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Abstract. This work introduces the novel short-term nowcasting model MACIN, which predicts direct normal irradiance (DNI)

for solar energy applications based on hemispheric sky images from two all-sky imagers (ASI). With a synthetic setup based

on simulated cloud scenes, the model and its components were validated in depth. We trained a convolutional neural network

::
on

::::
real

:::
ASI

::::::
images

:
to identify cloudsin ASI images and derive their

:
.
::::::::::
Cloudmasks

:::
are

::::::::
generated

:::
for

:::
the

::::::::
synthetic

::::
ASI

::::::
images

::::
with

:::
this

::::::::
network.

:::::
Cloud

:
height and motion

::
are

:::::::
derived

:
using sparse matching. In contrast to other studies, all derived cloud5

information from both ASIs and multiple timesteps are combined into an optimal model state using techniques from data

assimilation. This state is advected to predict future cloud positions and compute DNI for lead times up to 20
::
20

:
minutes. For

the cloudmasks derived from the ASI images we found a pixel accuracy of 94.66% compared to the references available in

the synthetic setup. The relative error of derived cloud base heights is 4% and cloud motion error is in the range of 0.1ms−1.

For the DNI nowcasts, we found an improvement over persistence for lead times larger than one minute. Using the synthetic10

setup, we computed a DNI reference for a point and also an area of 500m× 500m. Errors for area nowcasts as required, e.g.,

for photovoltaics plants, are smaller compared to errors for point nowcasts. Overall, the novel ASI nowcasting model and its

components proved to work within the synthetic setup.

1 Introduction

Clouds are a major modulator of atmospheric radiative transfer,
::
as showcased by their ability to shadow the ground. This influ-15

ence on the irradiance impacts the production of renewable energy through photovoltaic (PV) and concentrating solar power

(CSP) plants. These fluctuations in produced power are a limitation for the usability of PV power. Unexpected variations in

power production poses
:::
pose

:
a challenge for the integration into power grids (Katiraei and Agüero, 2011). Prior knowledge of

upcoming fluctuations and therefore short-term irradiance prediction can help to mitigate this drawback of PV power produc-

tion (West et al., 2014; Boudreault et al., 2018; Law et al., 2016; Chen et al., 2022; Samu et al., 2021; Saleh et al., 2018, e.g.,)20

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., West et al., 2014; Boudreault et al., 2018; Law et al., 2016; Chen et al., 2022; Samu et al., 2021; Saleh et al., 2018).

Especially knowledge of future direct irradiance is important for solar energy applications as it
:::::
Since

:::::
direct

::::::::
irradiance

:
can

be blocked completely by clouds within seconds to minutes
:
,
:::::::::
knowledge

::
of

:::::
future

::::::
direct

::::::::
irradiance

::
is

:::::::::
especially

::::::::
important

:::
for

::::
solar

::::::
energy

:::::::::::
applications.

::::::
Diffuse

:::::::::
irradiance

:::::::
depends

::
on

::::::::
complex

:::
3D

:::::::
radiative

:::::::
transfer

:::::::
through

:::
the

::::::::::
atmosphere.

:::::::::
Variations

::
in

::::::::
irradiance

::
on

:::
the

::::::
ground

:::
are

:::::::
relevant

:::
for

::::
solar

::::::
energy

::::::::::
applications

::::::
mainly

:::
due

::
to

::::::::
variations

::
in

:::::
direct

::::::::
irradiance

::::::::::::::::
(Chow et al., 2011)25
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:
.
::::
This

:::::
study

::
is

:::::::
therefore

:::::::
focused

:::
on

:::::
direct

:::::::::
irradiance.

::::::::::
Nowcasting

::
of

::::::
diffuse

::::
and

::::::
global

::::::::
irradiance

::
is

:::
not

:::::::::
addressed. Multiple

models for intra-hour direct normal irradiance (DNI) nowcasting have been developed to predict this
:::
the variability of direct

irradiance. Many of these rely on so called all-sky imagers (ASI), ground based cameras capturing
:::
that

::::::
capture

:
hemispheric sky

images (e.g., Peng et al., 2015; Schmidt et al., 2016; Kazantzidis et al., 2017; Nouri et al., 2022)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Chow et al., 2011; Peng et al., 2015; Schmidt et al., 2016; Kazantzidis et al., 2017; Nouri et al., 2022)

. The general idea is to extract cloud information from these images, predict future cloud positions and accordingly estimate30

irradiance for the next minutes. The applicability of low cost consumer grade cameras makes setups with multiple ASIs fi-

nancially feasible, and increasing sizes of installed PV plants also require more measurement positions to expand nowcasted

:::::::
nowcast areas. The eye2sky

:::::::
Eye2Sky (Blum et al., 2021) network showcases the widespread use of multiple ASIs for regional

coverage and nowcasting.

Common tasks for ASI based DNI nowcasting are the extraction of cloud position and motion. Li et al. (2011) established35

a method for the classification of
::
to

::::::
classify

:
pixels based on color values and thresholding. A similar method exploiting a

library of reference clearsky images was introduced to
::::::
extend

:::
this

:::::::
method

:::
and

:
consider different atmospheric conditions and

background variations for the large field of view of ASI
::::
ASIs (Shields et al., 2009; Chow et al., 2011; Schmidt et al., 2016).

Also convolutional neural networks (CNN) have been proven to work beneficially for these tasks (Ye et al., 2017; Dev et al.,

2019; Xie et al., 2020; Hasenbalg et al., 2020) when trained on densely labeled data. Fabel et al. (2022) demonstrated the use of40

a CNN to distinguish not only clear and cloudy pixels, but further separated clouds into three subclasses for low, mid,
:
and high

layer clouds. Further on, Blum et al. (2022) projected cloudmasks of multiple imagers onto a common plane and combined

them for an analysis of spatial variations of irradiances. Exceeding the focus on cloudmasks, Masuda et al. (2019) combined

a camera model and
:::
with

:
synthetic images of LES cloud fields to derive fields of cloud optical depth from images

:::::
instead

:::
of

:::::
simple

::::::::::
cloudmasks.45

Setups with multiple ASIs allow for the estimation of cloud base height using stereography (Nguyen and Kleissl, 2014;

Beekmans et al., 2016; Kuhn et al., 2018b). Nouri et al. (2018) used four ASIs to derive height information and even a 3-

dimensional cloud representation for irradiance nowcasting. Three ASIs were used by Rodríguez-Benítez et al. (2021) for

three independent DNI nowcasts
:
, which are finally averaged into a mean DNI nowcast.

Whilst measurements of irradiance through pyranometers are point measurements, nowcasting methods are usually targeted50

at solar power plants and therefore receiver areas. Kuhn et al. (2017b) compared nowcasts against
::::::::::::::::
Kuhn et al. (2017a)

::::::
derived

area irradiance values derived using a camera monitoring shadows on the ground in combination with point irradiance mea-

surements(Kuhn et al., 2017a). They found improvements compared to
:
.
::::
ASI

::::::::
nowcasts

:::
for

:::::
areas

::::
were

::::::
found

::
to

::::::::::
outperform

persistence for situations with high irradiance variability .
::::::::::::::::
(Kuhn et al., 2017b)

:
.
::::::::::::::::
Nouri et al. (2022)

::::::::
computed ASI nowcasts for

eight pyranometer measurement sites distributed over roughly 1km2were computed in Nouri et al. (2022). This study found55

reduced errors if nowcasts and measurements were averaged over all sites before error calculation in comparison to errors of

individual point nowcasts.

Apart from application on real world images, Kurtz et al. (2017) applied a DNI nowcasting model to synthetic ASI images

of cloud scenes from large eddy simulation (LES) models. These
:::
The

:
images were generated using a 3D radiative transfer
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model. This synthetic application comes with the advantage of optimal knowledge of the atmospheric state , which was used to60

showcase
:::
and

::::::
allows

::
for

::::::::
extended

:::::::::
evaluation.

::::
The

:::::
study

:::::::::
showcased the problems introduced by the viewing geometry of ASIs.

