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Abstract. Multiphase chemistry is an important pathway for the formation of secondary organic aerosols 39 

in the atmosphere. In this study, an indoor 2 m3 Teflon chamber system (Aerosol multIphase chemistry 40 

Research chamber, AIR) was developed and characterized to specifically simulate atmospheric 41 

multiphase chemistry processes. The temperature and humidity controls, diurnal variation simulation, 42 

and seed particle generation unit in this chamber system were designed to meet the needs of simulating 43 

multiphase atmospheric chemical reactions. The AIR chamber is able to accurately control temperature 44 

(2.5 ~ 31 ± 0.15 ℃) and relative humidity (RH < 2 % ~ > 95% ± 0.75%) over a relatively broad range. 45 

In addition, an RH regulation module inside the chamber was designed to simulate the diurnal variation 46 

of ambient atmospheric RH. The aerosol generation unit is able to generate pre-deliquescent seed 47 

particles with an organic coating across a wide range of phase states or morphologies. The organic 48 

coating thickness of the aerosols within the chamber can be precisely controlled through adjusting the 49 

condensation temperature, further helping to elucidate the roles of seed particles in multiphase chemical 50 

reactions. The inner walls of the AIR chamber are passivated to reduce the wall loss rates of reactive 51 

gases. Yield experiments of α-pinene ozonolysis with and without seed particles combined with a box 52 

model simulation demonstrate the high-quality performance of secondary aerosol formation simulation 53 

using the AIR chamber.  54 

1 Introduction 55 

Smog chamber is a mainstream tool in chemical laboratory studies to simulate the formation and 56 

evolution of air pollutants (Batchvarova et al., 2006; Chen and Lelevkin, 2006; Kolev and Grigorieva, 57 

2006; Mocanu et al., 2006; Tolkacheva, 2006) and reveal the parameterization or mechanisms of 58 

atmospheric processes (Wenger, 2006; Olariu et al., 2006; Bejan et al., 2006; Mellouki, 2006; Barnes, 59 

2006; Albu et al., 2006; Carter, 2006; Rudzinski, 2006; Zielinska et al., 2006). Chamber simulations have 60 

irreplaceable advantages over other laboratory methods such as oxidation flow reactors (Kang et al., 61 

2007; Lambe et al., 2015; Corral Arroyo et al., 2018; Cosman and Bertram, 2008) and bulk solution 62 

experiments (Brunamonti et al., 2015; Turšič et al., 2003; Pratap et al., 2021; Fleming et al., 2020; Mekic 63 

et al., 2019) in tracking atmospheric transformation processes and understanding kinetic processes. 64 

The development of chambers is closely related to advances in atmospheric chemistry research. Starting 65 

with studies of photochemical smog in Los Angeles in the 1940s (Haagensmit, 1952) and continuing to 66 

the 1970s, chambers were designed primarily to study the formation of ozone (Akimoto et al., 1979; 67 

Carter et al., 1982) as well as the chemistry of volatile organic compounds (VOCs) and NOx (Morriss et 68 

al., 1957) in the atmospheric boundary layer. With the development of submicron particle measurement 69 

techniques, chambers were further used in secondary organic aerosol (SOA) formation studies from the 70 

1980s leading to numerous important scientific discoveries (Hidy, 2019; Odum et al., 1996; Odum et al., 71 

1997; Griffin et al., 1999; Paulsen et al., 2005; Rollins et al., 2009; Hu et al., 2014; Wang et al., 2014). 72 
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Since the beginning of the 21st century, many chambers have been built or upgraded to address integrated 73 

atmospheric scientific questions, including PM2.5 pollution (Johnson et al., 2004; Hallquist et al., 2009; 74 

Hurley et al., 2001), reaction kinetic parameters, mechanisms of VOC oxidation intermediates (Brauers 75 

et al., 2003; Bohn et al., 2004; Ren et al., 2017), as well as multiphase processes (Warneke and C., 2004; 76 

Pöschl and Shiraiwa, 2015; Liu and Abbatt, 2021; Franco et al., 2021). 77 

In recent years, multiphase chemistries have been invoked to explain the bursting growth of particles (Su 78 

et al., 2016; Wang et al., 2016; Su et al., 2020) and physicochemical processes of SOA formation under 79 

high ion strength conditions in the atmosphere (Cheng et al., 2015; Su et al., 2020; Liu et al., 2021). 80 

Atmospheric multiphase processes can undergo different reaction pathways that are influenced by 81 

different environmental conditions (e.g., light, temperature, and relative humidity (RH)) and aerosol 82 

physicochemical properties including aerosol liquid water content (ALWC), aerosol phase state, and 83 

morphology (George and Abbatt, 2010; Davidovits et al., 2011; Abbatt et al., 2012; Ziemann and 84 

Atkinson, 2012; Herrmann et al., 2015; Ravishankara, 1997; George et al., 2015; Su et al., 2020). Thus, 85 

a precise control of such parameters in a chamber system is vital for simulating atmospheric multiphase 86 

chemistry. Different from outdoor chambers (Leone et al., 2010; Stern et al., 1987; Pandis et al., 1991; 87 

Johnson et al., 2004; Martin-Reviejo and Wirtz, 2005; Rollins et al., 2009; Cocker et al., 2001; Peng et 88 

al., 2017), indoor chambers are usually equipped with artificial light sources (Takekawa et al., 2003; 89 

