
Performance Evaluation of MeteoTracker Mobile Sensor for
Outdoor Applications
Francesco Barbano1, Erika Brattich1, Carlo Cintolesi1, Abdul Ghafoor Nizamani1, Silvana Di Sabatino1,
Massimo Milelli2, Esther E. M. Peerlings3, Sjoerd Polder3, Gert-Jan Steeneveld3, and Antonio Parodi2

1University of Bologna, Dept of Physics and Astronomy, via Irnerio 46, 40126 Bologna, Italy
2CIMA research Foundation, Via A. Magliotto, 2 17100 Savona, Italy
3Wageningen University, Meteorology and Air Quality Section, P.O. box 47, 6700 AA, Wageningen, The Netherlands

Correspondence: Francesco Barbano (francesco.barbano3@unibo.it)

Abstract. The morphological complexity of urban environments results in a high spatial and temporal variability of the urban

microclimate. The consequent demand for highly-resolution atmospheric data remains a challenge for atmospheric research

and operational application. The recent widespread availability and increasing adoption of low-cost mobile sensing offers the

opportunity to integrate observations from conventional monitoring networks with microclimatic and air pollution data at a

finer spatial and temporal scale. So far, the relatively low quality of the measurements and outdoor performance compared to5

conventional instrumentation has discouraged the full deployment of mobile sensors for routine monitoring. The present study

addresses the performance of a commercial mobile sensor, the MeteoTracker (IoTopon Srl), recently launched on the market

to quantify the microclimatic characteristics of the outdoor environment. The sensor follows the philosophy of the Internet of

Things technology, being low cost, having an automatic data flow via personal smartphones and online data sharing, supporting

user-friendly software, and having the potential to be deployed in large quantities. In this paper, the outdoor performance is10

evaluated through tests aimed at quantifying (i) the intra-sensor variability under similar atmospheric conditions and (ii) the

outdoor accuracy compared to a reference weather station under sub-optimal (in fixed location) and optimal (mobile) sensor

usage. Data-driven corrections are developed and successfully applied to improve the MeteoTracker data quality. In particular,

a recursive method for the simultaneous improvement of relative humidity, dew point, and humidex index proves crucial for

increasing the data quality. The results mark an intra-sensor variability in the range of±0.5°C for air temperature and±1.2% for15

the corrected relative humidity, both within the declared sensor accuracy. The sensor captures the same atmospheric variability

as the reference sensor during both fixed and mobile tests, showing positive biases (overestimation) for both variables. Through

the mobile test, the outdoor accuracy is observed between ±0.3°C to ±0.5°C for air temperature, between ±3% and ±5% for

the relative humidity, ranking the MeteoTracker in the real accuracy range of similar commercial sensors from the literature

and making it a valid solution for atmospheric monitoring.20

1 Introduction

The coverage of the Earth’s surface by atmospheric monitoring networks remains challenging, especially in remote locations,

poor countries, and complex terrain. Among the last category, the urban environment requires long-term monitoring at high
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spatial and temporal resolutions, as turbulence structures play a key role in inertial and thermal ventilation (Barbano et al.,

2020; Cintolesi et al., 2021). To fill the gap, classical urban observational networks are supported by spot-on intensive field25

campaigns for intra-urban flow detailing and turbulence analysis. The recent development of low-cost sensors provides a

novel opportunity to integrate the existing monitoring networks with cheaper, yet reliable solutions. Nowadays, monitoring

protocols for fixed low-cost weather stations have adopted crowdsourcing approaches (Meier et al., 2017; Fenner et al., 2021)

to increase spatial coverage of urban areas, with the creation of community networks (Jiao et al., 2016) for environmental

monitoring. Contextually, the adoption of mobile sensors and smartphones is increasing, carrying the typical shortcomings of30

novel approaches, such as the lack of protocols for mobile sensing, outdoor accuracy, and long-term reliability. Data quality

from mobile sensing will require suitable but transferable sensor calibration strategies (Xu et al., 2019; DeSouza et al., 2022)

as well as the development of accurate correction algorithms (Huang et al., 2023). The development of dedicated platforms

(e.g., Den Ouden et al. 2021) provides a virtual environment where quality-controlled mobile data can be safely stored and

shared.35

Two major classes of sensors have been developed according to their application scopes, i.e., the study of microclimate and

air quality. As a short notice, air quality sensors mostly monitor regulated pollutants, such as particulates, nitrogen dioxide

and ozone, and/or greenhouse gases such as carbon dioxide (e.g., Johnson et al. 2016; Van den Bossche et al. 2016; Puri et al.

2020; Gómez-Suárez et al. 2022; Ganji et al. 2023). Microclimate sensors are firstly designed for monitoring the urban thermal

environment (Kousis et al., 2022), but also the radiative properties of the atmosphere (Heusinkveld et al., 2023), evapotran-40

spiration (Markwitz and Siebicke, 2019) and wind-related quantities (Droste et al., 2020) have found recent interest. A key

ensemble of this second category consists of mobile sensors suitable for measuring the thermo-hygrometric characteristics of

the atmosphere on the move. The sensor suite is typically composed of a thermo-hygrometer or a thermo-logger, but examples

of complete weather stations mounted on moving vehicles (Heusinkveld et al., 2014; Emery et al., 2021) or integration with

automatic infrared cameras (Lindberg, 2007; Acosta et al., 2022) are also documented. Two main categories of sensors are also45

used: research-grade instrumentation designed for conventional weather stations and adapted for mobile use, and low-cost mo-

bile sensors. In addition, mobile sensing using smartphones is also accessed nowadays, thanks to the presence of temperature

sensors oftentimes installed within some devices (e.g., Cabrera et al. 2021) or the use of alternative data proxies such as the

temperature of the smartphone battery (Overeem et al., 2013; Droste et al., 2017), and the potential crowdsourcing from large

communities. oOftentimes, the sensor fabric is modified, adding homemade radiation shields (Sun et al., 2009; Leconte et al.,50

2015) and ventilation pipes (Tsin et al., 2016). Despite walking being an explored option in the literature, the vast majority

of mobile monitoring is performed using bicycles or motor vehicles. This allows a wide spatial coverage of the urban and

surrounding areas (Sun et al., 2019), a large number of monitoring scans (Emery et al., 2021), a long-term assessment (Charabi

and Bakhit, 2011) and a variety of monitoring techniques, including spot-on measurements (Qaid et al., 2016) and transect’s

inspections (Unger et al., 2001).55

The top-trend research topic is the Urban Heat Island (UHI) effect, where mobile sensing offers a denser representation of the

canyon-level air temperature (Stewart, 2011) inside the urban context. Intra-urban UHI and local thermal effects are attributed

to land cover, urban morphology, and aspect ratio of the urban canyons. Yan et al. (2014) used an instrumented bicycle to infer
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the magnitude and spatial characteristic of the air temperature variations related to the landscape parameters characterizing the

immediate environment of the measurement sites. Focusing on the street canyon, Sun (2011) conducted a mobile survey by bike60

to show a positive correlation between the air temperature and the height-to-width ratio of the canyon, green area coverage, and

building ratio. Covering a larger spatial area by instrumented car, Noro et al. (2015) observed consistent temperature differences

in the range 0.5°C to 2.5°C depending on the Local Climate Zone (LCZ, Stewart and Oke 2012) passed through. Shi et al. (2018)

confirmed the applicability of mobile sensors in assessing the thermal properties within high-density heterogeneous urban

contexts, evaluating an Intra-LCZ air temperature difference up to 2°C within 6 diverse LCZs. In agreement with traditional65

studies on the local-scale UHI effect (e.g., Di Sabatino et al. 2020), these studies support strategies that increase vegetation

coverage at the expense of buildings to mitigate urban warming and create a comfortable thermal environment. Other uses of

mobile sensing include the assessment of the impacts of the urban morphology on the cooling effect of small rivers (Park et al.,

2019), and the influence of external factors on the temperature field within the urban context (Rajkovich and Larsen, 2016).

The temperature maps obtained through mobile sensing are also suitable for validating numerical simulations (Hsieh et al.,70

2016) and for application to thermal comfort and local climate stress (Koopmans et al., 2020).

The advantage of a mobile sensor is the large spatial coverage ensured by continuous monitoring while moving, which

can be performed actively through ad-hoc experiments or passively during daily life activities. As a drawback, measurements

will be dependent on both time and space, revealing non-trivialness to assess phenomena such as the UHI effect. Schwarz

et al. (2012) introduced a correction for decreasing temperatures due to progressing time so that they would not confound air75

temperature differences due to changing surroundings with temperature differences because of evening cooling. To compensate

for the different time responses of the mobile sensor related to the reference, namely the thermal inertia error, Qi et al. (2022)

introduced an initial temperature correction. In previous research, the response time of mobile sensors was determined by

cycling through a tunnel (Brandsma and Wolters, 2012) or by sensitivity tests comparing in-situ and mobile measurements

(Emery et al., 2021). To deal with the response time at the beginning of a monitoring session, we can use statistics to eliminate80

the time required by the sensor to adjust its internal temperature to the ambient air. Depending on the scope of the investigation,

a temperature decline correction is needed to compensate for the background temperature evolution while completing the route

(Brandsma and Wolters, 2012). Finally, mobile sensors need a protocol for outdoor validation before usage, which is missing

in most applications from the literature. For low-cost sensors, this step is required owing to the discrepancy often observed

between the ideal accuracy of the sensor (that acquired in the laboratory under controlled conditions) and the real one evaluated85

in the field. Establishing an outdoor protocol for low-cost sensors is mandatory to infer the reliability of their measurements

and under which circumstances they perform at their best (Brattich et al., 2020). Similarly, research-grade instrumentation is

mostly built for fixed-location monitoring, and a reliability test should be performed for mobile usage.

