussian uncertainty distribution (Sayer et al., 2020). However, the actual mean 

error does not always coincide with zero, contradicting the assumption made by the MLE method. To enhance the MLE input 

data quality, a preliminary bias correction for each AOD product was undertaken before initiating the fusion process. Here, 220 

AOD bias was defined as the mean of a Gaussian distribution fitted to the AOD error, as compared with the collocated 
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AERONET AOD. To account for bias characteristics attributed to optical path variations and surface conditions, AOD bias 

values were computed for each hour, aerosol type, and NDVI bin. 

Based on a zero-mean Gaussian error assumption after bias correction, a log-likelihood function 𝜌𝜌(𝜏𝜏) was written as follows: 

𝜌𝜌(𝜏𝜏) = ∑ 1
𝑅𝑅𝑖𝑖√2𝜋𝜋

(−0.5 �𝜏𝜏−𝜏𝜏𝑖𝑖
𝑅𝑅𝑖𝑖
�
2

)𝑖𝑖  ,          (2) 225 

where 𝜏𝜏𝑖𝑖 is a bias corrected AOD from satellite 𝑖𝑖, and 𝑅𝑅𝑖𝑖 is the uncertainty of 𝜏𝜏𝑖𝑖. Then, a derivative of the above log-likelihood 

function was written as follows: 

𝜕𝜕𝜕𝜕(𝜏𝜏)
𝜕𝜕𝜏𝜏

= ∑ 𝜏𝜏−𝜏𝜏𝑖𝑖
𝑅𝑅𝑖𝑖
2𝑖𝑖  .            (3) 

Finally, the AOD that maximized the log-likelihood function had a 𝜏𝜏 value that made the above derivative zero: 

𝜏𝜏 = ∑𝜏𝜏𝑖𝑖𝑅𝑅𝑖𝑖
−2

∑𝑅𝑅𝑖𝑖
−2              (4) 230 

The above Eq. (4) can be interpreted as an uncertainty-weighted mean of AOD products. Here, the uncertainty associated with 

each aerosol product was represented by the root-mean-square error (RMSE) of the AOD products relative to AERONET 

AOD measurements. The statistical fusion method linearizes the error characteristics by categorizing potential error sources 

such as AOD values, NDVI values, and observation times. Based on this analysis, the bias of each AOD product was subtracted 

according to the NDVI value, selected aerosol type, and observation time. Following this bias correction, the RMSE for the 235 

MLE procedure was computed. The output of the fusion process was then categorized in accordance with AOD data availability, 

as shown in Table 3. 

3.3 Deep neural network-based aerosol fusion: DNN AOD 

A DNN is a powerful tool for capturing non-linear relationships among physical variables. Although ground-based and 

spaceborne AODs exhibit linear relationships owing to their fundamentally similar physical meanings, their error 240 

characteristics under diverse retrieval conditions can introduce nonlinearity. The statistical AOD fusion method attempts to 

address this nonlinearity by considering pixel-level uncertainty associated with each aerosol product. However, certain 

unexplained nonlinearities remain, and a DNN-based AOD fusion algorithm was formulated as follows. 

The DNN model was constructed to predict AERONET AOD as the target variable, employing the same input data as the 

statistical AOD fusion approach. To improve model convergence and enhance the overall performance of the DNN, a 245 

preprocessing step was necessary for the input data. This involved standardization of the NDVI, hour, and aerosol type index 

(for GEMS, 1 = highly absorbing fine [HAF] aerosol, 2 = DU, 3 = NA; for AMI and GOCI-II, 1 = BC, 2 = NA, 3 = MIX, 4 = 

DU). The standardization process was implemented using Eq. (5): 

 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑥𝑥−𝜇𝜇𝑥𝑥
𝜎𝜎𝑥𝑥

 ,            (5) 
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where 𝜇𝜇𝑥𝑥  and 𝜎𝜎𝑥𝑥  represent the mean and standard deviation of input data 𝑥𝑥, respectively. The AOD follows a lognormal 250 

distribution skewed toward higher values. To address this distribution characteristic, a Box–Cox transformation was 

implemented for standardizing AOD products derived from the three instruments and AERONET. This transformation, based 

on the concept initially introduced by Tukey (1957), has been adapted and shown to be effective for data normalization (Box 

and Cox, 1982; Sakia, 1992). 