In this studywe introduce the
:
,
::
we

:::::::::
introduce

:
a
:
novel model for all-sky image based cloud and direct irradiance nowcasting

(MACIN) and use synthetic data to validate and apply it. This DNI nowcasting model is based on a setup with two ASIs. We

use state of the art techniques, e.g., to derive cloudmasks using a CNN which
:::
that was trained on sparsely labeled data. Further

on, cloud
:::::
Cloud

:
base height (CBH) is derived by stereography and cloud motion by sparse matching. This derived data

:::
The65

::::::
derived

:::::
cloud

::::::::::
information is fed into a horizontal model grid using a method inspired by data assimilation, which

:
.
:::
The

:::::::
method

has similarities to the cloudmask combination of Blum et al. (2022) but allows to use images of
::
the

:::
use

::
of

::::::
images

:::::
from multiple

timesteps and is used for nowcasting future states and not just analyzing the current situation. Predicted cloudiness states are

projected to the ground and converted into DNI. We apply the techniques to synthetic ASI images generated from simulated

LES cloud fields. This allows us to validate the derived quantities as well as the overall nowcast performance. Further on, this70

allows for in depth validation of DNI nowcasts not just for single point measurements but also for areasas it ,
::::::
which is important

for PV and CSP plants. Sect. 2 describes the synthetic data used throughout the study, the methods to derive information from

ASI images as well as the MACIN nowcasting model. Additionally, the
:::
The

:
quantities and metrics used for validation are

explained
::
in

:::
this

::::::
section

::
as

::::
well. Sect. 3 describes the validation of derived cloudmasks, cloud base height, and cloud motionas

well as
:::::
cloud

::::::
motion,

::::
and the full DNI nowcasting model. The results

::::::
Results of the validation are analyzed and discussed to75

affirm the presented methods and explain error sources. Conclusions can be found in Sect. 4 as well as a brief description of

possible follow-up work.

2 Methods

In this section the basics about the data and methods used is described
:::
The

::::::::
methods

:::
and

::::
data

:::
are

::::::::
described

::
in

:::
this

::::::
section. This

includes an explanation of the synthetic data and all-sky images as well as the methods used to derive information about clouds80

in Sect. 2.1. The DNI nowcasting model which
:::
that

:
utilizes this information is outlined in Sect. 2.2. Additionally, reference

::::::::
Reference

:
quantities and metrics for validation are given in Sect. 2.3.

2.1 Synthetic data and all-sky images

The synthetic data has been prepared by Jakub and Gregor (2022). This dataset is a 6h LES run computed with the cloud

model UCLA-LES (Stevens et al., 2005). The horizontal
:::::::::
Horizontal resolution is 25m and LES output fields are given every85

10s. The initial atmospheric profile was chosen to produce a single shallow convection cloud layer with cloud base height of

roughly 1000m developing from cloud fraction of 0% in the beginning to roughly 100% at the end of the simulation after 6h.

For
:::
The

::::::
reader

::
is

:::::::
referred

::
to

:::::::::::::::::::::
Jakub and Gregor (2022)

::
for

:
more details and impressions of the cloud scenes used in this study,

the reader is referred to Jakub and Gregor (2022).

This dataset provides realistic cloud situations and the possibility
:::::
allows

:
for detailed benchmarking. Primarily, the variable90

cloud
:::::
Cloud liquid water content (lwc) is used

:::
the

::::
most

::::::::
important

:::::::
variable

::
of

:::
the

::::::
dataset

:::
for

:::
this

:::::
study. To calculate

:::
the optical
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properties of clouds, the effective radius is
:::
also

:
needed. Since the LES output field does not contain this information, a fixed

number density of 120 · 106m−3 was assumedand .
::::

The
:
effective radius of cloud droplets was calculated following Bugliaro

et al. (2011). For simplicity, other atmospheric parameters like water vapor, temperature, pressure,
:
and molecular composition

from the LES output are neglected within this study and the US Standard Atmosphere (Anderson et al., 1986) is assumed.95

While these atmospheric parameters and their variations are in general not negligible for radiative transfer, the setup for this

study was simplified to focus on clouds as a major modulator of irradiance. Within this study, the sun was assumed to be at a

constant zenith angle of 30◦ to the south.

For synthetic images generated from these LES cloud fields we
:::
We

:
assume a fisheye camera model corresponding to

the OpenCV fisheye module Bradski (2000)
:::
for

::::::::
synthetic

::::::
images

:::::::::
generated

::::
from

:::::
these

::::
LES

::::::
cloud

:::::
fields. The parameters100

for this projection model were derived by
::::
from

:::
the

:
calibration of a CMS Schreder ASI-16 camera. This ASI features a

::
an

180◦ FOV fisheye objective to capture hemispheric images of the cloud situation. Within this study , we use two different

approaches to generate
::::
This

::::
study

::::::::
employs

:::
two

:::::::
distinct

:::::::::
approaches

::
to
:::::::::
generating

:
all-sky images from LES cloud scenes. For

both approaches, we
:::
We

:
generate images with the viewing geometry derived according to the fisheye camera model for an

::
the

:
ASI-16 imager

::::::
camera. As our methods are developed to work with cameras , which

:::
that

:
are not necessarily calibrated105

spectrally, the images are only roughly optimized to resemble
:::
the colors of the ASI-16. We use a simple spectral camera model

with whitebalance, black level, gamma correction,
:
and an upper intensity limit to convert radiances into pixel values.

One of the image generation methods uses synthetic radiances from the Monte Carlo 3D radiative transfer model MYSTIC

(Mayer, 2009), which does not introduce any simplifying assumptions in radiative transfer. These radiances can be converted

into synthetic images using the camera model. While MYSTIC radiances are physically correct, they are computationally110

expensive. Computation of these radiances for a single image require multiple cpu-hours
::::::
requires

:::::::
multiple

:::::
CPU

:::::
hours

:
and

therefore this approach was used for 29 images with a resolution of 240× 240 pixel only. In contrast, our second approach is

only a rough approximation of radiative transfer. We use a ray-marching technology commonly applied in the computer gaming

industry (eg; Schneider, 2018; Hillaire, 2016)
:::::::::::::::::::::::::::::::
(e.g.; Schneider, 2018; Hillaire, 2016) to trace through volumetric media. For

every pixel, many
::::
Many

:
small steps along the line of sight are marched through the atmosphere

::
for

:::::
every

:::::
pixel. At every step,115

the in-scattered light into the line of sight of the simulated imager is computed using local optical properties of the atmosphere.

This is summed up to compute the overall light reaching the simulated imager. Schneider (2018) computes at each step the

direct radiation from the sun
::
at

::::
each

::::
step to estimate the amount of light scattered into the direction

:::
line

::
of

::::
sight

:
of the imager.

With this approach, multiple
:::::::
Multiple scattering is only roughly parametrized

::
in

:::
this

:::::::::
approach, although it may be dominant

in regions of high cloud optical thickness. Therefore, we
::
We

::::::::
therefore

:
use the original marching together with a different120

method to calculate the amount of in-scattered light. Direct and diffuse irradiances are calculated with a two-stream radiative

transfer model (Kylling et al., 1995) on tilted independent columns of the LES cloud field. For each ray-marching step, the local

irradiances are used to estimate the amount of direct and diffuse light scattered towards the simulated imager. This technique

is implemented using the OpenGL framework and allows us to generate images of 960× 960 pixel within seconds. Generated

images are interpolated to the original ASI resolution in a postprocessing step for both generation methods. Figures 1a-c show125

a real world image and
::
as

:::
well

:::
as images generated using MYSTIC and ray-marching. Because of the low computational cost
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(a) (b) (c)

(d) (e) (f)

clearsky undecided cloudy 0 2 4 6 8 10

Figure 1. (a) Real ASI image captured with a CMS Schreder ASI-16 in the Bavarian countryside (48°10’50.3"N, 11°00’27.4"E) on 14

July 2020. (b-d) Synthetic images for LES time 9900s generated using (b) MYSTIC, (c) ray-marching and (d) ray-marching followed by

projection. (e) Cloudmask derived from the projected ray-marching image and (f) LES cloud optical depth τ in
::
the line of sight with additional

yellow contour illustrating τthresh = 1.0. Only few pixels are labelled undecided by the CNN as depicted in (e).

of image generation, we work with ray-marching images throughout this work if not stated otherwise. We derived cloudmasks

from both MYSTIC and ray-marching images to confirm the usability of the latter for our purpose.

As a first step in working with the generated images, the camera model is applied to project them onto a horizontal
:
, ground

parallel image plane. During this reprojection, image features may be distorted and blurred. However, it
:::
But

::::::::::
reprojection

:
allows130

to work on a projected
::
an image plane parallel to the ground simplifying further image processing. Figures 1c and 1d display

an image as captured by the ASI and its projected correspondence as generated using ray-marching. While the original ASI

resolution is of 1920× 1920 pixel, we project images to 480× 480 pixel for use within our nowcasting model.

2.1.1 Cloudmasks

The most important information to obtain from all-sky images is the classification of pixels as cloudy or clear. Convolutional135

neural networks (CNN), which are commonly applied for image segmentation,
:

have also been applied to images of clouds to

generate cloudmasks (e.g., Dev et al., 2019; Xie et al., 2020; Fabel et al., 2022). Also our
::::
Our cloudmask derivation relies on

CNN , we
::
as

:::::
well.