In this paper, we provide a quality assessment and performance evaluation of a recently developed commercial mobile sensor

for monitoring the urban microclimate, called MeteoTracker (MT) developed by IoTopon Srl. To the best of our knowledge,90

MT was used in very few scientific researches with promising results (Cecilia and Peng, 2022; Carraro, 2022). However, these

evaluations focused only on the air temperature data of a single MT mwith respect to other low-cost mobile sensors, leaving

gaps in the overall performance evaluation. In the current paper, we aim to provide a more robust and comprehensive assess-
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ment of the MT outdoor performance, which includes evaluating the intra-sensor variability of multiple MTs simultaneously

operating under equal ambient conditions and validating MT’s measurements against a research-grade reference in both opti-95

mal (while moving) and non-optimal (as a fixed station) operational usage. This investigation also provides a set of exploitable

methods to correct MT measurements and enhance their outdoor accuracy, validated for different climate zones and seasons,

sensor usage, and customized for each measured variable of the MT. Ultimately, this analysis will evaluate the potential of the

MT to be adopted as a research-grade sensor.

After this introduction, Sect. 2 introduces the MT sensor and data flow; Sect. 3 describes the multi-step procedure adopted100

in this paper to address the sensor performance while Sect. 4 presents the results from each step. Section 5 contextualizes the

MT performance in the context of mobile sensing. Section 6 draws the conclusions.

2 The MeteoTracker

2.1 The sensor

The MT is a low-cost portable weather station (see Fig. 1), that samples several meteorological variables while moving jointly105

with its carrying vehicle (mobile sensor). The device hardware comprises a compact case (75 mm × 75 mm × 35 mm)

with a magnetic base to secure the station on the vehicle, tested to regulatory speed limits on highways. The case can also

support the installation of a string to secure the station to a non-metal moving object. The aerodynamic shape supports the

stability above the vehicle, while the extensive frontal and back overtures (air filters) enable a large air volume sampling and

good internal ventilation. The sensing board is supplied by different capacitive-resistive sensors, measuring air temperature110

T and relative humidity RH , and atmospheric pressure P with a declared accuracy close to a research-grade instrument (see

Table 1). In addition, the sensor measures the radiation intensity R but accuracy and operational range are not provided by

the manufacturer. Derived quantities are also automatically computed by the station, using known empirical thermodynamic

laws and formulas. Among those, the dew-point temperature Td and the humidex index HDX (an index which estimates the

anthropogenic well-being associated with climate, see Masterton and Richardson 1979) are both obtained by combining air115

temperature and relative humidity in some capacities. For the dew point, Lawrence (2005) explored the intricacies and possible

empirical, theoretical, and simplified expressions with the classical thermodynamics, while humidex is defined as

HDX = T + 0.5555(e− 10) (1)

where e is the water vapor pressure in hPa and T is in degrees Celsius. Altitude Z in meters above the mean sea level is also

derived from the atmospheric pressure; with it, the vertical thermal gradient is computed in ◦C (100 m)−1.120

The sensor is not shielded from solar radiation. Still, it is supplied with a Radiation Error Correction System (RECS) a

patent of the manufacturer to correct the effect of solar radiation on temperature while the sensor is moving at more than 7

km h−1. The station is remotely controlled using a customized application on the user’s smartphone, through a one-to-one

connection (one station is controlled by one application). Through the app, the user selects the sampling rate of the sensors

both in frequency (at least 1 Hz) and distance (at least 1 m), letting the device select and use the most crammed depending on125
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Figure 1. The MT and its components: left to right, the mini-weather station, the mobile application, and the web platform. Collaged from

https://meteotracker.com/ (accessed on July 2022).

Table 1. Significant variables measured by the MT, with accuracy and operational range according to the manufacturer.

Variable Accuracy Operational range

Air temperature T ±0.5◦C under solar radiation and VS > 7kmh−1 −40◦C – +125◦C

Relative humidity RH ±2% 0% – 100%

Atmospheric pressure P ±3 Pa (relative) or ±50 Pa (absolute) –

Altitude above mean sea level Z ±10 m (for the initial altitude value only) –

1RECS, patent of the manufacturer

the vehicle’s speed. The user decides to enable or disable the sensor calibration at each start and stop of the vehicle, and the

temperature correction due to the sensor movement (to discern the sensor usage between mobile and in a fixed location). The

app uses the smartphone GPS to geolocate the station and compute the initial altitude (see Sect. 3) and provides the vehicle

speed Vs. On the app, the user can visualize the live streaming of the monitoring session, from a georeferenced map and the

time series of the measured variables. At the end of each session, measurements are stored locally in the smartphone and130

uploaded on a dedicated online platform for visualization, data retrieval, download, and sharing with other users.

2.2 Data flow and Visualization

The mobile app and smartphone connectivity regulate the flow of the data collected by the station. The station and mobile

app have to remain connected via Bluetooth for the whole duration of the monitoring session, to ensure the flow and storage

of the measurement (the station itself does not have an internal memory). A stable GPS and internet connection are required135

to compute the altitude during the monitoring session, to live stream the monitoring session through the dedicated online

dashboard, and to upload the data on the platform once over. The user can define the level of privacy (private, public, and

public anonymously) of the collected data before initiating a monitoring session. Both public sessions will be streamed and data

shared through the platform. Public data on the platform can be reached by other users through a dashboard, with permission
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to visualize or download depending on the type of account bought alongside the device. An example of data visualization on140

the dashboard is shown in Fig. 2. The MT track is superimposed on a Google map, showing the point-by-point georeferenced

Figure 2. Example of MT track and collected data as visualized on the online dashboard. The coloured points on the map are the air

temperature measured by the sensor. Graphs are the reconstructed time series of each measured and derived variable along the vehicle track.

Source: https://app.meteotracker.com/ (accessed on July 2022).

map of a measured variable (air temperature in the example of Fig. 2), giving a qualitative but effective intake of the collected

measurements. The time series of the same variables can be displayed directly on the dashboard for a more quantitative disposal

of the data.

The price of the device with full permission on the platform in 2021 was 119 euros (including taxes); the recent updates145

(2023), the new connectivity tools, and the set of additional accessories have raised the costs of this sensor, which remains

below 400 euros.

3 Reliability Assessment: a Multi-step Validation Process

The validation process of MT measurements is performed in four steps: (i) identification and removal of the adjusting pe-

riod to the environmental conditions, (ii) evaluation of the intra-sensor variability under similar operational conditions, (iii)150

confrontation with a reference station in fixed-location mode, (iv) confrontation with a reference station on the move. Three
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different cities hosted one or more steps of this assessment, namely Bologna (steps i and ii) and Genova (step iii) in Italy,

and Wageningen (iv) in the Netherlands, testing the sensors in different climatic areas. Each of these steps is a key element to

assess the self-consistency of the instrumentation and evaluate its use for research purposes. The process evaluates the strengths

and weaknesses of the MT, allowing us to expose the reliability limit of this specific low-cost sensor but also the study and155

computation of possible post-processing solutions to improve the data quality and usability.

3.1 Outlier Removal and Identification of the Adjusting Period

As a fundamental step in data post-processing, the literature has proposed several methods to identify and remove outliers

from a dataset. Typical methods are based on the a-priori assumption that the dataset can be divided into subperiods wherein

the measurements are distributed following a known function (typically a Gaussian distribution). A well-known example of160

these methods is given by Vickers and Mahrt (1997), where the outlier is defined as a value larger than 3.5 standard deviations

from the mean in a certain time interval. Using this method over 30-minute windows, Barbano et al. (2021) obtained a reliable

cleaning performance for fast-sampling meteorological data within the urban canopy. Working with low-cost sensors for air

quality and thermal comfort detection, Brattich et al. (2020) applied the Hampel filter (Hampel, 1974) to 1-min data to detect

value beyond 2 median absolute deviations over 7-min windows and replace them with the median over the same interval.165

The aforementioned methods are tuned on traditional measurement techniques, where instruments sample meteorological or

air quality data for a "long" period and at a fixed location. We can infer that monitoring sessions with MTs will be very short

in time (as long as the vehicle travels) and frequent, not providing a sufficient amount of data to make a-priori assumptions

on their distribution. Moreover, we can assume that after each monitoring session, the user would unmount the MT from the

vehicle and bring it into an indoor environment for security reasons. At the onset of the next session, the MT will likely need a170

certain time to adjust to a change of location, i.e., a change in the ambient temperature and relative humidity. The Inter-Quartile

Range (IQR) outliers’ removal method (Hubert and Van der Veeken, 2008) serves both purposes of removing the outliers and

the initial adjustment period. This method applies to the entire sample and it is not based on any assumption about the data

distribution. It is based on the definition of upper and lower limits beyond which values are classified as outliers. Specifically,

any data point x is an outlier if175

x < Q1− 1.5IQR, (2)

x > Q3 + 1.5IQR, (3)

where Q1 and Q3 are the first and third quartiles, respectively, and IQR = Q3−Q1. When needed, the IQR method is pre-

empted by a linear detrending. The outliers identified at the beginning of the session mark the adjusting period and are just

removed. Outliers given by spikes within the session are instead replaced with the median of the data distribution.180

3.2 Intra-Sensor Variability

Low-cost sensors have proven reliable and accurate under laboratory conditions, yet show larger inconsistencies when used

outdoors under real-world atmospheric conditions. This is due to the fast transitions and heterogeneity of the atmospheric
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conditions compared to the rather constant and homogeneous laboratory flow. The response of low-cost sensors to the nat-

ural oscillations of the atmospheric variables can cause discrepancies between sensors’ measurements, due to the different185

sensor responses. The intra-sensor variability test is an open-air experiment, where multiple sensors operate under the same

environmental condition to infer the consistency among different sensors.

