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Abstract. A significant fraction of liquid clouds are not captured in existing CloudSat radar-based products because the clouds 10 

are masked by surface clutter or have insufficient reflectivities. To account for these missing clouds, we train a random forest 

regression model to predict cloud optical depth and cloud top effective radius from other CloudSat and CALIPSO observables 

that do not include the radar reflectivity profile. By assuming a subadiabatic cloud model, we are then able to retrieve a vertical 

profile of cloud microphysical properties for all liquid-phase oceanic clouds that are detected by CALIPSO’s lidar but missed 

by CloudSat’s radar. Daytime estimates of cloud optical depth, cloud top effective radius, and cloud liquid water path are 15 

robustly correlated with coincident estimates from the MODIS instrument onboard the Aqua satellite. This new algorithm 

offers a promising path forward for estimating the water contents of thin liquid clouds observed by CloudSat and CALIPSO 

at night, when MODIS observations that rely upon reflected sunlight are not available.  

1 Introduction 

Low-level liquid clouds play a vital role in Earth’s climate system, influencing radiative balance (e.g., Hartmann et al., 1992) 20 

and weather patterns (e.g., Ma et al., 1996). These clouds cool the climate by reflecting incoming solar radiation, and changes 

in the extent, thickness, or properties of these clouds in the future could have important implications. Indeed, the low cloud 

feedback is one of the most important sources of uncertainty in global climate models (Zelinka et al., 2016). Satellite datasets 

of low clouds can provide near-global coverage using consistent instruments, and thus are well suited for evaluating and 

constraining cloud models. While many different instruments can be used to estimate low-cloud fraction, the CloudSat satellite 25 

(Stephens et al., 2008), with its 94-GHz Cloud Profiling Radar (CPR; Tanelli et al., 2008) is particularly noteworthy because 

of its ability to provide vertically resolved estimates of cloud liquid water content (LWC). These vertical profiles can be used 

for process studies, model validation, and to calculate shortwave and longwave radiative heating profiles (Henderson et al. 

2013).  
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 The CloudSat Data Processing Center (DPC) currently produces two operational retrievals of cloud water content. 30 

The first, 2B-CWC-RO, is a “radar-only” product that relies only on profiles of reflectivity from CPR and is based upon 

optimal estimation (Austin et al., 2009). The second, 2B-CWC-RVOD (Leinonen et al., 2016), is a daytime-only product that 

is further constrained by visible wavelength optical depth measurements from the Moderate Resolution Imaging 

Spectoradiometer  (MODIS; Justice et al., 1998) onboard the Aqua satellite, which flew in formation with CloudSat as part of 

NASA’s “A-Train” of satellites from 2006-2018. These products have proven to be quite valuable to the scientific community 35 

(e.g., Yue et al., 2020; Ham et al., 2022; Oreopoulos et al., 2022). However, both 2B-CWC-RO and 2B-CWC-RVOD only 

provide estimates of cloud water for radar bins that are deemed “likely cloud” by the CloudSat cloud mask algorithm 

(Marchand et al., 2008). In practice, this means that the cloud must return CPR reflectivities that are above the radar’s noise 

floor, which was around -30 dBZ at the beginning of the mission (Tanelli et al., 2008), and have a cloud top high enough so 

as not to be masked by surface clutter. As a result, many low-altitude, shallow liquid clouds are not captured in the operational 40 

cloud water content products (Christensen et al., 2013; Li et al., 2018; Lamer et al., 2020; Schulte et al., 2023). This is 

particularly problematic for radiation studies, as even relatively thin liquid clouds can reflect substantial incoming solar 

radiation (Turner et al., 2007). 

 Another member of the A-Train is the CALIPSO satellite (Winker et al., 2009), which carries the Cloud-Aerosol Lidar 

with Orthogonal Polarization (CALIOP; Hunt et al., 2009). CALIOP can detect the presence and cloud-top phase of even very 45 

thin clouds, although it lacks the cloud profiling capabilities of CPR because its signal rapidly attenuates in liquid clouds. 

When comparing the percentage of time CALIOP detects a single layer low-level (below 5 km) liquid cloud to the percentage 

of the time these clouds are detected by CloudSat, it becomes clear that the operational CloudSat products fail to capture many 

of the clouds detected by CALIOP. Figure 1 shows the 2009 daytime single-layer warm cloud fraction from 2B-CWC-RO and 

2B-CWC-RVOD compared to MODIS and CALIOP. In some of the stratocumulus dominated areas of the world, CALIOP 50 

detects a liquid cloud in close to 80% of CloudSat pixels, while the CPR cloud fraction is less than half that. MODIS cloud 

fractions are also not quite as high as those from CALIOP, indicating that it too misses many of the thinnest clouds, but they 

are still much higher than the cloud fractions from CPR. 

 Schulte et al. (2023) demonstrated a method of estimating profiles of cloud water using MODIS measurements of 

cloud optical depth (𝜏) and cloud top effective radius (𝑟!). With this method, the cloud top height is determined by CALIOP, 55 

and the vertical distribution of the cloud water is calculated using adiabatic parcel theory, modified to account for the fact that 

observed clouds are often subadiabatic (Wood et al., 2009). This method produces reasonable estimates of cloud liquid water 

contents for clouds which are detected by CALIOP and MODIS but not by CPR. However, as demonstrated in Fig. 1, some 

thin liquid clouds are seen by CALIOP but missed even by MODIS. Moreover, MODIS observations rely upon reflected 

sunlight, so this method is not viable at night. 60 
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Figure 1: Percentage of daytime 2009 CloudSat oceanic pixels that contain a single layer liquid cloud below 5 km, according to 
various R05 CloudSat products: (a) 2B-CLDCLASS-LIDAR, (b) MODIS-1KM-AUX, (c) 2B-CWC-RO, and (d) 2B-CWC-RVOD. 

 Motivated by these limitations of the MODIS subadiabatic model, in this study we develop a random forest machine 

learning model to predict 𝜏  and 𝑟!  from non-radar-reflectivity observables from CPR and CALIOP. Then the same 65 

subadiabatic assumptions can be used to produce a profile of LWC for clouds that are detected by CALIOP but do not have 

associated CPR reflectivities or MODIS cloud microphysical retrievals. The methodology is detailed in Section 2, the model 

performance evaluated in Section 3, and in Section 4 we offer our conclusions.  

2 Data and methods 

In this study we make use of several operational data products obtained from the CloudSat DPC 70 

(https://www.cloudsat.cira.colostate.edu). In all cases, we use the R05 version of each product. CPR geolocation data and the 

surface backscatter cross section come from 2B-GEOPROF (Marchand et al., 2008), while the 94 GHz brightness temperature 

(TB94), derived from the radar noise floor in non-cloudy radar bins and available for all CloudSat pixels, is found in the 2B-

TB94 product (Lebsock and Suzuki, 2016). Auxiliary atmospheric information comes from ECMWF-AUX, including total 

column water vapor (TCWV), sea surface temperature (SST), 10 m wind speed, and profiles of temperature and pressure (used 75 

by the subadiabatic model). This data is from the European Centre for Medium-Range Weather Forecasts (ECMWF) HRES 

(high resolution) forecast model, collocated to the CPR profiles by the DPC. We use the 2B-CLDCLASS-LIDAR product 
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(Sassen et al., 2008) to screen for clouds detected by CALIOP, determine the phase of the clouds, and set the cloud top height. 

For training our model, we use MODIS 3.7 𝜇m channel estimates of 𝜏 and 𝑟!  from MODIS-1KM-AUX. These data are 80 

provided at 1 km resolution; we use the 1 km MODIS pixel whose center is closest to the center of the CPR footprint for each 

matchup. Finally, we compare our estimates of cloud water content to estimates from 2B-CWC-RVOD and 2B-CWC-RO. 