:::
We used the DeeplabV3+ network structure (Chen et al., 2018). The set up

::::
setup

:
and training of the CNN is

::
are

:
outlined briefly in the following, a more detailed explanation can be found in Appendix A1 as well as an description of how

the training data was labeled by hand
:
a
::::::::::
description

::
of

:::
the

:::::
hand

:::::::
labeling

::::::
process

:::
of

::::::
training

:::::
data.

::::
Real

:::::
world

:::::::
images

::::
from

:::
an140
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::::::
ASI-16

::::
were

::::::
chosen

:::
for

::::
this

::::::
training

::::::
dataset

::
to

:::::
avoid

:::::::::
overfitting

::
to

::::::::
generated

::::
ASI

::::::
images

::
of

:::
the

::::::
limited

::::
LES

::::::
dataset

::::
and

:::::
allow

::
for

::::
easy

::::::
future

:::::::::
application

:::
of

:::::::
MACIN

::
to

::::
real

:::::
world

::::::
setups.

::::
Note

::::
that

::::
this

:
is
::::

the
::::
only

:::
real

::::::::::::
measurement

::::
used

:::::::::
throughout

::::
this

:::::
study,

::::::::::::
measurements

::::::::
otherwise

::::
refer

::
to
:::::::::
generated

::::
ASI

::::::
images

:::
and

:::::::::
simulated

::::
DNI. Training was done using 793 hand labeled

projected images from the ASI-16 depicting various cloud situations. Segmentation classes are cloudy, clear
:
,
:
and undecided.

As the definition of cloudy and clear areas in images is often hard even for human observers, the CNN training is designed145

to ignore undecided image regions. The CNN is set up to reproduce the cloudy and clear labeled regions, but is free to fill

in regions labelled
::::::
labeled

:
as undecided by hand without impact on

::::::::
impacting

:
the training. The CNN thus fills in regions for

which the cloud state is ambiguous or indistinctable to humans based on the definition of cloudy and clear for regions, where

this is obvious for humans. From the CNN, we obtain cloudmasks as a segmentation of an ASI image into the classes cloudy,

undecided
:
, and clear with respective scalar values of 1.0, 0.5

:
, and 0.0. Figures 1d and 1e give a synthetic image and the derived150

cloudmask. For comparison, the LES cloud optical depth (τ ) traced in
:::
the line of sight for each pixel is given in Fig. 1f.

2.1.2 Cloud base height from stereo matching

In order to map cloudmasks to 3-dimensional coordinates, cloud base height (CBH) is required. For the experiments presented

here, two ASIs are located in a 500m
::::
500m

:
north-south distance. I.e., for each timestep two viewing angles can be exploited

to derive CBH. Features from simultaneous ASI images of the same cloud scene are sparsely matched using efficient coarse155

to fine patchmatch (CPM; Hu et al., 2016), a pixel based pyramidal matching method. For a grid of pixels on the first input

images, DAISY feature descriptors (Tola et al., 2010) are computed and their best matching counterparts in the second image

are determined. As a result, we obtain a list of matched pixels from both images, which are supposed to depict the same part of a

cloud. We use the derived cloudmasks to filter matched pixels, these must be marked as cloudy in the corresponding cloudmasks

for both images to be accepted. Using the known camera geometry, a cloud base height can be derived for each matched pair160

of pixels with the mis-pointing method developed by Kölling et al. (2019). This results in up to multiple thousand feature

positions per pair of simultaneously captured images which theoretically allows for a fine grained treatment of CBH. However,

the nowcasting model presented in this study currently assumes a single cloud layer. Therefore an image wide average CBH is

derived from the mean height of the feature positions.

2.1.3 Cloud motion165

To predict future shading by clouds, cloud
:::::
Cloud

:
motion needs to be derived

::
to

::::::
predict

:::::
future

:::::::
shading

:::
by

::::::
clouds. Using the

CPM matching algorithm on consecutive images taken in intervals of 60s, we obtain matches describing the displacement

of features. The computed
:::::::::
Computed cloudmasks are used again to exclude matches lying outside of detected cloud areas.

The average
::::::
Average

:
image cloud base height and the camera model is

:::::
camera

::::::
model

:::
are

:
used to scale the detected pixel

movement to physical velocities within the assumed plane of clouds. A dense cloud motion field is obtained by nearest neighbor170

interpolation of these sparse velocities.
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2.2 Nowcasting model

The nowcasting model presented in the following uses the derived cloudmasks, CBH and cloud motion to predict future cloud

situations and corresponding irradiance estimates. Therefore, cloudmasks
::::::::::
Cloudmasks

:
and cloud motion are represented as

variables on a horizontal 2-dimensional grid, which will be referred to as cloudiness state and velocities. The 2-dimensional175

grid and all input data is
:::
are assumed to be on one ground parallel horizontal

::::::::
horizontal,

::::::
ground

:::::::
parallel level at the height given

by the derived CBH, multi-level .
::::::::::
Multi-level clouds are not yet represented as such by our model. Using a simple advection

scheme, future
:::::
Future states of these 2-dimensional fields are predicted . From

::::
using

::
a

::::::
simple

::::::::
advection

:::::::
scheme.

:::::::::
Irradiance

:::::::
estimates

::::
are

::::::::
computed

:::::
from these future cloudiness states, irradiance estimates are computed. To exploit all

:
.
:::
All

:
derived

cloudmasks and cloud motions , these are combined into an optimized initial state of the horizontal 2-dimensional fields. The180

nowcasting model therefore consists of three major parts: a simple advection method, a method inspired by data assimilation

to determine the initial state,
:
and a radiative transfer parametrization to calculate DNI from the cloudiness state. These three

parts are explained more closely in the following.

2.2.1 Advection scheme

The nowcasting model is based on a 2-dimensional grid with grid spacing of ∆x= ∆y = 10m and number of grid points185

N =M = 1600 in x- and y-direction respectively, therefore covering 16km×16km. Variables on each grid point are cloudiness

state cm and cloud velocities
:
u
::::
and

:
v in x- and y-direction , u and v

::::::::::
respectively. Starting from an initial state at the first iteration

t0 = 0s and a temporal resolution of ∆t= 60s, future cloudiness states at times ti = t0 + i ·∆t are computed using advection

as

cmti+1(n,m) = cmti(ñ, m̃), (1)190

ñ= n− int(λ ·u(n,m)), (2)

m̃=m− int(λ · v(n,m)), (3)

where λ= ∆t/∆x. As the grid points require discrete coordinates, the
:::
The

:
coordinates (ñ, m̃) determined by advection using

physical velocities are restricted to
::::::
discrete

::::
grid

::::::::::
coordinates

:::
and

::::::::
therefore

:
integers. This constrains actually representable

velocities to multiples of ∆x/∆t. Continuous boundary conditions are assumed. The same advection scheme is applied to the195

horizontal velocities fields ut(n,m) and vt(n,m) as well.

2.2.2 Data Assimilation

Cloudmask and horizontal velocity field from one imager at a single time
:::
and

:::::::
timestep together with an estimation of cloud base

height would be sufficient to initialize the advection model. However, for each nowcast we do have cloudmasks and velocities

from two imagers with different viewing geometries and multiple timesteps. In order to make use of as much information200

as possible for the initial state, we therefore employ a method similar to 4D-var data assimilation (Le Dimet and Talagrand,

1986) in numerical weather prediction models. The general idea is to define a scalar function of an initial model state , which
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:::
that

:
measures differences of model states and measurements. This so called cost function is then iteratively minimized to find

an optimal model state for the given measurements and cost function.
::
We

::::::::
reference

::::::::::::::
”measurements”

::
in

::::
this

::::::
section

::::
and

:::
the

::::::::
following.

:::
We

:::::::
thereby

:::::
mean

:::
the

:::::::
synthetic

:::::::::
generated

:::
ASI

:::::::
images

:::
and

::::::::
simulated

::::
DNI

::::::
values

:::
and

:::
not

::::
real

::::::::::::
measurements.

