Site and Season Specific Seasonally Optimized Calibrations Improve Low-cost Sensor Performance: Long-term Field Evaluation of PurpleAir Sensors in Urban and Rural India

Mark Joseph Campmier¹, Jonathan Gingrich², Saumya Singh¹, Nisar Baig³, Shahzad Gani^{4, 5}, Adithi Upadhya⁶, Pratyush Agrawal⁷, Meenakshi Kushwaha⁶, Harsh Raj Mishra⁸, Ajay Pillarisetti⁹, Sreekanth Vakacherla⁷, Ravi Kant Pathak^{8,10}, and Joshua S Apte^{1,9}

Correspondence: Joshua S. Apte (apte@berkeley.edu)

Abstract. We report on the long-term performance of a popular Lower-cost air pollution sensors can fill critical air quality data gaps in India, which experiences very high fine particulate matter (PM_{2.5}) air pollution but has sparse regulatory air monitoring. Challenges for low-cost PM_{2.5} sensors in India include high aerosol mass concentrations and pronounced regional and seasonal gradients in aerosol composition. Here, we report on a detailed long-time performance evaluation of a popular sensor, the Purple Air PA-II, at multiple sites in India, with the aim of identifying robust calibration protocols. We established 3 distinct sites in India across land-use categories and population density extremes (North India: Delhi , Hamirpur[urban], Hamirpur [rural]; South India: Bangalore [urban]), where we collocated the PA-II with reference beta-attenuation monitorsto characterize sensor performance and to model calibration relationships between PA-IIs and reference monitors for hourly data. Our sites remained in operation across all major seasons of India. We evaluated the performance of uncalibrated sensor data, and then developed, optimized, and evaluated calibration models using a comprehensive feature selection process with a view to reproducibility in the Indian context. We assessed the seasonal and spatial transferability of sensor calibration schemes, which is especially important in India because of the paucity of reference instrumentation. Without calibration, the PA-IIs had high precision (NRMSE among replicate sensors

15%) and tracked the overall seasonal and diurnal signals from the reference instruments well (Pearson's $r \ge 0.9$) but were PA-II was moderately correlated with the reference signal (R²: 0.55 - 0.74) but was inaccurate (NRMSE \geq 40%). We used a comprehensive feature selection process to create optimized site-specific calibrations. Relative to the Relative to uncalibrated data, parsimonious least-squares long-term annual calibration models improved PA-II PA performance at all sites (cross-validated NRMSE ÷20-30%, R²: 0.82-0.95), particularly by reducing and

¹Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, USA

²Department of Engineering, Dordt University, Sioux Center, IA, 51250, USA

³Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India

⁴Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India

⁵Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, 00100, Finland

⁶ILK Labs, Bengaluru, India

⁷Center for Study of Science, Technology and Policy, Bengaluru 560094, India

⁸Indo Gangetic Plains-Centre for Air Research and Education, Hamirpur 210301, India

⁹School of Public Health, University of California, Berkeley, CA 94720, USA

¹⁰Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden

greatly reduced seasonal and diurnal biases. Because aerosol properties and meteorology vary regionally, the form of these long-term models differed by site. Likewise, using among our sites, suggesting that local calibrations are desirable when possible. Using a moving-window calibration, we find a calibration scheme using seasonally specific information somewhat found that using seasonally-specific information improves performance relative to a static long-term calibration model. In contrast, we demonstrate that a successful annual calibration model, while a short-term calibration exercise for one season may model generally does not transfer reliably to other seasons. Overall, we demonstrate how find that the PA-II, can provide reliable PM_{2.5} data with better than ±25% precision and accuracy when paired with a careful calibration scheme, can provide actionable information on PM_{2.5} in India with only modest irreducible uncertainty rigorous calibration scheme that accounts for seasonality and local aerosol composition.

1 Introduction

20

Exposure to fine particulate matter, or PM_{2.5} (particles with aerodynamic diameter $\leq 2.5~\mu m$), is a leading cause of adverse health outcomes, including premature death (Lepeule et al., 2012; Diseases and Collaborators, 2020). India experiences high mass concentrations in both its population dense population-dense megacities and its rural areas, resulting in the largest number of deaths (about 0.98 million annual deaths, about 1.5 years reduction in life expectancy) attributable to ambient PM_{2.5} worldwide (Apte et al., 2018; Collaborators, 2021). In particular New Delhi, the surrounding Delhi National Capital Region, and the broader Indo-Gangetic Plain (IGP) of North India regularly experience hourly mass concentrations exceeding 1000 μ g/m³ (Gani et al., 2019) resulting in ill health effects even from short-term exposure (Gupta et al., 2021; Krishna et al., 2021). South India generally experiences lower PM_{2.5} concentrations put still has population-weighted annual mass concentrations that exceed World Health Organization recommendations by a large margin (Apte and Pant, 2019). As relatively less polluted megacities in South India continue to rapidly grow, the challenge of ambient PM_{2.5} will also increase (Guttikunda et al., 2019; Ramachandra et al., 2020).

Given the high exposure burden and complexity of PM_{2.5} throughout India, there is a need to increase understanding of the spatial-temporal patterns of air pollution. Traditional regulatory monitors are expensive to install and maintain, requiring specialized teams and consistent power to maintain networks (Brauer et al., 2019). As a result, there is a dearth of monitors in India (Brauer et al., 2019; Martin et al., 2019). Although satellite remote sensing can fill in the spatial gap, it lacks high quality high-quality temporal coverage and relies on ground-based monitoring for calibration algorithms (Hammer et al., 2020), which can, as is the case in India, result in biased estimates of surface PM_{2.5} (Dey et al., 2020).

Starting in around 2010, advancements in miniaturized electronics and laser technology have resulted in the growth of low-cost (< \$500 USD) PM_{2.5} sensor (LCS) technologies. These light-scattering monitors are popular within the research community and among citizen scientists. The company PurpleAir (PA) has been especially successful in developing (1) a 200-280 USD LCS-low-cost sensor that utilizes a commercially available, light-scattering sensor developed by Plantower (PMS5003) and (2) a platform for individuals and organizations to share data from indoor and outdoor PurpleAir LCSlow-cost

50 sensor.

Light-scattering LCS-low-cost sensors require extensive data quality control and careful selection of calibration models to offer measurements comparable to reference quality instruments (Hagan and Kroll, 2020; Hagler et al., 2018). Optical sensors mischaracterize inaccurately estimate mass from aerosol scattering properties, as since PM_{2.5} is a mixture of particle sizes and chemical compositions thus resulting in spatial-temporal variability in optical properties (Hagan and Kroll, 2020; Levy Zamora et al., 2019; Zou et al., 2021). The roles of relative humidity, mass concentration range, sensor aging, and diverse source profiles have been extensively studied in laboratories and field conditions in the US, Australia, and Europe. Lab studies report the Plantower sensors fail to do not adequately characterize fine particles above 0.8 microns (Kuula et al., 2020), deteriorate under extreme mass concentrations (Mehadi et al., 2020; Tryner et al., 2020), and are vulnerable to overestimation at RH greater than 60% (Jayaratne et al., 2018).

Field studies in low to moderate pollution environments show PA units can be calibrated to reference instruments using simple empirical regression techniques with environmental variables (Barkjohn et al., 2021; Malings et al., 2019; Zheng et al., 2018). Models are often specific to a season and location, however, Barkjohn et al. (2021) demonstrated that a continental US calibration equation could be effectively deployed for daily data.

60

Recently there is increased interest in understanding LCS-low-cost sensor performance in the Global South to fill major monitoring gaps (Bai et al., 2020; Jha et al., 2021; Malyan et al., 2023; McFarlane et al., 2021; Puttaswamy et al., 2022; Sreekanth et al., 2022; Zheng et al., 2018, 2019). In North India, Zheng et al. (2018) deployed Plantower models in Kanpur, Uttar Pradesh, for 90 days and found multilinear regression improved Plantower performance, albeit with significant error for hourly data. In South India, Puttaswamy et al. (2022) calibrated Plantower units for 68-days in Chennai and found a multilinear regression approach reduced uncertainty to within 15% and 18% for PM_{2.5} and PM₁₀ respectively. LCS Low-cost sensor studies in India report the importance of climate and emissions variability on aerosol characteristics and advise future deployments to test calibration algorithms across longer timelines (Malyan et al., 2023; Puttaswamy et al., 2022; Sreekanth et al., 2022; Zheng et al., 2018, 2019).

In this study, we deployed and evaluated PurpleAir PA-II sensors in Delhi, Hamirpur, and Bangalore by collocating with regulatory grade regulatory-grade instruments for 335, 154, and 312 days respectively. We built hourly local calibration models using multilinear regression. With proper data quality constraints, a relatively simple calibration model can produce high accuracy and low biased bias data. Despite this success, model performance degrades when attempting to transfer a model trained in each environment to data collected in a dissimilar environment. We found a more pronounced reduction in performance when attempting to transfer a model trained in one season to another season, as aerosol characteristics can shift rapidly even at the same site. Our work demonstrate LCS demonstrates low-cost sensors are a viable option for measuring spatial-temporal trends throughout India, but calibration models are vulnerable to the local and seasonal effects on aerosol properties.

2 Methods

100

105

110

2.1 Low-cost Sensors

The sensor used in this study was the PurpleAir PA-II. The PA-II is marketed as PurpleAir's outdoor aerosol monitor, composed of a weatherproof plastic shell containing two Plantower PMS5003 sensors (labeled as "A" and "B" channels), an Adafruit model BME280 atmospheric sensor (temperature, RH, and pressure), and a wireless transmitter module to upload data via WiFi. The PMS5003 reports particulate matter (PM) mass concentrations (μ g/m³) of all particles with an aerodynamic diameter smaller than 1 μ m, 2.5 μ m, and 10 μ m, as well as particle number concentrations (dl-¹) of all particles larger than 0.3 μ m, 0.5 μ m, 1.0 μ m, 2.5 μ m, and 10 μ m (Zhou and Zheng, 2016)).