 We obtain additional CALIOP data as follows. 532 nm column integrated attenuated backscatter (CIAB) and column 

optical depth derived from the Ocean Derived Column Optical Depths algorithm (ODCOD 𝜏) come from the CALIOP Level 

2 1 km Cloud Layer Product, version 4.51 (CAL_LID_L2_01kmCLay-Standard-V4.51). We also use CALIOP-derived 85 

estimates of cloud top effective radius (CTER) and cloud top LWC (CTLWC). These are generated using the methodology of 

Hu et al. (2021) and can be found on the DPC website. Similar to MODIS, these CALIOP products are provided at 1 km 

resolution, and we follow the same colocation procedure as for MODIS data.  

2.1 Screening 

For this study we use A-train data from 2008 and 2009. These years are chosen because there are fewer interruptions in data 90 

availability than in many other years, and because CPR and CALIOP were still “young” and functioning at their highest 

capabilities. Only CloudSat granules that have valid output files for all of the R05 products mentioned above are included. In 

addition, our focus is only on oceanic CloudSat pixels which contain single layer liquid phase clouds. To screen for this, we 

require that 2B-CLDCLASS-LIDAR indicate that a given pixel have only one cloud layer, that the layer is liquid, and that the 

top of the layer is at or below 5 km above sea level. In addition, the 2B-GEOPROF land/sea flag must be equal to “2” (indicating 95 

ocean). 2008 is used to train the random forest model, while 2009 is used to evaluate the retrieval performance. After this 

screening is applied, we are left with 24,645,411pixels from 2008 and 21,643,449 pixels from 2009. These amount to 15.7 % 

and 15.8 % of all CloudSat observations in 2008 and 2009, respectively.  

 Before the ODCOD data is ingested into our algorithm, there is a small amount of pre-processing that is done in 

addition to the colocation procedure described above. The ODCOD column 𝜏 estimates include a bit-wise quality flag. If bit 100 

10 indicates that no lidar surface was found, we consider the column optical depth signal to be saturated and we arbitrarily set 

the ODCOD 𝜏 value to 5. The point of this is to distinguish pixels for which there is no ODCOD estimate because the column 

is too optically thick for CALIOP to see the ocean surface from pixels for which there is no ODCOD estimate for other reasons. 

The value of 5 is chosen because it is larger than all other ODCOD 𝜏 estimates for which the signal is not saturated. In theory, 

it should not matter which value of 𝜏 is chosen to represent saturated pixels, as the random forest method makes no assumptions 105 

of linearity in the input-output relationships. In practice, we tested setting the value of saturated pixels to either 50 or 500 

instead of 5 and in both cases the effect on retrieval performance was minimal. 

2.2 Sub-adiabatic cloud model 

The concept of using cloud optical depth and droplet effective radius to infer cloud water content has been around for decades 

(e.g., Stephens, 1978). However, to do so, one must make assumptions about the vertical structure of the cloud. Two common 110 

Deleted: It is worth noting that the ENSO index was negative for 
the entirety of 2008 (La Niña conditions), while 2009 began with a 
negative ENSO index but was positive by the end of the year. Thus, 
the climate state was slightly different during the test period 
compared to the training period.115 
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approaches are to either assume that the cloud is vertically homogeneous (e.g., Nakajima and King, 1990), or to assume an 

“adiabatic cloud,” one in which the cloud water linearly increases from base to top, while droplet number concentration stays 

constant (e.g., Brenguier et al., 2003). Both assumptions lead to closed-form expressions for the integrated LWP of a cloud as 

a function of 𝜏 and cloud top 𝑟! (Wood and Hartmann, 2006). However, liquid clouds in the real world do not fit neatly into 

either of these two categories (Brenguier et al., 2000; Rangno and Hobbs, 2005; Rauber et al., 2007; Min et al., 2012). 120 

 Schulte et al. (2023) used an adjustment to the adiabatic model (Wood et al., 2009) meant to account for cloud 

processes such as entrainment and mixing that tend to cause actual clouds to have subadiabatic growth rates. With this model, 

the LWC 𝑙 of a cloud increases with height ℎ above cloud base according to Eq. (1): 

𝑙(ℎ) = 𝑐(𝑇, 𝑃)	ℎ
"!

"!#$
,                                 (1) 

where 𝑧% is a scaling factor and 𝑐(𝑇, 𝑃) is given by Eq. (2): 125 

𝑐(𝑇, 𝑃) 	= 	𝜌&'(
)"
*# (Γ+ − Γ,).                                (2) 

𝑐(𝑇, 𝑃) is the moist adiabatic condensation rate at temperature 𝑇 and pressure 𝑃, with 𝜌&'( equal to the air density of a fully 

saturated air parcel at that temperature and pressure.  𝑐- = 1004 J/kg K is the specific heat of dry air at constant pressure, 𝐿.= 

2.26 x 106 J/K is latent heat of vaporization of water, Γ+ = 9.8 K/km is the dry adiabatic lapse rate, and Γ, is the moist adiabatic 

lapse rate at 𝑇 and 𝑃. In this paper, we set 𝑧% = 500 m, following Ragno and Hobbes (2005) and Wood (2009). 130 

 The optical depth of a liquid cloud with cloud depth H is given by Eq. (3):  

𝜏 = /0$%&
12' ∫

3
($
𝑑ℎ4

% .                               (3) 

𝑄!56 is the extinction efficiency, 𝜌3 is the density of water, and the effective radius is defined by 

𝑟! = ∫(
(8(()+(

∫(
)8(()+(

,                                  (4) 

where 𝑛(𝑟) is the number concentration of cloud droplets with radius 𝑟. As Schulte et al. (2023) showed, when considering 135 

the assumptions of the subadiabatic model and the inherent relationship between 𝑙 and 𝑛(𝑟), it is possible to use Eqs. (1) and 

(3) to solve for 𝐻 and the profile of 𝑙(ℎ) given cloud optical depth and cloud top effective radius; that is, 𝜏 and 𝑟!(𝐻). In 

practice, this is done using look-up tables because the analytical solution involves integrals which have no closed-form 

expression. We refer the reader to Schulte et al. (2023) for details. Nevertheless, by using this method, combined with our 

estimate of cloud top height from 2B-CLDCLASS-LIDAR, we are able to convert estimates of 𝜏 and cloud top 𝑟!, either from 140 

MODIS or from our random forest retrieval, into a modelled profile of cloud liquid water. While not the focus of this paper, 

the subadiabatic model also produces an estimate of the total cloud droplet number concentration (N), which is assumed to be 

constant with height. Finally, we note that in order to provide for an apples-to-apples comparison against CloudSat products 

in Figs. 6 and 7, we average the subadiabatic profiles of LWC to the vertical resolution of CPR. Specifically, we use a Gaussian-
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weighted moving average filter with a 6 dB window size of 480 m, and sample the filtered profile at the center of each CPR 145 

bin (every 240 m). 

2.3 Random Forest Regression Model 

Machine learning (ML), in general, refers to any empirical method whereby parameters are fit on a training dataset in order to 

optimize a predefined loss function (Chase et al., 2022). ML methods are based on statistical relationships between variables 

rather than explicit physical models. Simple ML methods, such as linear regression, have been used in satellite retrievals for 150 

decades (e.g., Adler and Negri, 1988). More recently, more sophisticated methods which are better able to handle nonlinear 

relationships between variables have become more common (Hilburn et al., 2020; Hu et al., 2021; Yang et al., 2021; Zhang et 

al., 2021; Lee et al., 2022; Pfreundschuh et al., 2022; Goldenstern and Kummerow, 2023). 

 The random forest ML method, which we use in this study, is based on the concept of a decision tree (Breiman, 1984). 

A decision tree is a hierarchical flowchart-like structure made up of decision nodes, branches, and leaf nodes. Each decision 155 

node represents a test that is performed on the input data (for example, whether the CPR surface return is above or below 10 

dB), with the branches representing different possible outcomes of that test. The branch may lead to another decision node (“Is 

the wind speed above 5 knots?”) or terminate in a leaf. At the leaf node, the tree provides the final model prediction. Decision 

trees can be used for either classification or regression problems, although our focus here is on regression. As the depth of a 

decision tree increases, it often becomes over-fit to the training data (Chase et al., 2022). The random forest method (Breiman, 160 

2001) attempts to compensate for this by using an ensemble of decision trees. Many different decision trees are created, each 

based on a random subset of training data sampled from the original dataset with replacement. When making a prediction, the 

random forest averages the results of all the decision trees in the ensemble. Recently, random forests have been used in 

atmospheric science to forecast severe weather (Hill et al., 2020), improve radar-based precipitation nowcasts (Mao and 

Sorteberg, 2020), estimate particulate matter concentrations from satellite observations (Yang et al., 2021), and detect clouds 165 

(Haynes et al., 2022), among many other applications. 