A simplified architecture of a fully connected feed-forward neural network model is illustrated in Fig. 2. This DNN model 255 

comprises three hidden layers, with each being fully connected. Within each hidden layer, batch normalization was 

implemented to avoid overfitting by bringing numerical data onto a common scale. In addition, the rectified linear unit (ReLU) 

served as the activation function. Weighting coefficients of the neural network were optimized by minimizing the mean-square-

error (MSE) loss. During training, the backpropagation technique was applied, adjusting the weight coefficients based on the 

gradient of the loss function. Hyperparameters including batch size, number of neurons, and learning rate were determined 260 

using the asynchronous successive halving algorithm (ASHA; Li et al., 2020). For the ASHA optimization process, a maximum 

of 1000 trials were set, with a minimum of 100 trials. In each trial, half of the configurations were eliminated. Following 

optimization, the DNN model was trained for each case of AOD availability, as outlined in Table 3. 

4 Results and discussion 

4.1 AMI IR masking of GEMS and GOCI-II AOD 265 

The effects of a cloud mask in refining GEMS and GOCI-II AOD are shown in Fig. 3, where yellow boxes indicate cloud-free 

regions that were not removed by the additional cloud mask, and magenta boxes highlight regions where the original GEMS 

or GOCI-II aerosol algorithms inaccurately detected clouds, leading to overestimated AOD values. An example for 25 

November 2022, over the arid region of northern China, is depicted in Fig. 3a–c; the Taklamakan desert is highlighted by the 

yellow box in Fig. 3a. In comparing the original GEMS AOD with that after application of the AMI IR cloud mask (Fig. 3b–270 

c), it is evident that the cloud mask did not mistakenly classify bright surfaces as clouds. The magenta box in Fig. 3b indicates 

areas where the GEMS aerosol algorithm retrieved AOD values over thin clouds, leading to significantly elevated values of 

up to 1.2, while values near the clouds remained below 0.2. Some pixels even had AOD values exceeding 2.0. These 

problematic pixels were removed in Fig. 3c, leading to spatially consistent AOD results for GEMS after application of the 

additional cloud mask. The additional cloud mask was applied to GOCI-II AOD on 9 March 2023 (Fig. 3d–f), when a 275 

substantial aerosol plume was being transported across the Southern Ocean toward the Korean peninsula. The hazy atmosphere 

extended over Japan and into the western Pacific Ocean. However, the GOCI-II YAER algorithm failed to accurately detect 

thin clouds (magenta box, Fig. 3e). Application of the AMI IR cloud mask (Fig. 3f) effectively removed cloud-contaminated 

AOD values. The yellow box (Fig. 3d) highlights a dense aerosol plume. GOCI-II AOD values over the plume remained intact 

after application of the additional cloud mask, demonstrating that the cloud mask based on IR channels was proficient in 280 

distinguishing thin clouds from thick aerosol plumes. 
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4.2 Error analysis of GEMS, AMI, and GOCI-II AOD products. 

Error analysis of original AOD products gives intuition of expected contributions of each AOD products and helps to interpret 

the outcome. Here, we used spatiotemporally matched AOD products to minimize the effect of re-gridding and temporal 

matching to the input AOD value. Also, additional IR cloud masking is applied to GEMS and GOCI-II AOD products. Fig. 4 285 

depicts 2-dimensional histograms illustrating the match between individual AOD products and AERONET AOD 

measurements. The Expected Error (EE) envelope was established on the basis of error characteristics of MODIS DT land 

retrieval, specifically ±(0.05 + 0.15τ) (Levy et al., 2013). GEMS AODs exhibited a tendency to underestimate AOD at high 

aerosol loadings (Fig. 4a), with a slope of 0.429 relative to AERONET AOD. Cho et al. (2023) reported that the latest version 

of GEMS AOD at 443 nm does not have such a low slope, implying that the underestimation of GEMS 550 nm AOD in the 290 

version 2 algorithm may be due to either an algorithm issue or errors during wavelength conversion. Despite this 

underestimation, GEMS AODs were strongly correlated with AERONET AODs, with a Pearson’s correlation coefficient (R) 

of 0.715. GOCI-II AODs yielded the most comparable outcomes to AERONET AODs among the four aerosol products (Fig. 