PA-Hs PurpleAir reports mass concentrations in two forms from PA-IIs in three forms, referred to as CF1, ATM, and ALT, CF1 ("Correction Factor 1") is the "uncorrected" data from the Plantower. The CF1 data has been demonstrated to strongly correlate with collocated integrating nephelometer data (Ouimette et al., 2021). ATM or "Atmospheric Corrected" data uses a piece-wise function to attempt to account for overestimation. SI Figure S1 illustrates this function across the full dynamic range for data collected in Delhi. Between 0 - 25 μ g/m³, the CF1 and ATM data are 1:1, between 25 - 40 μ g/m³ the ATM to CF1 and ATM- the "uncorrected" data and atmospheric corrected data, respectively. Other recent studies have shown a method (denoted ALT) using PM_{2.5} derived from the number concentration data to be comparable to and ratio transitions from 1:1 to approximately 0.7:1, and at greater than 40 µg/m³ the ATM to CF1 ratio is stable at 0.7:1. Although it is reasonable to hypothesize the ATM data may better represent exposure ambient PM_{2.5} than the CF1 data, there is no transparent reasoning in the user manual for this design choice (Wallace et al., 2021; Zhou and Zheng, 2016). Finally, the ALT data represents a reconstruction of the PM_{2.5} data from the particle number data reported by the Plantower. Briefly, the ALT method adds all the particle counts from bins less than 2.5 μ m, and calculates the particle volume concentration assuming spherical particles. Particle volume concentration is then multiplied by unit density (1 g/cm³) to estimate PM_{2.5} mass concentration. Wallace et al. (2021) and Wallace et al. (2020) used this data to develop calibration relationships, reporting the ALT data as more transparent than the ATM data (Wallace et al., 2021, 2020). Additional details about the PA-II channels are presented in SI Fig. using the CF1 or ATM data. However, the particle number data is known not to reflect the actual ambient size distribution since the Plantower PMS5003 is not a particle sizing instrument, but rather reflects a modeled size distribution using assumptions for relationships between size bins that is not always accurate for atmospheric conditions (Ouimette et al., 2021; Hagan and Kroll, 2020; He et al., 2020; Kuula et al., 2020). SI Figure S1 shows the ALT to CF1 ratio is approximately 0.15:1. Although the CF1 and ATM data have dominated most calibration efforts (Malyan et al., 2023; Puttaswamy et al., 20 , the usage of ALT data continues to propagate in peer-reviewed literature (Wallace and Zhao, 2023; Wallace and Ott, 2023).

Therefore we use CF1, ATM, and ALT in our study to work towards harmonizing a calibration approach for PA-II in India. In this analysis we use all three in our comparisons with and calibration to regulatory quality data.

2.2 Regulatory-grade Monitors

We compared our PurpleAir measurements against US EPA Federal Equivalent Method (FEM) certified continuous monitors. Our selected FEMs are MetOne BAM models 1020 and 1022, widely used devices (Hall and Gilliam, 2016) that use the beta wave attenuation technique to determine particle mass based on a sample deposited on a filter tape. FEM certification applies to 24-hour averaged data, while can the BAMs the BAMs can provide measurements at hourly or higher time resolution. We used the 1-hour block as our highest level of temporal resolution, similar to other LCS low-cost sensor calibration studies using beta attenuation reference monitors in the US and India (Johnson et al., 2018; Magi et al., 2020; Sreekanth et al., 2022; Zheng et al., 2018).

At the Delhi site, we used the BAM-1020; data from this monitor are public and maintained by the US State Department's AirNow service (San Martini et al., 2015). The Hamirpur and Bangalore sites utilized BAM-1022s managed in collaboration with field teams from the Indo-Gangetic Plains Center for Air Research and Education (IGP-CARE) and the Center for Study of Science, Technology, and Policy(CSTEP), who manually retrieved data at regular intervals. Staff at each site followed the manufacturer's recommended operation and maintenance, which resulted in downtime for each dataset.

125 2.3 Deployment Sites

130

135

140

Three separate long-term measurement efforts were conducted to evaluate the PA-II performance under different meteorological and aerosol composition regimes. Each campaign was scheduled to last approximately one year, enabling comparison of a range of mass loadings and the effect of season. We use the Indian Meteorological Department's (IMD) definition of four seasons: Winter (January, February), Pre-Monsoon (March, April, May), Monsoon (June, July, August, September), and Post-Monsoon (October, November, December). (Dubey et al., 2021). A reference map of the collocation sites is presented in SI Fig. S2.

2.3.1 US Embassy, New Delhi, National Capital Territory of Delhi, India

The Indian National Capital Region(NCR), including the capital city of New Delhi (elevation about 230 m), is the second largest megacity in the world with a metro-area population of around 28.5 million people. It has also been called the most polluted megacity in the world, experiencing annual average PM_{2.5} concentrations exceeding 120 μ g/m³, with peak daily (hourly) in excess of 500 μ g/m³ (1500 μ g/m³) during post-monsoon and winter pollution episodes (SI Fig. S3, Gani et al. (2019)). The NCR-National Capital Region along with the rest of the IGP-North India experiences dynamic meteorology with cold wet winters, warm drier post-monsoons and pre-monsoons, and hot wet monsoons (SI Fig. S4).

Our measurement site was the US Embassy (28.5975 °N, 77.1878 °E) in the Chanakyapuri neighborhood of central New Delhi. The embassy is located within the city's spacious diplomatic enclave, which has abundant greenspace, relatively low traffic flows, and minimal local industrial emissions. We collocated 2 PA-II units with the embassy BAM from 2018 July - 2020 April. During the course of our campaign, Delhi experienced extreme PM_{2.5} concentrations during the post-monsoon agricul-

tural burning seasons and characteristic winter inversion layers, with a relatively low-pollution monsoon season consistent with expected seasonal trends (Guttikunda and Gurjar, 2012).

145 **2.3.2** IGP-CAREIndo-Gangetic Plains Center for Atmospheric Research and Education, Hamirpur, Uttar Pradesh, India

We established a rural PM_{2.5} monitoring site in Hamirpur district, located within the IGP North India in India's most populous state, Uttar Pradesh (UP). Our monitoring site was established in partnership with the Indo-Gangetic Plains Center for Atmospheric Research and Education (IGP-CARE). This remote solar-powered rural monitoring site is situated on a rooftop (20 m above ground level) of a solitary building ((25.9552 °N, 80.1522 °E)) located about 800 m outside Ruri Para village in Hamirpur district, Uttar Pradesh. The immediate surroundings within 500 m of the site are a mixture of agricultural fields, ravines, and scrubland forestforests. The closest major town, Hamirpur (population about 35,000) is approximately 30 km away from the site, and the closest large city, Kanpur (population about 3 million) is 80 km away. Meteorological patterns are similar to Delhi (SI Fig. S5). We collocated three PA-II sensors with a BAM-1022 on the IGP-CARE Indo-Gangetic Plains Center for Atmospheric Research and Education rooftop beginning in January 2020. Here, we report on data for the year from 2020 January to 2021 January.

Although campaign-median PM_{2.5} concentrations at the IGP-CARE site (Table 1) are high in the global context, this site's remote location outside of both cities and villages means that concentrations do not reach the same peaks as in Delhi. However, there are still many local sources of aerosol air pollution in rural North India such as biomass burning for cooking and heating (Rooney et al., 2019). The Hamirpur dataset is additionally differentiated from the Delhi dataset in that most of the data was collected during the first year of the COVID-19 pandemic, which was observed to change patterns of emissions throughout the IGP India. (Patel et al., 2021; Singh et al., 2020).

2.3.3 CSTEPCenter for Study of Science, Technology and Policy, Bangalore, Karnataka, India

160

165

170

Bangalore, in South India, is the third largest city in India, with a population of 8.4 million, and the capital of Karnataka. South India experiences different meteorological conditions and considerably lower air pollution burdens than North India (Apte and Pant, 2019; Dubey et al., 2021) (SI Fig. S6, SI Fig. S7). Although continuous $PM_{2.5}$ regulatory monitors are sparse in Bangalore, the current network estimates a citywide annual average of 30 μ g/m³. While this value the annual average is low in comparison to cities in the IGPDelhi as well as the Indian National Ambient Air Quality Standard of 40 μ g/m³, it exceeds the WHO annual guideline value of 5 μ g/m³ and hourly winter concentrations often exceed 50 μ g/m³, with emissions. Consequently, Bangalore has been designated for air quality improvement under the Indian National Clean Air Programme (Ganguly et al., 2020). In Bangalore, emissions are dominated by traffic and dust resuspension (Guttikunda et al., 2019). In Bangalore(SI Fig. S6). The winter , and pre-monsoon seasons are distinguished from the monsoon and post-monsoon seasons primarily by RH and precipitation. Monsoon and post-monsoon are cloudy and rainy, with RH typically exceeding

75 70% all day, and can remain above 90% before sunrise. Winter , and pre-monsoon RH are more moderate with hourly averages fluctuating between 40-80%.

Our collocation site was the CSTEP Center for Study of Science, Technology and Policy office in northern Bangalore. CSTEP We maintained a BAM-1022 on the rooftop of their a 3-story office building (13.0485 °N, 77.5795 °E). Although the site is located near a highway (Outer Ring Road), the annual diurnal patterns matched the regional signature from the average of the regulatory monitors. Furthermore, area surrounding CSTEP the area surrounding the site is mostly office buildings, with some residential housing. There are no large industrial sites or obvious large point sources in the neighborhood, other than occasional small solid waste fires. It is likely the CSTEP Bangalore BAM is thus mostly influenced by urban background and regional aerosol conditions. We set up 2 PA-II sensors from 2019 June – 2020 July, during which Bangalore experienced hourly spikes above 100 μ g/m³ during the festival of Diwali and dynamic changes in traffic patterns due to the COVID-19 pandemic and lockdowns.

2.4 Quality Assurance

180

185

190

195

200

2.4.1 PurpleAir PA-II PM_{2.5}

Many light-scattering PM_{2.5} sensors, including the PA-II, can report unrealistic measurements, lack accuracy (especially at high mass loadings), and are only recommended for operation within a specific range. To minimize these effects, we removed unreasonably large and small points, block-averaged small and large points (outside the range of 5 - $500 \mu g/m^3$), hourly-averaged each individual Plantower unit, averaged across all units for a given site, removed imprecise points, and calibrated the resulting clean dataset. We conducted QA procedures separately for each sensor correction factor (CF1, ATM, ALT).

We removed all raw $PM_{2.5}$ data points outside of the range 5 – 500 μ g/m³ (Kelly et al., 2017; Magi et al., 2020; Zhou and Zheng, 2016). Analyses of PurpleAir data typically report the percent error between channels A and B for a given unit to remove imprecise points, treating them as statistically paired joint measurements and all other nodes as statistically-independent (Barkjohn et al., 2021). However, at our collocation sites, there was always more than one PA-II, so we treated all Plantower sensors as replicate measurements and averaged them together as a single data point. For instance, if we had three PA-IIs at a site, we averaged the six values together – two from each unit – to estimate a single datapoint apoint. We established 80% completeness criteria (or 24 2-minute data points) for each hourly block-average, and at least 2 valid Plantower block-hourly averages for the resulting site PA data point. Imprecise site points were removed using the coefficient of variation (CV), the quotient of the mean and standard deviation of the standard deviation, and the mean of the collocated Plantower sensors for a given 2-min raw sample. CV values greater than 0.2 were removed, broadly consistent with approaches used by other studies (Badura et al., 2018; Crilley et al., 2018).

2.4.2 PurpleAir PA-II Temperature and Relative Humidity

The Adafruit model BME280 is considered a reliable and accurate low-cost environmental sensor (Araújo et al., 2020). There are occasional sensor miscommunications with the microprocessor, leading to unrealistic values, which we filtered out by

restricting RH to 0-100% and temperature to -10-50°C. We computed dew point temperature from the measured temperature and RH like Malings et al. (2019).