 Our random forest model has 9 inputs and 2 outputs. The outputs are cloud optical depth and cloud top effective 

radius, and the model is trained to minimize the sum of the squared error between these predicted quantities and the 

corresponding MODIS observations. For training, we only use observations between 45° S and 45° N. This is because there 

are biases in the MODIS cloud retrievals at high solar zenith angles (Grosvenor and Wood, 2014; Lebsock and Su, 2014), and 170 

we do not want the random forest to learn these biased relationships. Extrapolated retrievals can still be performed at these 

higher latitudes, however, just as they can be performed at night. The inputs are TB94 and 𝜎% from CPR; SST, TCWV, and 10 

m wind speed from ECMWF-AUX; and CIAB, ODCOD 𝜏, CTER, and CTLWC from CALIOP. These inputs can be found in 

Table 1, along with our physical justification for including each of them. Several other input variables (for example, CloudSat-

derived path integrated attenuation) were tested; however, they were found to not significantly improve retrieval performance 175 

beyond what can be achieved with these 9 variables. It is also worth mentioning that two of the input variables, ODCOD 𝜏  

and CTER, are CALIOP-based estimates of exactly the things we are trying to retrieve; that is, optical depth and cloud top 
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effective radius. Essentially, the random forest takes the CALIOP-based estimates and adjusts them up or down depending on 

the additional information available in the other 8 inputs. This results in slightly better performance than just taking the CTER 

estimates as-is, and much better performance than taking the ODCOD estimates as-is (because that product saturates so 180 

quickly). The model is trained using the Python package “scikit-learn” (Pedregosa et al., 2011). We include 100 trees in our 

forest, and each tree has a maximum depth of 50, with at least 50 samples required to be a leaf node. Other hyperparameters 

follow the default values in scikit-learn. The space of possible hyperparameter combinations one could choose is quite large 

and multidimensional; however, we performed a series of tests in which we retrained the model using stochastically chosen 

combinations and found that the output of the model was not particularly sensitive to our choices. In particular, we do not get 185 

better results when increasing the number of trees or decreasing their max depth. 

Input Parameter Source (Instrument 

or Model) 

Physical Justification 

94 GHz Brightness Temperature (TB94) 

 

CPR Surface Return (𝜎%) 

 

Total Column Water Vapor (TCWV) 

Sea Surface Temperature (SST) 

10-m Wind Speed 

 

532 nm Column Integrated Attenuated 

Backscatter (CIAB) 

Ocean Column Derived Optical Depth 

(ODCOD 𝜏) 

Hu et al. (2021) Cloud Top Effective 

Radius (CTER) 

Hu et al. (2021) Cloud Top Liquid 

Water Content (CTLWC) 

CloudSat 

 

CloudSat 

 

ECMWF HRES 

ECMWF HRES 

ECMWF HRES 

 

CALIPSO 

 

CALIPSO 

 

CALIPSO 

 

CALIPSO 

Cloud water absorbs and re-emits microwave radiation 

emitted from the radiometrically cool ocean, increasing TB 

The ocean surface is very reflective, but the signal is 

attenuated by cloud water in the atmospheric column 

Water vapor increases TB94 and decreases 𝜎% 

TB94 increases with SST. SST slightly modulates 𝜎%. 

Wind speed affects ocean reflectance/emissivity and thus 𝜎% 

and TB94 

A thicker cloud will scatter more, although this effect 

saturates quickly 

Similar to 𝜎% – the ocean surface is reflective, but cloud 

water attenuates the signal 

Uses the full CALIOP profile and a machine learning 

algorithm to estimate 𝑟!, one of our desired outputs 

Clouds with a higher CTLWC will tend to have higher 

optical depths 

Table 1: The nine inputs to our random forest regression model, along with their sources and physical justifications for inclusion. 

 

3 Results 

We first evaluate how well our model performs for daytime clouds, for which MODIS “ground truth” validation data is 190 

available. In this paper we focus on comparisons to MODIS, rather than on comparisons to the CloudSat CWC algorithms, 
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because so many pixels are not captured by the CPR cloud flag. Additionally, for the clouds that are flagged by CPR, there is 

good agreement between MODIS and 2B-CWC-RVOD, as demonstrated extensively in Schule et al. (2023). Figure 2 includes 

density plots showing how model predictions of 𝜏 , cloud top 𝑟! , and LWP (i.e.., the height-integrated LWC from the 

subadiabatic model) compare to MODIS estimates for the same CloudSat pixels. These plots include all 2009 oceanic pixels 195 

detected as cloudy by MODIS between 45° S and 45° N and diagnosed as single-layer liquid clouds by CALIOP. There is 

overall good agreement for all 3 parameters, with Pearson’s correlation coefficients of 0.74, 0.74, and 0.78 for 𝜏, 𝑟!, and LWP, 

respectively. In other words, a little over half of the variance in these cloud quantities can be explained by our predictive model. 

That said, model errors can still be quite large for individual cases, and the model predictions of 𝑟! (and to some extent 𝜏) are 

biased high at low values and biased low at high values. Additional summary statistics can be found in Table 2. Performance 200 

on the training dataset (i.e., 2008) is comparable to the performance on the test dataset, leading us to believe that the model is 

not overfit. 

 
Figure 2: Density plots showing model predictions of (a) cloud optical depth, (b) cloud top effective radius, and (c) cloud liquid water 
path compared to MODIS retrievals, for daytime CloudSat oceanic pixels seen by MODIS in 2009 and identified as single layer 205 
liquid clouds by 2C-CLDCLASS-LIDAR. In the case of LWP, the MODIS-derived “Subadiabatic LWP” is calculated according to 
the method described in Schulte et al. (2023). 

 

Parameter Correlation Coef. RMSE MAE Bias 

Cloud optical depth (𝜏) 

Cloud top effective radius (𝑟!) 

Cloud liquid water path (LWP) 

0.738 

0.735 

0.779 

7.13 

3.38 𝜇m 

63.5 g m-2 

3.21 

2.53 𝜇m 

30.0 g m-2 

+0.07 

+0.06 𝜇m 

+1.23 g m-2 

Table 2: Various model evaluation statistics for the year 2009, comparing the output of our random forest model to the MODIS 
products the model is trained to emulate. RMSE is the root mean squared error, and MAE is the mean absolute error. 210 

 With the random forest model, the latitude-weighted daytime oceanic warm liquid cloud fraction increases from 4.6% 

in 2B-CWC-RVOD to 23.5% (refer back to Fig. 1). There is a more modest increase in average warm cloud liquid water path 

from 6.4 g m-2 in RVOD to 10.2 g m-2 with the random forest model. This can be seen in Fig. 3, which plots maps of the 

Deleted: ¶
We first evaluate how well our model performs for daytime clouds, 215 
for which MODIS “ground truth” validation data is available. 
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average unconditional daytime warm cloud LWP for the year 2009 from 2B-CWC-RO, 2B-CWC-RVOD, 1KM-AUX-

MODIS, and our random forest model. The pattern of average warm cloud LWP from the random forest model (Fig. 3d) looks 

very similar to the MODIS map (Fig. 3c), with slightly more (11% averaged over the globe) liquid water retrieved by the 

random forest model because it includes clouds which are detected by CALIOP but not by MODIS. Meanwhile, the average 220 

warm cloud LWP from 2B-CWC-RO is much higher than the other estimates, despite the cloud fraction being lower, which 

indicates that 2B-CWC-RO is likely retrieving cloud water contents that are too high for individual clouds. 