Carter et al., 2005; Paulsen et al., 2005), that can provide controllable irradiation for the simulation of 90 

multiphase processes. Compared to large chambers (Brauers et al., 2003; Leone et al., 1985; Pandis et 91 

al., 1991), temperature and RH inside small chambers can achieve faster equilibria and provide a more 92 

precise simulation of parameters such as diurnal RH change and ALWC (Takekawa et al., 2003; Carter 93 

et al., 2005; Paulsen et al., 2005; Wang et al., 2014; Bin Babar et al., 2016), thus improving 94 

reproducibility and efficiency when conducting experiments. In addition, small chambers may have the 95 

potential for controlling RH change and simulating co-condensation phenomena. Adversely, the wall loss 96 

effects are more significant for small chambers (Carter et al., 1982; Carter and Lurmann, 1991; Dodge, 97 

2000). The influence of aerosol phase state on kinetics of gas-particle interactions has received increasing 98 

attention (Virtanen et al., 2010; Berkemeier et al., 2016; Wang et al., 2015a; Reid et al., 2018), and this 99 

requires the phase state of seed particles can be controlled in chamber simulations. A laboratory study 100 

using pre-deliquescence way to control particle phase state has been reported (Faust et al., 2017), 101 

providing a feasible way for phase state control. In regard of particle morphology, some chamber-based 102 
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experimental studies in recent years have preliminarily shown that organic coatings have important 103 

effects on the kinetics of aerosol multiphase transformation (Zhou et al., 2019; Zhang et al., 2018; Zhang 104 

et al., 2019), which deserves more researches. As these studies showed evidence that the morphology 105 

and phase state of aerosol particles play important roles in the atmospheric multiphase chemistry 106 

processes, focused chamber studies on multiphase chemistry require additional steps to control the 107 

morphology and phase state of seed particles in chamber design. 108 

In this study, we designed and built a new indoor 2 m3 Teflon chamber system (Aerosol multIphase 109 

process Research chamber, AIR) with a focus on accurately simulating atmospheric multiphase processes. 110 

The temperature and RH inside the AIR chamber were precisely controlled to within ± 0.15 ℃ and ± 111 

0.75 %, respectively. A quantitative manipulation of the RH cycle was designed to simulate the diurnal 112 

variations in ambient RH. The seed generation subsystem, including an inorganic particle pre-113 

deliquescence unit and an organic-coating unit, was designed to manipulate the aerosol phase state and 114 

organic-coated morphology. A series of experiments were conducted to characterize the spectral 115 

distribution and photolysis parameters of light sources, temperature, RH, wall loss behaviors of gas and 116 

particles, and particle morphology. Additionally, a series of experiments involving the oxidation of α-117 

pinene with seed particles were conducted in the AIR chamber to demonstrate the effectiveness of the 118 

chamber in simulating atmospheric multiphase chemistry. Our results indicate that the AIR chamber 119 

system has more precise temperature and RH control capabilities compared to other chambers. Phase 120 

state and morphology of seed particles can also be accurately manipulated in advance, which is rare in 121 

existing smog chamber systems. 122 

2 Facility 123 

Figure 1 displays the schematic design of AIR chamber system, and the real picture of the reactor bag 124 

and enclosure system are shown in Fig. S1. The chamber system includes the 2 m3 fluorinated ethylene 125 

propylene (FEP) Teflon film (75 μm, Du Pont, USA, light transmission ≥ 93%) reactor and the associated 126 

temperature and RH control, artificial light sources, zero air injection and humidification, gaseous/liquid 127 

precursor injection, seed aerosol generation, and the instrument-optional detection components. To 128 

achieve a precise control of thermodynamic parameters and aerosol morphology when simulating 129 

atmospheric multiphase chemistry processes, the temperature inside the reactor is precisely controlled to 130 
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within ± 0.15 ℃. An RH regulation module is designed and built to simulate the ambient RH diurnal 131 

variation, which is capable of changing the RH in the reactor at a time scale of half an hour. In addition, 132 

a pre-deliquescing device and a coating device are custom-built to couple to the seed aerosol generation 133 

component, for manipulating the phase state (metastable aqueous or solid) and core-shell morphology 134 

(1 % ~ 12 % shell thickness) of seed aerosols. The detailed description of each system is shown in Section 135 

2.1-2.4. 136 

 137 
Figure 1. Schematic diagram of AIR chamber system. 138 

2.1 The reactor and enclosure 139 

The Teflon reactor is a 2 m3 horizontal cylinder (1.2 m in diameter, 1.8 m in length). It is fixed on a 140 

stainless-steel frame with four ridges firmly adhered on the Teflon air bag (Fig. S1), so that the variable 141 

volume of the reactor during sampling is adequate (this chamber system is designed to operate in Batch 142 

Mode). As to each circle side of the cylinder, three stainless steel tubes are threaded through the Teflon 143 

film to act as the inlets (for injecting seeds and liquid phase precursors) or sampling outlets for the 144 

detection system, respectively. The interface between each tube and the film is sealed by a Teflon flange 145 

and a perfluorinated O-ring. At the bottom inside the reactor, two magnetic-levitation fans (patent number: 146 

2019213329392, Beijing Convenient Environmental Tech Co. Ltd.) are equipped, with four speed levels 147 