4b). The stable inversion of AOD achieved through utilizing 12 UV–NIR channels likely contributed to the robustness of the 

GOCI-II YAER algorithm. The Mean Bias Error (MBE) of GOCI-II AODs was negative, mainly because of a clustering of 295 

slight underestimations at low aerosol loadings. This underestimation at low AOD is a known issue when using MRM surface 

reflectance because of the assumption that at least one aerosol-free day exists within a 30-day period, which is not universally 

valid because of background AOD as indicated in Lee et al. (2023). A comparable issue with low aerosol loadings was evident 

with AMI–MRM AOD (Fig. 4c). Both AMI–MRM and AMI–ESR AODs (Fig. 4c–d) displayed scattered patterns relative to 

GOCI-II AODs. The overestimation of low AOD values observed in both AMI–MRM and AMI–ESR AODs may be attributed 300 

to insufficient cloud masking over land. Comparison of the two AMI AOD products indicated that AMI–ESR AOD yields 

slightly superior outcomes, likely because of the enhanced surface reflectance estimation over urban regions with the ESR 

method, as indicated in previous studies (Lim et al., 2018; Kim, M. et al., 2021). 

The biases in GEMS AOD products with AOD, NDVI, aerosol type, and observation time are illustrated in Fig. 5, where blue 

numbers in each plot indicate the count of collocated data in the respective box–whisker, and green dashed lines in each panel 305 

correspond to the y-axis range of the corresponding panels in the GOCI-II error analysis (Fig. 6). As AERONET AOD values 

increased, the GEMS AOD acquired an increasingly negative bias. Conversely, at low aerosol loadings (AERONET AOD < 

0.2), GEMS AOD displayed a positive skewness, implying that it tends to overestimate low AOD values while simultaneously 

overestimating high AOD values. Where NDVI < 0.5, the error in GEMS AOD consistently demonstrated a negative skewness 

and bias. However, in high-NDVI regions, usually associated with dark surfaces, the bias is nearer zero. The negative error of 310 

GEMS AOD for HAF aerosols may be induced by errors in aerosol optical properties of the model (Cho et al., 2023). However, 

aerosol type selection is not absolutely independent of surface conditions. In winter, the NDVI in Southeast Asia falls to 0.3–

0.4 (Ji et al., 2017), with massive HAF aerosols being emitted by biomass burning (Yin, 2020). Then, GEMS AOD displays 

an M-shaped diurnal variation that is consistently negatively biased, except for at 01 UTC. Diurnal variations in GEMS AOD 
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may be influenced by the relatively short atmospheric path length at noon (04 UTC). Furthermore, variations among collocated 315 

AERONET sites, which are due to differing scan scenarios throughout the day, may also contribute to the observed diurnal 

error variations. 

The same error analysis applied to GOCI-II AOD is illustrated in Fig. 6. The GOCI-II AOD error relative to AERONET AOD 

displayed a pattern of underestimation with increasing aerosol loading (Fig. 6a), although the magnitude of this error was 

notably smaller than that observed with GEMS AOD. In terms of NDVI (Fig. 6b), GOCI-II AOD seemed to exhibit consistent 320 

behavior regardless of land surface conditions. Over ocean areas (NDVI <0) the GOCI-II YAER algorithm delivered unbiased 

retrievals, and bias characteristics were similar across different aerosol types. The MX-type aerosol (the most frequently 

selected type in the GOCI-II YAER algorithm) yielded the most stable results with the shortest range of whiskers (Fig. 6b). 

Conversely, the NA aerosol had the greatest whisker range, indicating potential issues with the NA model in the algorithm. 

Asian dust is associated with high aerosol loadings, and results for DU aerosols are slightly more negative (Fig. 6c). Diurnal 325 

variations in GOCI-II error appeared stable, with slight underestimation during mornings and late afternoons. As the GOCI-II 

field of regard is smaller than those of GEMS and AMI, geometrical conditions may have had less impact on its performance. 