2.4.3 MetOne BAM-1020, BAM-1022

The BAM instrument flags low quality-low-quality data with a specific code to (1) potentially remove them from analyses and (2) to diagnose underlying issues, which can include power loss and pump errors. The BAM-1020 and BAM-1022's default concentration range is 3 - 1000 μg/m³. Unlike the PA-II, the hourly LOD of limit of detection of the BAM-1022 and BAM-1020 is well constrained to 2.4 μg/m³ (Magi et al., 2020), considerably below typical concentrations in our dataset. Like other linear regression studies using MetOne BAMs models and Plantower nephelometers, we utilized an ordinary least squares (OLS) approach (Barkjohn et al., 2021; Malings et al., 2019; McFarlane et al., 2021; Mehadi et al., 2020; Wallace et al., 2021; Zheng et al., 2018).

2.5 Calibration Regression

225

235

Since nephelometers and other optical based optical based sensors are known to provide biased measurements of PM_{2.5} measurements relative to reference grade instruments, in large part due to hygroscopic growth, calibration procedures attempt to account for bias due to RH, index of refraction, and mischaracterizing the particle size distribution. One approach is to leverage the environmental data (RH, temperature, etc.) from LCS-low-cost sensor nodes to develop the best fitting best-fitting model without imposing any a priori assumptions about aerosol growth or chemistry (Barkjohn et al., 2021; McFarlane et al., 2021; Malings et al., 2011). We label this approach as "data-driven." From decades of work with optical instruments, corrections have been developed assigning exponential non-linear growth terms as a function of RH and known PM_{2.5} chemical characteristics (Malings et al., 2019; Chakrabar). In our work, we label this approach as "theory-driven" since it attempts to fuse the best-fitting-best-fitting function form from theory with the best-fitting best-fitting regression coefficients. Although the theory-driven model should produce the most transferable models since theory should apply in all environments, the underlying data processing of the Plantower - a truncated nephelometer (Ouimette et al., 2021) - may result in a bias structure better explained by a linear RH correction than an exponential correction a non-linear correction for the dynamic range of RH under real-world conditions.

230 2.5.1 Data-Driven Model Selection

To ensure our work is easily reproducible within India, we relied only upon variables reported or calculable by the PA-II as independent variables: PM, RH, temperature, and dew point. For our PA-II PM_{2.5} variable, we evaluated CF1, ATM, and ALT values. We evaluated all regression models using OLS ordinary least squares with the BAM PM_{2.5} as the dependent variable and our candidate parameters as independent variables. To iterate across all possible arrangements of predictors - including additive terms, interaction terms, as well as polynomial terms up to order 3 – we implemented Sequential Feature Selection (SFS) using the Python package scikit-learn 0.24.2. SFS produces the most relevant features for a given a priori feature number by iteratively removing features and observing the impact on a performance metric, uses a "greedy" approach to converge on the

best-performing model for a user-defined number of parameters (Raschka and Mirjalili, 2019; James et al., 2013; Ferri et al., 1994). For example, if a user wanted a 2-parameter model from a set of 10 features, SFS would iteratively compare 90 models, the set of all possible 2-parameter feature permutations, using a robust regression metric (such as adjusted R² or Bayesian Information Criterion (BIC) in our case. A user can then iterate across the number of features and compare the best performing models for each number of explanatory variables [BIC]). In our approach, we first use SFS to define the best-performing n-parameter model starting with all possible parameters (n=34). We then compare adjusted R² across best-performing n-parameter models to measure the impact of model complexity. If increasing parameters results in only marginal improvements (ΔR² ≈ 0.01), then it is unnecessary to use those additional features. The overall most robust model, therefore, reflects both the best possible selection of features as well as feature parsimony.

2.5.2 Theory-Driven Model Selection

From κ -Köhler theory, we expect wet PM scattering to increase exponentially with increasing RH, resulting in strongly non-linear dynamics. Therefore, we applied a calibration function relying on empirically fitted coefficients from the training data, with a non-linear RH term to capture expected trends from theory. Studies have attempted applying a non-linear RH term for light scattering LCSlow-cost sensors, with results similar to or less accurate than an additive term (Chakrabarti et al., 2004; Malings et al., 2019; Tryner et al., 2020; Zheng et al., 2018). Given the difference in emission sources, size distribution, mass loadings, and meteorology, we decided to include a non-linear RH term using the following form, Eq. (1).

$$C = \frac{\alpha \times P}{1 + \beta \frac{RH^2}{1 - RH}} \tag{1}$$

Where α and β represent regression coefficients to be fitted via Non-linear Least Squares, P is the PurpleAir signal (ATM, CF1, or ALT), RH is the unitless relative humidity scaled from 0 to 1, and C represents the corrected PM_{2.5}.

2.5.3 Cross-validation

250

260

265

To evaluate our calibration models, we sought to design an appropriate cross-validation scheme that would permit a balanced evaluation of model performance among all seasons. A simple test-train split would likely overrepresent seasons with more measurements. We thus performed a stratified k-fold cross-validation, in which each fold contains equal representation from each of the 4 seasons; we evaluated each model by leaving one-fold out in subsequent iterations.

2.5.4 Temporal Sensitivity

As a point of contrast with the seasonally balanced calibration described above, we performed to a data experiment to investigate the temporal stability of a hypothetical shorter-term calibration. This exercise was motivated by the common practice in many LCS-low-cost sensor deployments, of performing a short-term initial calibration, then deploying sensors in the field, and if the LCS-low-cost sensors are available, perform-performing another short post-study collocation. Previously

Levy Zamora et al. (2023) identified diminishing returns in improvements to calibration regressions after about 4 weeks of collocation in Baltimore, USA, if that period encapsulated a representative range of PM_{2.5} and RH conditions. Here we build on this work by seeking to identify which 4-week period is ideal at our sites in India since annual median PM_{2.5} concentrations at Delhi and Hamirpur sites are about 10× higher than Baltimore and reflect a different mixture of chemical composition and aerosol properties. To explore the potential bias from extrapolating a short-term calibration to a longer period, we fitted 4-week rolling OLS ordinary least squares (ROLS) models with the features selected via SFS and compared the performance against all other 2-week 4-week periods during our yearlong data collection to understand the implications of short-term calibration for other studies.

275 **2.5.5 Performance Metrics**

270

280

285

290

295

As a guiding principle, we selected for presentation those models which balanced parsimony with low error, low bias, and strong temporal consistency. We selected analytical methods and performance metrics to optimize these parameters and have designated these best performing best-performing models as "robust." Given the high concentrations and high variability within and between sites, we report the normalized RMSE (NRMSE), allowing a comparison of model performance across sites and time periods (Simon et al., 2012). Additionally, we used the coefficient of determination (R²) to evaluate model accuracy (Simon et al., 2012). For multivariate regression models, we used the adjusted R² metric to account for spurious correlations with increasing numbers of independent variables. To penalize overfit and minimize the number of parameters, we used the Bayesian Information Criterion (BIC), a metric for parsimonious feature selection (James et al., 2013), when selecting between models during the SFS process. Finally, we assessed the mean bias error (MBE) as well as normalized mean bias error (NMBE) to characterize the average direction of error (Simon et al., 2012).

3 Results and Discussion

3.1 Reference Instrument Data Summary and Quality Assurance

BAM and PA measurement summary statistics are summarized in Table 1 for each site, with time series plots in SI Fig. S8-S10. Overall, BAM monitors used at each site provided consistent performance despite challenging deployment circumstances due to intermittent power loss; extreme weather, including heavy rains; and a relatively broad range of mass concentrations.

The US State Department monitor in Delhi employs the US EPA's data reduction process (San Martini et al., 2015; Vaughn, 2009), resulting in a loss of about 3% of data points, with a continuous gap from 2019 February 10 to 2019 March 18. For context, we compared this site's time series with 39 other sites in Delhi's regulatory network and found an a R^2 of 0.86 and a mean bias difference from the regulatory network average of -8.41 μ g/m³, likely resulting from this monitor's location in one of the city's cleanest neighborhoods. The diurnal plot for the Delhi BAM in Fig. 1 reflects the roles of time-varying emissions and boundary layer dynamics with peaks during the morning traffic rush hour (7-10 AM), and extremes in the winter exceeding an

average of 200 μ g/m³ during the night and early morning. During the monsoon, we observed a relatively low daily dynamic range of 35–50 μ g/m³.

At both the IGP-CARE site in Hamirpur and the CSTEP site in Bangalore, we used the manufacturer's specified data flags to perform quality assurance, resulting in 6% and 11% data loss for the IGP-CARE site and CSTEP-Hamirpur site and Bangalore site BAMs, respectively. Unlike Delhi, the Bangalore network is sparse (n = 40 in Delhi versus n = 8 in Bangalore), withe with relatively low data completeness from the official monitors. Diurnal plots in Fig. 1 show a morning peak, with maximum values typically at 8-9 AM for the collocation site BAM.

The closest regulatory monitor to the Hamirpur site is in Kanpur, more than 50 km away, too far for meaningful comparisons of local conditions. Figure 1 shows similar trends to the US Embassy site in Delhi, with a morning peak between 7 and 9 in the morning, extreme mass concentrations throughout the winter, and low dynamic range during the monsoon. There are no long continuous gaps from this monitor; however, power outages were more frequent in Hamirpur than the other two sites since it is a rural site, leading to significant data loss – about 14% of the total campaign hours, concentrated in the Pre-Monsoon.

3.2 PA-II Quality Assurance

300

305

325

330

We evaluated the unit-to-unit precision of the PA-II sensors by comparing the individual channels of all co-located Plantower sensors at each site. Because each PA-II contains two Plantower sensors, there were always a minimum of four Plantower sensors operating at each monitoring site. The PA-II PM_{2.5} channels were highly precise, with strong correlation (R² ≥ 0.9) both within nodes and between nodes across the mass concentration distribution, consistent with existing literature (Kelly et al., 2017; Levy Zamora et al., 2019; Sahu et al., 2020). Bland-Altman plots indicate high precision across all sites and units, with mean differences centered near 0 μg/m³, and most hourly points within ≤ 20% (SI Fig. S11-S13). The between-Plantower R² for the CF1 data across all collocated PA-II sensors was between 0.94-0.99 for the Delhi site, 0.92-0.99 for the Bangalore site, and 0.95-0.99 for the Hamirpur site (SI Fig. S14). Disagreement was more pronounced at high concentrations (>100 μg/m³) at which R² ranges at each site dropped to 0.90 – 0.95, 0.83 – 0.88, and 0.92 – 0.94 for Delhi, Hamirpur and Bangalore respectively. Similar intra-sensor correlations were found for the ATM and ALT data. Given the consistent between-sensor hourly precision across sites (NRMSE ≤ 10%), we can confidently state we expect a random error of at most 10%.