(1000, 1350, 1700, 2000 rpm). A temperature and RH sensor (HMP110, Vaisala, Finland) and a 148 

differential pressure sensor (MSX-W10-PA-LCD, Dwyer, America) are also equipped at the bottom 149 

inside the reactor. 150 

The rectangular enclosure (2.4 × 1.6 × 2.3 m, L, W, H) of the reactor is temperature-controlled by a 151 
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circulation system. The indoor air is introduced from the top of the enclosure and exhausts through the 152 

bottom. The chiller power is constant, while the heating power is controlled through a proportional-153 

integral-derivative (PID) feedback. Forty black lights (1.2 m, 40 W, Bulb-T12, GE, USA) are fixed on 154 

the inner wall of the enclosure as light sources for atmospheric process simulation. The number and 155 

position of these lights in work can be controlled by the system computer, so that the light intensity can 156 

be variable in experiments. Specular insulated material (SUS304, stainless steel, 8K, mirror plate) is used 157 

as the enclosure inner wall so that the irradiation inside the reactor can be homogeneous. One side of the 158 

enclosure is a double door for entering and reactor maintenance. 159 

2.2 Cleaning and humidifying system 160 

The background gas in the reactor is from the indoor air. An air compressor (FOHUR, FH-50L) 161 

compresses the indoor air into a zero-air generator (Aadco, 737-14-A-CH4-240) for purification, 162 

removing airborne contaminants such as particulate matters, hydrocarbons, water vapor, NOx, O3 and 163 

SO2 to produce zero air (RH can be dried to < 2%, and the background concentrations of other 164 

contaminants are displayed in Table S2). Then, with the control of a mass flow controller (MFC, 165 

HORIBAMETRON, S4832/HMT), zero air is fed into the reactor through a 1/2" stainless steel tube 166 

(sealed at the bottom interface by a 304 stainless steel flange) at a flow rate of ≤ 50 L/min (to ensure the 167 

cleaning efficiency of the zero-air generator is sufficient), acting as the background gas and cleaning gas 168 

for the reactor. At the same time of feeding into the cleaning zero air, a pump beside the chamber system 169 

will exhaust the air from the reactor with a flow rate of 20 L/min to accelerate the gas exchange. The 170 

positive differential pressure inside the reactor is monitored. When the differential pressure reaches 30 171 

Pa, the MFC will stop the zero-air feed, and when the value falls below 20 Pa, zero air feed will restart. 172 

This is designed to avoid damaging the Teflon film of the reactor during cleaning. 173 

The zero air is also used as humidifying gas. When switching to the humidification mode, the zero air 174 

will go into a humidification tank filled with deionized water (Milli-Q, 18MΩ) switched by a three-way 175 

valve, generating humidified zero air. Then, the humidified air flows through a filter (Waterman, HEPA) 176 

to remove the water droplet, and injects into the reactor to humidify. During the humidifying, the exhaust 177 

pump mentioned above keeps working. The flow rate of the humidified zero air (20 ~ 25 L/min) is set to 178 

be slightly higher than the exhausting rate for fast reaching the target RH inside the reactor. 179 
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2.3 Precursor injection system 180 

According to the phase state of precursor reagents, the precursor injection system of this chamber system 181 

contains two types. One is used for the injection of gaseous precursors. Standard gas cylinders containing 182 

reactive gas (such as SO2, NO2, NH3, HCHO, etc.), inject relevant gaseous precursors into the reactor at 183 

a set flow rate and injecting duration under the control of a computer-connected MFC. The oxidant O3 is 184 

produced through the decomposition of O2 (from a standard O2 cylinder) exposed to the 185 nm UV light. 185 

After flowing through the MFC, the gaseous species enter the reactor via a stainless-steel tube at the 186 

bottom of the chamber. 187 

The other type is used for the injection of liquid precursors. Note that, the liquid precursors here mean 188 

the species is in liquid phase before injected into the reactor, but should be gaseous after injecting into 189 

the chamber, such as α-pinene standard solvent. A tee (the inlet on the left side of the chamber, as shown 190 

in the ‘Liquid precursor Injection System’ in Fig. 1) is fitted in the pipeline before the liquid precursors 191 

entering the reactor, with a 1 mm thick silicone membrane clamped to the right-angled end. The specific 192 

amount of the liquid precursors is taken with a microsyringe, penetrating the silicone membrane and 193 

slowly injected into the tee. At the same time, pure N2 is used as the carrier gas to vaporize the liquid 194 

precursor and carry it into the reactor under a specific gas cylinder pressure (0.25 MPa). After injection, 195 

N2 is continuously purged for 60 seconds to ensure that no liquid precursors remain in the pipeline. 196 

2.4 Seed generation system 197 

The seed aerosol generating system is a complex subsystem of AIR chamber system designed in this 198 

study. In addition to the common aerosol generation device, this study couples an RH-controlling device 199 

and a coating device to control the phase state and morphology of the seeds for supporting the simulation 200 

of atmospheric multiphase processes. 201 

Commonly, the species used to generate the seed particles (typically dissolved inorganic salts such as 202 

ammonium sulfate and sodium chloride) are first dissolved in deionized water (Milli-Q, 18 MΩ) and 203 

then generate a solution. Then, it is atomized as humid aerosol flow by an atomizer (TSI 3076) with N2 204 

blowing. Passing through a Nafion tube (PERMA PURE, MD-700-24F-3), the humid flow is dried and 205 

forms dry polydisperse seed aerosols. The drying is realized by pumping the air at the outer layer of the 206 

Nafion tube to a negative pressure (~20 kPa). It is tested that, within the range of the aerosol generation 207 

flow rate (≤ 3 L/min), the RH of the aerosol flow can be dried to below 30 %. An X-ray neutralizer and 208 
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DMA (DMA, Model 3082, TSI, Inc., USA) are optional, for selecting monodisperse aerosols from the 209 

polydisperse aerosol flow (flow rate ratio of sheath flow to aerosol flow is controlled between 5:1 and 210 