Error analysis results for the two versions of AMI AODs are depicted in Fig. 7, which shows that both AMI–MRM (Fig. 7a) 

and AMI–ESR (Fig. 7e) AOD biases tend to decrease with increasing AERONET AOD values. This bias pattern may be 

attributed to the difference in surface reflectance estimation methods used by the two AOD versions. This distinction became 330 

more evident with low aerosol loadings, where the surface signal contributes substantially to the observed radiance. A 

comparison of the initial box–whisker plots for each AMI AOD version suggested that the AMI–ESR AOD bias is closer to 

zero with low aerosol loadings. Furthermore, the shorter lengths of the box–whisker plots across various NDVI values (Fig. 

7f) indicate that the AMI–ESR YAER algorithm provided a more consistent estimate of surface reflectance than that of the 

AMI–MRM YAER. Considering that both versions of the AMI YAER algorithm employ the same aerosol models, the 335 

variations in AOD bias between the two were similar (Fig. 7c, g). The diurnal error variation (Fig. 7d, h) was not notably 

different between the two AMI AOD products. This similarity in diurnal error variations suggests that the choice of surface-

reflectance estimation method has limited impact on error characteristics based on observation time. 

4.3 Fusion data evaluation 

4.3.1 Validation of the fused AOD with AERONET 340 

Based on the error analysis and DNN model training for the period from November 2021 to October 2022, AOD data were 

fused for six months spanning November 2022 to April 2023. The GOCI-II field of regard focusing on KO was smaller than 

those covering EA, so the fused AOD utilizing GOCI-II AOD was confined within the domain. Therefore, two groups of fused 

AOD products were generated: one involving the entire EA domain (AOD-EA), and the other focusing exclusively within KO 

(AOD-KO), which is the domain covered by GOCI-II. Validation results of both statistical and DNN-based fused AODs are 345 

shown in Fig. 8, where columns represent the validation results of MLE and DNN AODs, and rows denote the results for 
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AOD-EA and -KO. Overall, the validation metrics exhibited notable improvement after the statistical fusion process (including 

bias correction and MLE fusion) relative to the results of individual GEMS and AMI AOD products (Fig. 8a). The statistical 

fusion significantly enhanced AOD quality (R = 0.888; RMSE = −0.188; MBE = −0.076; 60.6% within EE). In EA, DNN-

based fusion outperformed the statistical fusion, with a substantial enhancement in AOD quality (R = 0.905; RMSE = 0.161; 350 

MBE = −0.060; 65.6% within EE). The improvement at low AOD contributed to the notable increase in the percentage of 

AOD values within the EE. Furthermore, DNN fusion seemed to improve the underestimation of GEMS and AMI AOD at 

high aerosol loading better than statistical fusion. Fused AOD incorporating data from all three satellite instruments (for AOD-

KO) are depicted in Fig. 8c, d. Although the impact of high-AOD underestimation by GEMS and AMI influenced the MLE 

AOD results, the validation metrics were notably superior to those of individual satellite AOD products including GOCI-II (R 355 

= 0.911; RMSE = 0.113; MBE = −0.047; 73.3% within EE). The statistical fusion approach thus effectively accommodated 

nonlinearity in retrieval uncertainty, despite possibly not capturing all complexity in the data. DNN-KO yielded more improved 

outcome (R = 0.912; RMSE = 0.102; MBE = −0.028; 78.2% within EE). As was in the validation of DNN-EA, the better result 

of DNN AOD comes from improvement in high AOD (AOD >0.5). Further incorporation of relevant information may enhance 

the performance of DNN AOD products, but such considerations are beyond the scope of this study. 360 

4.3.2 Aerosol product evaluation with respect to the MODIS DT algorithm 

The prognostic error evaluation methodology was based on the framework of Sayer et al. (2020). A comparison of 1𝜎𝜎 retrieval 

error (68th percentile of absolute AOD error, |Δ𝑆𝑆|68) with 1𝜎𝜎 expected discrepancy is shown in Fig. 9. The 1𝜎𝜎 expected 

discrepancy was assumed to be the EE of the MODIS DT algorithm. A comparison of |Δ𝑆𝑆|68  and the 1𝜎𝜎  expected EE 

discrepancy indicated whether the EE robustly estimated the actual AOD products’ uncertainty. Although each AOD product 365 

had its own retrieval uncertainty, the MODIS DT EE was utilized for all aerosol products to compare their performances with 

a common standard. |Δ𝑆𝑆|68 values below the 1:1 line (Fig. 9) indicate overestimation of AOD uncertainty by the MODIS DT 