Applying the detection limit thresholds removed 1% of the total Delhi dataset, and <1% from the Hamirpur and Bangalore datasets. The CV test removed about 15%, 15%, and 14% from the Delhi, Hamirpur, and Bangalore datasets averaged across CFs, with the differences across sites likely due to the higher average mass concentrations in the IGPfrom each site. RH and temperature microcontroller errors were limited to about 4% of the total data in Delhi and Hamirpur and <1% in Bangalore.

After removing the filtered data points, accounting for power losses, and applying the completeness criteria for 1-hr block hourly averages, the site averaged PA data resulted in an average coverage of 47% (N=9260 hours), 63% (N=5958 hours), 86% (N=8567 hours) for Delhi, Hamirpur, and Bangalore respectively across CFs. Finally, the reference dataset was synchronized with the PA dataset and the combined dataset coverage is 38% (N=7504), 39% (N=3744), and 75% (N=7473) for Delhi, Hamirpur, and Bangalore respectively. The smaller number of data points available for the Delhi and Hamirpur sites principally arose because of relatively more downtime of the BAM instruments at these two locations.

3.3 PurpleAir Data Summary

335

340

345

350

355

360

Across sites, the PA-II captured diurnal and seasonal trends with similar results to collocated BAMs, as evident in Fig. 1 and SI Fig. S15. However, inconsistent biases among season and location were also observed for all three PM_{2.5} channels (CF1, ATM, ALT), resulting in poor accuracy for the uncalibrated dataset. Although poor accuracy is unsurprising, our findings highlight the importance of dynamic emissions and meteorology across the Indian subcontinent as well as field performance at extreme mass concentrations.

In Delhi, the PA data (CF1) correctly identified winter and post-monsoon as the most polluted seasons, with a strong diurnal range peaking at 8-9 AM (Fig. 1). The PA also well characterized the Delhi monsoon, with a low diurnal range and a daily average less than 60 µg/m³. The uncalibrated LCS-low-cost sensor overestimates concentrations during the extremely polluted and humid post-monsoon and winter , with a strong underestimate There is notably more accurate performance during the dry and hot pre-monsoon, albeit with a tendency to underestimate mass concentrations relative to the reference at least half of the hours of the day. The PA units at Hamirpur follows follow a similar trend. Although both IGP the Delhi and Hamirpur sites feature relatively low bias in the pre-monsoon period, they frequently underestimate mass concentrations in this season, perhaps due to the influence of coarse mineral dust(particle diameter > 1 µm) wind-blown mineral dust, as observed elsewhere in field and lab evaluations (Kuula et al., 2020; Levy Zamora et al., 2019; Sahu et al., 2020; Sayahi et al., 2019). (Jaffe et al., 2023; Kuula et al., 2020; Levy Z. While crustal material does not generally dominate PM_{2.5} mass, during dust storms the lower tail of the coarse mode aerosol can lead to substantially elevated 2.5 concentrations in India.

Since Bangalore's meteorology exhibits comparatively low seasonality, and emissions are more strongly influenced by mobile sources rather than the more complex mixture in the IGP, LCS-Delhi, low-cost sensor performance is different than in North IndiaDelhi and Hamirpur. During the day (9 AM - 7 PM), accuracy is biased by more than +25% during the winter, pre-monsoon, and post-monsoon, with systemically lower bias including underestimates in the less polluted monsoon season (Fig. 1). Accuracy is lower during higher mass loadings at night and during early morning hours, with strong overestimates across seasons, peaking during the most polluted hour (7 - 8 AM).

3.4 Model Selection

3.4.1 Data-Driven Model Fitting

The SFS procedure results are summarized in Table 2 (with extended results in SI Tables S1-S3), where the four most relevant parameters are listed in order of decreasing importance for each CF and site. Across sites, R² stabilized at 2 parameters 2-parameters (about 0.8 for Delhi, and about 0.9 for Hamirpur and Bangalore). For all sites, sensor estimated PM_{2.5} was generally selected as the single most relevant parameter for predicting concentrations measured by BAM followed by a variation of RH (i.e., RH2, RH3RH², RH³). The form of the most robust Bangalore model is different from the IGP sites with Delhi and Hamirpur sites with an interaction term between temperature and ALT PM_{2.5} (rather than CF1 PM_{2.5}) selected as the most predictive PM_{2.5} data stream. Furthermore, the Bangalore dataset ranked temperature and dew point as more relevant than the Hamirpur and Delhi Delhi and Hamirpur datasets. Constraining Bangalore to the same top parameters as the North India Delhi

and Hamirpur sites (CF1 PM_{2.5} and RH) reveals only marginal differences (Δ NRMSE \approx 2%) in performance from the most robust model selected by SFS (ALT PM_{2.5} and RH³). As such we choose to standardize our calibration across all sites with only CF1 PM_{2.5} and RH as relevant parameters.

Regression coefficients of CF1 PM_{2.5} data were positive values less than 1, indicating the CF1 data generally overestimate , but are positively correlated with reference monitors. RH term coefficients at the IGP Delhi and Hamirpur sites are negative, indicating increasing RH should negatively weigh the PA reading, consistent with the expected artifacts of hygroscopic growth in the atmosphere. The Bangalore dataset similarly assigns RH terms a negative weight. Temperature and dewpoint terms receive both negative and positive coefficients across orders of magnitude, only imparted marginal improvements to calibration models ($\Delta R^2 \approx 0.01$, see SI Fig. S16), and it is not determinable if the models are deriving a spurious correlation or detecting underlying aerosol or instrument properties.

3.4.2 Theory-Driven Model Fitting

365

380

395

SI Table S4 summarizes the best-fitting best-fitting model coefficients from the training dataset for each site and each CF. Across sites, the PM_{2.5} regression coefficient (α) does not vary substantially: about 14% for CF1. Hygroscopic growth regression coefficients (β) vary greatly from site to site for CF1 even within the same region, β_{CF1} for Delhi is double that for Hamirpur, perhaps due to a higher abundance of hygroscopic species (Chen et al., 2022; Gani et al., 2019).

The lack of consistency in fit is reasonable, as the Plantower proprietary algorithm and underlying physical-optical design of nephelometers means mean the sensor does not explicitly account for the underlying aerosol size distribution and composition. The resulting datasets are therefore somewhat divorced from the expected pattern based on κ -Köhler theory. The ALT dataset removes the proprietary ATM correction, as well as assumptions of particle density present in the CF1 data, resulting in more consistent β intra-regional values, though with less consistent α values.

3.4.3 Model Evaluation

For the Delhi and Hamirpur sites, both located in the IGP region, 2 parameter North India, 2-parameter ATM and CF1 models yielded the consistent improvements from 1 parameter 1-parameter models, as summarized in SI Fig. S16 Fig. 3 for Delhi and Hamirpur respectively. The CF1 models were consistently more accurate than their ATM counterparts in Hamirpur, albeit by about 1% NRMSE and less than 1% R². Conversely, in Delhi, the ATM models systematically outperformed CF1 models by about 1% NRMSE and R². As evident in Fig. 1, Hamirpur experiences overall lower mass loadings than Delhi. Consequently, the absolute difference between the two signals due to the Plantower piecewise function (SI Fig. 1) above about 35 μg/m³ is likely less important in Hamirpur than in Delhi, where mass loadings are consistently elevated.

The theory-driven hygroscopic growth correction consistently improved performance from the uncalibrated baseline data across sites and CFs by 12% for ATM and 60% for CF1, on average . In North India(Fig. 3). In Delhi and Hamirpur, the theory-driven model performs within about2about 2% of the 1 parameter models, even outperforming the 1 parameter 1-parameter models, and outperforms the 1-parameter ATM model in Hamirpur by 4.3%.

However, since the Plantower PMS5003 is a nephelometer, the signal should not necessarily follow the expected non-linear hygroscopic growth with increasing RH above 60% as expected from a size resolved size-resolved measurement technique (Crilley et al., 2020; Hagan and Kroll, 2020). As a result, the 2 parameter ATM and 2-parameter CF1 models in the IGPDelhi and Hamirpur, with their additive RH terms, outperformed theory-driven by at least 2-33%. In Bangalore, the ATM theory-driven model performance was comparable to the ATM 2 parameter data-driven model (see SI Fig. S16models (about 1% NRMSE, see Fig. 3). This contrast to the stark difference in performance between the two methods in North India is likely a result of the more stable less seasonally variable meteorology and source mixture mixtures in Bangalore, leading to less dynamic aerosol hygroscopicity.

400

410

415

420

425

430

Since CF1 data produces models as accurate as or more accurate than ATM models, has been validated in studies around the world, and does not feature the same non-linear behavior as the ATM channel, we recommend using CF1 for calibration in the IGPDelhi and Hamirpur. In Bangalore, the ALT data maybe may be useful and warrants further study in similar environments, including across South India. From our results, the CF1 data is suitable for deployment in Bangalore and provides uniformity in calibration guidance. Additionally, the 2-parameter model (with RH as additive terms to PM_{2.5}) follows previous studies (Barkjohn et al., 2021; McFarlane et al., 2021; Zheng et al., 2018) across continents and aerosol regimes.

In Barkjohn et al. (2021), the large sample size of PA-II across the continental United States was used to derive a similar calibration regression. In SI Tables S4-S5 we compare the NRMSE and MBE for our best CF1 model forms from the SFS procedure (up to 3 parameters), theory-driven CF1 model, and Barkjohn et al. (2021) model output. We have found from our seasonally-balanced test dataset that our models perform moderately better (\Delta NRMSE of about 5\% across sites) than the EPA model, which is perhaps intuitive given the differences in PM composition and concentrations in India relative to the US. Furthermore, our site-specific models' MBEs are close to 0 µg/m³, while the Barkiohn et al. (2021) model systemically suppresses mass concentration estimates, with an MBE as high as $22 \mu g/m^3$ in Delhi, compared to an MBE of $-0.7 \mu g/m^3$ using the Delhi site-specific model or $3.25 \mu g/m^3$ using the Hamirpur model on the Delhi test dataset. Overall, while the site-specific models we develop here clearly outperform the model of Barkjohn et al. (2021) for these three Indian sites, it is nonetheless striking that this US-developed calibration still performs quite well at these three Indian sites. Given these findings, we selected the following multi-season correction equations (Eq. (2-4)) for Delhi, Hamirpur, and Bangalore respectively. Although relatively simple, our calibration models greatly improve the reliability of low-cost sensor data across aerosol regimes. SH Figure S16 summarizes model accuracy, with NRMSE improvements from uncalibrated data ranging between 5-20%. Figure Figure 2 summarizes each model's bias in at each collocation site with seasonally, and diurnally segregated residuals. Figure 3 summarizes model accuracy, with NRMSE improvements from uncalibrated data ranging between 5-20%. Across all sites, the monthly bias of the calibrated data is within $\pm 25\%$, in contrast to the uncalibrated data. SI Figure S17 additionally explores the residual structure and demonstrates the value of the selected model forms at reducing bias due to RH, and mass loading factors. The calibrated residuals distributions demonstrate marked improvements across the full range of mass concentrations (5 - $500 \mu \text{g/m}^3$), unlike the raw residuals which show increasing uncertainty at high mass concentrations. The selected calibration equations reduce median bias to near 0% across sites, from median bias as high as 150% using the uncalibrated data at RH > 60% -

$$C = 0.546 \times CF1 - \frac{93.60.936}{0.936} \times RH + 50.3 \text{ (Delhi)}$$
(2)

$$C = 0.515 \times CF1 - \frac{13.90.139}{13.90.139} \times RH + 14.1 \text{ (Bangalore)}$$
(4)