:
205

Of course, the
:::
The difference of model state and measurements has to be minimized

:::::
needs

::
to

:::
be

:::::::
assessed

:
at matching

times. Therefore, model
:::::
Model

:
states for multiple time steps are

:::::::
therefore

:
computed from the initial state at time t0 using the

previously described advection M . Model cloudiness states at time tk will be denoted as cm(tk) =M(cm, tk) with the initial

cloudiness state cm. Horizontal velocities u and v are described analogously. We define the cost function J for L timesteps in

the interval [t0, tl] and two ASIs (p ∈ 1,2) as210

J(cm,u,v) =
∑
N,M

L∑
l=0

2∑
p=1

(
1

σcm
· (cm(tl)− cmmeas,l,p)

2 (4)

+
1

σuv
· (u(tl)−umeas,l,p)

2

+
1

σuv
· (v(tl)− vmeas,l,p)

2

)
+R(u,v)

with measurements of cloudmasks cmmeas,k,l ::::::::
cmmeas,l,p:

and horizontal velocities at timestep k from imager l
:
l
::::
from

::::::
imager

::
p215

interpolated to the model grid. For better readability, the summation
:::::::::
Summation over all grid points is indicated by

∑
N,M :::

for

:::::
better

:::::::::
readability. The coefficients σcm = 0.1 and σuv = 10.0ms−1 are supposed to account for uncertainties in the respective

measurements but are mainly used as tuning parameters here. More complex, non-scalar coefficients could differentiate e.g.

for varying measurement quality within ASI images or between different imagers but require characterization of the system,

which is usually not available. The additional regularization term denoted as R(u,v) is used to suppress measurement errors,220

especially outliers in the velocity fieldas .
::
In

::::::
detail,

:
it
::
is
:

Ruv(u,v) = σR,uv ·
(

(∇u)
2

+ (∇v)
2
)

(5)

The
:::
with

:
tuning parameter σR,uv = 250s−1 was chosen to smooth the velocity field. As cloudmasks are especially hard to

derive from ASI images in the bright region of the sun, measurement values are excluded from assimilation , if they are

derived from an image region of 2.5◦ around the sun. This excludes not only erroneous
::::::::
Erroneous

:
cloudmask values derived225

for the bright sun but also
:::
and zero velocities derived from the static sun position

:::
are

::::::
thereby

::::::::
avoided.

::::
Fig.

:
2
:::::::::
illustrates

:::
the

::::::::::::
measurements,

::::
first

:::::
guess,

:::
and

:::::::
analysis

:::::
state

::::
after

::::::::::
assimilation

:::
for

::
an

:::::::
example

:::::::::::
assimilation

:::
run. Due to the limited complexity

of the advection scheme and the high resolution observations from images, a background state is not used.
:::::
Model

:::::
states

:::
of

:::::::
previous

:::::::
nowcast

::::
runs

:::
are

:::
not

::::
used

::::::
within

:::::::::::
assimilation.

:
This means successive nowcast runs are independent

:
,
:
as states from

previous model runs for the nowcast start time are not considered in additional terms in Equ. 4.
:::::::
Average

:::::::::
cloudiness

::::
state

::::
and230

::::::::
velocities

::::
from

::
all

::::::::::::
measurements

::::::::
available

::
at

:::
the

::::
time

::
of

:::
the

:::::
initial

::::
state

:::
are

::::
used

::
as

:
a
::::
first

:::::
guess

::
for

::::
cost

:::::::
function

::::::::::::
minimization.

The cost function is minimized using the bounded L-BFGS-B algorithm (Zhu et al., 1997). For efficient optimization, the

advection model and cost function were implemented using the PyTorch framework (Paszke et al., 2019), which allows for
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Figure 2.
::::::::
Illustration

::
of

::::::::
cloudmask

::::::::::::
measurements,

:::::
derived

::::
first

::::
guess

::::
used

::
for

:::::::::
assimilation

::::
and

::::::
analysis

::::
state

::::
found

::
by

::::::::::
assimilation

::
for

::::
LES

:::
time

:::::::::
t0 = 8940s.

::::::
Shown

:
is
:::
the

::::::::
cloudiness

::::
state

:::
and

:::
the

::::
inner

:::::::::
8km× 8km

::
of

:::
the

::::::
domain.

:::
The

::::::
analysis

::::
state

::
is

:::
less

::::
sharp

:::
on

::::
cloud

:::::
edges

:::
due

:
to
:::::::::::
consideration

:
of
:::::::

multiple
::::::::
cloudmask

:::::::::::
measurements.

:

automatic calculation of the adjoint of the cost function. The optimized model state is finally used for the actual nowcast as
:::
the

initial state of the advection model.235

2.2.3 Radiative transfer parametrization

Direct solar irradiance is reduced by interaction with molecules, aerosol and clouds. For this study, we assume that short

term changes in direct irradiance are mainly caused by clouds and neglect other variations. DNI is parametrized using previ-

ous irradiance measurements on site together with predicted cloudmasks. The idea
:::::::::::::
”Measurements”

::
in
::::

the
::::::::
following

:::
do

:::
not

:::::::
describe

:::
real

::::::
world

::::::::::::
measurements

::::
with,

::::
e.g.,

::
a
:::::::::::
pyranometer,

:::
but

:::::::
instead

::::
DNI

::::::
values

::::::::
simulated

:::
for

::::
LES

:::::::
scenes.

:::
The

::::
idea

:::
of240

::
the

::::::::::::::
parametrization is to derive references for occluded and non-occluded cases from the measurements. Depending on the

cloudiness state, the DNI is then interpolated from these references. Therefore, a time series of clearsky index values (CSI) k

is constructed from DNI measurements as the ratio of measurements and a simulated clearsky DNIclear. From this time series,

values for k are extracted for two sub-seriesfor
:
: occluded (k > 0.9) and non-occluded (k < 0.1) timesrespectively. We define

the occluded CSI koccl and non-occluded CSI kclear as the exponentially weighted mean with a half life time of 10min from the245

respective measurement subsets. CSI values for a non occluded and a fully occluded sun are interpolated linearly. Therefore, a

:
A
:

sun disk of 0.5◦ opening angle and at the given sun elevation and azimuth is projected onto the 2-dimensional model grid.

The mean cloudiness state of all grid points in the sun disk (cmsun) is used to calculate DNI for time t as

DNI(t) = DNIclear · ((1− cmsun(t)) · kclear + cmsun(t) · koccl) (6)

9
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Figure 3. Measurement
:::::
Spatial

:
setup used within

::
for

:
the synthetic data experiments with

::::::::
conducted

::
in

:::
this

:::::
study.

:::::
Shown

:::
are

:::
the

::::::
ground

::::::::
coordinates

:::::
within

:::
the

::::
LES

::::::
domain.

:::::::
Synthetic

::::::
all-sky images for

::::
were

:::::::
generated

::
at points P0, P1 ,

:::
and P2as well as DNI references

:
.
:::::
Direct

:::::
normal

::::::::
irradiance

:::
was

:::::::
simulated

:::
for

::::
point

::
P1

:::
and

::::
area

:::
A1.

:::::::
Nowcasts

:::
rely

:::
on

:::::
images

::::
from

::
P1

::::
and

::
P2

:::
and

:::::
predict

:::::
values

:
for point P1 and area

A1
:
.

The exponentially weighted mean is used for the computation of koccl and kclear in order to smooth latest fluctuations and250

provide a values for all times.

2.3 Synthetic data experiment setup

The synthetic setup allows us to compare quantities derived by our
::
the

:
nowcasting model to synthetic reference values. Within

this study we simulate a measurement setup as shown
::::
setup

::::::
around

::
a

:::::::
fictional

::::::::::::
500m× 500m

:::
area

:::
PV

::::::
power

:::::
plant.

::
As

::::::::
depicted

in Fig. 3
:
,
::::::
all-sky

::::::
images

:::
are

:::::::::
generated

:::
for

::::::::
synthetic

:::::::
imagers

::
at

::::::::
positions

::
P1

::::
and

:::
P2

:::::::
centered

:::
on

:::
the

::::::::
northern

:::
and

::::::::
southern255

:::::::::
boundaries

::
of

::::
this

::::
area.

::::::
Direct

::::::
normal

:::::::::
irradiance

:::::
values

:::::
were

:::::::::
calculated

:::
for

::::
point

:::
P1

::::
and

:::
the

:::
full

::::::::::::
500m× 500m

::::
area

:::
A1

:::
as

::::::::
explained

::::
later

:::
on. Images are rendered with MYSTIC and ray-marching as explained in Sect. 2.1 for a synthetic ASI at P0

:
at
::::

the
:::::::::::
south-eastern

::::
edge

:::
of

:::
A1 to compare both methods. For the

:::::::::::
Ray-marching

:::::::
images

:::
for

::
P1

::::
and

:::
P2

:::
are

::::
used

:::
for

:
actual

nowcasting and all other applications in this study, ray-marching images for P1 and P2 are used.

The validation
::::::::
Validation

:
quantities used within the experiments in Sect. 3 are explained in the following. To validate derived260

cloudmasks, the cloud
:::::
Cloud

:
optical depth (τ ) is traced in

::
the

:
line of sight for every pixel of the corresponding ASI image

:::
and

::::
used

::
to

:::::::
validate

::::::
derived

::::::::::
cloudmasks. By applying a threshold to the resulting τ -fields we can calculate reference cloudmasks.

Fig. 1f shows an example τ -field. These are used for the validation of our derived cloudmasks. The reference cloud base height

is computed to comply with the the
:::
the

::::::
derived

:::::
CNN

::::::::::
cloudmasks.