10:1), to support monodisperse experiments. For polydisperse seeds experiments, the seed generation 211 

system can inject seeds into the reactor to the desired amount within a time scale of seconds to several 212 

minutes. For monodisperse seeds experiments, if large-sized seeds that have a lower number fraction in 213 

the generated aerosol population are selected, the time scale will expand to 40-50 minutes. The 214 

appropriate time scale for seed injection can be adjusted by changing the solution concentration and 215 

aerosol flow rate. 216 

Besides, an RH controlling device is designed in this study to pre-deliquesce the generated dry seeds that 217 

forming metastable seed aerosols. As shown in Fig. S9, N2 is used as the initial gas, which is then divided 218 

into two paths, one is the dry N2, and the other goes through the deionized water (Milli-Q, 18MΩ, heated 219 

to 45 ℃) to act as the wet gas. The flow rate of each path is controlled by an MFC (GAS TOOL 220 

INSTRUMENT, GT 130MAX). Then the two flows mix into one as the humidifying gas and enter the 221 

outer layer of a Nafion semi-permeable tube (PERMA PURE, MD-700-24F-3). The flow with seed 222 

aerosols goes through the inner layer of the Nafion tube and then is humidified. The RH of the humidified 223 

flow is detected by an RH sensor (HYGROCLIP2, HC2A-S). The two MFCs of each flow path and the 224 

RH sensor are connected to a computer and controlled by a Labview program with PID feedback. 225 

Through the two MFCs adjusting the ratio of the flow rates of the dry and wet flow path, the RH of seed 226 

aerosol flow is controlled. This device has been tested to enable rapid changes in RH between 5 % and 227 

90% within 5 mins, and the RH variability can be within ± 0.2 %. 228 

In order to investigate the effect of aerosol coating on atmospheric multiphase process, a device is 229 

designed in this study to generate a thickness-controlled and species-known coating on the generated dry 230 

monodisperse seed aerosols. The constitution of the coating device is shown in Fig. S10. This device 231 

consists of a water bath (Changfeng, HW.SY11-KP1), a three-necked flask (250 mL, 19#-24#-19#), a 232 

condensing glass tube (30 cm, 24#), and a thermostatic bath (BiLon, SC-05B). The organic species (~ 233 

400 μL) with low volatility (saturated vapor pressure in the order of 10-4 ~ 10-5 mmHg at room 234 

temperature) used to form coating is set at the bottom of the three-necked flask, which is heated in the 235 

water bath to evaporate the organic vapor. The dried seed aerosol flow enters through the side port of the 236 

three-necked flask, and then carries the hot organic vapor into the condensing tube (condensing 237 

temperature is controlled at 20 ℃ by the thermostatic bath in this study). Due to the reduced temperature, 238 
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the saturated vapor pressure of the organic drops, and the organic vapor will preferentially condense on 239 

the surface of seed aerosols that forming a coating. The coating efficiency can keep stable within four 240 

hours, which is sufficient to meet the duration of injecting seeds for general experiments. 241 

2.5 Detection system 242 

As shown in Figure 1, three stainless steel tubes are fixed on the right side of the reactor to act as sampling 243 

outlets. The middle steel tube of them is 3/8 " in size and acts as the main sampling tube, connected to a 244 

3/8 " stainless steel three-way plug valve. One outlet of the plug is attached to a HEPA filter, and the 245 

other outlet is attached to the line to sampling instruments. This design allows a quick sampling switch 246 

between indoor air and the reactor. The other two stainless steel tubes are both 1/4 " and are used as 247 

auxiliary sampling outlets (e.g. temporarily collect single particle samples for a few minutes). 248 

An SMPS system (a DMA, Model 3082, and a CPC, Model 3772, TSI, Inc., USA), and a CPC (Model 249 

3750, TSI, Inc., USA) downstream of the seed generation system, are the standing instruments for the 250 

chamber system, used to measure the particle number size spectrum distribution and particle total number 251 

concentration in the reactor, respectively. Other instruments are optional according to the specific 252 

research aim, and typically the total sampling flow rate should be lower than 6 L/min. 253 

The other detection instruments involved in this study, include the instruments for gaseous species 254 

detection (Thermo Scientific gas analyzer (Model 43i-TLE for SO2, Model 42i-TL for NOx, Model 49i 255 

for O3, Model 48i-TLE for CO), Picarro cavity ring-down spectroscopy (Picarro CRDS, G2401) for CO2 256 

and CH4, Summa Canister (SILONITE, 1869) and GC-MS (Agilent, 7890A/5975C) for non-methane 257 

hydrocarbon (NMHC)), instruments for particulate species detection (Time-of-Flight Aerosol Chemical 258 

Speciation Monitor (ToF-ACSM, Aerodyne)), and instruments for volatile organic compounds (Vocus 259 

Proton-Transfer Reaction Time-Of-Flight Mass Spectrometry (Vocus-PTR-TOF-MS, Vocus S, Tofwerk), 260 

shorted as Vocus). 261 

The sampling flow rate of each instrument is calibrated before each experiment. For Thermo Scientific 262 

instruments and Vocus, a single standard concentration is tested at each experiment, to act as a basis for 263 

instruments status verification and data quantification. For the data collected by ACSM, the calibration 264 

is performed based on the mass concentration calculated from SMPS data. 265 
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3 Characterization of the AIR chamber 266 

A series of experiments were carried out to evaluate the performance of this chamber system, including 267 

leakproofness, sample-volume support, background concentrations, mixing performance, light 268 

characteristics, temperature and RH control, gas and particle wall loss, as well as characterizations of 269 

aerosol particles with the core-shell morphology. All the instruments for measurement are included in 270 