 
Figure 3: Maps of 2009 average daytime cloud liquid water path over the oceans from (a) 2B-CWC-RO, (b) 2B-CWC-RVOD, (c) 
1KM-AUX-MODIS, and (d) our random forest model. This is the unconditional average (the denominator is all daytime CloudSat 225 
overpasses). However, cloud liquid is only counted as part of the average (i.e. in the numerator) if a given pixel is identified as a 
single layer liquid cloud by 2B-CLDCLASS-LIDAR. Note that panel (a) has a different color scale than the rest of the panels. 

 It is instructive to separate the random forest daytime predictions into categores based on whether each pixel is 

identified as cloudy by the CloudSat radar and by MODIS. We have done this in Table 3 for the 2009 test dataset. In over 75% 

of cases (i.e., categories 2, 4, and 6), a cloud that is detected by CALIOP is not detected by the CloudSat radar. This underscores 230 

the need for augmentation based upon other available instruments. When CALIOP, MODIS and CloudSat all detect a cloud 

(category 1), there is excellent agreement between the random forest retrieved LWP, the MODIS subadiabatic LWP, and the 

CloudSat 2B-CWC-RVOD LWP. The largest category of cases (category 2) is pixels for which MODIS and CALIOP detect 

a cloud that is undetected by the CloudSat radar. The fact that there is good agreement between the random forest cloud water 

retrieval and the MODIS subadiabatic model in these cases is encouraging, and allows us to more confidently make predictions 235 

using the random forest model at night. Nevertheless, in about 20% of all daytime cases (categories 3 and 4) MODIS identifies 
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the pixel as “partly cloudy,” and in another 30% of cases (categories 5 and 6) MODIS does not indicate a cloud at all. While 

it is good to see that the random forest retrieved LWPs for these cases tend to be lower than for categories 1 and 2, it is worth 240 

noting that retrievals in these cases carry more uncertainty. These pixels likely include very thin and/or patchy clouds, for 

which the assumption of a horizontally uniform cloud that is used in the subadiabatic model does not apply. In addition, Fig. 

2 indicates that random forest predictions of 𝜏 at these low optical depths are likely to be biased high. 

Category % of all 

pixels 

identified 

as cloudy 

by 

CALIOP 

Median 

random 

forest 

retrieved 

LWP 

Median 

MODIS 

subadiabatic 

LWP 

Median 

RVOD 

retrieved 

LWP 

LWP 

correlation 

between 

retrieval and 

MODIS 

LWP 

correlation 

between 

retrieval and 

RVOD 

1: MODIS cloudy / 

radar detected 
18.2 88.2 90.0 101.2 0.71 0.67 

2: MODIS cloudy / 

radar undetected 
31.3 34.2 30.3 - 0.81 - 

3: MODIS PCL /  

radar detected 
2.4 35.6 29.8 - 0.38 - 

4: MODIS PCL /  

radar undetected 
18.4 16.8 11.0 - 0.46 - 

5: MODIS undetected 

/ radar detected 
2.5 38.2 - - - - 

6: MODIS undetected 

/ radar undetected 
27.2 15.6 - - - - 

Table 3: Statistics of 2009 daytime pixels for which CALIOP detects a warm cloud, divided into one of six categories based on 
whether or not they are visible and how they are classified by MODIS. Dashes indicate that a product necessary to calculate the 245 
statistic in question is not available for that category of pixel. 

 

Figure 4 plots histograms of model predictions of 𝜏, 𝑟!, and LWP for 2009 daytime pixels, broken down into clouds 

that are thick enough to be detected by MODIS (i.e., categories 1-4) and those that are missed by MODIS (categories 5-6). For 

clouds not seen by MODIS, the distributions of predicted 𝜏 and LWP heavily favor values near zero. These distributions 250 

support the idea that the daytime clouds missed by MODIS tend to be thin and patchy, with low optical depths and liquid water 

paths, and that the random forest model is able to correctly identify these clouds as thin. 
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 260 
Figure 4: Distributions of retrieved values of (a) liquid water path, (b) optical depth, and (c) cloud top effective radius from the 
random forest model for 2009 daytime pixels between 45° S and 45° N identified by 2B-CLDCLASS-LIDAR as single layer liquid 
clouds. The blue histograms correspond to pixels also identified as cloudy by 1KM-AUX-MODIS, and the red histograms to pixels 
identified by CALIPSO as cloudy but not by MODIS. The dotted vertical lines represent the median of each distribution. 

 How does the retrieval algorithm perform at nighttime? While we lack nighttime observations with which to directly 265 

validate the retrievals (hence the need for a new algorithm in the first place), in Fig. 5 we compare the distributions of retrieved 

𝜏, 𝑟!, and LWP at night (in blue) to the distributions during the day (in red). The good performance of the model during the 

day, combined with the fact that the distributions in Fig. 5 are broadly similar, increases our confidence that the nighttime 

retrievals can be trusted. That said, there are some slight differences between the daytime and nighttime statistics. On average, 

the nighttime clouds (as retrieved) have slightly higher water paths and optical depths. While this finding is preliminary, and 270 

not the focus of this paper, it is consistent with previous studies (Wood et al., 2002; Burleyson et al., 2013; Giangrande et al., 

2019) that have found higher LWPs at night in stratocumulus regimes. One proposed mechanism is that there is less turbulent 

coupling between the ocean surface and clouds during the day, depriving clouds of moisture and making them more susceptible 

to evaporation (Dong et al., 2014). 
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 275 
Figure 5: Distributions of retrieved values of (a) liquid water path, (b) optical depth, and (c) cloud top effective radius from the 
random forest model for 2009 daytime (red) and nighttime (blue) pixels between 45° S and 45° N identified by 2B-CLDCLASS-
LIDAR as single layer liquid clouds. The blue histograms correspond to pixels also identified as cloudy by 1KM-AUX-MODIS, and 
the red histograms to pixels identified by CALIPSO as cloudy but not by MODIS. The dotted vertical lines represent the median of 
each distribution. 280 

3.1 Case Studies 

We now turn our attention to two case studies, which help demonstrate our algorithm’s usefulness for estimating the liquid 

water content of thin liquid clouds. The case studies come from two randomly chosen 2009 CloudSat granules that included 

observations over the subtropical southeastern Pacific Ocean, an area with persistent stratocumulus cloud decks. Figure 6 

includes several plots from the first case study, which occurred during the daytime on 2 September 2009. The left side panels 285 

show cross sections of various observed and retrieved variables along a portion of the CloudSat orbital track. The CALIOP 

532 nm total attenuated backscatter (TAB; panel A) indicates a cloud top that occurs at around 1.25 km in altitude along nearly 

the entirety of this ~500 km long cross section. From the CPR W-band reflectivity field, however, only portions of this cloud 

deck are distinguishable from the background noise. This means that about half of the cloudy pixels (according to CALIOP) 

have no LWC profile in the 2B-CWC-RVOD product. Fig. 6g shows the LWC profile along this cross section according to 290 

our random forest algorithm, once the subadiabatic model has been applied to our retrievals of 𝜏 and 𝑟!, and Fig. 6i shows a 

“merged” LWC cross section that uses the 2B-CWC-RVOD LWC profile where it is non-zero, but fills in the gaps with the 

random forest result for pixels where 2B-CWC-RVOD does not detect a cloud. For the clouds that are thick enough to be seen 

by CloudSat, while the random forest predictions do not match the 2B-CWC-RVOD profiles exactly, there is general 

agreement as to the depth of the cloud, the order of magnitude of LWC values, and as to which pixels have the highest LWC 295 

values. In fact, there is excellent agreement between the two retrievals when it comes to the integrated liquid water path for 

these CloudSat-detected pixels, as demonstrated in Panel J. The aim of our product, however, is not to replace the reflectivity-
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based retrieval but to supplement it in the cases where the radar does not detect a cloud. To this end, it is encouraging that the 

merged LWC cross section looks quite reasonable, without any sharp discontinuities. Also included in Fig. 6 are the predicted 

𝜏 and 𝑟! values for this cross section from the random forest model compared to MODIS and (in the case of 𝑟!) compared to 305 

2B-CWC-RVOD. For this case, the retrieved optical depth tracks almost exactly with MODIS, while the effective radius also 

generally follows the MODIS line but not quite as closely. Finally, Fig. 6 plots 3 of the most important inputs to the random 

forest model: TB94, 𝜎%, and CIAB. Where the clouds are thickest, TB94 is higher, 𝜎% is lower, and CIAB tends to be higher 

(although that measurement is noisier). 