::::::
Cloud

::::
base

:::::
height

::::::::
reference

::
is

::::::::
computed

::
in

::::::::::
compliance

::::
with

10



::
the

:
view of an ASI. The origin of information and

::
last

:::::::::
scattering

::
of

::::
light

:::::
before

::::::::
reaching

::
the

::::
ASI

::::::
sensor

::::
gives

:::
the

:::::
origin

::
of

:::::
pixel265

::::::::::
information,

:
in this case cloud height as seen from belowis determined by the last scattering before reaching the ASI sensor

using further capabilities of MYSTIC beyond the computation of radiances. A reference for cloud motion
:
.
::::::::
MYSTIC

:::
can

:::
be

::::
used

:::
not

::::
only

::
to

:::::::
compute

:::::::::
radiances,

:::
but

::::
also

::
to

:::::
obtain

:::::
these

::::::::
scattering

::::::::
positions.

::
A

:::::
cloud

::::::
motion

::::::::
reference

:
is hard to define as

clouds in the LES simulation – as in nature – are not moving as solid objects , but may change size and shape or even appear and

disappear. Even wind
::::
Wind velocities at cloud level may therefore not be an exact benchmark for the overall observable cloud270

motion. Within this study we therefore use vertically integrated liquid water path (lwp) from the LES fields as an indicator

for horizontal cloud distribution. The maximum cross-correlation between domain wide lwp of two successive timesteps is

assumed to be a reference for average cloud motion. This reference describes the mean displacement for all timesteps of the

LES cloud data. However, clouds are convectively reshaping, growing,
:
and shrinking in this data, which makes this cloud

motion definition vague. The synthetic data allows for a more direct validation of cloud motionby freezing an LES cloud field275

:
.
::::
LES

:::::
cloud

:::::
fields

:::
can

::
be

::::::
frozen

:
for a timestep and shifting its position

::::
their

:::::::
position

::::::
shifted. This basically simulates scenes

of pure advection without any convective effects. To implement
:::::::
simulate this advective case for cloud motion validation, we

use two images of the same cloud scene but taken from different positions. The choice of the
::
an

:
assumed time difference

between the images ∆t defines the advective cloud velocity. For simplicity, we use images taken in 500m north-south distance

as represented by P1 and P2. Assuming ∆t= 60s we obtain theoretical cloud velocities of−8.3ms−1
::::::::::
meridionally

:
and 0ms−1280

meridionally and
::::::
0ms−1 zonally.

The Monte Carlo 3D RTE solver MYSTIC was used to compute not just radiances for images but also the
:::
and true direct

normal irradiances at the ground
::::::
ground

::::
level. We calculated direct normal irradiance for two different synthetic references

:
, as

depicted in Fig. 3. A DNI point reference is simulated at P1, and an area reference of the 500m× 500m region A1 with the

ASIs centered at the northern and southern boundary at P1 and P2. As a benchmark for the DNI nowcasting model, persistence285

nowcasts for start time t0 and nowcast time t are calculated from measured DNImeas::::::::
simulated

::::
DNI

::::::::::::::
”measurements”

::
at

::::::
DNIP1

as

DNIpers(t) = DNImeas(t0). (7)

The metrics used for validation are

RMSE =

√√√√ 1

N

N∑
i=1

(xi−xref,i)2, (8)290

NRMSE =

√√√√ 1

N

N∑
i=1

(
xi−xref,i
xref,i

)2

(9)

and

MBE =
1

N

N∑
i=1

(xi−xref,i) (10)
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Table 1. Contingency table for cloudmask classes from CNN and cloud optical depth τ in
::
the

:
line of sight thresholded by τthresh = 1 as

reference. All values are given in %.

reference

τ < 1.0 τ ≥ 1.0
∑

clear 46.43 2.54 48.97

CNN undecided 0.22 0.25 0.47

cloudy 2.33 48.23 50.56∑
48.98 51.02 100

with the quantity to be evaluated x, its corresponding reference xref and the number of valuesN . Additionally, we use the pixel295

accuracy

PA =
CCLD + CCLR

Npx
(11)

with the number of correctly cloudy or clear classified pixels CCLD and CCLR respectively as well as the overall number of

pixels Npx.

3 Validation using synthetic data300

3.1 Cloudmasks

Our
:::
The

:
CNN cloudmask model was successfully trained and validated on hand labeled real world images

:
, as explained in

Appendix A1. Through the evaluation of cloudmasks we aim
::
We

:::::::
evaluate

:::::::
derived

::::::::::
cloudmasks

:
to show that it is reasonable

to apply our
::
the

:
cloudmask CNN to the synthetic images of

::
in

:
this study. We calculated path cloud optical depth (τ ) for all

viewing angles of our ASI and every desired timestep. Together with a threshold this gives a reference cloudmask. To validate305

pixelwise cloud classifications, we use a threshold of τthresh = 1.0 to create reference cloudmasks from τ . Values of τ ≤ τthresh

:::::::::
τ ≥ τthresh are linked to cloudy areas in this τthresh-cloudmasks. We evaluated CNN cloudmasks from ray-marching images

for position P1 and 360 timesteps in 60s intervals covering all LES times. The contingency table 1 displays the distribution

of classes of τthresh-cloudmasks against our CNN cloudmasks. In general
:
, we find very good compliance. Each of the classes

cloudy and clear makes up about 50% of the compared pixels
:
, which corresponds well to the τthresh-cloudmasks. Cloudmasks310

of our CNN exhibit a slight bias towards classifying too less pixel as cloudy. The pixel
::::
Pixel

:
accuracy is PA = 94.66% against

the τthresh-cloudmasks.

Beyond the ray-marching images, we calculated 29 MYSTIC images and computed CNN cloudmasks for these. By doing

the same with corresponding ray-marching images, we could ensure that the derived cloudmasks exhibit similar performance

12



for both image generation approaches. As MYSTIC images are physically correct, we conclude that the usage of approximated315

ray-marching images does not affect the validity of our results.

3.2 Cloud base height

We used data from for the entire LES scene and effectively 319 timesteps with clouds for the validation of derived CBH.

Ray-marching images taken at P1 and P2 were used to derive CBH as in our nowcasting modeland computed
::
the

::::::::::
nowcasting

::::::
model.

:::::::::
Computed

:
scattering positions give the reference CBH. As our nowcasting model assumes a single cloud base height, we320

average
::
the

:
derived CBH per image pair. Fig. 4shows the

:::::
Figure

::
4a

::::::
shows derived average CBH and the standard deviation per

image pair
:::
and

::::::::::::
corresponding

::::::::
reference

::::
CBH. For these averaged heights, we obtain a MBE for our

:::
the miss-pointing method

of 50.7m, RMSE of 56.9m and NRMSE of 4.0%. When subtracting the found bias of 50.7m from the derived image average

cloud base heights, RMSE could be reduced to 25.6m and NRMSE to 2.6%. However, Fig. 4 shows increasing systematic

error
:::::::::
Increasing

:::::::::
systematic

::::
error

:::
can

::
be

::::::::
observed

:::
for

::::::::
reference

::::
CBH

:
up to about reference CBH of 1400m. As indicated by the325

whiskers, not only image wide averages but also the distribution of derived
::
A

::::::::
histogram

::
of

:::
all

::::::
derived

:::::
pixel

::::::
heights,

::::::
which

:::
are

::
the

:::::
basis

:::
for

:::
the

:::::::
averaged

:::::
CBH,

::::
and

::::
their

::::::::
reference

:
is
::::::
shown

::
in

::::
Fig.

:::
4b.

::::::
Similar

::
to

:::
the

:::::
image

::::
wide

:::::::
average cloud base heightfor

pixels within single images shows
:
,
::::::
derived

:::::
pixel

::::::
heights

:::::
show

:
good agreement with the reference . The found

::::::::
reference

::::::
heights

:::
and

::
a

::::
small

:::::::::
systematic

:::::::::::::
overestimation.

:::::::::
Reference

::::
pixel

:::::::
heights

::::
show

::
a
:::::
wider

::::::::::
distribution

::::::::
compared

::
to

:::::::
derived

::::::
values,

:::::::
resulting

::
in

::::::
stripes

:::::
visible

::
in

::::
Fig.

::
4.