Section 2.5. 271 

3.1 Fundamental parameters 272 

Leakproofness of the reactor was characterized by the positive pressure difference between the air inside 273 

the reactor and the ambient air and the change in the total number concentration of background particles 274 

inside the reactor. When the reactor was filled with zero air, the positive pressure difference inside the 275 

reactor was maintained at > 3 Pa within 24 hours (Fig. S2a), then slowly decreased to ~ 0.5 Pa after 276 

several days. When the air inside the reactor was sampled at a flow rate of 5 L/min, the positive pressure 277 

difference decreased to zero after 2 hours, and then total particle number concentration slowly increased 278 

from ~ 0 cm-3 to a final < 10 cm-3 in ~3.5 hours (Fig. S2b). This concentration is negligible for a particle 279 

number concentration of 103 ~ 104 cm-3 that are usually used in experiments. Moreover, this chamber 280 

system is designed to operate in batch mode, and the reactor can provide a sampling volume of 1000 ~ 281 

1200 L (Fig. S3) and a sampling time of more than 3 hours at a total sampling flow rate of 5~6 L/min. 282 

The results above indicate that the system leakproofness is reliable for further experiments. 283 

The reactor background was also characterized after repeated cleaning with zero air. As shown in Fig. 284 

S4, the background particle total number concentration was < 1 cm-3, and increased only to 4 cm-3 with 285 

the mixing fans turned on. Irradiation slightly increased the background particle concentration but still 286 

only to < 10 cm-3, which is negligible when compared with normal reaction conditions. Table S1 shows 287 

the background concentrations of chemical species in AIR chamber reactor under dry and high RH 288 

conditions. Compared with data reported for other chambers (White et al., 2018; Bin Babar et al., 2016; 289 

Wang et al., 2014; Platt et al., 2013; Carter et al., 2005; Chen et al., 2019b), the background 290 

concentrations of gaseous pollutants including SO2, NOx, O3 and CO in the reactor were comparable or 291 

lower for the AIR chamber. The background concentration of total non-methane hydrocarbon (NMHC) 292 

was higher than literature values due to the presence of chemically inert CHClF2 (half of the total NMHC 293 

concentration), which originates from the indoor refrigeration system and is hard to eliminate within the 294 
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zero-air generation system. Nevertheless, this species does not interfere with the reactions under most 295 

experimental conditions. The reactor can be cleaned to background levels with a volume of zero air >5 296 

times that of the reactor (Table S2) after each experiment. The cleaning process can be completed in less 297 

than 9 hours, as shown in Section 2.2. 298 

The mixing performance of the injection into the reactor was examined using NO2 concentration and 299 

total particle number concentration as tracers (Fig. S5). The mixing time to uniformity (the duration 300 

between the two plateaus in Fig. S5) was 5 minutes without running fans and less than 1 minute with the 301 

fans on. Furthermore, the mixing time was independent of the fan speed. 302 

3.2 Light source characterization 303 

The reflective inner wall (SUS304, stainless steel, 8K, mirror plate) of the AIR chamber is equipped with 304 

40 UV lamps (1.2 m, 40 W, Bulb-T12, GE, USA) to provide irradiation during the experiments. There 305 

are 10 lamps on the left, right, back, and top of the wall, respectively, and each lamp can be turned on or 306 

off separately by the control system, so that the light intensity in experiments varies from 2.5% to 100% 307 

intensity. These light sources can also be replaced by lamps with different emission spectra to provide a 308 

variety of irradiation conditions. 309 

For current light sources, a portable UV spectrometer (StellarNet Inc., Tampa FL, USA) was used to 310 

characterize the irradiance spectrum in the reactor (Fig. S6). The irradiance is mainly distributed in the 311 

range of 360 ~ 390 nm, peaking at 370 nm, which is within the range of peak irradiance of UV lights 312 

used in other indoor chambers (340 ~ 371 nm) (Wang et al., 2014; Ma et al., 2022; Bin Babar et al., 2016; 313 

Chen et al., 2019b; Lane and Tang, 1994; Thuner et al., 2004). Another small peak appears at 405 nm, 314 

which is convenient for directly checking the status of the lamps. 315 

The photolytic rate constant for NO2 can be used to characterize the irradiation intensity. Previous 316 

literature (Wang et al., 2014; Bin Babar et al., 2016; Ma et al., 2022) often characterize irradiation 317 

intensity through the photolytic rate constant of NO2 (J_NO2), calculated through the steady-state 318 

concentrations of NOx and O3 (Atkinson et al., 2004). This study mainly used a spectrometer, namely 319 

the Jvalue instrument (AVANTES, AvaSpec-ULS-TEC-EVO), to measure the irradiance and directly 320 

calculate the photolytic rate constants of a few important species in atmospheric photochemistry. Notably, 321 

the Jvalue instrument was also calibrated using the J_NO2 values derived from the steady NOx-O3 322 

concentration under several light schemes to correct for the geometry defect of the Jvalue instrument 323 
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when placed inside the AIR chamber. The calibration factor of the traditional J_NO2 method is 1.49 ± 324 

0.06. As shown in Table S3, the current light source is more suitable for the photolysis of HONO and 325 

NO2 (photolytic rate constants on the order of 10-4 ~ 10-3 s-1). However, the photolysis of HCHO, H2O2, 326 

and O3 is slow (photolytic rate constants on the order of 10-8~10-7 s-1). The J_NO2 maxima of other 327 

chambers are usually in the range of 2 ~ 9 × 10-3 s-1 (Chen et al., 2019a; Li et al., 2017; Wang et al., 2014; 328 