3.5 Model Evaluation

435 3.5.1 Temporal Sensitivity

440

445

450

455

To identify the stability of the model and its parameters, we computed the 4-week ROLS-Rolling Ordinary Least Squares (ROLS) for each of our selected models and compared performance to all other 4-week moving ROLS models. Each model's NMBE across time is shown in Fig. 45, where the grey squares in the top panel indicate less than 50% data completeness. Additionally, the bottom panel of Fig. 4-5 tracks the distribution of the diagonal of the matrices present in the top panel of the figure. Across sites, the choice of calibration period greatly changes the performance of the regression throughout the rest of the dataset and influences the selection of regression coefficients. SI Figure S18 additionally explores the absolute bias, demonstrating that Eq. (2-4) bias biases are centered near 0. SI Figure S19 illustrates the same analysis with NRMSE, showing that monthly ROLS model performance is generally stronger than the annual model within the training month, but rapidly deteriorates.

In Delhi, model performance and coefficient selection exhibit a seasonal pattern, with post-monsoon, and winter month models (Jan, Feb, March, Sept, Oct, Nov, Dec) performing well and selecting similar regression coefficients even across years (SI Fig. S20). When evaluating model performance on data within the same season, NRMSE is typically below 30% and R² is above 0.7. However, the post-monsoon and winter models perform poorly when evaluated on pre-monsoon data (March, Apr), with NRMSE exceeding 100% and R² falling below 0.1. For even the best performing pre-monsoon models, NRMSE rises above 50% during the pre-monsoon period data and above 70% for other seasons. Monsoon models (May, June, July, August) also lack transferability to other seasons, but perform well when evaluated on data from the same season (NRMSE < 30%). Monsoon meteorological conditions contrast with other seasons – it is humid, windy, cloudy, hot, and frequently rains (SI Figs. S4-S6). These conditions result in lower emissions (i.e., less biomass burning for heating relative to winter), as well as act to suppress emissions (i.e., wet deposition) resulting in lower average seasonal mass concentrations in the Monsoon (SI Figs. S3 and S7). Consequently, models trained in the monsoon poorly translate to other seasons.

The Hamirpur ROLS results are like those of Delhi, but over a shorter period and with a more robust summer performance. The pre-monsoon models fit the largest magnitude $PM_{2.5}$ regression coefficient and fail to perform well (NRMSE > 50%) both within their own seasons' data and across other seasons' data. All other windows perform well (NRMSE $\leq 25\%$, $R^2 \geq 0.9$)

within their training window and across all other non-pre-monsoon test windows. The regression coefficients stabilize ($\beta_{PM_{2.5}} \approx 0.5$, $\beta_{RH} \approx -25$), resulting in less seasonally variable model performance than in Delhi. Most likely the Delhi's models model's less robust performance across seasons relative to the Hamirpur model's performance is due to the broader diversity of sources in Delhi, making it more difficult to constrain the uncertainty due to factors including hygroscopic growth and particle size distribution.

Bangalore and Hamirpur results are similar in that both models are relatively stable and transferable across seasons. Bangalore model performance degrades and features less season-to-season transferability in the monsoon season months (July and Aug) but features accurate performance (NRSME < 20%) for the other seasons. Regression coefficients in Bangalore are relatively consistent even, albeit with more spread during the pre-monsoon.

Although model results and calibration formulation differ across sites, the temporal sensitivity analysis reveals several key lessons. First, there is no "free lunch" or universal model. Rather, aerosol and meteorological regimes shift rapidly vary sharply by season, leading to underfit for annual models or overfit for seasonal models. Since annual models use data from across the distribution of aerosol compositions and size distributions, they generally perform within 5% of monthly models (SI Fig. S21). Outliers can be especially concerning at the physical limitations of nephelometers such as during Pre-Monsoon dust storms or the extremely humid Monsoon. Therefore, models trained within one single monthlong month-long period do not necessarily transfer well to the next month, even within the same season and model feature selection. Consequently, we recommend calibration procedures in India and other similar environments maintain a long-term collocation with at least one LCS-FEM low-cost and reference pair after the initial collocation period in the region of interest.

3.5.2 Spatial Transferability

465

470

480

485

490

Due to proximity and similarities in climate and aerosol characteristics, and since data-driven models from both IGP Delhi and Hamirpur sites share the same parameters (CF1 and RH), we hypothesized that Delhi and Hamirpur models may be transferable. Figure 5-6 summarizes the relevant performance metrics with respect to spatial calibration transferability. The Hamirpur dataset performance weakened after applying the Delhi model (R² decreased to 0.82, NRMSE increased to 39%) but still outperformed uncalibrated CF1 data. The Delhi dataset performance also weakened after applying the Hamirpur model (R² decreased to 0.78, NRMSE increased to 35%), a relatively modest performance degradation. From this exercise, we understand that although PM_{2.5} is highly variable in the IGPDelhi and Hamirpur, there may be enough of a "fingerprint" in aerosol characteristics from the background site that a single calibration equation could provide an adequate performance improvement. However, a local calibration can provide performance improvements due to fine scale fine-scale PM_{2.5} variability unique to urban environments, especially for a megacity like Delhi.

Applying the North India Delhi and Hamirpur models to the Bangalore test dataset resulted in contrasting performance, with an NRMSE of 71% and 24% from the Delhi and Hamirpur models respectively. It is likely the largely regional aerosol from Hamirpur has enough overlap in speciation and mass concentration range with the Bangalore aerosol that the models are somewhat interchangeable. This hypothesis is additionally evidence from evidenced by the overlap in coefficients from the theory-driven hygroscopic growth equations. Clearly, the uniqueness differences in the composition of the Delhi aerosol

and Bangalore aerosols prevents exchange between Delhi and Bangalore models models at these two sites, but with enough preserved from the regional contribution to support some support from the Hamirpur model to the Delhi data(although not from a Delhi model to Hamirpur data).

Some calibration efforts have sought a unified continental model for LCS low-cost sensors by combining multiple reference-LCS reference and low-cost sensor pairs into one regression model (Barkjohn et al., 2021). Other studies have focused on interpolating between calibration sites to avoid washing out local effects, typically in a dense sensor network (Zheng et al., 2019). Our results show that although there are overarching similarities in model parameter selection, urban and rural environments are heterogeneous to the point of potentially barring a unified model. Additionally, seasonal variability within India necessitates at least monthly updates to model coefficients.

4 Conclusions

495

500

505

510

515

520

525

We collocated LCS-low-cost sensors with reference grade PM_{2.5} monitors in three environments in India, two urban (Delhi, and Bangalore) and one rural (Hamirpur) over the course of multiple seasons to characterize LCS low-cost sensor performance across shifting emissions and meteorological regimes and develop calibration models. Internally, PA-II units demonstrated strong consistency, with low intra-sensor bias and high correlation. Relative to reference instruments, uncalibrated sensor performance varied diurnally and seasonally with shifts strongly associated with extreme mass concentrations, RH, and coarse mode particles. The LCS-low-cost sensor signal generally overestimated mass concentrations relative to the reference instruments, a trend observed in literature to be associated with hygroscopic growth (Jayaratne et al., 2018; Malings et al., 2019). We also identified several dust storm episodes where the LCS signal underestimated identified periods of low-cost sensor signal underestimation by a factor of 2 – 6× in the Pre-Monsoon in Delhi and Hamirpur, when supra-micron wind-blown dust particles are relatively abundant.

We showed demonstrated a relatively simple multilinear regression model using only the LCS-low-cost sensor PM_{2.5} signal and LCS-low-cost sensor RH could produce results well correlated ($R^2 \ge 0.8$) with the reference signal at each site. These site-specific models provide the basis for a computationally efficient, well constrained well-constrained (NRMSE $\le 25\%$), and scalable calibration approach for low-cost sensing in India, despite the non-stationary and diverse aerosol dynamics of the region. Furthermore, we showed our models can be transferred from site to site and still improve performance above the uncalibrated baseline, although a site-specific model generally has superior performance.

Our work also highlights a key caveat to LCS low-cost sensor deployments and calibration in India, especially long-term deployment. Models trained at a site with only data from one season may perform more accurately within that season than a seasonally balanced model but are unreliable at other times of the year. Based on our analysis, we hypothesize that it is better to use a model developed at a background site such as Hamirpur to correct data from an urban environment such as Delhi, since the composition of PM in Hamirpur represents a good subset of the variability in Delhi. On the other hand, since there are PM species only found in some urban environments in India, using models from these industrial microenvironments are less likely to produce accurate results outside of the training location. Our results showed that this seasonality is especially important

given the contrast in meteorology and mass concentrations between the Pre-Monsoon and Monsoon seasons. Although a multilinear regression approach produces well constrained well-constrained results, these models are not transferrable among seasons. Therefore, we advise future deployments to continuously operate a collocation site with at least one LCS-Reference reference and low-cost sensor pair to evaluate calibration drift. Accounting for the temporal and spatial dynamics of aerosol characteristics allow of will allow for the rapid scaling of LCS low-cost sensors for communities in India to communities in need of transparent and accurate data.

Data availability. Hourly concentrations for BAM-1020/1022 PM_{2.5} as well as all PurpleAir PM_{2.5} channels (CF1, ATM and ALT), and PurpleAir meteorological data (Relative Humidity, Temperature, and Dew Point) used in this study are available via the <insert data repository>.

Author contributions. JSA, RKP, SV, MK, SG, SS, JG, and MJC designed the study. SV, HRM, MK, PA, AU, NB, SS, JG, and MJC carried
 out the data collection. MJC carried out the data processing and analyses. All co-authors contributed to the interpretation of results, writing, and reviewing the paper.

Competing interests. The authors declare that they have no conflict of interest.

530

Acknowledgements. We are grateful to Open Philanthropy and The University of Texas President's Award for Global Learning for their support. We are thankful to the US Embassy in New Delhi, the Center for Study of Science, Technology and Policy in Bangalore, and Genetic Plains Center for Atmospheric Research and Education in Hamirpur for institutional support.