:::::
Found

::::::
height errors could result from the limited resolution of images and therefore discrete330

viewing directions, the projection process and the discrete stepping of the
::::
image

::::::::::
generation ray-marching algorithm. As the

::::
Error

:::::::
sources

::::
were

:::
not

::::::::::
investigated

:::::::
further,

::
as errors are in the range or even lower of what other studies find

::::
than

:::::
those

:::::
found

::
in

::::
other

:::::::
studies

:
for their derived cloud base heights (Nguyen and Kleissl, 2014; Kuhn et al., 2019; Blum et al., 2021, e.g.,),

error sources were not investigated further
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Nguyen and Kleissl, 2014; Kuhn et al., 2019; Blum et al., 2021). Equally, no

additional work was done to mitigate the observed systematic errors for use in nowcasting.335

3.3 Cloud motion

As wind is not necessarily an exact benchmark for cloud motion in convective cloud scenes, we chose two ways to validate our

derived cloud motion for two cases. Firstly, the cloud
:::::
Cloud motion according to the LES is used as a convective case where

clouds also develop and decay. Additionally, we are interested in the performance for pure advection when cloud motion is only

the
::::
pure

::::::::
advection,

:::
i.e.

:::::
only displacement of frozen cloud fields. The

::::
This advective case allows to derive an exact reference340

for cloud motion and the convective case allows to validate the quality of the derived cloud motion in case of clouds which
:::
the

:::::::
presence

::
of

::::::
clouds

:::
that

:
change their size and shape.

The validation
::::::::
Validation

:
of cloud motion in the convective case is done on images every 60s for LES times from 0s

to 21540s. Figure 5 shows the cloud fraction as a function of LES time. As a reference, average
:::::::
Average

:
displacement of

vertically integrated liquid water path (lwp) between timesteps is calculated using the maximum cross-correlation
::
and

:::::
used345

::
as

:
a
:::::::::

reference. This describes mean translation and is thereby a proxy for domain averaged reference cloud motion. Our

derived cloud motion vectors
:::::
Cloud

::::::
motion

:::::::
vectors

::::::
derived

:::
by

::::::
sparse

::::::::
matching are averaged per timestep and for each ASI

13
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Figure 4. Comparison of scene averages
::::::::
Histogram

:
of derived and reference

::
(a)

:::::
image

:::::
mean cloud base height . Whiskers give standard

deviation over pixels for these averages. For better visibility, only every 10th timestep and therefore 32 datapoints are shown
:::
(b)

:::::
height

:::::
derived

:::
for

::::::
matched

:::::
pixels

::
of

::
all

::::::
images

:::::::
compared

::::::
against

:::::::
synthetic

::::::::
references.

and compared against this reference. Figure 5 shows zonal and meridional winds derived for both ASI and the reference

determined by lwp cross-correlation. The cloud fraction derived from cloudmasks of an ASI at P1 is given as an indicator

of the cloud situation. Up to LES time of approximately 3600s, no significant visually detectable clouds are present and350

therefore no velocities derived. During the period up
:::
Up to approximately 6000s, derived velocities are relatively unstable over

time,
:
with changes in estimated velocities of up to 1.7ms−1 over 60s. We relate this to the rapidly changing nature of small

convective clouds in combination with a
:

low cloud fraction. During this time, some of the small clouds appear and disappear

in between timesteps and are therefore mismatched. After approximately 6000s, derived zonal velocities vary in a range of

±0.5ms−1 between timesteps. As there is no initial zonal wind in the LES, zonal
::::
Zonal

:
cloud motion close to zero matches355

our expectations
:::
the

::::
LES

:::::::::::
initialization

:::::::
without

:::::
zonal

::::
wind. Meridional velocities increase from about 3ms−1 at 6000s to a

maximum of 4.7ms−1. In general, our derived zonal velocities show a less noisy estimate compared to the reference. The

derived
::::::
Derived

:
velocities from both ASIs show very similar patterns. This further affirms the stability of the cloud motion

derivation. However, we do not have an absolute reference to benchmark derived velocities in the convective caseas the ,
:::

as

pure displacement of convective clouds is hard to capture and may differ strongly from main winds. Additionally, we
:::
We360

validate derived cloud velocities using artificially advected cloud fields to overcome this limitation. The same LES times as in

the convective validation are used, but each timestep is assumed to be independent. Cloud motion is generated by freezing the

cloud field and shifting it for each timestepto obtain .
::::
This

::::::
results

::
in an objective reference cloud motion. A shift of 500m from

north to south at a time difference of 60s gives a theoretical u of 0ms−1 and v of −8.3ms−1. No velocities were derived in the

absence of clouds up to approximately 2500s. Afterwards, the derived velocities match the theoretical displacements well with365

RMSE of 0.019ms−1 zonally and 0.11ms−1 meridionally.
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Figure 5. (a) cloud
::::
Cloud fraction from cloudmasks of ASI at P1 for LES times. Per timestep scene averaged cloud motion derived using

cross-correlation of the lwp-field of the LES simulation and our cloud motion derivation based on feature matching for east
:
to
:
west motion

u (b) and south
::
to north motion v (c).

Overall, these results prove
:::
that the derived cloud motion

::::::
motions

:::
are

:
reliable for the cloud situations used in this study. This

can also be seen as a further validation of the derived CBHs as they are necessary for the calculation of physical velocities.

3.4 DNI Nowcasts

The evaluation
::::::::
Evaluation

:
of the nowcasting model is done in multiple steps which are described and discussed in the fol-370

lowing. First, MACIN is compared against persistence to evaluate overall performance. Additionally, variations of MACIN

using ideal cloudmasks were run to investigate the implications of errors in the CNN derived cloudmasks. These variations

:::::::
variation

::::
runs will be called cloudmask variation and continuous cloudmask variation hereafter

:::
and

::::::::
explained

::::
later

:::
on. Finally,

a simplification of MACIN is used to assess possible benefits of the expensive assimilation of MACIN. This variation will be

referred to as simple variation. For MACIN and all its variations, one nowcast run was started every 60s for LES times 60s375

to 21540s , which resulted in
::
for

:
a
:::::

total
::
of 359 nowcasts runs. The maximum

:::::::
nowcast

::::
runs.

:::::::::
Maximum

:
nowcast lead time was

chosen as 20min. Nowcasts
:::::::
Nowcast

:
timesteps exceeding the maximum LES time of 21600s are discarded. DNI nowcasts

are always derived simultaneously for the point P1 and the area A1. In the following
:::::
Errors

:::
for

:::::
point

:::
and

::::
area

::::::::
forecasts

:::::
show

::::::
similar

::::::::::::
characteristics.

:::::::::
Therefore,

:
it
::
is

::::::::
discussed

::::::
jointly

::
in

:::
the

::::::::
following.

::
If

:::
not

:::::
stated

::::::::
otherwise, error values are given for point

DNI and in brackets for area DNIif not stated otherwise.380
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Figures 6a-b show average RMSE and MBE for the point nowcasts of persistence, MACIN and cloudmask variation

groupped
:::::::
grouped by lead time. Figures 6c-d give the same for area nowcasts. The errors

:::::
Errors

:
of persistence and MACIN

give the overall performance of the introduced nowcasting model and are therefore analyzed first. Persistence nowcasts start

without error at lead time 0min, but RMSE increases strongly up to approximately constant 300Wm−2 (250Wm−2) after

6min. Persistence MBE increases linearly up to approximately 50Wm−2 linked to the tendency of growing cloud fraction385

over time. MACIN exhibits non-zero RMSE at nowcast start, but a smaller increase of RMSE over time than persistence.

Therefore
::::::::
compared

::
to

::::::::::
persistence.

:::
In

:::::
terms

::
of

:::::::
RMSE, MACIN outperforms persistence already for lead times larger than

1minin terms of RMSE. Typical improvement
:
.
::::::::::::
Improvements

:
over persistence for these longer lead times is thereby

:::
are

::::::
thereby

::::::::
typically

:
on the order of 50Wm−2 (50Wm−2) and more. In general, the RMSE of nowcasts for areas is about

50Wm−2 lower compared to nowcasts for points. MBE is mostly negative for MACIN with magnitudes in the range of390

persistence MBE. The non-zero
::::::::
Non-zero RMSE at lead time 0min may be a result of erroneus

::::::::
erroneous cloudmasks in the

region of the sun, errors in the RT
:::::::
radiative

:::::::
transfer

::::
(RT)

:
parametrization or smearing out during the assimilation because of

multiple time steps and viewing geometries.

To further investigate this
::
the

:
initial nowcast error

::::::::
discussed

:::::
above, a cloudmask variation of MACIN was run. Instead

of cloudmasks from the CNN, perfect
::::::
Perfect

:
cloudmasks were used as input for the nowcasting model

:::::
instead

:::
of

:::::
CNN395

:::::::::
cloudmasks. These perfect cloudmasks are derived from the LES cloud optical depths in

::
the line of sight τ (see also Sect. 3.1

:::
and

:::
Fig.