Bin Babar et al., 2016; Ma et al., 2022). In comparison, J_NO2 due to the light source in the AIR chamber 329 

is 4.10 × 10-3 s-1, close to the median value of the other chambers. Moreover, the photolytic rate constant 330 

of HONO due to the light source in this chamber (J_HONO at the level of 10-4 s-1) is comparable to or 331 

slightly higher than the value of HONO photolysis in the ambient atmosphere in China (J_HONO at the 332 

level of 10-5 ~ 10-4 s-1) (Zheng et al., 2020). 333 

When only lamps on two sides of the AIR chamber were turned on (four schemes with 20 lights on, noted 334 

as ‘only back/top’, ‘left and right’, ‘odd’ and ‘even’ in Table S3), the photolytic rate constants in the 335 

reactor under different configurations were almost the same (J_HONO = 5.10 ± 0.12 × 10-4 s-1, J_NO2 = 336 

2.16 ± 0.05 × 10-3 s-1), and nearly equal to half of that with all 40 lights on. In addition, the photolytic 337 

rate constant of the scheme ‘left and right’ (20 lights) was the sum of that of ‘only left’ (10 lights) and 338 

‘only right’ (10 lights). These results indicate that the irradiation in the reactor is uniformly distributed. 339 

Notably, because the measurement interface of Jvalue was a little biased to the left during detection, the 340 

value for ‘only left’ was higher than that for ‘only right’. 341 

3.3 Performance of temperature and RH control 342 

The temperature and RH in the reactor are measured by a high-accuracy sensor (HMP110, Vaisala, 343 

Finland). Detailed descriptions of temperature and RH control are given in Section 2.1 and 2.2. The 344 

internal design of our chamber enclosure ensures that the circulating air, which controls the temperature 345 

surrounding the reactor, reaches equilibrium (taking < 2 hours as shown in Fig. 2) from the outside of 346 

the Teflon film to the inside. This design guarantees that the temperature distribution is spatially 347 

homogeneous, even for a chamber system with a 30 m3 reactor (Wang et al., 2014). The accuracy for RH 348 

of this sensor is shown by its measurement error of < 1% from that measured by a hygrometer (chilled 349 

mirror hygrometer, Edgetech Instrument, USA), with an R2 > 0.99. The temperature in the reactor can 350 

be stably controlled in the range of 2.5 ℃ ~ 31 ℃, and the control range of RH is < 2% ~ > 95%. The 351 

fluctuations in the temperature inside the reactor are within ± 0.15 ℃ of any set temperature, and the 352 
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corresponding RH fluctuations for RH > 80 % are within ± 0.75 %. The RH fluctuation caused by the 353 

water permeation through the FEP filter can be ignored due to the slow permeation rate of water 354 

molecules (0.007L/m2/24h/atm). The stability achieved with the temperature and RH controls across a 355 

wide range of temperatures is shown in Table S4. The illumination of lamps raises the lowest achievable 356 

temperature by 3 ℃ for every 10 lights on. However, the illumination of the reactor does not affect the 357 

stability of temperature and RH inside the reactor. When the set temperature is close to room temperature 358 

(20 ℃ in Table S4), the fluctuation is < 0.1 ℃, demonstrating a more accurate temperature and RH 359 

control performance compared with other chambers (Table S5) (Wang et al., 2014; Wu et al., 2007; Bin 360 

Babar et al., 2016; Ma et al., 2022; Wang et al., 2015b). Sampling operation (lasting more than 3 hours 361 

with flow rate at 5 L/min, Fig. 2) does not significantly affect the stability of temperature and RH control 362 

either, which also indicates the permeation and wall loss of water molecules do not affect a lot. 363 

In order to simulate the diurnal variations in ambient air temperature and RH, a proportional-integral-364 

derivative (PID) feedback controlling function was designed. The RH in the reactor can reach the target 365 

RH by controlling the temperature. After receiving the target RH input, the control program calculates 366 

the stepwise theoretical RH value at each time increment and the corresponding temperature control steps 367 

based on current temperature and RH in the reactor. This calculation is also adjusted in real-time to 368 

optimize the gradual change of RH. Figure S7 demonstrates two examples to show alternate linear change 369 

and constant control of RH. The RH can reach the set value within a few hours with fluctuations < 0.75%. 370 

This function performs even better at low temperatures, suggesting the potential of using this chamber 371 

system to simulate diurnal variations of RH in the ambient atmosphere in wintertime. 372 

 373 

Figure 2. Stability of temperature and RH control in the reactor during sampling. The chamber was operated 374 

in batch mode. 375 
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3.4 Wall loss of gas and particles 376 

The wall loss process is considered as a first-order kinetic process, in that the decay rate of a 377 

concentration is proportional to the concentration: 378 

𝑑𝐶(𝑡)

𝑑𝑡
= −𝑘 · 𝐶(𝑡)                                                              (1) 379 

where C(t) is the species concentration at time t, and k is the wall loss rate constant (in units: s-1 or min-380 

1). The wall loss rates of gaseous species such as NOx and O3 in this study are shown in Table S6, the 381 

values of which are lower than other small Teflon chambers (2 ~ 5 m3) (Wu et al., 2007; Wang et al., 382 

2015b; Li et al., 2017; Bernard et al., 2016), as a result of passivation of the inner surface of the reactor 383 

with 2 ppm O3 for 3 days. In Table S6, when turn on the fans, the wall loss is usually much higher, so the 384 

fans will only be turned on during the injection period, and when simulating the reaction and sampling, 385 

the fans are kept off. 386 

The wall loss rate constant k of particles is dependent on particle size (diameter, noted as Dp). Smaller or 387 

larger particles often have higher k values (Crump and Seinfeld, 1981) due to higher diffusion or 388 

sedimentation rates, respectively. The dependence of k values for particles with Dp < 50 nm is rarely 389 

reported in previous chamber studies. This study demonstrates that the constant k decreases as a function 390 

of decreasing Dp when particles are smaller than 50 nm, which is also shown in Fig. S7 of Ma et al (Ma 391 

et al., 2022). The log10(k) value for particles can be approximated with a segmented linear function of 392 

log10(Dp) 93, 94. In addition to the slopes to be determined, the inflection point Dp, where the loss trend 393 

inverses, changes with different chambers. In this study, two inflection points are selected at 50 nm and 394 