To the scope, three monitoring sessions were designed to operate multiple MT simultaneously (in groups of 6, 6, and 8 MTs

for practical reasons). During each session, the MTs within each group were mounted on top of a designated electric car and

controlled by an equal number of smartphones by the passenger. The MTs were placed side-by-side in the front part of the190

car’s top, as close as possible to the car axis to avoid capturing flows from lateral edges. MTs aligned perpendicularly to the

car axis along a single line: this prevents mutual shielding and exposes each MT directly to the flow. The spacing between MTs

was approximately twice the lateral dimension of a single MT. A 50–60-min drive around the city center and outskirts is then

performed during each session, starting and ending at the Department of Physics and Astronomy of the University of Bologna

(44◦29′57.1′′N 11◦21′13.8′′E) and passing through different neighborhoods and local ambient conditions to capture most of195

the morphology variability of the city. Table 2 summarizes the general information on the sessions. The three sessions were

Table 2. Overview of the intra-sensor variability tests

Session ID Initial date and local time Duration Sensors

S1 30/06/2022, 14:30 60 min 8

S2 30/06/2022, 16:00 50 min 6

S3 01/07/2022, 12:45 50 min 6

analyzed independently due to the change in the environmental conditions, start-and-stops that occurred during the drive, and

slightly different trajectories adopted. Thus we adopted a first session to tailor our postprocessing schema on the measurements

while testing those on the remaining sessions.

3.3 Fixed-location Comparison200

The reliability and trustworthiness of low-cost sensors are typically at stake when used outdoors as large and sharp transitions

in the environmental conditions (sudden temperature drops, wind gusts, etc.), as well as extreme regimes (saturation, rain, and

snowfall, etc.), are often demanding for sensor accuracy. For these reasons, a comparison with research-grade instrumentation

is convenient to test the actual accuracy of low-cost sensors outdoors. Differently from most of the instrumentation designed

for research purposes, the MT operates on the move, introducing a further degree of complexity to the validation procedure. To205

counteract this limitation, a two-step validation is provided, first using the MT as a fixed-location weather station (Sect. 4.3) and

then comparing its performance against a previously validated mobile station (Sect. 3.4). For the fixed-location comparison, an

MT was placed behind a Stevenson screen located on the rooftop of CIMA Research Foundation headquarters (44◦17′59.2′′N

8◦27′06.6′′E) close to a reference weather station of the Acronet network. Including the sole sensors required for this study, the

reference station is equipped with a shielded transducer (t026 TTEPRH, SIAP+MICROS S.p.a., Italy) sampling air temperature210
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in the range -30°C to +60°C with an accuracy of±0.1°C, and relative humidity between 0% and 100% with an accuracy of 2%.

The Stevenson screen is required to shield the MT from solar radiation and minimize the sensor overheating, thus replicating the

work of the RECS when the sensor is moving, to expose the MT to the same environmental condition of the reference weather

station, as deployed in Fig. 3. The data acquisition for this analysis covered two separate periods of continuous measurements

Figure 3. Stevenson screen (front right) and reference weather station (middle back) locations on the building rooftop.

lasting approximately one month each: from 19 December 2022 to 10 January 2023 (winter period), and from 11 July to 3215

August 2023 (summer period). No weather conditions were discharged from this analysis.

3.4 Mobile Comparison

To test the MT under conventional operation conditions, two sensors were mounted on a meteorological cargo bike (see Fig.

4a) developed at Wageningen University (The Netherlands) to measure air temperature, relative humidity, wind speed, and

radiation in a reliable way (Heusinkveld et al., 2014). The temperature and relative humidity are measured with a shielded220

thermometer-hygrometer (model CS215L, Campbell Scientific, USA) with a radiation screen mounted at 1.2 m. Heusinkveld

et al. (2014) ensures an accuracy of less than 0.1°C for air temperature and 2% for relative humidity (within the range 10-90%).

Wind speed and direction are measured with a Gill WindSonic (Gill Instruments, UK), and used to derive the ventilation speed,

9

https://doi.org/10.5194/amt-2023-256
Preprint. Discussion started: 22 January 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 4. A picture of the cargo bike with its equipment (a) and the cycling route operated for comparison (b)

i.e. the speed of the air sampled by the sensor and given by the vectorial combination of the wind and cargo-bike speeds.

The MTs were placed unshielded at the same height as the reference temperature sensor, one to its left and the other to its225

right. With this setup, the average temperature of the MTs corresponds to the reference temperature. The reference temperature

sensor samples at 1 Hz; with an average cycling speed of 4 ms−1 it corresponds to a sample every 4 m. The MTs measure with

a 3-s sampling rate, resulting in a sample approximately every 12 m. A block average of 5 s is chosen for the comparison.

The data collection was performed in 8 sessions from January 11th to March 3rd, 2023, lasting around 1-h each between

12:00 and 18:00 local time (except for a single evening session starting at 20:30 local time). The dataset encloses different230

atmospheric conditions, mostly accounting for sunny days when incoming radiation varies the most, or partially cloudy con-

ditions (with no precipitation). The cycling track followed a fixed route, with a seemingly constant cycling speed of 4 ms−1.

This cycling route went through an open grassland area near Wageningen (Binnenveld), a new residential area (Wageningen

Noordwest), and the historic city center of Wageningen (see Fig. 4b).

4 Results235

4.1 Removal of Outliers and Adjusting Period

From a visual inspection of the data, there are no clear outliers inside the measuring periods. The stability of the MT and its

sampling rate minimize the possibility of spikes in the data acquisition, actually preventing the occurrence of outliers within the

time series. Conversely, there is clear evidence that upon activation, the sensor undergoes a process of adjustment to align with

the surrounding ambient temperature. Several preliminary tests were implemented during wintertime to investigate the MT’s240

adjusting times according to the different ambient conditions the MT has to adjust to, and the cooling rate it has to endure. All
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these tests were performed by bicycle in Bologna. Equation 3 is applied to isolate and remove these adjusting periods from

the data distribution of this test. Figure 5 picks an example session to show the application of the outlier removal method. The

Figure 5. Distribution by the occurrence of the air temperature for the example session, alongside the time evolution of the session. The

colors highlight the removed adjustment time after the application of Eq. 3 (blue) compared to the filtered data distribution and time series

(red)

distribution of the air temperature follows a skewed normal distribution, with a bimodal factor when outliers are accounted

for. The outliers compose the adjustment period and no further spikes are detected through the time series. The maximum245

temperature recorded at the beginning of the session in Fig. 5 is 17.0°C, falling to 14.5°C after applying Eq. 3. Similarly, the

initial minimum humidity level is recorded at 52%, but it increases to 59% during the same time frame of the temperature drop

after applying Eq. 3 (not shown).

Table 3 summarizes the average temperature changes, adjusting times, and cooling rates evaluated through the preliminary

tests and the mobile comparison test performed with the cargo bike (Sect. 3.4). Temperature changes and adjusting times are250

direct outcomes of the outlier removal, while the cooling/heating rates are computed as their ratios. The discrepancy between

adjusting periods and cooling/heating rates is owed to the initial air temperature and the different times of the day, and so the

intensity of solar radiation. Natural ventilation can also play a role in increasing the cooling rate. Overall, the cooling/heating

rate of an MT under operational use ranges between 0.5°C min−1 to 1.7°C min−1, accounting for an adjustment time of

2.2–6.3 min according to this test. Table 3 only reports the application of the removal method on the air temperature but the255

same procedure has been independently applied to the relative humidity, obtaining similar results. For this reason, temperature

alone is taken as a benchmark for identifying the adjustment period.

To provide further support for the acclimatization process of the MT, supplementary comparison tests with an analog ther-

mometer are carried out both indoors and outdoors. Results of these tests suggest that a stationary MT takes 15 minutes (on

average) to achieve thermal equilibrium in a partially controlled room from an initial temperature discrepancy of 2°C. When260

exposed to outdoor conditions, the stationary MT takes 10 minutes (on average) to drop its temperature of 2°C. Thanks to the
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Table 3. Average air temperature, temperature drop (in absolute value), adjusting time, and cooling rate for the different mobile monitoring

sessions involved in the tests. For each session, the date, starting time, and duration are also reported. Comp sessions are performed in

Bologna, Cargo ones are from the mobile comparison in Wageningen. Multiple dates and start times refer to the single days and beginning

of each session whose values are averaged

Session Date and Local start time Duration Initial T T drop Adjustment Time Cooling rate

[min] [°C] [°C] [min] [°C min−1]

CompA 03/03, 13:59 38 16.6 2.6 5.9 0.5

CompB 03/03, 14:56 49 17.0 1.7 2.7 0.6

CompC 03/03, 15:56 47 18.8 4.8 2.8 1.7

CompD 20/03, 14:12 28 16.7 2.6 3.2 0.8

CompE 20/03, 17:24 46 14.9 1.7 2.2 0.8

CargoA 11/01, 12:00-16:00 55 11.7 1.4 2.2 0.6

CargoB 18/01–07/02, 12:00-14:00 55 9.4 5.2 5.5 0.9

CargoC 07/02–03/03, 16:30-20:30 55 13.3 6.3 5.2 1.2

thermal regulation induced by ventilation, the adjustment times reduce largely when the sensor is moving at a speed higher

than 7 km h−1. For the intra-sensor variability test and the fixed station comparison, we waited 15–20 minutes after having

prepared the experimental setup, letting the MT adjust to the ambient air.