 310 
Figure 6: Daytime case study from 2 September 2009 (CloudSat granule 17816). A) CALIOP total attenuated backscatter; B) 
CALIOP column integrated attenuated backscatter; C) CPR reflectivity; D) CPR surface return and 94 GHz brightness 
temperature; E) Cloud liquid water content profiles retrieved by 2B-CWC-RVOD algorithm; F) Cloud-top effective radius as 
estimated by MODIS (blue), our random forest model (red), and 2B-CWC-RVOD (gold); G) Profiles of LWC retrieved by applying 
the subadiabatic model to the random forest retried values of 𝝉 and 𝒓𝒆; H) Optical depth from MODIS and the random forest model; 315 
I) Merged profile of LWC, which supplements the 2B-CWC-RVOD retrieval with random forest profiles for cloudy pixels that have 
no 2B-CWC-RVOD retrieval; J) Vertically integrated cloud liquid water path from MODIS (using the subadiabatic model), the 
random forest algorithm, and 2B-CWC-RVOD. 
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 The second case study (Fig. 7) is a nighttime case from 30 June 2009. Once again, CALIOP indicates a much less 320 

broken cloud deck than the CloudSat LWC retrieval (2B-CWC-RO in this case, since 2B-CWC-RVOD is daytime-only). The 

random forest LWC profiles are not quite as deep from cloud base to cloud top as 2B-CWC-RO, leading to higher maximum 

LWC values in the random forest output. Still, the merged LWC cross section looks decent, and certainly closer to reality than 

2B-CWC-RO alone. There is also reasonable agreement between the LWP retrieved by 2B-CWC-RO and the random forest, 

although they disagree on the cloud top effective radius. We see a similar pattern in the inputs as is present for the daytime 325 

case study: higher LWP is associated with higher TB94 and CIAB, and lower 𝜎%, although the pattern is noisier for this case 

than the daytime case. 

 
Figure 7: Nighttime case study from 30 June 2009 (CloudSat granule 16877). As for Fig. 6, except with 2B-CWC-RO replacing 2B-
CWC-RVOD (which is unavailable at night) in panel E. 330 
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3.2 Input variable importance  

We now turn our attention to the question of how our random forest model reaches the predictions that it does. Each of the 

inputs of the model was chosen because we had reason to believe there would be a physical relationship between the input 

variable and one of the target variables (𝜏 or 𝑟!). For example, the ocean has a relatively low emissivity at 94 GHz, meaning 335 

that clear sky pixels will appear colder than those with clouds. On the other hand, cloud water attenuates the radar pulses, so 

greater cloud water will lead to a reduced radar return from the ocean surface, all other things equal (Lebsock et al., 2022). 

And of course, since they are attempting to measure the same thing, it is to be expected that CTER from CALIOP should be 

related to MODIS cloud top 𝑟!. Figure 8 demonstrates these relationships with density plots. These relationships become even 

stronger once accounting for confounding environmental variables. Water vapor also absorbs microwave radiation at 94 GHz, 340 

so higher TCWV will increase TB94 and decrease 𝜎%, much in the same way as a cloud. A higher SST will increase surface 

emission and will thus also increase TB94. And wind speeds affect the backscatter characteristics of the ocean surface, with 

lower wind speeds tending to lead to higher but also much more variable surface returns. 

 
Figure 8: Density plots showing (a) CloudSat 94 GHz brightness temperature, (b) CloudSat surface return, and (c) CALIPSO cloud 345 
top re from Hu et al. (2021), each compared to corresponding MODIS observations from 2008. In each panel the cyan line shows the 
conditional mean of the variable on the y axis, conditioned on the variable on the x-axis.  

 Table 3 shows the partial correlation (e.g., Baba et al., 2004) between each input variable and MODIS 𝜏, 𝑟!, and LWP, 

accounting for TCWV, SST and wind speed. By this metric, the most important variables for predicting 𝜏 and LWP are TB94, 

𝜎%, and CIAB, while the most important for predicting 𝑟! is (unsurprisingly) CTER. A simpler model than our random forest 350 

can be constructed that exploits these linear relationships. We fit a multinomial linear regression model to our training dataset 

of 2008, using the same 9 variables as the random forest model, and then tested the regression model on the 2009 data, and we 

got correlation coefficients of 0.62 and 0.71, respectively, for 𝜏 and 𝑟!. These are decent correlation coefficients, even if they 

are smaller than those obtained from the random forest model. 
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Variable Optical Depth Corr. Cloud top 𝒓𝒆 Corr.  LWP Corr. 

TB94 

𝜎%  

CIAB 

ODCOD 𝜏 

CTLWC 

CTER 

0.625 

-0.493 

0.448 

0.373 

0.243 

0.042 

0.410 

-0.308 

-0.056 

0.047 

0.046 

0.665 

0.711 

-0.603 

0.376 

0.349 

0.220 

0.221 

Table 4: Partial correlation coefficients (controlling for the environmental variables of TCWV, SST, and 10 m wind speed) between 355 
the various CloudSat and CALIPSO input variables and the MODIS target variables of cloud optical depth, effective radius, and 
liquid water path. The data comes from the 2008 training dataset. 

 Why is the random forest model able to do better than the multilinear regression model? It can interpret nonlinear 

relationships in the data. For example, several of the input variables saturate at high optical depths. This is most extreme for 

the ODCOD 𝜏 variable, which saturates at cloud optical depths of about 3 during the daytime and 5 during the nighttime. As 360 

evidenced in Fig. 8, though, the TB94 signal saturates at a cloud optical depth around 30, and for 𝜎% saturation is reached closer 

to an optical depth of 50. Another example of a nonlinear relationship is the fact that the 𝜎% variable is more predictive at 

higher wind speeds than at lower wind speeds. The linear correlation coefficient between 𝜎% and MODIS 𝜏 is -0.43 for pixels 

with wind speeds between 7 and 10 m/s, while it is only -0.24 for pixels with wind speeds between 0 and 3 m/s. Partial 

dependency analysis (Friedman, 2001; not shown) confirms that our model does indeed pick up on these nonlinear 365 

relationships. 

 To test which variables are most important to the random forest model, specifically, we use a method called backwards 

sequential feature selection (Aha and Bankert, 1996). Starting with the full list of 9 input variables, we train 9 different random 

forest models to predict MODIS 𝜏, each missing exactly one of the 9 input variables. For computational reasons, we do not 

use the full 2008 training dataset but only a subset consisting of a random 5 %. Each of the resulting candidate models is 370 

evaluated against the test dataset, and we search for the model which has the highest correlation between predicted	𝜏 and 

MODIS 𝜏. The variable that is missing from this best model is deemed the least important variable for predicting	𝜏 (in this 

case, that variable is CTLWC). Then we repeat the process with the remaining 8 variables. We train 8 new models, each 

missing exactly one of the remaining variables, and search for the model that performs best. This process is iteratively repeated 

until only one variable is left. Similarly, we use backwards sequential feature selection to determine the most important 375 

variables for predicting MODIS 𝑟!. The results are plotted in Fig. 9. According to this method, the single most important 

variable for predicting MODIS 𝜏 is TB94, while the most important variable for predicting MODIS 𝑟! is CTER (by far). TCWV 

also ranks highly in both lists, probably because knowing the amount of water vapor greatly improves the utility of the TB94 

measurement. Note that this method does not explicitly account for the correlations among the different input variables, which 

influences the features identified as most important. For example, if TB94 were unavailable, one would expect 𝜎% to be most 380 
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important for predicting 𝜏. Because TB94 and 𝜎% are not independent of each other, 𝜎%ranks as less important according to the 

backwards sequential feature selection algorithm.  

 385 
Figure 9: (a) Each bar shows the correlation between predicted optical depth and MODIS optical depth, for a model trained and 
tested using only the feature below each bar, plus all variables to the left. The variables are listed from left to right according to their 
importance rank using the backward sequential feature selection algorithm. Note that adding the first few features greatly improves 
model performance, but that there are diminishing returns to adding additional features. (b) As for panel (a), but for cloud top 
effective radius.  390 

4 Conclusions 

Many thin liquid clouds do not produce W-band reflectivities above the CloudSat radar noise floor or the surface clutter noise. 