EE, with the prognostic error of the AOD product being <(0.05 + 0.15𝜏𝜏) (𝜏𝜏 = AOD). Fig 9a shows a prognostic error evaluation 

of AOD-EA products. At low AOD, the three original satellite AOD products (GEMS, AMI–MRM, AMI–ESR) displayed a 

tendency for the MODIS DT EE to underestimate the actual AOD error. This implies that at low AOD values, the satellite 370 

AOD products had relatively high uncertainties, which can likely be attributed to weak aerosol signals and/or cloud 

contamination issues. As the expected discrepancy increased with aerosol loading, the uncertainty approached the MODIS DT 

EE at expected discrepancy of ~0.06. The actual 1𝜎𝜎 retrieval error increases steeper than the MODIS DT EE at larger AOD 

values. Among the three original AOD products in EA, GEMS AOD demonstrated the greatest deviation from the MODIS DT 

EE, the AMI–MRM AOD had similar uncertainty characteristics to those of DT, and the AMI–ESR AOD products lay between 375 

the two. To quantify the retrieval uncertainty of GEMS aerosol and AMI YAER algorithms, the EE gradient (Fig. 9) should 

be >0.15. The two fused AOD products in EA (triangle markers, Fig. 9a) indicate that aerosol fusion effectively reduced AOD 

uncertainty at lower aerosol loadings. As the loading increased, the uncertainties of both MLE-EA and DNN-EA AOD products 

had similar gradients until expected discrepancy of ~0.1. At higher aerosol loading, the MLE-EA AOD showed uncertainties 
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in between GEMS AOD and AMI AOD. Meanwhile, uncertainties of the DNN-EA were lower than AMI–MRM and were 380 

closest to MODIS DT EE among the products within EA. AOD products in KO generally showed lower uncertainty than in 

EA (Fig. 9b). Among the four original AOD products, GOCI-II showed lowest uncertainty at high aerosol loading. In the KO, 

the two AMI AOD products had similar results. This seems to be because the effect of difference in surface reflectance 

estimation diminishes as the KO domain contains AERONET sites (e.g., Beijing) with frequent severe haze events. The MLE-

KO showed similar uncertainties with AMI AOD products at high aerosol loading. Meanwhile, the DNN AOD-KO had the 385 

lowest uncertainties among all AOD products, with its uncertainties are slightly less than that of MODIS DT. 

Means and standard deviations of the normalized error (Δ𝑁𝑁) of AOD and fused AOD products are shown in Fig. 10, where the 

AOD error was normalized using Eq. (6): 

Δ𝑁𝑁 = Δ𝑆𝑆
𝜖𝜖𝑇𝑇

= 𝜏𝜏𝑆𝑆−𝜏𝜏𝐴𝐴

�𝜖𝜖𝑆𝑆
2+𝜖𝜖𝐴𝐴

2
≅ 𝜏𝜏𝑆𝑆−𝜏𝜏𝐴𝐴

|𝜖𝜖𝑆𝑆|
           (6) 

where 𝜖𝜖𝑇𝑇  denotes a total expected discrepancy; i.e., a root of the squared sum of expected discrepancies of satellite and 390 

AERONET. Values of ΔN with a Gaussian distribution of zero mean (𝜇𝜇Δ𝑁𝑁) and unity standard deviation (𝜎𝜎Δ𝑁𝑁) implies that 

satellite AODs were calculated appropriately with perfectly characterized errors (Sayer et al., 2020). Here, the satellite 

expected discrepancy (𝜖𝜖𝑆𝑆) assumed to be the EE of MODIS DT land retrieval. Therefore, points near the intersection of mean 

zero and variance unity lines (Fig. 10) imply that the accuracy and precision of AOD product uncertainty can be explained by 

the EE of the MODIS DT. 395 

Means and standard deviations of the normalized error of each AOD product collocated at four different AERONET sites are 

plotted in Fig. 10. Beijing_RADI and Anmyon sites represent polluted atmosphere over land and coast, respectively. Beijing 

is one of the largest cities in East Asia, and Anmyon is located near the Yellow Sea, over which long-range aerosol transport 

passes (Lee et al., 2019). AERONET sites remote from large cities in Japan, TGF_Tsukuba and Okinawa_Hedo were selected 

to demonstrate results for relatively clear atmosphere over land and coast, respectively. Over the polluted land site, the original 400 