:::
1f) with a threshold of τthresh = 1.0 to distinguish between cloudy and clearsky. By using these perfect cloudmasks for

nowcasting, influence of cloudmask errors within the nowcasting model can be assessed. As for the persistence and MACIN,

nowcast errors for the cloudmask variation are given in Fig. 6. In general, the RMSE of the cloudmask variation is very

similar to the RMSE of MACIN. This suggests that the CNN cloudmasks provide a good estimate of the cloud situation for400

our nowcasting. However, for lead time 0min the cloudmask variation outperforms MACIN by 31Wm−2 (32Wm−2)
::
for

::::
lead

::::
time

::::
0min

:
and converges to the RMSE of MACIN for lead times of 3min and more. The

:::::::::
Cloudmask

::::::::
variation point MBE of

the cloudmask variation is in the beginning about 0Wm−2, the negative MBE of MACIN especially during the first minutes of

the nowcasts can therefore be associated to erroneous cloudmasks in the vicinity of the sun. The small
:::::
minor improvement for

larger lead times when using perfect cloudmasks might also be a result of the convectively growing, shrinking and reshaping405

clouds. As the nowcasting model cannot describe these processes, perfectly outlining clouds in the beginning may not be

that relevant for longer lead times. Again, the non-zero
:::::::
Non-zero

:
RMSE of the cloudmask variation for lead time 0min may

result from errors in the RT parametrization or smearing out by assimilation,
::
as
:::::::::

described
:::
for

:::::::
MACIN

::::::
before. To further

investigate the implications of the RT parametrization, the continuous cloudmask variation was run, again differing .
::
It
::::::
differs

from MACIN only by the used cloudmasks
::::
input

:::::::::::
cloudmasks.

::
In

:::::::
contrast

:::
to

:::
the

:::::::::
cloudmask

::::::::
variation,

::::::
which

:::::
gives

:::::::
discrete410

:::::::::
cloudmask

:::::
values

:::
for

:::::::
clearsky

:::
and

::::::
cloudy,

:::
the

::::::::::
continuous

:::::::::
cloudmask

::::::::
variation

:::::
relies

::
on

::::::::::
cloudmasks

::::
with

::::::::::
continuous

:::::
values.

The RT parametrization maps model cloudiness states linearly to DNI values. The model cloud states rely on
:::::
Model

:::::::::
cloudiness

::::
states

:::
of

:::::::
MACIN

::::::
usually

:::
rely

:::
on

::::
CNN

:
cloudmasks with discrete values for the three classes (clearsky, cloudy, undecided) while

actual cloud optical depth and therefore DNI are continuous . To check ,
:
is

:
a
::::::::::
continuous

:::::::
variable.

::::::::::
Continuous

::::::::::
cloudmasks

:::
are

::::
used

::
to

:::::
check whether this discrete representation causes significant parts of the error, continuous cloudmasks are used. These415
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:
a
:::::::::
significant

::::::
fraction

:::
of

:::::::
nowcast

::::
error.

::::::
These

::::::::::
cloudmasks are derived from τ used for the cloudmask validation, but comply to

::::
with the exponential attenuation of intensity in radiative transfer by cmcont = 1−exp(τ). The continuous cloudmask variation

uses these continuous cloudmasks. Resulting errors of the continuous cloudmask variation are not depicted as they strongly

resemble errors of the cloudmask variation with slight improvements of RMSE in the range of about 5Wm−2. Therefore
:
, we

conclude that the RT parametrization and discrete nature of cloudmasks is not a major error source and the non-zero RMSE420

for lead time 0min is a result of the smearing out during the assimilation.

A further variation of MACIN was run to assess
:::
the benefits of the assimilation scheme. Therefore, the simple variation of

MACIN was run with just a single cloudmask and velocity field from the ASI at P1 as input. The sun region is not masked

out in cloudmask and velocitity
::::::
velocity

:
field for the simple variation. With this variationwe would like to ,

:::
we

:
assess possible

benefits by
::::
from

:
the additional complexity and computational cost of MACIN. Resulting errors differ from errors of MACIN425

mainly for point nowcasts. For lead time 0minthe ,
:
RMSE of the simple variation is about 300Wm−2. For larger lead times,

the RMSE resembles the RMSE of MACIN but is approximately 75Wm−2 larger. The MBE of the simple variation is

strongly negative with values around 75Wm−2 and even more for lead time 0min. As the sun region is not masked out in the

simple variation and the cloudmask CNN tends to classify the sun in synthetic images as cloudy, the initial model cloud state

and therefore
:::::::::
cloudiness

::::
state

::
is

::::::::
incorrect

::
in

:::
this

::::::
region

::::
and

::::::
derived

:
DNI for lead time 0min results in

::::
gives

:
large errors. In430

case of clearsky the erroneously cloudy detected sun is steady and therefore this "cloud" does not move and gives an offset

for all lead times. This explains the large RMSE offset and the large negative MBE. We are aware , that these larger errors

are mainly due to the co-location of ASI and nowcasted point in our setup. Still, this demonstrates the capabilities of our

nowcasting model to use multiple data sources to reduce errors
::
for

::::
error

::::::::
reduction. E.g.,

:
when using projected images of ASIs

at different positions and superimpose
::::::::::::
superimposing one over the other for derived CBH, the sun is in different regions of the435

images. When we excludeper ASI
:
,
:::
per

::::
ASI,

:
the immediate region of the sun from the used cloudmask, cloudmask information

from another ASI is used to fill in this region. Thus, erroneous cloudmasks in the region of the sun can be mitigated by the

assimilation. Additionally to the RMSE presented here, the mean absolute error was computed as an additional metric for the

nowcasts
::::::::::
assimilation. It is not shown here as the mean absolute error in general resembles the structure of the

::
In

:::::::
general,

:::
the

:::::::
nowcast

:::::::
quality

::
is

:::::::::
influenced

:::
by

:::
the

:::::::::
variability

:::
of

:::::
DNI.

::::::::::
Completely

:::::
cloud

::::
free

::::
and

::::
also

::::
fully

::::::::
overcast440

::::::::
situations

:::::
result

::
in

:::
low

:::::::::
variability

:::
and

:::
are

::::::
simple

::
to
::::::::
nowcast.

::::::
Broken

::::::
clouds

:::
can

:::::
cause

::::::
strong

::::::::
variations

:::
in

::::
DNI

:::
and

:::
are

:::::
more

:::::::::
challenging

:::
to

:::::::
nowcast.

::::::
Other

:::::::::
nowcasting

::::::::
systems

::
in

:::
the

::::::::
literature

:::::::::::::::::::::
(e.g., Nouri et al., 2019)

::
are

::::::::
therefore

:::::::::::
benchmarked

::::
not

:::
just

::
on

:::
all

::::::::
available

::::::::
situations

:::
but

::::
also

::::::::
separately

:::
on

::::::::
situations

:::::::
grouped

::::
into

:
8
:::::::::
variability

:::::::
classes.

::::
This

:::::::::
showcases

:::
the

:::::::
nowcast

::::::
quality

:::::
under

:::::::
different

:::::::
weather

:::::::::
conditions

:::
and

:::::::::::
variabilities.

:::
We

::::::::::
investigated

:::
the

:::::::::::
performance

::
of

:::::::
MACIN

:::
by

:::::::::
computing

:::::
error

::::::
metrics

:::
for

::::::
subsets

::
of

:::
the

::::
359

::::::::
nowcasts

::
of

:::
this

::::::
study.

:::
The

:::::::
subsets

::::
were

::::::::::
determined

::
by

:::::
cloud

::::::::
fraction.

:::::::
Overall,

::::
small

::::::::
absolute445

RMSE
:::
can

::
be

:::::
found

:::::::::
especially

:::
for

::::
small

::::
and

::::
large

:::::
cloud

:::::::
fractions

::::
with

::::::
minor

::
to

::
no

::::::::::::
improvements

::
of

:::::::
MACIN

::::
over

::::::::::
persistence.

:::::
Errors

:::
are

:::::
larger

:::
for

::::::
broken

::::::
clouds

:::
and

:::::::
medium

:::::
cloud

::::::::
fractions

:::
and

:::
the

:::::::::::
improvement

::
of

:::::::
MACIN

::::
over

::::::::::
persistence

::::::::
increases

::
in

::::
these

:::::
cases.

::::::::
However,

:::
the

::::::::::
significance

:::
of

::::
these

:::::
cloud

:::::::
fraction

::::::::
dependent

::::::
results

::
is

::::::
limited

:::
due

::
to
:::
the

:::::
small

:::::::
number

::
of

::::::::
nowcasts

:::
and

:::
the

::::::::
restriction

::
to
:::
the

:::::::
shallow

:::::::
cumulus

::::
LES

:::::
data.

::
It

:
is
::::::::
therefore

:::
not

::::::::
displayed

::::
and

::::::::
discussed

::::
here

::
in

:::::
detail.
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Figure 6. (a) RMSE and (b) MBE for 359 point DNI nowcasts compared to
:::
DNI

:
point measurements

::::::
reference

:::::
values

::::
and evaluated per

lead time. Nowcasts were done using MACIN and the cloudmask variation. (c) and (d) show corresponding error values for area nowcasts

and DNI area reference.