4.2 Intra-Sensor Variability and Data-Correction Methods265

The results of the intra-sensor variability analysis are presented alongside the development and application of data-driven

correction methods for data postprocessing. The scope of the corrections is to decrease the variability of data around the mean

and increase the linear relationship of each track to the mean within the session, thus reducing the intra-sensor variability. In

particular, a correction was searched and applied wherever single tracks were consistently over- or under-shooting the range

represented by the instrumental error applied to the session average. Session S1 is used as a test case, while S2 and S3 are270

the benchmark. Data measured by the MTs are averaged every 5 s to remove the discrepancy in the time-space acquisition

dichotomy and to homogenize the dataset. For each variable, the average session is computed to explore the stability of each

sensor measure around the mean. The comparison for the measured variables is shown in Fig. 6. As a byproduct, the comparison

masks the non-systematic errors while enhancing the existing biases between different measures. This results in large values of

the determination coefficient despite the single sensor measurements occasionally being well beyond the range defined by the275

instrumental error around the average session. This is the case of relative humidity (Fig. 6a) and less so of pressure (Fig. 6c).

While for the pressure the discrepancy between different sensors accounts for up to 100% of the instrumental error, that for

relative humidity is up to 500%. Pressure displays a non-homogeneous distribution of values around the average session, but

rather a step-wise measurement trend, probably owing to the low sensitivity of the sensor. Air temperatures fall mostly within
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Figure 6. 5 s averages of relative humidity RH (a), air temperature T (b), barometric pressure P (c), and radiation intensity R (d) measured

by each sensor as a function of the average session. Each color identifies the measurement of a single MT. The dashed line is the bisector,

the dotted lines are the instrumental error around the bisector

the instrumental error (Fig. 6b), apart from a few values in two sessions. Air temperature is considered to perform at a level280

of accuracy in line with the manufacturer’s indication and will not undergo any corrections. The radiation intensity (Fig. 6d)

provides a measure of the intensity of solar radiation, with sensors being affected by different shadowing along the track. The

performance of this quantity is qualitatively appreciable despite the lack of information on the instrumental error preventing a

more quantitative evaluation.

From the measurements described above and the information retrieved from the GPS of the smartphone, the sensor auto-285

matically derives several quantities including altitude Z, vehicle speed Vs, the dew point Td and the humidex index HDX

(see Fig. 7). The vehicle speed is self-consistent, despite an increasing spread of values at low velocities (Fig. 6d). Despite an

instrumental error for the vehicle speed is not provided by the manufacturer (as it depends on the smartphone the sensor is

connected to) and a more quantitative assessment of this variable is precluded, it can still be used as an indicator of the stability

for different smartphone models. As for the altitude, the phone GPS is involved in the computation of the vehicle velocity, thus290

similarities between measurements are expected but not granted.

Altitude above the mean sea level (Fig. 7c) is automatically computed by the MT by retrieving the initial altitude Z0 from an

open web server using the location of the initial latitude and longitude and then modifying its value along the track according
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Figure 7. 5-s averages of the dew point Td (a), humidex HDX (b), altitude above mean sea level Z (c), and vehicle speed Vs (d) retrieved

from each sensor as a function of the average session. Each color identifies the measurement of a single MT. The dashed line is the bisector,

the dotted lines are the instrumental error around the bisector

to the measured pressure using

Z =
T0

Γs

((
P

P0

)−ΓsRd/g

− 1

)
+ Z0 (4)295

where T0, P0, and Z0 are the air temperature, pressure, and altitude collected as the first data measure, respectively, Γs =

0.0065°C m−1 is the standard atmospheric lapse rate, g = 9.81 m s−1 is the acceleration due to gravity, and Rd is the gas

constant for the dry air. The nominal error of ±10 m associated with the altitude measurement is therefore a composition of

the error propagation given by Eq. 4 and the GPS accuracy. It is worth noting that the accuracy of the GPS is a property of

the smartphone connected to the MT, and it can change according to the smartphone brand and model. Since this test was300

conducted using different smartphones we can have introduced an additional source of error. The correction we are about to

introduce will minimize this error but it is arguable that using the same smartphone model and brand the correction would not

be needed (at least if the error from Eq. 4 is negligible). The large nominal error allows a good altitude performance within

the current test, but biases between sensors are also evident. For this reason, an alternative procedure to compute altitude is

proposed. It consists of the retrieval of the altitude from a preferred web server (as the one used in this paper) or a digital305

elevation model map for each latitude-longitude couple measured by the GPS, thus bypassing Eq. 4. In other words, the sole
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error remaining in the computation of the altitude is associated with the GPS signal. This procedure is more computationally

expansive than Eq. 4, but it ensures a better evaluation of the altitude as long as the GPS signal is stable. Applied to S1, the

method grants a large improvement in the altitude computation, with a drastic reduction of the sessions’ spread around the

mean one (Fig. 8). The improvement in the altitude values enables the correction of pressure. From Eq. 4, we can derive an

Figure 8. 5 s averages of the corrected altitude (a) and pressure (b) as a function of the average session. Each color identifies the measurement

of a single MT. The dashed line is the bisector, the dotted lines are the instrumental error around the bisector

310

expression for pressure Pc as

Pc = P0

(
Γs

T0
(Zc−Z0) + 1

)−g/(ΓsRd)

(5)

where Zc is the altitude above the mean sea level as retrieved from the web server. The recomputed pressure is shown in Fig.

8. The correction collapses pressure from different sensors within the instrumental range of uncertainty (around the average

15

https://doi.org/10.5194/amt-2023-256
Preprint. Discussion started: 22 January 2024
c© Author(s) 2024. CC BY 4.0 License.



session) while introducing a richer value distribution. This is supposedly caused by the larger sensitivity of the GPS sensor315

compared to the barometer.

Using Pc, we can estimate a first correcting formula for the relative humidity. The relative humidity is defined as the ratio

between the water-vapor pressure e and the saturation water-vapor pressure es. Assuming that the variability of the total

pressure is entirely driven by that of the water vapor, δRH ∝ δe. The application of this correction type to the relative humidity

revealed almost negligible for the dataset under investigation and for this reason, it was discarded. Nonetheless, e and es are320

known to be functions of the dew point Td and the air temperature T respectively, owing to a large number of empirical (e.g.,

the Magnus formula) and theoretical (derived from the Clausius-Clapeyron equation) expressions. The link between T , Td, and

RH suggests finding possible correction methods for RH based on these variables, to which the humidex index HDX can be

added owing to its dependency on both temperature and relative humidity. Indeed both Td and HDX show an odd intra-sensor

variability which is propagated from the relative humidity (see Fig. 7a,b), with the dew point being affected the most. As from325

its definitions in Eq. 1, the humidex index depends more on the air temperature and less on relative humidity (or dew point). In

the range of temperature where the humidex is defined, the adding term on the RHS of Eq. 1 is much smaller than T , and thus

the intra-sensor variability in the humidex is less pronounced than Td and RH . The humidex index can be used as a starting

point for the correction procedure which ultimately will allow to correct RH , Td and HDX. Practical definitions of this index

can be retrieved from Eq. 1, following the standard used by Environment and Climate Change Canada330

HDX = T + 0.5555
(

6.11e
(

L/Rw

(
( 1

273.16 )
(

1
273.15+Td

)))
− 10

)
(6)

where L, the latent heat of vaporization, is retrieved from the linear interpolation of T knowing that L(T = 0°C) = 2.501·106

J kg−1 and L(T = 100°C) = 2.257·106 J kg−1, while Rw = 461 J K−1kg−1 is the gas constant for a moist atmosphere.

Alternatively, we can adopt some Magnus formula for e, so that

HDX = T + 0.5555
(
0.06RH100.03T − 10

)
. (7)335

Both empirical equations require T and Td in °C. Figure 9 shows the correlation and dispersion of the humidex calculated with

Eqs. 6 and 7 and the one directly computed by the sensor. Each distribution resembles a Gaussian shape, with a high degree of

symmetry and mean (and median) value close to 44◦C. Despite Eq. 7 being a better approximation to the HDX retrieved by

the sensors, Eq. 6 already reduces the standard deviation of the distribution and thus the intra-sensor variability.

Substituting Eq. 6 into 7, and solving for RH , we obtain an expression for the corrected relative humidity RHc which only340

depends on the dew point (and air temperature)

RHc = 100e

(
L

Rw

(
1

273.16− 1
273.15+Td

)) (
100.03T

)−1
= 100

e

es
(8)

where e is formulated following Environment and Climate Change Canada and es follows a simplified Magnus formula. From

Eq. 6, we can assume that the significant component of the intra-sensor variation in HDX is given by Td. That is δHDX∝ δTd.