AOD products showed negative bias. AMI–MRM, AMI–ESR, and GOCI-II AOD had 𝜎𝜎Δ𝑁𝑁 close to unity, while that of the 

GEMS AOD was higher. Both fused AOD products had smaller 𝜎𝜎Δ𝑁𝑁 values than unity, meaning that the fused AOD products 

have higher precision than MODIS DT over polluted atmosphere. Among the two fused AOD, DNN showed better 

performance with better accuracy (𝜇𝜇Δ𝑁𝑁 closer to zero) and higher precision (lower 𝜎𝜎Δ𝑁𝑁), due to better estimation of high AOD 

as shown in discussions regarding Fig. 8. Over clear land site, among original AOD products, GEMS AOD had highest 405 

precision and GOCI-II AOD had highest accuracy. Both AMI AOD products had low precision, with positive bias of AMI–

MRM AOD and negative bias of AMI–ESR AOD. The MLE AOD showed improvement in precision but had positive bias 

after fusion. This seems to be because the bias correction procedure is applied regardless of AOD value. For the case of GEMS 

AOD, small bias over clear atmosphere may be overcorrected to have positive bias before MLE fusion. DNN AOD does not 

seem to have such a problem, with even better precision than at the polluted site. AMI AOD collocated at the Anmyon site 410 

had a strong positive bias (Fig. 10b) due to overestimation of AOD over turbid water. Over clear coastal areas, AMI–MRM, 

AMI–ESR and GOCI-II AOD products displayed relatively high precision with positive bias. Cloud contamination may cause 
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the positive bias. Over both coastal sites, MLE-KO AOD outperformed DNN-KO AOD. Relatively consistent retrieval 

conditions of ocean surface than land surface may lead to better quantification of uncertainty for MLE fusion. 

4.3.3 Diurnal variation during aerosol transport in East Asia 415 

A case of long-range aerosol transport over the Yellow Sea is described in Fig. 11. A scattering aerosol plume originating from 

the Shandong Peninsula was transported toward Japan, penetrating South Korea. Three AERONET sites were chosen to assess 

diurnal variations of AOD during this event. The diurnal variations of AERONET AOD were similar at Yonsei_University 

and KORUS_UNIST_Ulsan (Fig. 11b–c), characterized by a peak at around 01:30 UTC followed by a gradual decline 

throughout the day. At the Yonsei_University site (Fig. 11b), AERONET AOD data for the 00–02 UTC period were absent 420 

due to cloud cover. GEMS AOD exhibited a diurnal pattern similar to that of AERONET but, as established in earlier analyses, 

GEMS tends to underestimate AOD, particularly with high aerosol loadings. AMI–MRM AOD captured AERONET AOD 

well until 02 UTC, after which it underestimated AOD. AMI–ESR AOD displayed similar trends but with the most negatively 

biased retrieval among all AOD products, consistent with the negative bias observed in error analysis (Fig. 7d, h). GOCI-II 

AOD demonstrated the most accurate performance during this event. After statistical fusion, MLE AOD closely followed the 425 

diurnal AOD variation of AERONET, with slight underestimation. Due to the greater uncertainty of GEM AOD under high 

aerosol loadings, its weight in the MLE fusion was lower than those of other satellite AOD products, with MLE AOD being 

more similar to other AOD products. The statistical fusion method successfully combined each AOD product by considering 

retrieval uncertainties under various conditions. DNN AOD exhibited a closer value of AOD compared to MLE AOD, as 

expected based on former discussions. However, with DNN AOD, diurnal AOD variation may be misunderstood to be 430 

consistently increasing after 04 UTC, while the AERONET AOD is decreasing again after 05 UTC (Fig. 11b). Collocated 

results from the Gosan_SNU site (Fig. 11d), which was located outside the main plume, had a moderately high aerosol loading 

with an average AERONET AOD of ~0.4. GEMS consistently underestimated AOD throughout the day, whereas both AMI–