References

- Apte, J. S. and Pant, P.: Toward cleaner air for a billion Indians, Proceedings of the National Academy of Sciences, 116, 10614–10616, https://doi.org/10.1073/pnas.1905458116, publisher: National Academy of Sciences Section: Commentary, 2019.
- Apte, J. S., Brauer, M., Cohen, A. J., Ezzati, M., and Pope, C. A.: Ambient PM2.5 Reduces Global and Regional Life Expectancy, Environmental Science & Technology Letters, 5, 546–551, https://doi.org/10.1021/acs.estlett.8b00360, number: 9, 2018.
 - Araújo, T., Silva, L., and Moreira, A.: Evaluation of Low-Cost Sensors for Weather and Carbon Dioxide Monitoring in Internet of Things Context, IoT, 1, 286–308, https://doi.org/10.3390/iot1020017, number: 2 Publisher: Multidisciplinary Digital Publishing Institute, 2020.
 - Badura, M., Batog, P., Drzeniecka-Osiadacz, A., and Modzel, P.: Evaluation of Low-Cost Sensors for Ambient PM2.5 Monitoring, Journal of Sensors, 2018, e5096 540, https://doi.org/10.1155/2018/5096540, publisher: Hindawi, 2018.
- Bai, L., Huang, L., Wang, Z., Ying, Q., Zheng, J., Shi, X., and Hu, J.: Long-term Field Evaluation of Low-cost Particulate Matter Sensors in Nanjing, Aerosol and Air Quality Research, 20, 242–253, https://doi.org/10.4209/aaqr.2018.11.0424, number: 2 Publisher: Taiwan Association for Aerosol Research, 2020.
 - Barkjohn, K. K., Gantt, B., and Clements, A. L.: Development and application of a United States-wide correction for PM_{2.5} data collected with the PurpleAir sensor, Atmospheric Measurement Techniques, 14, 4617–4637, https://doi.org/10.5194/amt-14-4617-2021, publisher: Copernicus GmbH, 2021.
 - Brauer, M., Guttikunda, S. K., K a, N., Dey, S., Tripathi, S. N., Weagle, C., and Martin, R. V.: Examination of monitoring approaches for ambient air pollution: A case study for India, Atmospheric Environment, 216, 116 940, https://doi.org/10.1016/j.atmosenv.2019.116940, 2019.
- Chakrabarti, B., Fine, P. M., Delfino, R., and Sioutas, C.: Performance evaluation of the active-flow personal DataRAM PM2.5 mass monitor (Thermo Anderson pDR-1200) designed for continuous personal exposure measurements, Atmospheric Environment, 38, 3329–3340, https://doi.org/10.1016/j.atmosenv.2004.03.007, number: 20, 2004.
 - Chen, Y., Wang, Y., Nenes, A., Wild, O., Song, S., Hu, D., Liu, D., He, J., Hildebrandt Ruiz, L., Apte, J. S., Gunthe, S. S., and Liu, P.: Ammonium Chloride Associated Aerosol Liquid Water Enhances Haze in Delhi, India, Environmental Science & Technology, 56, 7163–7173, https://doi.org/10.1021/acs.est.2c00650, publisher: American Chemical Society, 2022.
- Collaborators, I. S.-L. D. B. I. A. P.: Health and economic impact of air pollution in the states of India: the Global Burden of Disease Study 2019, The Lancet Planetary Health, 5, e25–e38, https://doi.org/10.1016/S2542-5196(20)30298-9, 2021.
 - Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmospheric Measurement Techniques, 11, 709–720, https://doi.org/10.5194/amt-11-709-2018, number: 2 Publisher: Copernicus GmbH, 2018.
- Crilley, L. R., Singh, A., Kramer, L. J., Shaw, M. D., Alam, M. S., Apte, J. S., Bloss, W. J., Hildebrandt Ruiz, L., Fu, P., Fu, W., Gani, S., Gatari, M., Ilyinskaya, E., Lewis, A. C., Ng'ang'a, D., Sun, Y., Whitty, R. C. W., Yue, S., Young, S., and Pope, F. D.: Effect of aerosol composition on the performance of low-cost optical particle counter correction factors, Atmospheric Measurement Techniques, pp. 1181–1193, https://doi.org/10.5194/amt-13-1181-2020, num Pages: 13 Publisher: York, 2020.
- Dey, S., Purohit, B., Balyan, P., Dixit, K., Bali, K., Kumar, A., Imam, F., Chowdhury, S., Ganguly, D., Gargava, P., and Shukla, V. K.: A Satellite-Based High-Resolution (1-km) Ambient PM2.5 Database for India over Two Decades (2000–2019): Applications for Air Quality Management, Remote Sensing, 12, 3872, https://doi.org/10.3390/rs12233872, number: 23 Publisher: Multidisciplinary Digital Publishing Institute, 2020.

- Diseases, G. . and Collaborators, I.: Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019, The Lancet, 396, 1204–1222, https://doi.org/10.1016/S0140-6736(20)30925-9, 2020.
 - Dubey, A. K., Kumar, P., Saharwardi, M. S., and Javed, A.: Understanding the hot season dynamics and variability across India, Weather and Climate Extremes, 32, 100 317, https://doi.org/10.1016/j.wace.2021.100317, 2021.
 - Ferri, F. J., Pudil, P., Hatef, M., and Kittler, J.: Comparative study of techniques for large-scale feature selection, in: Machine Intelligence and Pattern Recognition, edited by Gelsema, E. S. and Kanal, L. S., vol. 16 of *Pattern Recognition in Practice IV*, pp. 403–413, North-Holland, https://doi.org/10.1016/B978-0-444-81892-8.50040-7, 1994.

585

590

595

- Ganguly, T., Selvaraj, K. L., and Guttikunda, S. K.: National Clean Air Programme (NCAP) for Indian cities: Review and outlook of clean air action plans, Atmospheric Environment: X, 8, 100 096, https://doi.org/10.1016/j.aeaoa.2020.100096, 2020.
- Gani, S., Bhandari, S., Seraj, S., Wang, D. S., Patel, K., Soni, P., Arub, Z., Habib, G., Ruiz, L. H., and Apte, J. S.: Submicron aerosol composition in the world's most polluted megacity: the Delhi Aerosol Supersite study, Atmospheric Chemistry and Physics; Katlenburg-Lindau, 19, 6843–6859, https://doi.org/http://dx.doi.org.ezproxy.lib.utexas.edu/10.5194/acp-19-6843-2019, number: 10, 2019.
- Gupta, L., Dev, R., Zaidi, K., Sunder Raman, R., Habib, G., and Ghosh, B.: Assessment of PM10 and PM2.5 over Ghaziabad, an industrial city in the Indo-Gangetic Plain: spatio-temporal variability and associated health effects, Environmental Monitoring and Assessment, 193, 735, https://doi.org/10.1007/s10661-021-09411-5, 2021.
- Guttikunda, S. K. and Gurjar, B. R.: Role of meteorology in seasonality of air pollution in megacity Delhi, India, Environmental Monitoring and Assessment, 184, 3199–3211, https://doi.org/10.1007/s10661-011-2182-8, 2012.
 - Guttikunda, S. K., Nishadh, K. A., Gota, S., Singh, P., Chanda, A., Jawahar, P., and Asundi, J.: Air quality, emissions, and source contributions analysis for the Greater Bengaluru region of India, Atmospheric Pollution Research, 10, 941–953, https://doi.org/10.1016/j.apr.2019.01.002, number: 3, 2019.
- Hagan, D. H. and Kroll, J. H.: Assessing the accuracy of low-cost optical particle sensors using a physics-based approach, preprint, Aerosol-s/Laboratory Measurement/Data Processing and Information Retrieval, https://doi.org/10.5194/amt-2020-188, 2020.
- Hagler, G. S. W., Williams, R., Papapostolou, V., and Polidori, A.: Air Quality Sensors and Data Adjustment Algorithms: When Is It No Longer a Measurement?, Environmental Science & Technology, 52, 5530–5531, https://doi.org/10.1021/acs.est.8b01826, number: 10 Publisher: American Chemical Society, 2018.
- Hall, E. and Gilliam, J.: Reference and Equivalent Methods Used to Measure National Ambient Air Quality Standards (NAAQS) Criteria Air Pollutants Volume I, https://doi.org/10.13140/RG.2.1.2423.2563, 2016.
 - Hammer, M. S., van Donkelaar, A., Li, C., Lyapustin, A., Sayer, A. M., Hsu, N. C., Levy, R. C., Garay, M. J., Kalashnikova, O. V., Kahn, R. A., Brauer, M., Apte, J. S., Henze, D. K., Zhang, L., Zhang, Q., Ford, B., Pierce, J. R., and Martin, R. V.: Global Estimates and Long-Term Trends of Fine Particulate Matter Concentrations (1998–2018), Environmental Science & Technology, 54, 7879–7890, https://doi.org/10.1021/acs.est.0c01764, number: 13 Publisher: American Chemical Society, 2020.
- 610 He, M., Kuerbanjiang, N., and Dhaniyala, S.: Performance characteristics of the low-cost Plantower PMS optical sensor, Aerosol Science and Technology, 54, 232–241, https://doi.org/10.1080/02786826.2019.1696015, number: 2 Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/02786826.2019.1696015, 2020.
- Jaffe, D. A., Miller, C., Thompson, K., Finley, B., Nelson, M., Ouimette, J., and Andrews, E.: An evaluation of the U.S. EPA's correction equation for PurpleAir sensor data in smoke, dust, and wintertime urban pollution events, Atmospheric Measurement Techniques, 16, 1311–1322, https://doi.org/10.5194/amt-16-1311-2023, publisher: Copernicus GmbH, 2023.

James, G., Witten, D., Hastie, T., and Tibshirani, R.: An introduction to statistical learning, vol. 112, Springer, 2013.