Using the error propagation theory, the variability δHDX = |dHDX
dTd

|δTd. Solving for δTd we get345

δTd =−Rw

L
(273.15 +Td)

2 (3.39)−1
e
− L

Rw

(
1

273.16− 1
273.15+Td

)
δHDX (9)
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Figure 9. Cumulative density distribution of the HDX index computed using Eq. 6 (solid black), Eq. 7 (solid blue) and directly by the sensor

(solid red). The dashed lines, paired with similar colors, represent the best normal distribution fit for each data source. The number of bins

for the discretization is equal to the square root of the total number of data (equal for each distribution)

The dew point is then corrected as

T c
d = Td− δTd, (10)

and used to recompute the humidex using Eq.6. Equations 9, 10 and 6 are computed recursively to minimize the intra-sensor

differences on both Td and HDX. The minus sign in Eq. 9 is introduced to evaluate both positive and negative components of the350

derivative in the error propagation. After 2 iterations, the variability around the average session is already greatly reduced (see

Figs. 10a,b). Note that the recursive method is intrinsically going to diverge after a large number of iterations, thus imposing

a truncation after a few. Truncation is here done after visualizing the minimum variability, constrained to a range of values in

agreement with the measurements. Using the recursive method, we achieved a better agreement between sensors ensuring a

smaller spread of values around the average session and the constrain of them within the instrumental errors. The instrumental355

error for the dew point is here derived from Lawrence (2005) approximated relation

Td = T − RH − 100
5

. (11)

By comparing the dew point retrieved by the sensor and that computed using Eq. 11, we observe two similar distributions (see

Fig. 11) suggesting we can adopt Eq. 11 for the computation of the dew point error. The agreement shown in Fig 11 raises

doubts about how solid the dew point data are when directly retrieved by the MT. Equation 11 was suggested by Lawrence360

(2005) to work in a moist environment, with RH ≤ 50%, with a possible extension to 40% introducing a further correction

which resulted meaningless for the present study. Nonetheless, values below the 40% threshold were observed, for whom we

can assume the approximation works just fine enough for deriving the dew-point error. In any case, this error evaluation is
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Figure 10. Calculated Td (a) and HDX (b) after 2 iterations using Eq. 10 and 7 as a function of the average session, respectively. Each color

identifies the measurement of a single MT. The dashed line is the bisector, the dotted lines are the propagated instrumental error around the

bisector evaluated using Eq. 12 for Td and 13 for HDX

limited to a medium-high humid environment and should be further tested for more arid conditions. A further assessment of

the quality of the dew point retrieved from the sensor is given in Sect. 4.3.365

The error associated with the retrieved and corrected dew point reads

∆Td = ∆T +
1
5
∆RH. (12)

In analogy, the error associated with the humidex index is computed from Eq. 6, and reads

∆HDX = ∆T +
HDX−T

(273.15 +Td)
2

Rw

L
∆Td. (13)
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Figure 11. Distribution of the occurrence of the dew point Td as retrieved from the sensor (red) and computed using Eq. 11 (blue). The purple

area of the graph is where the two distributions superimpose one to the other. The bin width is 0.5°C on an equal number of bins among the

distributions.

As dew point and humidex converge to their minimum variability, the corrected value of Td is used to recompute the relative370

humidity using Eq. 8, and the resulting difference from the average session is shown in Fig. 12. Despite the correction is not

Figure 12. Corrected RH using Eq. 8 as a function of the average session. Each color identifies the measurement of a single MT. The dashed

line is the bisector, the dotted lines are the propagated instrumental error around the bisector.

always sufficient to bring the variability within the instrumental error from the average session (S2 for instance would have

required an errorbar of ±3%, not shown), the intra-sensor agreement is largely improved as also quantified by the root-mean-

square and mean bias errors listed in Table 4 for each session and variable. The correction removes a consistent portion of the
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sensor variability, producing a maximum value of uncertainty around the average session of ±1.2% for S1. All the corrections

Table 4. Coefficient of determination R2, root mean square error RMSE, and mean absolute percentage error MAPE computed session by

session between the data obtained (measured, derived, or corrected) from each sensor and the respective average session. Below is reported

the average R2 within each session, and the maxima RMSE and MAPE

Z Zc RH RHc Td T c
d HDX HDXc P Pc T R

R2 0.85 0.96 0.61 0.90 0.85 0.91 0.87 0.93 0.58 0.86 0.94 0.89

S1 RMSE 7.1 m 1.4 m 6.9% 0.4% 1.4°C 0.2°C 2.6°C 0.5°C 2.0 hPa 0.8 hPa 0.3 °C 1.1

MAPE 11.2% 1.5% 17.8% 0.9% 6.3% 0.7% 5.9% 0.8% 0.2% <0.1% 0.6% 14.6%

R2 0.96 0.99 0.63 0.85 0.92 0.88 0.82 0.94 0.86 0.97 0.95 0.9

S2 RMSE 4.7 m 0.8 m 7.3% 1.6% 1.5°C 0.6°C 3.6°C 0.6°C 1.2 hPa 0.5 hPa 0.2 °C 0.9

MAPE 7.9% 0.7% 31.9% 3.8% 7.2% 2.3% 8.5% 1.2% 0.1% <0.1% 0.4% 9.6%

R2 0.99 0.99 0.81 0.95 0.95 0.97 0.96 0.98 0.91 0.97 0.98 0.97

S3 RMSE 0.7 m 0.7 m 4.3% 0.3% 0.9°C 0.3°C 1.5°C 0.6°C 0.7 hPa 0.4 hPa 0.3 °C 0.8

MAPE 0.9% 0.5% 8.9% 0.5% 3.9% 1.3% 3.4% 1.3% <0.1% <0.1% 0.9% 9.3%

RMSE =
( 1

n

∑n
i=1 (xi −⟨xi⟩)2

)1/2, MAPE = 100
n

∑n
i=1 |

xi−⟨xi⟩
xi

|, with xi the iteration of variable x from each sensor, ⟨xi⟩ the average session of the same

variable, n the number of finite data points in x

375

we have discussed so far have substantially improved the data quality. The absolute errors also decrease with an overall increase

in the determination coefficients. We have already mentioned how the intra-sensor variability here assessed, creates a bias in

the coefficient of determination due to the dependence of the mean from its constituents. Nonetheless, the initial large values

of this coefficient suggest that the existing discrepancy between sensors’ measurements is bias-driven, while tendencies are

in accordance. The increase in the determination coefficients obtained through the correction methods explains the further380

reduction of the non-linear uncertainties in the sensors’ measurements. The error reduction is instead an indication of the bias

decrease; in other words, the sensors’ measurements collapse closer to their average.

The pressure–altitude correction encloses both tendency and bias regulation effects. Pressure loses its step-wise conforma-

tion, favoring a more homogeneous data distribution which increases the linear dependence between different sensors. Altitude

decreases the intra-sensor bias by reducing the mean absolute percentage error (MAPE) of 87% and 91%, and the root mean385

square error (RMSE) of 80% and 82%, in S1 and S2 respectively. The iteration method involving relative humidity, dew point,

and humidex is also successful in reducing both biases and tendency discrepancies, especially for the first variable. The largest

effect on dew point and humidex is a decrease in the bias around the average, with an efficacy of the correction in the range

60–88% for both MAPE and RMSE, with a slightly better reduction performance in the humidex. The correction also improves

the respective coefficients of determination, but the increase is less impactful possibly due to the stronger dependence of both390

variables on the air temperature (which has high scores and did not need any correction) and less so on the relative humidity.

Finally, the relative humidity undergoes the largest benefits from the correction method on both tendency linearity and bias,
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as it is already clear from a visual comparison between Fig. 6a and 12. The linearity around the average session increases by

15-30% ensuring a more regular distribution of the data and tendency among different sensors’ measure. Even more evident is

the improvement by reducing the intra-sensor bias: MAPE and RMSE increase by 78–95%, which is > 90% if we exclude S2395

where the correction method was not sufficient to shrink the intra-sensor variability down within the instrumental error due to

the presence of an "outlier" sensor run. By removing this odd sensor run, S2 aligns with S1 and S3 statistics, allowing rigorous

comparability between different MTs’ measurements.

4.3 Fixed-location Comparison

The intra-sensor variability test has revealed the capability of the MT to perform a self-consistent assessment of the environ-400

mental conditions, even though some corrections are necessary to achieve a reasonable performance. In this and the following

section, we address the performance of the MT against reference stations, being in a fixed location and under optimal usage

conditions (i.e., on the move). As introduced in Sect. 3.3, sensors’ comparison during both winter and summer are investigated,

to verify the consistency of the previous results on both extremes of the annual thermodynamic cycle We selected periods of

continuous measurements without technical issues on both apparatuses. The winter period under investigation has experienced405

mild weather conditions, with warm temperatures for the season and relative humidity never reaching saturation (according to

the reference weather station at the CIMA Research Foundation). Moreover, neither severe nor extreme weather phenomena

were observed during the period, thus facilitating the comparability between the MT and the reference weather station. Within

the summer of the new global temperature record concerning the warmest July of the measurement era, Genova experienced

a warm summer with daily mean and maximum temperatures above the climate average. The period included several heat-410

waves striking the whole region, while no severe thunder- or rain-storms were observed. The comparison is strictly limited

to air temperature and relative humidity as the weather station does not measure any other variable relevant to the MT. An

assessment of the dew point and humidex is also provided as both quantities are necessary for the correction of the relative

humidity as we have introduced in Sect. 4.2. To strengthen the statistical robustness of air temperature and relative humidity

comparisons, the coefficient of determination is computed for each variable, alongside the mean percentage error (MPE) and415

the RMSE to address the goodness of the linear fits. Differently from the intra-sensor variability, here the percentage error is

not computed in absolute value to quantify the over- or under-estimation of the MT measurement compared to the reference

one. Furthermore, we computed the MPE for the negative and positive differences separately, to better appreciate the overall

over- and under-estimations by the MT. To avoid miscalculation of MPE for temperature differences across 0°C, we previously

converted the air temperature in Kelvin. Willmott (1981) introduced a decomposition of the mean square error (MSE) into a420

systematic and an unsystematic component, separating biases from random errors. Following this philosophy, we decomposed

the RMSE into its systematic

RMSEs =

√√√√ 1
n

n∑

i=1

(x̂i− yi)
2 (14)
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and unsystematic

RMSEu =

√√√√ 1
n

n∑

i=1

(xi− x̂i)
2 (15)425

components, where xi is the iteration of variable x from the MT, yi that for the reference weather station, n the number of finite

data points in x, and x̂i = ayi + b is the linear fit of x on y. The systematic component is the consistent bias that produces the

over- or under-estimation of the reference values by the MT measurement compared to the linear fit between the two datasets.

The unsystematic component evaluates the scatter about the linear regression line of the MT measurements. RMSE is used

instead of the MSE for a better comparison with the intra-sensor variability test and the performance evaluations found in the430

literature (see Sect. 5.2).