AOD products overestimated AOD slightly in the early morning (00–02 UTC). Both MLE and DNN AOD showed almost the 

same AOD values throughout the day at Gosan_SNU site. 435 

5 Conclusion 

Individual AOD products from GEMS, AMI, and GOCI-II were validated over the period of November 2022 to April 2023 

using AERONET level 1.5 AOD as a reference. Linear regression line of GEMS AOD and AERONET AOD exhibited a slope 

of 0.368, indicating underestimation of high aerosol loading relative to AERONET AOD. The GOCI-II YAER algorithm 

yielded better performance than GEMS and AMI. Within AMI YAER algorithms, the validation of AMI–ESR AOD was 440 

slightly more accurate than that of AMI–MRM AOD due to the better estimation of urban surface reflectance in the former. 

Two AOD data fusion methods were developed using the same input variables—GEMS, AMI (–MRM and –ESR), and GOCI-

II AOD—with NDVI, observation time, and selected aerosol type from each algorithm. For statistical fusion, pixel-level biases 
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and RMSEs of aerosol algorithms were calculated by comparing individual satellite AODs with level 2.0 AERONET AODs 

for November 2021 to October 2022, with this period being used also for DNN model training. Fusion outcomes were 445 

categorized into two groups based on the individual AODs used in fusion and then evaluated. The fused AOD-EA from both 

statistical and DNN-based fusion yielded better results relative to GEMS and AMI AOD products. DNN AOD outperformed 

MLE AOD, particularly in terms of quantifying AOD at high aerosol loading. Due to small spatial domain of the GOCI-II 

observation, fused AOD-KO was selected for evaluation of fusion involving GOCI-II AOD. Both MLE and DNN AOD-KO 

yielded better results than GOCI-II AOD. MLE AOD retained underestimation owing to the GEMS tendency to underestimate 450 

high aerosol loadings. This issue was not observed with DNN AOD-KO. Evaluation of AOD bias with respect to observation 

time indicated that the fusion algorithm stabilized diurnal error variations, suggesting that fusion AOD enhances our 

understanding of the hourly evolution of aerosol distributions. The performance of each AOD product was assessed using a 

common criterion; i.e., the EE of the MODIS DT algorithm. At lower aerosol loadings, the fused AOD products yielded low 

uncertainties, overcoming large uncertainty of individual AOD sources. The MLE AOD uncertainty increased sharply with 455 

aerosol loading; DNN AOD did not display such a behavior. Prognostic error analysis with respect to MODIS DT revealed 

that DNN-KO yielded the closest performance to that of MODIS DT, with slightly lower uncertainty. A case of long-range 

aerosol transport was chosen for diurnal monitoring. Statistical fusion, accounting for retrieval uncertainty from each aerosol 

algorithm, improved the hourly AOD distribution observed with MLE AOD when compared with AERONET AOD. DNN 

AOD tracked AERONET AOD closely, yielding AOD estimates that were more closely aligned with AERONET values. In 460 

April 2023, the US National Aeronautics and Space Administration launched the next series of global geostationary 

environmental constellation instruments, TEMPO; the European Space Agency launched FCI in December 2022 and is 

planning to launch Sentinel-4 in 2024; and the NOAA GEOstationary eXtended Observations (GeoXO) satellite system is 

planned to form a constellation of geostationary satellite instruments. The application of aerosol fusion described here to these 