150 nm according to the identified inflection particle size bin of 45.3 – 53.2 nm and 143.3 – 165.5 nm, 395 

respectively (Fig. S8). Furthermore, the k-Dp dependence has been reported to deviate in different 396 

experiments even in the same reactor. This study found that such deviations can be corrected through an 397 

up-and-down shift of the log10(k)-log10(Dp) function curve. Even for deliquescent particles (RH = 90 % 398 

in Fig. S8, the Dp of the x-axis represents the liquid particle diameters), this method still accurately 399 

described the relationship between k and Dp (R2~0.95) when considering the hygroscopic growth of the 400 

particle size.  401 

Another commonly used parameter to characterize the particle wall loss behavior in chambers is the total 402 

volume wall loss rate constant (kv). For small Teflon chambers of 2 ~ 3 m3 in size (Takekawa et al., 2003; 403 

Li et al., 2017; Liu et al., 2019), kv values typically range from 2.84 ~ 4.72 × 10-3 min-1. The particle wall 404 
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loss is slightly higher in the chamber in this study, with the kv found to be 5 × 10-3 min-1 (Table S7). 405 

3.5 Morphology of seed particle generation  406 

Seed particles are typically used to simulate aerosol formation by the multiphase chemistry pathway. The 407 

AIR chamber is designed to couple to a subsystem for generating seed particles with different phase 408 

states through pre-deliquescing, adopted from a previous study (Faust et al., 2017). A volatilizing-409 

condensing method is used to generate known-composition organic-coated inorganic particles in the AIR 410 

chamber, with a detailed description in Section 2.4. 411 

As shown in Figure 3, squalane is coated onto dry 200-nm monodisperse NaCl seed particles to produce 412 

a core-shell morphology for the particles. The coating thickness is controlled by adjusting the water bath 413 

heating temperature while maintaining a fixed condensation temperature of 20 ℃. The surface area 414 

concentrations of the introduced seed (> 800 μm2/cm3) are sufficient that no homogeneous nucleation of 415 

organic vapor occurs. Both the size distributions of the particles before and after condensing organics on 416 

the particles are monodisperse. Using the Clausius-Clapeyron equation that describes the relationship 417 

between saturation vapor pressure and temperature, as well as the Maxwell equation that describes the 418 

condensation growth rate of particle size under a certain supersaturated vapor pressure, the coating 419 

thickness can be predicted in relation to the heating temperature (Fig. 3a), to assess the feasibility of the 420 

selected coating species. The coating thickness is calculated as half of the difference in peak Dp of the 421 

monodisperse particle size distribution before and after the seeds are coated (Fig. 3b). For squalane, the 422 

device allows for a relatively accurate control of coating thickness in the range of 5 to 25 nm (1 % ~ 12 % 423 

shell thickness). For organic species with similar volatilities (saturated vapor pressure in the order of 10-424 

4 ~ 10-5 mmHg at room temperature), the device could provide similar control performance. 425 

 426 
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Figure 3. Relationship between coating thickness on dry 200 nm NaCl seed and heating temperature in the 427 

coating device, with squalane as the coating species and 20 ℃ condensing temperature. (a) Theoretical 428 

estimation in different growth times. (b) Measured results by SMPS. 429 

4 Applications in SOA generation——α-pinene ozonolysis researches 430 

4.1 SOA yield of seed-absent experiments 431 

SOA are generated from α-pinene ozonolysis in the AIR chamber to evaluate its performance, with 432 

experiment conditions given in Table S8 (NO.1 ~ 5). The key parameter Y, representing the yield of SOA, 433 

is defined as: 434 

Y =
𝛥𝑚𝑜

𝛥𝑅𝑂𝐺
                                                                     (2) 435 

where Δmo represents the total mass concentration of generated SOA, and ΔROG represents the total 436 

mass concentration of reactive organic gas that was consumed in the reaction (specifically referring to α-437 

pinene in this study), with both units in μg/m3. SOA mass concentration was measured by a ToF-ACSM 438 

(Section 2.5). The organic mass measurement was also corrected based on the particle size distribution 439 

data from SMPS, where the α-pinene-derived SOA density was assumed as 1.3 g/cm3. This density value 440 

is also used in many previous researches (Bahreini et al., 2005; Alfarra et al., 2006; Ma et al., 2022), but 441 

higher than the unit density assumption used in some other chamber studies (Wang et al., 2011; Wang et 442 

al., 2014; Bin Babar et al., 2016; Cocker Iii et al., 2001; Li et al., 2021; Zhang et al., 2015). 443 

Odum et al (Odum et al., 1996) found that the two-product model reproduces well the non-linear 444 

relationship between the SOA yield Y and the particulate organic mass concentration (mo): 445 

Y = mo · ∑
𝛼𝑖·𝐾𝑜𝑚,𝑖

1+mo·𝐾𝑜𝑚,𝑖
                                                           (3) 446 

where αi and Kom,i are the mass-based stoichiometric and partition coefficient for species i, respectively, 447 

and mo is the total mass concentration of organic aerosol. Figure 4 shows the results of the two-product 448 

model that fits the seed-absent SOA yield results in this study. The Odum model fits results from other 449 

chamber studies are also shown in Figure 4 for comparison. Detailed model fitting parameters are shown 450 

in Table S9. In contrast, Y in this study is a little higher than those in other small or medium-sized 451 

chambers, which may be owing to the lower gas wall loss in our Teflon reactor (Section 3.4) and the 452 

lower experimental temperature. The four fitting parameters in this study, α1, α2, K1, K2, are 0.62479, 453 