625

- Jayaratne, R., Liu, X., Thai, P., Dunbabin, M., and Morawska, L.: The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog, Atmospheric Measurement Techniques, 11, 4883–4890, https://doi.org/https://doi.org/10.5194/amt-11-4883-2018, number: 8 Publisher: Copernicus GmbH, 2018.
- 620 Jha, S. K., Kumar, M., Arora, V., Tripathi, S. N., Motghare, V. M., Shingare, A. A., Rajput, K. A., and Kamble, S.: Domain Adaptation-Based Deep Calibration of Low-Cost PM2.5 Sensors, IEEE Sensors Journal, 21, 25 941–25 949, https://doi.org/10.1109/JSEN.2021.3118454, conference Name: IEEE Sensors Journal, 2021.
 - Johnson, K. K., Bergin, M. H., Russell, A. G., and Hagler, G. S.: Field Test of Several Low-Cost Particulate Matter Sensors in High and Low Concentration Urban Environments, Aerosol and air quality research, 18, 565–578, https://doi.org/10.4209/aaqr.2017.10.0418, number: 3, 2018.
 - Kelly, K. E., Whitaker, J., Petty, A., Widmer, C., Dybwad, A., Sleeth, D., Martin, R., and Butterfield, A.: Ambient and laboratory evaluation of a low-cost particulate matter sensor, Environmental Pollution, 221, 491–500, https://doi.org/10.1016/j.envpol.2016.12.039, 2017.
 - Krishna, B., Mandal, S., Madhipatla, K., Reddy, K., Prabhakaran, D., and Schwartz, J.: Daily nonaccidental mortality associated with short-Term PM2.5exposures in Delhi, India, Environmental Epidemiology, https://doi.org/10.1097/EE9.000000000000167, 2021.
- 630 Kuula, J., Mäkelä, T., Aurela, M., Teinilä, K., Varjonen, S., González, O., and Timonen, H.: Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors, Atmospheric Measurement Techniques, 13, 2413–2423, https://doi.org/https://doi.org/10.5194/amt-13-2413-2020, number: 5 Publisher: Copernicus GmbH, 2020.
 - Lepeule, J., Laden, F., Dockery, D., and Schwartz, J.: Chronic Exposure to Fine Particles and Mortality: An Extended Follow-up of the Harvard Six Cities Study from 1974 to 2009, Environmental Health Perspectives, 120, 965–970, http://www.jstor.org/stable/41548777, number: 7, 2012.
 - Levy Zamora, M., Xiong, F., Gentner, D., Kerkez, B., Kohrman-Glaser, J., and Koehler, K.: Field and Laboratory Evaluations of the Low-Cost Plantower Particulate Matter Sensor, Environmental Science & Technology, 53, 838–849, https://doi.org/10.1021/acs.est.8b05174, number: 2, 2019.
- Levy Zamora, M., Buehler, C., Datta, A., Gentner, D. R., and Koehler, K.: Identifying optimal co-location calibration periods for low-cost sensors, Atmospheric Measurement Techniques, 16, 169–179, https://doi.org/10.5194/amt-16-169-2023, publisher: Copernicus GmbH, 2023.
 - Magi, B. I., Cupini, C., Francis, J., Green, M., and Hauser, C.: Evaluation of PM2.5 measured in an urban setting using a low-cost optical particle counter and a Federal Equivalent Method Beta Attenuation Monitor, Aerosol Science and Technology, 54, 147–159, https://doi.org/10.1080/02786826.2019.1619915, number: 2, 2020.
- Malings, C., Tanzer, R., Hauryliuk, A., Saha, P. K., Robinson, A. L., Presto, A. A., and Subramanian, R.: Fine particle mass monitoring with low-cost sensors: Corrections and long-term performance evaluation, Aerosol Science and Technology, 0, 1–15, https://doi.org/10.1080/02786826.2019.1623863, number: 0, 2019.
 - Malyan, V., Kumar, V., and Sahu, M.: Significance of sources and size distribution on calibration of low-cost particle sensors: Evidence from a field sampling campaign, Journal of Aerosol Science, 168, 106 114, https://doi.org/10.1016/j.jaerosci.2022.106114, 2023.
- Martin, R. V., Brauer, M., van Donkelaar, A., Shaddick, G., Narain, U., and Dey, S.: No one knows which city has the highest concentration of fine particulate matter, Atmospheric Environment: X, 3, 100 040, https://doi.org/10.1016/j.aeaoa.2019.100040, 2019.
 - McFarlane, C., Isevulambire, P. K., Lumbuenamo, R. S., Ndinga, A. M. E., Dhammapala, R., Jin, X., McNeill, V. F., Malings, C., Subramanian, R., and Westervelt, D. M.: First Measurements of Ambient PM2.5 in Kinshasa, Democratic Republic of Congo

- and Brazzaville, Republic of Congo Using Field-calibrated Low-cost Sensors, Aerosol and Air Quality Research, 21, 200619, https://doi.org/10.4209/aaqr.200619, publisher: Taiwan Association for Aerosol Research, 2021.
 - Mehadi, A., Moosmüller, H., Campbell, D. E., Ham, W., Schweizer, D., Tarnay, L., and Hunter, J.: Laboratory and field evaluation of real-time and near real-time PM2.5 smoke monitors, Journal of the Air & Waste Management Association, 70, 158–179, https://doi.org/10.1080/10962247.2019.1654036, number: 2 Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/10962247.2019.1654036, 2020.
- Ouimette, J. R., Malm, W. C., Schichtel, B. A., Sheridan, P. J., Andrews, E., Ogren, J. A., and Arnott, W. P.: Evaluating the PurpleAir monitor as an aerosol light scattering instrument, Atmospheric Measurement Techniques Discussions, pp. 1–35, https://doi.org/10.5194/amt-2021-170, publisher: Copernicus GmbH, 2021.

665

- Patel, K., Campmier, M. J., Bhandari, S., Baig, N., Gani, S., Habib, G., Apte, J. S., and Hildebrandt Ruiz, L.: Persistence of Primary and Secondary Pollutants in Delhi: Concentrations and Composition from 2017 through the COVID Pandemic, Environmental Science & Technology Letters, 8, 492–497, https://doi.org/10.1021/acs.estlett.1c00211, publisher: American Chemical Society, 2021.
- Puttaswamy, N., Sreekanth, V., Pillarisetti, A., Upadhya, A. R., Saidam, S., Veerappan, B., Mukhopadhyay, K., Sambandam, S., Sutaria, R., and Balakrishnan, K.: Indoor and Ambient Air Pollution in Chennai, India during COVID-19 Lockdown: An Affordable Sensors Study, Aerosol and Air Quality Research, 22, 210 170, https://doi.org/10.4209/aaqr.210170, publisher: Taiwan Association for Aerosol Research, 2022.
- Ramachandra, T. V., Sellers, J., Bharath, H. A., and Setturu, B.: Micro level analyses of environmentally disastrous urbanization in Bangalore, Environmental Monitoring and Assessment, 191, 787, https://doi.org/10.1007/s10661-019-7693-8, number: 3, 2020.
 - Raschka, S. and Mirjalili, V.: Python machine learning: Machine learning and deep learning with Python, scikit-learn, and TensorFlow 2, Packt Publishing Ltd, 2019.
- Rooney, B., Zhao, R., Wang, Y., Bates, K. H., Pillarisetti, A., Sharma, S., Kundu, S., Bond, T. C., Lam, N. L., Ozaltun, B., Xu, L., Goel, V.,
 Fleming, L. T., Weltman, R., Meinardi, S., Blake, D. R., Nizkorodov, S. A., Edwards, R. D., Yadav, A., Arora, N. K., Smith, K. R., and Seinfeld, J. H.: Impacts of household sources on air pollution at village and regional scales in India, Atmospheric Chemistry and Physics, 19, 7719–7742, https://doi.org/10.5194/acp-19-7719-2019, publisher: Copernicus GmbH, 2019.
 - Sahu, R., Dixit, K. K., Mishra, S., Kumar, P., Shukla, A. K., Sutaria, R., Tiwari, S., and Tripathi, S. N.: Validation of Low-Cost Sensors in Measuring Real-Time PM10 Concentrations at Two Sites in Delhi National Capital Region, Sensors, 20, 1347, https://doi.org/10.3390/s20051347, number: 5 Publisher: Multidisciplinary Digital Publishing Institute, 2020.
 - San Martini, F. M., Hasenkopf, C. A., and Roberts, D. C.: Statistical analysis of PM2.5 observations from diplomatic facilities in China, Atmospheric Environment, 110, 174–185, https://doi.org/10.1016/j.atmosenv.2015.03.060, 2015.
 - Sayahi, T., Butterfield, A., and Kelly, K. E.: Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors, Environmental Pollution, 245, 932–940, https://doi.org/10.1016/j.envpol.2018.11.065, 2019.
- Simon, H., Baker, K. R., and Phillips, S.: Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012, Atmospheric Environment, 61, 124–139, https://doi.org/10.1016/j.atmosenv.2012.07.012, 2012.
 - Singh, V., Singh, S., Biswal, A., Kesarkar, A. P., Mor, S., and Ravindra, K.: Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India, Environmental Pollution, 266, 115 368, https://doi.org/10.1016/j.envpol.2020.115368, 2020.
- 690 Sreekanth, V., R., A. B., Kulkarni, P., Puttaswamy, N., Prabhu, V., Agrawal, P., Upadhya, A. R., Rao, S., Sutaria, R., Mor, S., Dey, S., Khaiwal, R., Balakrishnan, K., Tripathi, S. N., and Singh, P.: Inter- versus Intracity Variations in the Performance

- and Calibration of Low-Cost PM2.5 Sensors: A Multicity Assessment in India, ACS Earth and Space Chemistry, 6, 3007–3016, https://doi.org/10.1021/acsearthspacechem.2c00257, publisher: American Chemical Society, 2022.
- Tryner, J., L'Orange, C., Mehaffy, J., Miller-Lionberg, D., Hofstetter, J. C., Wilson, A., and Volckens, J.: Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers, Atmospheric Environment, 220, 117 067, https://doi.org/10.1016/j.atmosenv.2019.117067, 2020.
 - Vaughn, D. L.: Standard Operating Procedure for the Continuous Measurement of Particulate Matter, https://www3.epa.gov/ttnamti1/files/ambient/pm25/sop_project/905505_BAM_SOP_Draft_Final_Oct09.pdf, 2009.
- Wallace, L. and Ott, W.: Long-Term Indoor-Outdoor PM2.5 Measurements Using PurpleAir Sensors: An Improved Method of Calculating Indoor-Generated and Outdoor-Infiltrated Contributions to Potential Indoor Exposure, Sensors, 23, 1160, https://doi.org/10.3390/s23031160, number: 3 Publisher: Multidisciplinary Digital Publishing Institute, 2023.
 - Wallace, L. and Zhao, T.: Spatial Variation of PM2.5 Indoors and Outdoors: Results from 261 Regulatory Monitors Compared to 14,000 Low-Cost Monitors in Three Western States over 4.7 Years, Sensors, 23, 4387, https://doi.org/10.3390/s23094387, number: 9 Publisher: Multidisciplinary Digital Publishing Institute, 2023.
- Wallace, L., Ott, W., Zhao, T., Cheng, K.-C., and Hildemann, L.: Secondhand exposure from vaping marijuana: Concentrations, emissions, and exposures determined using both research-grade and low-cost monitors, Atmospheric Environment: X, 8, 100 093, https://doi.org/10.1016/j.aeaoa.2020.100093, 2020.
 - Wallace, L., Bi, J., Ott, W. R., Sarnat, J., and Liu, Y.: Calibration of low-cost PurpleAir outdoor monitors using an improved method of calculating PM2.5, Atmospheric Environment, 256, 118 432, https://doi.org/10.1016/j.atmosenv.2021.118432, 2021.
- 710 Zheng, T., Bergin, M. H., Johnson, K. K., Tripathi, S. N., Shirodkar, S., Landis, M. S., Sutaria, R., and Carlson, D. E.: Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments, Atmospheric Measurement Techniques, 11, 4823–4846, https://doi.org/https://doi.org/10.5194/amt-11-4823-2018, number: 8 Publisher: Copernicus GmbH, 2018.