Figure 13 compares the air temperature and relative humidity of the MT and the reference station for both winter and summer

periods. For both quantities, data has been previously processed and averaged every 10 minutes, and a linear fit is computed

Figure 13. Air temperature T and relative humidity RH comparisons between MT (subscript MT) and reference weather station (subscript

WS) measurements for the winter (panels (a) and (b)) and summer (panels (c) and (d)) periods, and relative linear fits. In (b) and (d), blue

dots and orange fits refer to the measured relative humidity while red dots and green fits refer to the relative humidity corrected using Eq. 8.

The dashed line is the bisector, and the dotted lines identify the range given by the sum of the MT and weather station instrumental errors

around the bisector, that is ±0.6°C for air temperature and ±4% for relative humidity

as a result of the comparison. During both seasons, the air temperature measured with the MT is in reasonable agreement
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with the weather station, despite a clear tendency to overestimate the reference values. The wintertime overestimation also435

increases with increasing values of air temperature (Fig. 13a). Apart from the possible intrinsic lack of accuracy of the MT,

two possible reasons may affect the performance of the sensor. First, the MT is a mobile sensor used as a fixed meteorological

station, i.e. it is operated with a sub-optimal working configuration. Second, the Stevenson screen is not a perfect shield from

solar radiation, whose beam can be reflected from multiple surfaces on the building rooftop into the box volume. In addition,

the natural ventilation of the screen is partially prevented by its structure and air may become stagnant within its volume. It is440

worth noting that the flat rooftop hosting the experiment is covered with black tarpaulin, thus minimizing the reflection from

one of the major sources but increasing the emission temperature of the rooftop, with a larger effect on stagnant air. As a result,

the combination of inhibited ventilation and enhanced radiation might increase the air temperature within the screen volume,

especially at higher temperatures when we can expect larger solar radiation. Nonetheless, the summertime overestimation

is homogeneously distributed along the entire temperature range (Fig. 13c) suggesting the possible air warming inside the445

Stevenson screen does not increase linearly with either the air temperature or the solar radiation. Unfortunately, being the MT

under the screen and the weather station are not equipped for measuring solar radiation, we can only leave these considerations

as hypotheses.

The relative humidity measured by the MT largely overestimates that of the weather station (Fig. 13b,d). Given the outcomes

of the intra-sensor variability test, this result is not unexpected. The linear fit of the distribution suggests that the overestima-450

tion results from a large bias by the MT. Therefore, we perform a new comparison with the reference station by applying the

recursive method to correct the MT measurement. The corrected relative humidity aligns better with the reference values: the

tendency remains almost unaltered from the original measurement and the bias correction is sufficient to provide a more rea-

sonable agreement. As for the intra-sensor variability test, truncation at the second iteration is sufficient to obtain a reasonable

performance of the MT under real atmospheric conditions.455

For a more quantitative evaluation of the performance of the MT, Table 5 condenses the values for the coefficient of deter-

mination and the errors computed for the air temperature, relative humidity, and the corrected relative humidity during both

seasons. All three variables score a high linear correlation with the reference with a clear tendency of the MT to overestimate the

reference values. Winter air temperature shows a positive percentage error, as witnessed by the measurement bias for the 67%

and the random error for the 33% (computed as the ratios RMSEs/RMSE and RMSEu/RMSE, respectively). Similar behavior460

is found for the relative humidity, with an even larger percentage error entirely owed to its positive branch, and a large RMSEs

over the RMSEu (RMSEs/RMSE≫RMSEu/RMSE). The correction adopted for the relative humidity reduces the distribution

errors, favoring a larger balance between over- and under-estimation as well as bias and random errors. The correction severely

reduces the total percentage error on relative humidity, balancing positive and negative errors that on their own are smaller

than the MPE for the air temperature. The correction also reduces the error due to the bias to a value that is smaller than the465

random error, with the RMSEs being caused by the remaining overestimation tendency at small relative humidities (see Fig.

13b). During summer, the MPE quantifies the air temperature overestimation at a 2.9% of the measurement, with an overall

reduction of the percentage error compared to the winter period. Once again, the discrepancy for air temperature is distributed

in a bias responsible for the overestimation (accounting for 55% of the error) and in the random error responsible for the

23

https://doi.org/10.5194/amt-2023-256
Preprint. Discussion started: 22 January 2024
c© Author(s) 2024. CC BY 4.0 License.



Table 5. Coefficient of determination R2, total (RMSE), systematic (RMSEs), and unsystematic (RMSEu) root mean square errors, and

total (MPE), positive (MPEP), and negative (MPEN) mean percentage errors computed between the measurements of the MT used as the

predictor (x) and those of the weather station used as a reference (y).

Winter Summer

T RH RHc T RH RHc

MPE 4.9% 9.3% 0.4% 2.9% 19.8% 0.6%

MPEP 5.0% 9.4% 3.3% 3.5% 19.8% 7.3%

MPEN -1.9% -0.9% -2.8% -1.6% 0% -4.9%

RMSE 1.1°C 9.4% 4.1% 3.6°C 18.8% 7.0%

RMSEu 0.4°C 1.6% 2.2% 1.5°C 10.4% 4.6%

RMSEs 0.7°C 7.7% 1.9% 2.0°C 8.4% 2.4%

R2 0.96 0.97 0.95 0.95 0.88 0.88

RMSE =
( 1

n

∑n
i=1 (xi − yi)

2)1/2, MPE = 100
n

∑n
i=1

xi−yi
xi

, with xi the

iteration of variable x from the MT, yi that for the reference weather station, n the

number of finite data points in x. MPEP and MPEN are computed similarly to MPE,

but summing only the positive and negative values of MPE, respectively

distribution spread around the reference value (45%). The linearity of the fit is respected. The relative humidity measured with470

the MT overestimates the reference by 20% on average (see MPE in Table 5, being entirely outside the instrumental error (Fig.

13d). This causes the MT to observe multiple saturation conditions while the reference relative humidity rarely exceeds 90%.

The Stevenson screen and the reduced ventilation inside it can favor stagnant conditions thus increasing the relative humidity.

However, the variability observed in the measure of the relative humidity during the intra-sensor variability test hinders this

assumption. The RMSE and its components describe a discrepancy from the reference which is larger than the winter period,475

and mostly due to the unsystematic error. This is caused by the large amounts of values at saturation the MT detects while the

reference station observes relative humidities in the range 70–95%. In addition to the distribution spread, a bias is also evident

but the linearity of the fit is respected. With the usual 2 iterations of the correction method, we observe a huge improvement in

the agreement between MT and weather station data. Relative humidities below 50% seem unaltered by the correction. Small

values of relative humidity linked with large values of air temperature imply that humidex is determined mostly by the second480

quantity and less so by the first (see Eq. 7). Since the MT temperature does not change in the recursive method, δHDX and

δTd are small and T c
d → Td as well as RHc →RH . This shortcoming of the correction did not occur during the intra-sensor

variability test as the maximum air temperature was 8°C smaller than this investigation in Genova.

The recursive method enables us to further discuss the dew point and humidex index. Neither quantity is measured by the

weather station, but they can be retrieved using known empirical formulations and then compared with those retrieved directly485

from the MT and computed through the iterations. Specifically, the dew point Td for the weather station is derived according
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to the Magnus formula, so that

Td =
c1

(
ln
(

RH
100

)
+ c2T

c1+T

)

c2− ln
(

RH
100

)
− c1T

c2+T

, (16)

where c1=243.04°C and c2=17.625°C according to Alduchov and Eskridge (1996). This formulation is consistent with a

relative humidity resulting from the ratio of water-vapor partial pressure and its value at saturation, and in line with other490

formulations based on the Clausius Clapeyron equation (Lawrence, 2005). For consistency, the humidex from the weather

station is computed by using a Magnus formulation as well according to Eq. 7.

Figure 14 displays the distributions of the MT (directly derived by the sensor), weather station (Eqs. 16 and 7), and iterated

values of Td and HDX. The distributions of MT data and that retrieved using the weather station share similar shapes but with

Figure 14. Dew point Td (a) and humidex HDX (b) distribution comparisons between the variables directly computed by the MT (red), the

variables derived from the weather station data using Eq. 16 for Td and Eq. 7 for HDX (blue), and the variables obtained after 2 iterations of

the recursive method seen in Sect. 4.2 (purple). Panels (a) and (b) refer to the winter period, (c) and (d) to the summertime. The bin width is

0.5°C on an equal number of bins among the distributions

a bias shifting one from the other. The dew point from the MT overestimates the distribution from the weather station, while495

an underestimation is observed in the humidex. This turnover is due to the formulations adopted for Td and HDX, with the

first being largely dependent on RH (where the MT largely overestimates the weather station) and the second more on T .

During summer only, the distributions are shaped similarly with the dew point resembling a skewed normal distribution with
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a longer left tail while the humidex is a bimodal distribution covering the whole range of the index. The recursive correction

method adopted for RH rescales the distributions of Td and HDX, aligning them to the weather station’s ones with seasonal500

discrepancies. During winter, the corrected distributions display longer tails and fewer occurrences at the peaks, but they

provide a general improvement in line with the relative humidity.A During summer the corrected distributions encompass

restricted ranges and more occurrences at the peaks.

The comparison obtained for these winter and summer periods accomplishes two goals of this whole investigation:

– The recursive method to correct the relative humidity is proven resourceful in retrieving the true relative humidity of the505

ambient air, along with a reasonable estimation of the dew point and humidex index;

– The MT can capture the thermo-hygrometrical properties of the ambient air with an outdoor accuracy that resembles the

reference weather station, but overshoots the combined instrumental errors.