The current operational cloud water content retrieval products thus do not include these clouds, which complicates radiative 

flux calculations and makes comparisons to climate models more challenging. However, even if these clouds do not show up 

in CPR reflectivities, there is a significant amount of information about the clouds in other CloudSat observables (in particular, 395 

TB94 and 𝜎%), and in the near-coincident measurements available from CALIPSO. It is this information that we aim to leverage 

using our random forest model. While machine learning based models are often thought of as “black boxes,” we select input 

variables that we expect will be related to the cloud properties of optical depth and cloud top 𝑟! through clearly-defined physical 

mechanisms. Making additional assumptions (i.e., those of the subadiabatic model), it is straightforward to derive estimated 

profiles of cloud water. 400 

While the resulting LWC profiles certainly have flaws, and should not be expected to perfectly capture the vertical 

distribution of cloud water, there is great potential for them to be used to augment reflectivity-based estimates of liquid cloud 

water, filling in the gaps in cases where we know (from CALIOP and/or MODIS) that a cloud is present, but not detected by 

CPR. The effects of including these thin clouds are large. With the random forest model, the daytime oceanic warm cloud 

liquid cloud fraction increases about five-fold compared to 2B-CWC-RVOD, while the total warm cloud LWP amount nearly 405 

doubles. The model gives comparable results to the MODIS-based method presented in Schulte et al. (2023); however, this 

method does not use observations that rely on reflected sunlight, so it can be used during the night.  
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The method is not without limitations. Many of the input variables are only useful over the ocean, and we have not 

considered mixed-phase or multi-layered clouds. It is also worth noting that CPR, CALIOP, and MODIS observations are not 

perfectly coincident, and that they have different resolutions. The assumptions of the subadiabatic model should not be 410 

expected to hold true in all cases, and both this study and Schulte et al. (2023) suggest that the subadiabatic model might 

generate clouds that are too vertically compressed (with a cloud base that is too high) for pixels with high optical depths. Still, 

the case studies that we have shown demonstrate that when one merges the random forest LWC estimates with profiles from 

2B-CWC-RVOD or 2B-CWC-RO, generally realistic-looking curtains of LWC are obtained. 

 We intend to include random forest predictions of oceanic cloud properties (including 𝜏, 𝑟!, LWP, and cloud droplet 415 

number concentration) and LWC profiles in the final reprocessed version of the 2B-CWC-RVOD product. The method could 

also easily be extended to future satellite missions. The EarthCARE mission (Illingworth et al., 2015), set to launch in May 

2024, will include both a 94 GHz radar as well as a 355 nm lidar and MODIS-like instruments. While retraining would be 

necessary due to instrument differences, our random forest method could be used to supplement EarthCARE LWC profile 

estimates for thin clouds.  A lidar and cloud-sensitive radar are also being planned for the polar orbiting satellite of NASA’s 420 

Atmosphere Observing System (AOS). This radar is likely to be even less sensitive to thin clouds than CPR, meaning non-

reflectivity based strategies of estimating liquid cloud properties will be all the more important. 

Code availability 

All code used to produce the results presented in this study is available from the Zenodo repository 

(https://doi.org/10.5281/zenodo.10425919). 425 

Data availability 

All of the CloudSat and MODIS data used in this study, along with the CALIOP estimates of CTER and CTLWC, are available 

from the CloudSat data processing center at cloudsat.cira.colostate.edu (last access: 22 Dec 2023). The remaining CALIOP 

data is available from the NASA Atmospheric Science Data Center at asdc.larc.nasa.gov/project/CALIPSO (last access: 22 

Dec 2023). Other data necessary to reproduce the presented results are available on request. 430 

Author contributions 

RS performed the data analysis and wrote most of the article. ML, JH, and YH helped conceptualize and focus the study, 

provided technical help and discussions, and helped edit the article. 



19 
 

Competing interests 

The authors declare that they have no conflict of interest. 435 

Acknowledgments 

This work was funded by the National Aeronautics and Space Administration’s CloudSat mission. The work of ML was 

performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.  

References 

Adler, R. F. and Negri, A. J.: A Satellite Infrared Technique to Estimate Tropical Convective and Stratiform Rainfall, Journal 440 
of Applied Meteorology and Climatology, 27, 30–51, https://doi.org/10.1175/1520-0450(1988)027<0030:ASITTE>2.0.CO;2, 
1988. 

Aha, D. W. and Bankert, R. L.: A Comparative Evaluation of Sequential Feature Selection Algorithms, in: Learning from 
Data: Artificial Intelligence and Statistics V, edited by: Fisher, D. and Lenz, H.-J., Springer, New York, NY, 199–206, 
https://doi.org/10.1007/978-1-4612-2404-4_19, 1996. 445 

Austin, R. T., Heymsfield, A. J., and Stephens, G. L.: Retrieval of ice cloud microphysical parameters using the CloudSat 
millimeter-wave radar and temperature, Journal of Geophysical Research: Atmospheres, 114, 
https://doi.org/10.1029/2008JD010049, 2009. 

Baba, K., Shibata, R., and Sibuya, M.: Partial Correlation and Conditional Correlation as Measures of Conditional 
Independence, Australian & New Zealand Journal of Statistics, 46, 657–664, https://doi.org/10.1111/j.1467-450 
842X.2004.00360.x, 2004. 

Breiman, L.: Random Forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 

Breiman, L.: Classification and Regression Trees, Routledge, New York, 368 pp., https://doi.org/10.1201/9781315139470, 
2017. 

Brenguier, J.-L., Pawlowska, H., Schüller, L., Preusker, R., Fischer, J., and Fouquart, Y.: Radiative Properties of Boundary 455 
Layer Clouds: Droplet Effective Radius versus Number Concentration, Journal of the Atmospheric Sciences, 57, 803–821, 
https://doi.org/10.1175/1520-0469(2000)057<0803:RPOBLC>2.0.CO;2, 2000. 

Brenguier, J.-L., Pawlowska, H., and Schüller, L.: Cloud microphysical and radiative properties for parameterization and 
satellite monitoring of the indirect effect of aerosol on climate, Journal of Geophysical Research: Atmospheres, 108, 
https://doi.org/10.1029/2002JD002682, 2003. 460 

Burleyson, C. D., Szoeke, S. P. de, Yuter, S. E., Wilbanks, M., and Brewer, W. A.: Ship-Based Observations of the Diurnal 
Cycle of Southeast Pacific Marine Stratocumulus Clouds and Precipitation, Journal of the Atmospheric Sciences, 70, 3876–
3894, https://doi.org/10.1175/JAS-D-13-01.1, 2013. 

Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Ghan, S. J., Kiehl, J. T., Le Treut, H., Li, Z.-X., Liang, X.-Z., Mitchell, 
J. F. B., Morcrette, J.-J., Randall, D. A., Riches, M. R., Roeckner, E., Schlese, U., Slingo, A., Taylor, K. E., Washington, W. 465 



20 
 

M., Wetherald, R. T., and Yagai, I.: Interpretation of Cloud-Climate Feedback as Produced by 14 Atmospheric General 
Circulation Models, Science, 245, 513–516, https://doi.org/10.1126/science.245.4917.513, 1989. 

Chase, R. J., Harrison, D. R., Burke, A., Lackmann, G. M., and McGovern, A.: A Machine Learning Tutorial for Operational 
Meteorology. Part I: Traditional Machine Learning, Weather and Forecasting, 37, 1509–1529, https://doi.org/10.1175/WAF-
D-22-0070.1, 2022. 470 

Christensen, M. W., Stephens, G. L., and Lebsock, M. D.: Exposing biases in retrieved low cloud properties from CloudSat: 
A guide for evaluating observations and climate data, Journal of Geophysical Research: Atmospheres, 118, 12,120-12,131, 
https://doi.org/10.1002/2013JD020224, 2013. 