geostationary satellite projects may enable global production of high-quality aerosol data. 465 
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Figure 1. Fields of regard for GEMS, AMI, and GOCI-II. AMI AOD were retrieved only within the 70°E–150°E, 10°S–50°N area to 
match the GEMS field of regard. 
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 725 
Figure 2. Flowchart of the fusion algorithm. Red- and yellow-colored boxes represent commonly used modules for both 
preprocessing and data fusion procedures. The NDVI databasea was generated using AMI MRM surface reflectance in green, red, 
and NIR channels. 
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 730 
Figure 3. Examples of additional IR cloud masking for GEMS and GOCI-II AOD. (a–c) A case of GEMS AOD on 25 November 
2022; (d–f) A case of GOCI-II AOD on 09 March 2023. Each column shows an AMI true color image, original AOD, and AOD with 
additional cloud mask of corresponding cases. Yellow boxes correspond to cloud-free zones; magenta boxes correspond to areas in 
which GEMS or GOCI-II misidentified cloud pixels.  
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Figure 4. 2-dimensional histograms of AERONET AOD vs. GEMS (a), GOCI-II (b), AMI–MRM (c), and AMI–ESR AOD (d) 
frequencies. The number of collocated points (N), linear regression equations, Pearson’s correlation coefficient (R), root mean 
squared errors (RMSE), mean bias errors (MBE), and percentage within the expected error envelope (% within EE; EE: 
±(0.05+0.15 𝝉𝝉𝑨𝑨)) is shown. Dashed line and dotted lines indicate one-to-one line and expected error envelopes. Blue line indicates 740 
linear regression line of the satellite AOD and AERONET AOD 
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Figure 5. AOD bias of GEMS AOD relative to AERONET AOD (a), NDVI (b), selected aerosol type (c), and observation time (d). 
Whisker ends correspond to the 10th and 90th percentiles of the bin. Box ends correspond to the 25th and 75th percentiles. Horizontal 745 
lines in each box indicate bin median. Green dashed line indicates the y-axis range of GOCI-II AOD in corresponding panels. 
Numbers and bar plots in blue indicate the number of collocated AOD points in each box–whisker. 
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Figure 6. As for Fig. 5, but for GOCI-II AOD. 750 

 

 
Figure 7. As for Fig. 5, but for AMI–MRM and AMI–ESR AOD. 
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 755 

 
Figure 8. As for Fig. 4, but for MLE AOD-EA (a), DNN AOD-EA (b), MLE AOD-KO (c), and DNN AOD-KO (d). 
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Figure 9. Comparison of expected discrepancy vs. absolute retrieval error. The gray dashed line indicates the uncertainty of the 760 
MODIS DT algorithm.  

 

 
Figure 10. Mean and standard deviation of normalized error for each AOD product collocated at selected land (a) and coastal (b) 
AERONET sites. The Bejijing_RADI and TGF_Tsukuba sites were chosen to represent polluted atmosphere over land and ocean, 765 
respectively. The Anmyon and Okinawa_Hedo sites were chosen to represent clear atmosphere over land and ocean, respectively. 
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Figure 11. A case of aerosol transport over the Korean Peninsula on 07 March 2023. (a) AMI true color image at 04 UTC. (b)–(d) 
correspond to AERONET sites marked in (a). Gray triangles indicate AERONET AOD; original satellite AOD products are 770 
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indicated by × symbols in different colors; fused AOD products around the Korean Peninsula (AOD-KO) are indicated by circles 
in different colors. 

 
Table 1: Specification of instruments in GK-2 mission.  

Satellite GK-2A GK-2B 

Payload AMI GOCI-II GEMS 

Channels 16 14 1,024 

Spatial resolution of 

radiance 

0.5 km (red), 1 km (VIS), 2 

km (IR) 
0.25 km 3.5 km × 7.7 km 

Temporal resolution 10 min (full-disk scan) 1 h 1 h 

Wavelength range 0.4–13 μm 375–860 nm 300–500 nm 

FWHM 10–20 nm 10–20nm 0.6 nm 

Launch December 2018 February 2020 

Lifetime 10 years 

Location 128.2° 

Aerosol algorithm AMI YAER algorithm 
GOCI-II YAER algorithm 

(Lee et al., 2023) 

GEMS AERAOD retrieval 

algorithm (Cho et al., 2023) 

Spatial resolution of aerosol 

product 
6 km 2.5 km 3.5 km × 7.7 km 

 775 
Table 2: Cloud masking tests of AMI YAER algorithm.  

   

BTD 9 max < −28 
Only over land 

BTD 14 mx < −28 

Reflectance 1.3 >0.35 

 BTD 15, 16 <10 

BTD 13, 16 ≤11 

 

 
Table 3: Different cases of AOD availability in the fusion process and corresponding data fusion strategies. 
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 GEMS 
AMI 

(MRM, ESR) 
GOCI-II Statistical fusion  

 

DNN-based fusion 

AOD 

availability 

○ ○ ○ 

Bias-corrected + MLE 

Separate DNN model 

for each case 

○ ○  

○  ○ 

 ○ ○ 

○   

Bias-corrected  ○  

  ○ 
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