4 Conclusions450

In this study,
:

we introduced the novel all-sky imager (ASI) based direct normal irradiance (DNI) nowcasting model MACIN,

which adapts ideas of 4D-Var data assimilation. We validated MACIN against synthetic data from LES cloud scenes. The

nowcasting model is designed to consider measurement setups with multiple ASI and derive point and area nowcasts of DNI

. Therefore, we
::
to

:::::::
nowcast

::::
DNI

:::
for

:::::
points

::::
and

:::::
areas.

:::
We

:
derive cloudmasks, cloud base height and cloud motion from ASI

images and combine these into an initial cloudmask
:::::::::
cloudiness state for a 2-dimensional horizontal advection model. Predicted455

cloudmasks
::::::::
cloudiness

:::::
states

:
are projected to the ground and converted to DNI using previous DNI measurements

:::::
values.

Cloud scenes from a shallow cumulus cloud field computed using UCLA-LES (Stevens et al., 2005) with cloud fraction

between 0% and 100% were used for validation and in-depth analysis of the nowcasting system and its components. For

these cloud scenes, synthetic ASI images were generated. DNI at the ground was calculated for synthetic point and area

measurements. Reference
::::::::
reference

::::::
values.

::::::::::
References for cloud optical depth and cloud base height were derived for ASI460

by tracing through the cloud scenes. With this data, we validated the cloud detection method
:::
our

:::::::
methods

:::
for

:::::
cloud

::::::::
detection

relying on a CNN, the cloud base height derivation from stereography, and cloud motion derivation from sparse feature match-

ing of consecutive images. The synthetic setup facilitated a comparison of DNI nowcasts from MACIN against point and

area measurements
::::::::
references usually unavailable from observations. Thereby we could confirm previous findings of a RMSE

reduction by spatial aggregation for nowcasts by Kuhn et al. (2018a). Overall, we find improvements over persistence. In465

general, the errors correspond to errors found
:::::::
findings for other ASI based nowcasting systems in literature (e.g., Peng et al.,

2015; Schmidt et al., 2016; Nouri et al., 2022). MACIN gives non-zero errors for point nowcasts from the start
:::::::::
beginning,

as also observed in e.g. Schmidt et al. (2016) and Peng et al. (2015). Deriving reference cloudmasks from LES cloud optical

depth allowed for an attribution of the initial errors of MACIN to imperfect cloudmasks in the vicinity of the sun, imperfect

DNI estimation
:
, and a smoothing of the initial state by assimilation. For applications where these initial errors are crucial, they470
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could easily be reduced by using persistence nowcasts for small lead times and nowcasts of MACIN for larger lead times,
:

as

suggested by Nouri et al. (2022). We did not address this further as it is unlikely to be relevant for operational use, given that

an immediate computation of DNI nowcast, transfer to consumers and reaction of their system seems
::::
seem

:
unrealistic. By

comparing further simplified nowcasts relying only on a single imager,
:
we demonstrate the capability of the nowcasting model

to make beneficial use of multiple ASIs and the assimilation scheme.475

A limitation of this study is the restricted set of 360min of cloud data and single
:
a
::::::
single

:::::::
constant sun zenith angle. Future

work will apply the nowcasting model to real world data to consider manifold cloud scenes and sun positions. This step is

necessary to further confirm the benefits of the model. Additionally, we plan to use the synthetic setup for in-depth investigation

of theoretical error sources of ASI nowcasts, e.g.,
:
to investigate errors introduced by using advection to predict future cloud

states and neglecting convective development of clouds.480

Data availability. The LES cloud data used for this study is published (Jakub and Gregor, 2022) and can be obtained at https://opendata.

physik.lmu.de/5d0k9-q2n86. For further data, e.g., the full syntetic image sets or reference DNIs please contact the authors of this study.

Appendix A

A1 Cloudmask CNN

Convolutional neural networks (CNN) are used frequently in image segmentation tasks. The wide variety of possible atmo-485

spheric conditions, ligth situations and cloud types even within single ASI images allows only for limited success with classical

e.g. color and threshold based methods for cloudmask derivation. E.g. Dev et al. (2019) demonstrated the possibility to use

CNNs for segmentation of all-sky images, Fabel et al. (2022) even demonstrates a segmentation into different classes of clouds.

For the application of a single layer advection model, we aim at a segmentation between cloudy and clear areas of an image.

A major piece of work is the generation of training images. As the nowcasting model and CNN is intended for real world490

applications beyond this study,
:::
real

::::::
images

::::::::
captured

::::
with

::
a
:::::::
ASI-16

::::
were

:::::
used.

:::::
This

:::
also

::::::
avoids

:::::::::
overfitting

:::
on

:::
the

:::::::
limited

::::::
number

::
of

::::::::
synthetic

::::
ASI

::::::
images

:::::::::
generated

:::
for

:::
the

::::
LES

::::::
scene. 793

:::
real

:
ASI images were hand labeled and split into a train

and validation dataset of 635 and 158 images respectively. These are normalized using the channel-wise mean and standard

deviation over all training images. All images of both datasets were scaled to 512× 512 pixel. For training, random excerpts

of 256× 256 pixel were cropped and randomly mirrored or rotated by 90◦ to artificially increase the amount of training data495

by augmentation. Hand labeling was done through a tool we designed for this task, which subdivided a randomly chosen

and projected ASI training image into so called superpixels (Achanta et al., 2012), continuous regions with similar color

information and limited distance. Each superpixel can be assigned on of the three classes cloudy, clear or undecided. The

subdivision into superpixels allows for faster labeling of pixels belonging together. The labeling tool allows for the selection

of the number of superpixels, therefore also small regions may be labeled precisely. As clouds and clearsky are not always500

precisely distinguishable and their definition based on visual appearance is hard, we also offered the label undecided. This
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label marks regions which are hard or cumbersome for humans to classify and therefore left out. In the training of the neural

network these undecided pixels are considered as such, i.e. the CNN is not challenged to label these regions according to

potentially miss-labeled training data but may learn more from regions where humans are sure about the proper label. Example

images from the validation set, corresponding hand labeled segmentation and CNN segmentation are shown in Fig. A1. The505

CNN and its training is described in the following. We chose the DeeplabV3+ (Chen et al., 2018) CNN architecture which is

designed using an Encoder-Decoder structure as also the UNet (Ronneberger et al., 2015) used by Fabel et al. (2022) does.

For the encoder, we use a ResNet34 (He et al., 2015) pre-trained on the Imagenet dataset (Russakovsky et al., 2014). Three

output channels were chosen associated to the three classes. Training was done using the Adam optimizer (Kingma and Ba,

2014) with a custom sparse-soft-cross-entropy loss (ssce). This ssce actively ignores pixels which are labeled as undecided in510

the ground truth and only focuses on cloudy and clear pixels in the ground truth. This is done using

ymask,i,j = 1− ygt,i,j,undecided (A1)

LogSoftmax(yi,j,c) = log

(
exp(yi,j,c)∑
d exp(yi,j,d)

)
(A2)

515

sscei,j =
∑

c∈{cloudy,clear}

LogSoftmax(ypr,i,j,c) · ygt,i,j,c · ymask,i,j (A3)

where ypr,i,j,c is the predicted value for the i-th pixel of the j-th training image and the class c. Correspondingly, ygt,i,j,c ∈
{0,1} is the ground truth value. While ssce is necessary for optimization, this loss is meant to give mainly intermediate scores

of performance of the segmentation CNN. Therefore, also a metric called mean intersection-over-union (mIoU ) is used in a

sparse version as520

I =
∑
i,j

∑
c∈{cloudy,clear}

ygt,i,jc · ypr,i,j,c · ymask,i,j (A4)

U =
∑
i,j

∑
c∈{cloudy,clear}

(ygt,i,j,c + ypr,i,j,c) · ymask,i,j − I (A5)

mIoU =
I

U + ε
(A6)525

with ε= 10−7 for numerical stability. This metric is designed to represent a ratio between correctly classified pixels in com-

parison to overall classified pixels, again adapted by us to ignore undecided ground truth pixels. It was computed after every

epoch on the entire validation dataset. We used a batch size of 26 images and a learning rate of 7× 10−5. After 48 epochs of

training, mIoU = 0.968 was reached for the CNN as used within this study. For the prediction of cloudmasks, the label of a

pixel is derived from the output channel with maximum value. This is mapped to scalar values as 0 for clear, 1 for cloudy and530

0.5 for undecided to obtain the final CNN cloudmasks.
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clearsky undecided cloudy

Figure A1. Example images from the validation set (left) hand labeled segmentation (middle) and cloudmask predicted by the trained CNN

(right).
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