Dong, X., Xi, B., and Wu, P.: Investigation of the Diurnal Variation of Marine Boundary Layer Cloud Microphysical Properties 
at the Azores, Journal of Climate, 27, 8827–8835, https://doi.org/10.1175/JCLI-D-14-00434.1, 2014. 475 

Friedman, J. H.: Greedy function approximation: A gradient boosting machine., The Annals of Statistics, 29, 1189–1232, 
https://doi.org/10.1214/aos/1013203451, 2001. 

Giangrande, S. E., Wang, D., Bartholomew, M. J., Jensen, M. P., Mechem, D. B., Hardin, J. C., and Wood, R.: Midlatitude 
Oceanic Cloud and Precipitation Properties as Sampled by the ARM Eastern North Atlantic Observatory, Journal of 
Geophysical Research: Atmospheres, 124, 4741–4760, https://doi.org/10.1029/2018JD029667, 2019. 480 

Goldenstern, E. and Kummerow, C.: Predicting Region-Dependent Biases in a GOES-16 Machine Learning Precipitation 
Retrieval, Journal of Applied Meteorology and Climatology, 62, 873–885, https://doi.org/10.1175/JAMC-D-22-0089.1, 2023. 

Grosvenor, D. P. and Wood, R.: The effect of solar zenith angle on MODIS cloud optical and microphysical retrievals within 
marine liquid water clouds, Atmospheric Chemistry and Physics, 14, 7291–7321, https://doi.org/10.5194/acp-14-7291-2014, 
2014. 485 

Ham, S.-H., Kato, S., Rose, F. G., Sun-Mack, S., Chen, Y., Miller, W. F., and Scott, R. C.: Combining Cloud Properties from 
CALIPSO, CloudSat, and MODIS for Top-of-Atmosphere (TOA) Shortwave Broadband Irradiance Computations: Impact of 
Cloud Vertical Profiles, Journal of Applied Meteorology and Climatology, 61, 1449–1471, https://doi.org/10.1175/JAMC-D-
21-0260.1, 2022. 

Hartmann, D. L., Ockert-Bell, M. E., and Michelsen, M. L.: The Effect of Cloud Type on Earth’s Energy Balance: Global 490 
Analysis, Journal of Climate, 5, 1281–1304, https://doi.org/10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2, 1992. 

Haynes, J. M., Noh, Y.-J., Miller, S. D., Haynes, K. D., Ebert-Uphoff, I., and Heidinger, A.: Low Cloud Detection in Multilayer 
Scenes Using Satellite Imagery with Machine Learning Methods, Journal of Atmospheric and Oceanic Technology, 39, 319–
334, https://doi.org/10.1175/JTECH-D-21-0084.1, 2022. 

Hilburn, K. A., Ebert-Uphoff, I., and Miller, S. D.: Development and Interpretation of a Neural-Network-Based Synthetic 495 
Radar Reflectivity Estimator Using GOES-R Satellite Observations, Journal of Applied Meteorology and Climatology, 60, 3–
21, https://doi.org/10.1175/JAMC-D-20-0084.1, 2020. 

Hill, A. J., Herman, G. R., and Schumacher, R. S.: Forecasting Severe Weather with Random Forests, Monthly Weather 
Review, 148, 2135–2161, https://doi.org/10.1175/MWR-D-19-0344.1, 2020. 

Hu, Y., Lu, X., Zhai, P.-W., Hostetler, C. A., Hair, J. W., Cairns, B., Sun, W., Stamnes, S., Omar, A., Baize, R., Videen, G., 500 
Mace, J., McCoy, D. T., McCoy, I. L., and Wood, R.: Liquid Phase Cloud Microphysical Property Estimates From CALIPSO 
Measurements, Frontiers in Remote Sensing, 2, 2021. 



21 
 

Hunt, W. H., Winker, D. M., Vaughan, M. A., Powell, K. A., Lucker, P. L., and Weimer, C.: CALIPSO Lidar Description and 
Performance Assessment, Journal of Atmospheric and Oceanic Technology, 26, 1214–1228, 
https://doi.org/10.1175/2009JTECHA1223.1, 2009. 505 

Justice, C. O., Vermote, E., Townshend, J. R. G., Defries, R., Roy, D. P., Hall, D. K., Salomonson, V. V., Privette, J. L., Riggs, 
G., Strahler, A., Lucht, W., Myneni, R. B., Knyazikhin, Y., Running, S. W., Nemani, R. R., Wan, Z., Huete, A. R., van 
Leeuwen, W., Wolfe, R. E., Giglio, L., Muller, J., Lewis, P., and Barnsley, M. J.: The Moderate Resolution Imaging 
Spectroradiometer (MODIS): land remote sensing for global change research, IEEE Transactions on Geoscience and Remote 
Sensing, 36, 1228–1249, https://doi.org/10.1109/36.701075, 1998. 510 

Lamer, K., Kollias, P., Battaglia, A., and Preval, S.: Mind the gap – Part 1: Accurately locating warm marine boundary layer 
clouds and precipitation using spaceborne radars, Atmospheric Measurement Techniques, 13, 2363–2379, 
https://doi.org/10.5194/amt-13-2363-2020, 2020. 

Lebsock, M. and Su, H.: Application of active spaceborne remote sensing for understanding biases between passive cloud 
water path retrievals, Journal of Geophysical Research: Atmospheres, 119, 8962–8979, 515 
https://doi.org/10.1002/2014JD021568, 2014. 

Lebsock, M., Takahashi, H., Roy, R., Kurowski, M. J., and Oreopoulos, L.: Understanding Errors in Cloud Liquid Water Path 
Retrievals Derived from CloudSat Path-Integrated Attenuation, Journal of Applied Meteorology and Climatology, 61, 955–
967, https://doi.org/10.1175/JAMC-D-21-0235.1, 2022. 

Lebsock, M. D. and Suzuki, K.: Uncertainty Characteristics of Total Water Path Retrievals in Shallow Cumulus Derived from 520 
Spaceborne Radar/Radiometer Integral Constraints, Journal of Atmospheric and Oceanic Technology, 33, 1597–1609, 
https://doi.org/10.1175/JTECH-D-16-0023.1, 2016. 

Lee, Y., Kummerow, C., and Zupanski, M.: Latent heating profiles from GOES-16 and its impacts on precipitation forecasts, 
Atmospheric Measurement Techniques, 15, 7119–7136, https://doi.org/10.5194/amt-15-7119-2022, 2022. 

Leinonen, J., Lebsock, M. D., Stephens, G. L., and Suzuki, K.: Improved Retrieval of Cloud Liquid Water from CloudSat and 525 
MODIS, Journal of Applied Meteorology and Climatology, 55, 1831–1844, https://doi.org/10.1175/JAMC-D-16-0077.1, 
2016. 

Li, J.-L., Lee, S., Ma, H.-Y., Stephens, G., and Guan, B.: Assessment of the cloud liquid water from climate models and 
reanalysis using satellite observations, Terrestrial, Atmospheric and Oceanic Sciences, 29, 653–678, 
https://doi.org/10.3319/TAO.2018.07.04.01, 2018. 530 

Ma, C.-C., Mechoso, C. R., Robertson, A. W., and Arakawa, A.: Peruvian Stratus Clouds and the Tropical Pacific Circulation: 
A Coupled Ocean-Atmosphere GCM Study, Journal of Climate, 9, 1635–1645, https://doi.org/10.1175/1520-
0442(1996)009<1635:PSCATT>2.0.CO;2, 1996. 

Mao, Y. and Sorteberg, A.: Improving Radar-Based Precipitation Nowcasts with Machine Learning Using an Approach Based 
on Random Forest, Weather and Forecasting, 35, 2461–2478, https://doi.org/10.1175/WAF-D-20-0080.1, 2020. 535 

Marchand, R., Mace, G. G., Ackerman, T., and Stephens, G.: Hydrometeor Detection Using Cloudsat—An Earth-Orbiting 94-
GHz Cloud Radar, Journal of Atmospheric and Oceanic Technology, 25, 519–533, 
https://doi.org/10.1175/2007JTECHA1006.1, 2008. 