These accomplishments support the use of the MT as a fixed weather station (under customized shielding conditions) to monitor

the mean thermal and hygrometric state of the atmosphere.510

4.4 Mobile Comparison

The final test to assess the MT’s data quality is performed under the normal operational mode of the sensor. An instrumented

cargo bike is used as a benchmark for air temperature and relative humidity data quality, as described in Sect. 3.4. The com-

parison is performed by incorporating the measurements from all 8 cycling sessions into a single dataset. The statistical char-

acteristics of each variable pair (MT and cargo bike) were computed on this single dataset. As we will argue in this section, we515

believe the loss of information from each session is not relevant for the quality test since there is not a clear change of behavior

in their data distribution. Only the coefficient of determination is truly overestimated considering the single dataset; for this

reason, it is not computed.

Figure 15 shows the air temperature measured by the MT as a function of that from the cargo bike. The temperature range of

each session is contained within 1°C despite the cycling path covering both the city center and surroundings of Wageningen.520

Several ambient factors can be responsible for this small thermal excursion, but they are beyond the scope of this investigation.

The key information is that the MT captures the same thermal excursions within the entire temperature range collected during

the cycling sessions. Moreover, the majority of the temperature data falls into the error range across the bisector of the compar-

ison, entailing a better quality of data distribution compared to the results for the fixed-location comparison (see Sect. 4.3). A

small tendency to overestimate the air temperature from the cargo bike can be observed for each cycling section (Fig. 15). The525

linear fit displays this overestimation, suggesting the presence of an average bias of 0.3–0.5°C in the MT data (which remains

within the instrumental error range of the MT and cargo bike sensor combined).

The relative humidity measured by the MT shows the well-known overestimation problems we have observed during the

previous tests (Fig. 16a). Relative humidity from the MT is consistently outside the error range across the bisector in compar-

ison with the cargo bike, and the overestimation increases with decreasing relative humidity. This behavior is observed also530

during the winter period of the fixed-location comparison, where the increasing overestimation of the reference-station data at
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Figure 15. Air temperature T comparison between MT (subscript MT) and cargo-bike (subscript CB) measurements including all the cycling

sessions each of them identified by a separate color. The dashed purple line is the linear best fit. The dashed line is the bisector, the dotted

lines identify the range given by the sum of the MT and cargo-bike instrumental errors around the bisector, that is ±0.6°C

smaller relative humidity was associated with an increasing overestimation at larger air temperatures (see Fig 13a). Under fair

weather, the typical behavior for air temperature is to increase when relative humidity decreases, and vice versa. Therefore, an

overestimation at a large temperature would call for an overestimation at a small relative humidity as observed. However, the

result of the cargo-bike test shows that air temperature and relative humidity are completely disjoint and that the performance535

of the temperature sensor is once again far better than the relative humidity one. Applying the recursive method, the corrected

relative humidity improves the agreement with the cargo bike data. Both overestimation and the increasing discrepancy at

smaller values are partially corrected, with a general improvement in the MT data quality. Most of the corrected values of

relative humidity fall into the error range, and the fit becomes almost parallel to the bisector.

As for the fixed-location comparison, the MPE (total, positive, and negative branches) and the RMSE (total, systematic, and540

unsystematic) are computed and their values are listed in Table 6. Air temperature shows MPEs and RMSEs in line with the

winter period of the fixed-location test (see Table 5). The errors fairly describe the overestimation trend (MPE > MPEP ≫
MPEN) as a result of the MT positive bias in the air temperature (RMSEs ≫ RMSEu). The improvement introduced with the

recursive method (after 2 iterations) is quantified by the error differences between RH and RHc. The overestimation problem

of the MT remains even after the correction application, but its amplitude is drastically reduced. The recursive method decreases545

the MPE (both positive and total) by 73% and the RMSE (total and systematic) by 86%. The positive bias between the MT and

the cargo bike remains as the slight increase in the random error fraction RMSEu/RMSE is not sufficient to counterbalance

the relation RMSE≥ RMSEs ≫ RMSEu observed for the measured RH . As for the air temperature, the corrected relative

humidity has statistical errors in line with the fixed-location test (worse than winter, better than summer periods).
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Figure 16. Measured RH and corrected RHc relative humidity comparison between MT (subscript MT) and cargo-bike (subscript CB)

measurements including all the cycling sessions each of them identified by a separate color. The dashed purple line is the linear best fit. The

dashed line is the bisector, the dotted lines identify the range given by the sum of the MT and cargo-bike instrumental errors around the

bisector, that is ±4%

To further investigate the reasons for the overestimation, we inspect the incoming solar radiation and ventilation speed550

measured by the cargo bike. Being unshielded and unventilated, the MT can increase the temperature of its case or that of the

air sampled when stagnant. Both conditions can lead to an overestimation of the air temperature and uncertain implications

for the relative humidity, despite the software correction of the RECS. On one hand, the increasing temperature of the sensor

case can dry the air sample, reducing the relative humidity. On the contrary, stagnation can lead to saturation and an increase

in relative humidity. To investigate the impact of both quantities on the sensor performance, the percentage deviation of air555
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Table 6. Total (RMSE), systematic (RMSEs), and unsystematic (RMSEu) root mean square errors, total (MPE), positive (MPEP), and

negative (MPEN) mean percentage errors, and mean absolute error (MAE) computed between the measurements of the MT used as the

predictor (x) and those of the weather station used as a reference (y). Values are computed including all cycling sessions

T RH RHc

MPE 6.4% 11.5% 3.0%

MPEP 7.1% 11.5% 3.3%

MPEN -2.3% 0% -1.2%

RMSE 0.6°C 11.9% 5.4%

RMSEu 0.2°C 1.7% 1.9%

RMSEs 0.4°C 10.2% 3.5%

MAE 0.33°C 7.65% 2.58%

RMSE =
( 1

n

∑n
i=1 (xi − yi)

2)1/2, MPE =
100
n

∑n
i=1

xi−yi
xi

, MAE =
∑n

i=1 |xi − yi| with

xi the iteration of variable x from the MT, yi that for

the reference weather station, n the number of finite

data points in x. MPEP and MPEN are computed

similarly to MPE, but summing only the positive and

negative values of MPE, respectively

temperature and corrected relative humidity are computed as

∆% = 100
χMT −χCB

χMT
, (17)

where χ is either T or RHc and the subscripts refer to the MT (MT) or the cargo bike (CB). An average among bins of

incoming solar radiation serves as a bin-driven MPE (named bin-averaged percentage deviation) to compare with those in

Table 6. Specifically, the MPE is computed within bins of 50 Wm−2, averaging the ∆% for each variable. Figure 17 displays560

the percentage deviations as a function of the incoming solar radiation and the ventilation speed. As a common feature, air

temperature and relative humidity deviations cover a large range of variability. Temperature distribution displays a positive

trend, increasing the overestimation of the MT with increasing radiation. For solar radiation in the range 0–200 Wm−2, the

bin-averaged percentage deviation is close to the MPE retrieved for the whole distribution, describing a positive bias below the

8% compared to the cargo bike. At the radiation peak of the investigated period, the bin-averaged percentage error is almost565

15%, doubling the low-radiation condition. On the contrary, relative humidity has a negative trend decreasing the MT deviation

from the cargo bike with increasing radiation, reaching an overturning of the deviation sign starting at 200 Wm−2. The bin-

averaged percentage deviation is approximately 1% higher than the MPE in the range 0–200 Wm−2, while decreasing below a

value of 1% above 300 Wm−2. The ventilation speed does not show a neat impact either on temperature or relative humidity.

At 200–250 Wm−2 the percentage deviation of air temperature increases with the ventilation speed while decreasing within the570

previous and following 50-Wm−2 bin. Once again, the relative humidity deviation behaves in opposition to air temperature.
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Figure 17. Percentage deviation of air temperature T (a) and corrected relative humidity RHc (b) as a function of the incoming shortwave

radiation Sin and the ventilation speed Vs, including all the cycling sessions. The black line with diamonds is the MPE computed on each

50-Wm−2 bins of incoming shortwave radiation and plotted in the middle of the bin

The comparison with the measurements from the cargo bike has proven that:

– The recursive method is a resourceful tool for retrieving the true relative humidity of the ambient air under the standard

working condition of the MT;

– The MT tendency to overestimate both air temperature and relative humidity (mostly within the instrumental error) is a575

shortcoming of the sensor not induced by external factors (e.g., non-standard operational conditions);

– The MT can capture the thermo-hygrometrical properties of the ambient air while operating on the move with an accuracy

that resembles a certified mobile weather station, but overshoots the combined instrumental errors.
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These accomplishments support the use of the MT as a mobile weather station to monitor the mean thermal and hygrometric

state of the atmosphere.580

5 Discussion

5.1 Notes on the recursive method

The recursive method is the correction introduced to modify the value of the relative humidity through an iterative correction of

the dew point and the humidex. The underlying hypothesis of this method is that the modification imposed on the dew point is

proportional to those on humidex and relative humidity, with air temperature being constant. This hypothesis is most likely true585

as soon as the modification is small since relative humidity can oscillate around a constant air temperature. The performance of

the MT temperature sensor also suggests that large modifications can be possible, those being related to a bad MT performance

in measuring relative humidity rather than real atmospheric variability. However, no physical principles support this method,

but rather a tentative solution to adjust a biased sensor.