0.0326791, 0.0121589, 0.0121596, respectively. K1 and K2 are close and are moderate values; however, 454 
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α1 is significantly higher than those in other chambers. Such higher value for α1 can be an indication of 455 

a lower volatilizing loss of the gas phase intermediates within the AIR reactor compared with the other 456 

chambers. The good fitting from our experiment indicates that the chamber system in this study is stable. 457 

These results imply a reliable performance of our chamber system for experimental simulation studies 458 

of atmospheric secondary transformation process. 459 

 460 

Figure 4. Two-product model fitting curve of seed-absent α-pinene-derived SOA yield in this study and the 461 

comparison with other literature results. The data of the blue line is from this study, and other data is obtained 462 

from these references (Cocker Iii et al., 2001; Wang et al., 2011; Wang et al., 2014; Bin Babar et al., 2016; Ma 463 

et al., 2022). 464 

4.2 Effects of seed phase state on SOA yield  465 

The effects of different seed phase state on the yield of α-pinene-derived SOA were further investigated 466 

using ammonium sulfate as the seed particles (Table S8, NO.6 ~ 8). We used seeds with sufficient surface 467 

area concentration to prevent the gas phase products of VOC from homogeneous nucleation. Figure S11 468 

shows the relevant measured parameters during one reaction (e.g., experiment NO.8). The yields of all 469 

the experiments are summarized in Fig. 5. In general, the yield in the presence of dry seeds is not 470 

significantly different from that in the absence of seeds, consistent with the outcome of Odum et al (Odum 471 

et al., 1996). However, in the presence of aerosol liquid water and ammonium sulfate seeds, the α-pinene-472 

derived SOA yield is reduced. This suppressing phenomenon is also reported by Cocker et al (Cocker Iii 473 

et al., 2001), which may be related to the finding of Lutz et al (Lutz et al., 2019) that an inhibition of 474 

organic species partitioning in the particulate phase exists at high sulfates level. However, to our 475 

knowledge, the suppressing phenomenon above may not be common, that has only been reported in the 476 
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α-pinene ozonolysis system with ammonium sulfate seeds. 477 

The subplot in Fig. 5 demonstrates the SOA yield at each elapsed time point in these experiments. Liquid 478 

water can significantly promote the initial SOA yield and generation rate (Zhang et al., 2018), and our 479 

results have reproduced this phenomenon (subplot in Fig. 5). However, the oxidation reaction proceeds, 480 

it is observed that the SOA yield with liquid seeds decreases, and larger seed aerosol liquid water contents 481 

produce greater decreases in the yield. These indicate the AIR chamber system facilitates the researches 482 

of aerosol properties on atmospheric multiphase processes. 483 

It is worth noting that, the organic vapor wall loss can have significant influence on SOA formation. 484 

However, quantifying wall losses of gaseous organic products is still a challenge in chamber experiments. 485 

Gaseous intermediates are difficult to be quantitatively measured, and the theoretical calculations of wall 486 

losses also have large uncertainties due to the lack of data on some parameters, such as the effective wall 487 

mass concentration and eddy diffusion coefficient inside the reactor. The wall loss behavior of gases 488 

essentially depends on the concentration gradient between the gas phase and the wall. To our knowledge, 489 

there is no conclusive evidence to support higher wall losses of gaseous intermediates under higher RH, 490 

which are even significant enough to cause a notable reduction in SOA yield. In addition, if higher RH 491 

can enhance the diffusion of gaseous intermediates towards the wall, then the diffusion of gaseous 492 

intermediates towards the particle phase should also increase. Compared with experiments without seed 493 

particles, when seed particles exist, gases condense on the particles while condensing on the walls, 494 

causing the gas-phase concentration to decay more rapidly, resulting in less wall loss of gases and higher 495 

SOA yields during the initial period of the experiment, as shown in the subplot of Fig. 5. However, the 496 

final difference in SOA yields is still unclear because, under the condition without seed particles, particles 497 

generated through nucleation continue to grow and can provide a considerable amount of condensation 498 

sink after the reaction proceeds for a period of time. This process needs to be numerically described and 499 

analyzed that carefully consider wall loss behavior and physicochemical properties of particles in future 500 

studies. 501 
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 502 

Figure 5. Effects of phase state and liquid water content of ammonium sulfate seed particles on the SOA yield 503 

of α-pinene ozonolysis (α-pinene = 60 ± 13 ppb, O3 = 296 ± 30 ppb). In the main plot, the blue line is the fitting 504 

two-product curve from no-seed experiments data in this study, which is a replicate of the curve in Fig. 4. The 505 

subplot shows the current yield since the initial time point of each experiment, where the blue points represent 506 

the data of no-seed experiment, green points represent the data of solid seed experiment, red points represent 507 

the data of metastable seed experiment, and grey points represent the data of liquid seed experiment. 508 

5 Conclusions 509 

The reported special phenomena relying on specific particle properties are well reproduced in AIR 510 

chamber benefitting from the seed phase state control, and the accurate temperature and RH control 511 

facilitates the quantization of the effects of aerosol liquid water. Besides, compared to other chambers, 512 

the manipulation of composition and thickness of organic coating could provide a more clarity surface 513 

property. Broad temperature range, adjustable irradiation intensity, and the fast-responding RH cycle, 514 

make this chamber system suitable for simulating diurnal ambient atmosphere in different seasons. These 515 

performances of handling key parameters suggest the potential of this AIR chamber system for the 516 

laboratory simulation of atmospheric multiphase processes. 517 
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