22 
 

Min, Q., Joseph, E., Lin, Y., Min, L., Yin, B., Daum, P. H., Kleinman, L. I., Wang, J., and Lee, Y.-N.: Comparison of MODIS 
cloud microphysical properties with in-situ measurements over the Southeast Pacific, Atmospheric Chemistry and Physics, 12, 540 
11261–11273, https://doi.org/10.5194/acp-12-11261-2012, 2012. 

Nakajima, T. and King, M. D.: Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected 
Solar Radiation Measurements. Part I: Theory, Journal of the Atmospheric Sciences, 47, 1878–1893, 
https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2, 1990. 

Oreopoulos, L., Cho, N., Lee, D., Lebsock, M., and Zhang, Z.: Assessment of Two Stochastic Cloud Subcolumn Generators 545 
Using Observed Fields of Vertically Resolved Cloud Extinction, Journal of Atmospheric and Oceanic Technology, 39, 1229–
1244, https://doi.org/10.1175/JTECH-D-21-0166.1, 2022. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., 
Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.: Scikit-learn: Machine 
Learning in Python, Journal of Machine Learning Research, 12, 2825–2830, 2011. 550 

Pfreundschuh, S., Brown, P., Kummerow, C., Eriksson, P., and Norrestad, T.: GPROF-NN: a neural-network-based 
implementation of the Goddard Profiling Algorithm, Atmospheric Measurement Techniques, 15, 5033–5060, 
https://doi.org/10.5194/amt-15-5033-2022, 2022. 

Rangno, A. L. and Hobbs, P. V.: Microstructures and precipitation development in cumulus and small cumulonimbus clouds 
over the warm pool of the tropical Pacific Ocean, Quarterly Journal of the Royal Meteorological Society, 131, 639–673, 555 
https://doi.org/10.1256/qj.04.13, 2005. 

Rauber, R. M., Stevens, B., Ochs, H. T., Knight, C., Albrecht, B. A., Blyth, A. M., Fairall, C. W., Jensen, J. B., Lasher-Trapp, 
S. G., Mayol-Bracero, O. L., Vali, G., Anderson, J. R., Baker, B. A., Bandy, A. R., Burnet, E., Brenguier, J.-L., Brewer, W. 
A., Brown, P. R. A., Chuang, R., Cotton, W. R., Girolamo, L. D., Geerts, B., Gerber, H., Göke, S., Gomes, L., Heikes, B. G., 
Hudson, J. G., Kollias, P., Lawson, R. R., Krueger, S. K., Lenschow, D. H., Nuijens, L., O’Sullivan, D. W., Rilling, R. A., 560 
Rogers, D. C., Siebesma, A. P., Snodgrass, E., Stith, J. L., Thornton, D. C., Tucker, S., Twohy, C. H., and Zuidema, P.: Rain 
in Shallow Cumulus Over the Ocean: The RICO Campaign, Bulletin of the American Meteorological Society, 88, 1912–1928, 
https://doi.org/10.1175/BAMS-88-12-1912, 2007. 

Sassen, K., Wang, Z., and Liu, D.: Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared 
Pathfinder Satellite Observations (CALIPSO) measurements, Journal of Geophysical Research: Atmospheres, 113, 565 
https://doi.org/10.1029/2008JD009972, 2008. 

Schulte, R. M., Lebsock, M. D., and Haynes, J. M.: What CloudSat cannot see: liquid water content profiles inferred from 
MODIS and CALIOP observations, Atmospheric Measurement Techniques, 16, 3531–3546, https://doi.org/10.5194/amt-16-
3531-2023, 2023. 

Stephens, G. L.: Radiation Profiles in Extended Water Clouds. II: Parameterization Schemes, Journal of the Atmospheric 570 
Sciences, 35, 2123–2132, https://doi.org/10.1175/1520-0469(1978)035<2123:RPIEWC>2.0.CO;2, 1978. 

Stephens, G. L., Vane, D. G., Tanelli, S., Im, E., Durden, S., Rokey, M., Reinke, D., Partain, P., Mace, G. G., Austin, R., 
L’Ecuyer, T., Haynes, J., Lebsock, M., Suzuki, K., Waliser, D., Wu, D., Kay, J., Gettelman, A., Wang, Z., and Marchand, R.: 
CloudSat mission: Performance and early science after the first year of operation, Journal of Geophysical Research: 
Atmospheres, 113, https://doi.org/10.1029/2008JD009982, 2008. 575 



23 
 

Stephens, G. L., L’Ecuyer, T., Forbes, R., Gettelmen, A., Golaz, J.-C., Bodas-Salcedo, A., Suzuki, K., Gabriel, P., and Haynes, 
J.: Dreary state of precipitation in global models, Journal of Geophysical Research: Atmospheres, 115, 
https://doi.org/10.1029/2010JD014532, 2010. 

Tanelli, S., Durden, S. L., Im, E., Pak, K. S., Reinke, D. G., Partain, P., Haynes, J. M., and Marchand, R. T.: CloudSat’s Cloud 
Profiling Radar After Two Years in Orbit: Performance, Calibration, and Processing, IEEE Transactions on Geoscience and 580 
Remote Sensing, 46, 3560–3573, https://doi.org/10.1109/TGRS.2008.2002030, 2008. 

Turner, D. D., Vogelmann, A. M., Austin, R. T., Barnard, J. C., Cady-Pereira, K., Chiu, J. C., Clough, S. A., Flynn, C., Khaiyer, 
M. M., Liljegren, J., Johnson, K., Lin, B., Long, C., Marshak, A., Matrosov, S. Y., McFarlane, S. A., Miller, M., Min, Q., 
Minimis, P., O’Hirok, W., Wang, Z., and Wiscombe, W.: Thin Liquid Water Clouds: Their Importance and Our Challenge, 
Bulletin of the American Meteorological Society, 88, 177–190, https://doi.org/10.1175/BAMS-88-2-177, 2007. 585 

Wood, R. and Hartmann, D. L.: Spatial Variability of Liquid Water Path in Marine Low Cloud: The Importance of Mesoscale 
Cellular Convection, Journal of Climate, 19, 1748–1764, https://doi.org/10.1175/JCLI3702.1, 2006. 

Wood, R., Bretherton, C. S., and Hartmann, D. L.: Diurnal cycle of liquid water path over the subtropical and tropical oceans, 
Geophysical Research Letters, 29, 7-1-7–4, https://doi.org/10.1029/2002GL015371, 2002. 

Wood, R., Kubar, T. L., and Hartmann, D. L.: Understanding the Importance of Microphysics and Macrophysics for Warm 590 
Rain in Marine Low Clouds. Part II: Heuristic Models of Rain Formation, Journal of the Atmospheric Sciences, 66, 2973–
2990, https://doi.org/10.1175/2009JAS3072.1, 2009. 

Yang, L., Xu, H., and Yu, S.: Estimating PM2.5 Concentrations in Contiguous Eastern Coastal Zone of China Using MODIS 
AOD and a Two-Stage Random Forest Model, Journal of Atmospheric and Oceanic Technology, 38, 2071–2080, 
https://doi.org/10.1175/JTECH-D-20-0214.1, 2021. 595 

Yue, Q., Jiang, J. H., Heymsfield, A., Liou, K.-N., Gu, Y., and Sinha, A.: Combining In Situ and Satellite Observations to 
Understand the Vertical Structure of Tropical Anvil Cloud Microphysical Properties During the TC4 Experiment, Earth and 
Space Science, 7, e2020EA001147, https://doi.org/10.1029/2020EA001147, 2020. 

Zelinka, M. D., Zhou, C., and Klein, S. A.: Insights from a refined decomposition of cloud feedbacks, Geophysical Research 
Letters, 43, 9259–9269, https://doi.org/10.1002/2016GL069917, 2016. 600 

Zhang, Z., Wang, D., Qiu, J., Zhu, J., and Wang, T.: Machine Learning Approaches for Improving Near-Real-Time IMERG 
Rainfall Estimates by Integrating Cloud Properties from NOAA CDR PATMOS-x, Journal of Hydrometeorology, 22, 2767–
2781, https://doi.org/10.1175/JHM-D-21-0019.1, 2021. 

 