Being based on the error propagation theory, the recursive method is divergent by definition. Both corrective terms δTd and590

δHDX are positive at each iteration, rapidly bringing RHc to unrealistic values. The introduction of a negative sign in δTd

equation alternates positive to negative contributions to Tc; nonetheless, Fig. 18 shows a slow but continuous decrease of the

RHc with a divergent ending after several iterations. Note that the first iteration is only needed to reproduce the measurements,

Figure 18. Corrected relative humidity RHc as a function of the measured one RH at different iterations. The recursive method is built

among the full RH range and for air temperatures between -5°C and 45°C. The dashed line is the bisector

so we can argue that the true iteration is i−1. The number of iterations required to reach a non-physical value of RHc depends

on the reciprocal variation of air temperature and relative humidity. In the specific case of Fig. 18, as RH increases from 0% to595

100%, T decreases from 45°C to -5°C, covering a full range of realistic values for mid-latitudes. This implies a perfect scenario
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where air temperature and relative humidity are perfectly (and inversely) correlated, while reality mostly shows oscillations

of air temperature around each value of relative humidity and vice versa. A more complex variation of air temperature with

relative humidity modifies the effect of the recursive method, amplifying or decreasing its impact at different values of RH .

Nonetheless, the scope of this section is to argue on the divergent nature of the recursive method. Breaking the recursive600

method after a few iterations is therefore fundamental to avoid the result divergence and to ensure the final RHc is "close" to

the original RH . In a way, a small number of iterations constrains RHc to RH . For the tests conducted in this manuscript,

the recursive method only necessitated 2 iterations, involving a small decrease of relative humidity compared to the original

measurement. Although the number of tests is limited, the constant number of iterations used to reach the best agreement with

the reference can be a recipe for future applications.605

5.2 Performance comparison with other mobile sensors

The world of mobile sensors and stations comprises many suites, ranging from research-grade instruments mounted on moving

carriers to low-cost sensors specifically designed for mobile sensing. This comes with a variety of nominal (i.e., evaluated

by the manufacturer through laboratory testing under ideal measuring conditions) accuracy that depends on the quality of the

sensor’s suite. From the literature survey of this paper, the accuracy ranges between ±0.1°C to ±1°C for air temperature and610

±1.5% to ±5% for relative humidity, with the MT falling into the ranges. Under outdoor ambient conditions, operating a

sensor with a non-optimal setup (e.g., a sensor designed for monitoring in a fixed location used as a mobile device) or using

a low-cost sensor decreases the chances of meeting the manufacturer accuracy due to the response time of the instrument to

the non-stationarity of the ambient air. In this section, we contextualize the performance of the MT in comparison with its

reference to other validation studies for mobile sensors from the literature. Although aware of the limits of compatibility of the615

different mobile sensors and comparability of the collected data (Schering et al., 2022), this comparison serves as a qualitative

way to rank the performance of MTs with their competitors. We will take the results obtained for the mobile comparison

(Table 6 in Sect. 3.4) as the sensor was used under normal operational mode. Considering sensors usually mounted in fixed

stations, HOBOs (Onset Computer Corporation, USA) are the most widely used for mobile sensing due to their compact

design, moderate cost, and research-grade reliability. Among those, Qi et al. (2022) adopted a shielded HOBO MX2302 (air620

temperature accuracy of±0.2°C) mounted on a cart at 1.5 m agl. Along the measuring track, the cart passed 14 fixed stations in

the area used as a reference. The comparison showed that 80% of measurements laid into the accuracy range of the instrument,

and the MAE after reaching the optimal measuring setup was in the range of 0.14°C to 0.62°C in line with this paper. Tsin et al.

(2016) used a shielded temperature sensor (Met One 064-2, with an accuracy of ±0.1°C sampling at 10 s) mounted on a pipe;

walking sampling; comparison with fix station nearby revealed an underestimation in the range of 2°C and a poor agreement625

with data from Landsat (with a coefficient of determination R2 = 0.04–0.38). Crowdsourcing air temperature using Netatmo

urban weather stations (https://www.netatmo.com), Meier et al. (2017) obtained a RMSE in the range 0.5–1.5°C for spatially

aggregated raw data for hourly and daily urban air temperatures. A better performance was obtained by Liu et al. (2017) who

opted for a shielded HOBO-THB-M002 (air temperature accuracy of ±0.2°C) mounted on a bicycle, obtaining a RMSE and

MAE within 0.3°C when comparing the local UHI intensity obtained from mobile sensors and that from 9 reference stations630
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along the track. The bicycle is among the top choices for mobile sensing, combining a good spatial coverage of the investigated

domain and a low moving speed facilitating the comparison with the fixed reference. The bicycle is also a practical solution

for low-cost sensors owing to the low-cost philosophy (no emission, low if no energy consumption, small price of the vehicle).

Rodríguez et al. (2020) developed and tested a self-made temperature sensor obtaining a deviation from the fixed reference

along the path in line with the sensor accuracy (±0.5°C). Worse results were obtained by Vieijra et al. (2023) approaching the635

accuracy (±1°C) of its air temperature device based on the Adafruit BME280 sensor (developed by Bosch) when compared

with fixed references.

Other authors preferred to derive the real accuracy of the mobile sensor in isolated chambers before using it in the field.

Although close to ideal conditions, this test offers a second accuracy computation independent from the manufacturer. Selected

chambers for the scope are calibration ovens (Skoulika et al., 2014) and isolated chambers (Cao et al., 2020), where variations640

in temperature and humidity are controlled. In the study from Skoulika et al. (2014) the real accuracy of the BC15 thermo-

hygrometer sensor (TROTEC International GmbH & C. S.a.s.) was estimated in the range of ±0.2°C to ±1°C, while Cao

et al. (2020) reaches a maximum real accuracy of ±0.48°C and ±1.9% for the sensor suite unit Smart-T (developed at Yale

University). Although we cannot perform a similar experiment, we can have an evaluation based on the field experiment,

knowing that we were exposed to a higher and faster ambient variability than the laboratory tests. Being a mean approximation645

of data distribution, the linear fit for air temperature and relative humidity from the mobile test can be used to infer the outdoor

accuracy of the MT. We can argue that the outdoor accuracy for air temperature is in the range ±0.3°C to ±0.5°C while

the corrected relative humidity ranges between ±3% and ±5%, both values in line with the ranges depicted in the from the

literature.

Finally, Cecilia and Peng (2022) performed a first validation test of the MT, monitoring the air temperature and relative650

humidity against two 5400 WBGT Heat Stress Tracker (Kestrel Instruments) along a bicycle path traveled at low speed. The

comparison showed a large agreement between the MT with its references, with a coefficient of determination for both variables

R2=0.74 compared to R2=0.64 obtained as an average of all sessions performed within the carbo-bike experiment of this paper.

6 Conclusions

This paper explores the outdoor performance of a novel mobile sensor in performing consistent measurements of atmospheric655

microclimate characteristics. The sensor under investigation is the MeteoTracker, a mini-weather station suitable for monitoring

the thermo-hygrometric environment on the move. Three validation tests have been performed in three different urban contexts

to evaluate the sensor precision and accuracy compared to the reference, under different climates and seasons. Specifically,

the city center of Bologna hosted an intra-sensor variability test to ensure the consistency of measurements from different

MTs under similar ambient conditions. In Genova, a comparison with a reference meteorological station has been performed660

using the MT as a fixed monitoring station. Finally, a comparison with reference sensors has been carried out in Wageningen

under normal operation mode, thanks to the instrumented cargo bike developed herein. Several statistical parameters have

been adopted to quantify the MT performance in all tests, and compared with similar sensors from the literature. Satisfactory
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performance was reached by the MT when the RMSE of each test was close to the instrumental errors of the involved sensors,

which is sufficient for the scopes the sensor was built for, i.e., crowdsourcing monitoring. The results showed that under665

optimal operational use (on the move), only the air temperature satisfied the required performance with high-quality statistical

scores, that is RMSE smaller than the sensor accuracy and MPE ≤ 6.4% due to a positive bias. The relative humidity was

the worst performing variable with large intra-sensor variability (MAPE up to 32%) and discrepancy from the reference (with

similar RMSE and MPE between 9% and 20% according to the test). The other measured variables or derived quantities were

affected by large statistical errors when dependent on the relative humidity, while pressure and altitude scored satisfactorily670

but improvement could be made.

Data-driven corrections were derived from known analytical formulations and online services for the bulk atmosphere and

revealed mandatory for a quality improvement of atmospheric pressure, location altitude, relative humidity, dew point, and

humidex index. Altitude was recomputed at each GPS location using a web server and the result corrects the atmospheric

pressure through the psicrometric formula. Dew point, humidex, and relative humidity were involved in a recursive method675

based on bulk formulations of all three quantities that consistently improved after two iterations regardless of the experimental

type conducted in this investigation. Despite the corrections, the general trend of the MT is to overestimate the reference sensor

more often by a constant factor (bias) and less so by random uncertainty. The validation tests also revealed the role of ancillary

variables on air temperature and relative humidity. Solar radiation proves to have contrasting impacts on the MT performance:

an increase in solar radiation intensity enhances the gap between the air temperature measured with the MT and the cargo bike,680

decreasing the performance of the first sensor; on the contrary, relative humidity reduces the sensor’s gap with increasing solar

radiation, enhancing the performance of the MT.

The outdoor performance of the MT aligns with most of the mobile sensors whose accuracy and precision were evaluated

in the field. Its real outdoor accuracy falls in the range found in the literature for similar mobile sensors, and it is observed

between ±0.3°C and ±0.5°C for air temperature and between ±3% and ±5% for relative humidity. However, this partial and685

very qualitative ranking does not account for the disparity in the cost of the sensors nor the different experimental designs

used to assess the outdoor their real accuracy. Considering the trademark between the cost and the quality of the sensor, the

MT marks itself as a valid solution from crowdsourcing experiments to long-term route monitoring, providing quality data for

atmospheric monitoring.

Data availability. Data from the MeteoTrackers are available for visualization on the customized platform at https://app.meteotracker.com/690

under the authors name ”bologna_living_lab_ ∗ ”, ”genova_living_lab_ ∗ ” and ”amsterdam_living_lab_ ∗ ”, where ∗ is a one-to-two

digit number representing the MT ID in the location. Reference data can be made available upon request.
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