715

- Zheng, T., Bergin, M. H., Sutaria, R., Tripathi, S. N., Caldow, R., and Carlson, D. E.: Gaussian Process regression model for dynamically calibrating a wireless low-cost particulate matter sensor network in Delhi, preprint, Aerosols/In Situ Measurement/Data Processing and Information Retrieval, https://doi.org/10.5194/amt-2019-55, 2019.
- Zhou, Y. and Zheng, H.: PMS5003 Series Data Manual, http://www.aqmd.gov/docs/default-source/aq-spec/resources-page/plantower-pms5003-manual_v2-3.pdf?sfvrsn=2, 2016.
- Zou, Y., Clark, J. D., and May, A. A.: Laboratory evaluation of the effects of particle size and composition on the performance of integrated devices containing Plantower particle sensors, Aerosol Science and Technology, 0, 1–13, https://doi.org/10.1080/02786826.2021.1905148, publisher: Taylor & Francis _eprint: https://doi.org/10.1080/02786826.2021.1905148, 2021.

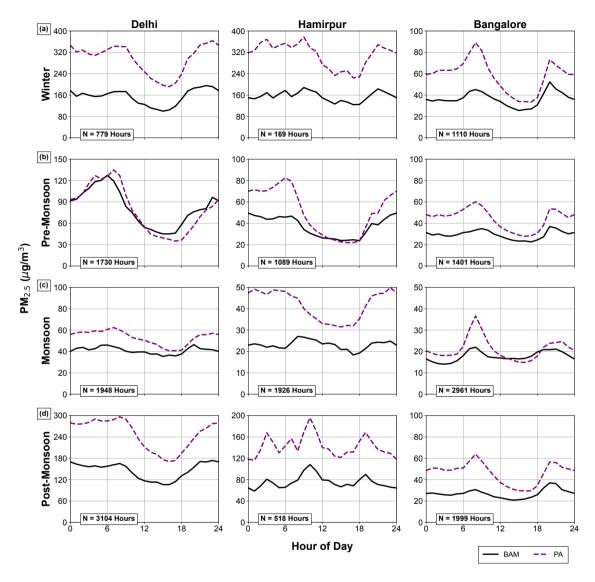


Figure 1. Diurnal profiles of mean hourly seasonal BAM (reference) and uncorrected PA PM2.5 PM2.5 signals for Delhi, Hamirpur, and Bangalore using the CF1 channel. The number of valid hourly averages (quality assured according to methods outlined in Sect. 2.4 and summarized in Sects. 3.1 - 3.3) in each dataset is presented in the bottom left of each subplot. Winter (January, February), Pre-Monsoon (March, April, May), Monsoon (June, July, August, September), and Post-Monsoon (October, November, December). No single hour of day represents more than about 7% to the total dataset shown in the bottom left corner of each plot.

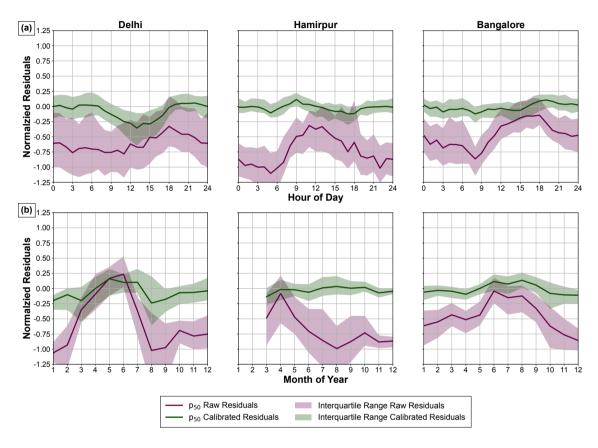


Figure 2. Normalized Residual distributions for the uncalibrated PurpleAir data (CF1) and the Calibration Models for each site. Bold lines represent the median (p_{50}) of the distribution, while the shaded area represents the interquartile range $(p_{75} - p_{25})$. The panel Panel (a) shows the diurnal distribution, while panel (b) shows the normalized residual distribution binned by month. Compared to the residual distribution for uncalibrated (raw) data, the calibration effectively eliminates most seasonal and diurnal biasbiases.

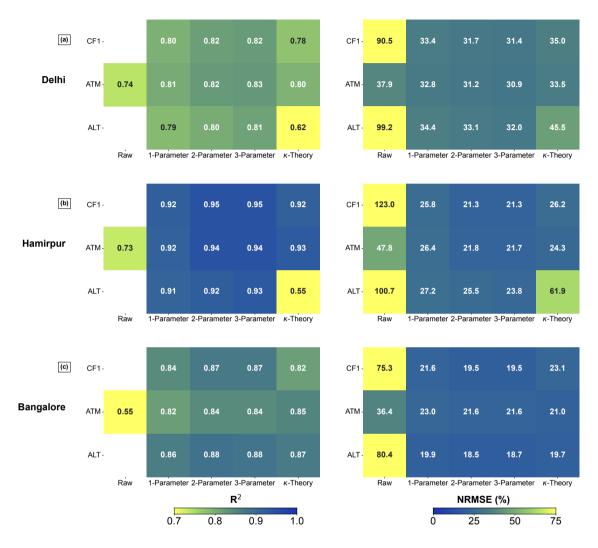


Figure 3. Regression metrics, R² (left) and NRMSE (right) for raw data, 1-parameter model, 2-parameter model, 3-parameter model, and the theory-driven hygroscopic growth model for each PM_{2.5} channel (CF1, ATM, ALT) for each site (Delhi [panel (a)], Hamirpur [panel (b)], and Bangalore [panel (c)]). The largest improvements are from the raw data to the 1-parameter model, with only marginal improvements in the 3-parameter and theory-driven models.

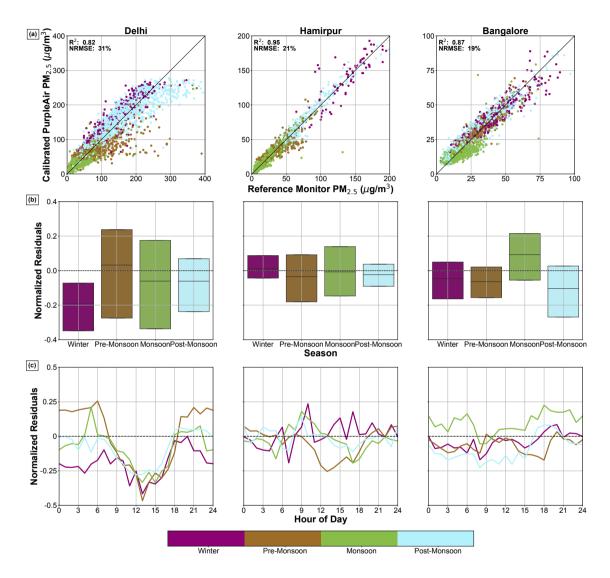


Figure 4. Scatter plots of the best performing 2 parameter hourly best-performing 2-parameter annual models for each of the sites in panel (a), with the corresponding normalized model residuals in panel (b) segregated by season and segregated by the time of day in panel (c). In panel (a), sold the solid line represents unity. In panels (b) and (c), the dashed line represents the normalized residual value of 0. In comparison to Fig. 2a, the normalized diurnal residuals in panel (c) are presented over a restricted y-axis, accentuating the residual structure.

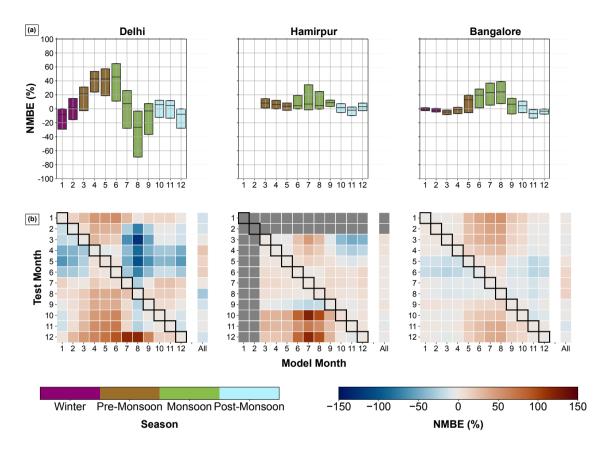


Figure 5. Assessment of inter-seasonal transferability of seasonal models. Panel (a) depicts box plots of the distribution of Normalized Mean Bias Error (NMBE) for a given model starting month of a 4-week rolling ordinary least-squares (ROLS) model on all other windows. The bottom, solid line, and top of the boxes represent the 25th, 50th, and 75th percentiles respectively. Panel (b) presents the median Normalized Mean Bias Error (NMBE) of a 4-week ROLS model trained starting to start in the month (colored by season) on the x-axis and evaluated on all other windows as binned by starting month on the y-axis. Gray boxes represent months without sufficient data. Models trained in the Pre-Monsoon (April, May) underpredicted in other seasons, contrary to the typical pattern of overprediction – this pattern is consistent at Delhi and Hamirpuron a normalized basis. Due to the more consistent meteorology and aerosol regime in Bangalore, there is more consistent performance regardless of training window. Finally, as As a point of comparison, we present the performance of our long-term calibration in individual months at each site in the column in (b) titled "All." Consistent with our observation that 4-week models trained in a single month generally do not perform as well in other months, we also note that in general, monthly models perform somewhat better for a given month than the long-term model does. SI Figs S19 and S20 explore the MBE and NRMSE of this data.

Performance evaluation metrics of Eq. (2-4) with the training site on the x-axis and the test-site on the y-axis. Metrics are Coefficient of Determination (R²) (left), Normalized Root Mean Square Error (NRMSE) (center), and Mean Bias Error (right). For each metric, the diagonal pattern of best performance from upper left to lower right illustrates how calibration models perform best in the locations where they are trained. This finding illustrates how regional differences in meteorology and aerosol composition can limit the transferability of calibration relationships. Of note, the calibration model trained in Delhi performed quite poorly in

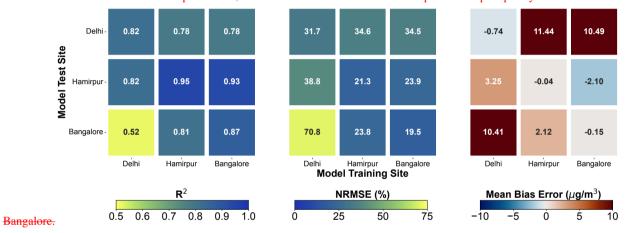


Figure 6. Assessment of site-wise transferability of annual models. Performance evaluation metrics of Eq. (2-4) with the training site on the x-axis and the test site on the y-axis. Metrics are Coefficient of Determination (R²) (left), Normalized Root Mean Square Error (NRMSE) (center), and Mean Bias Error (right). For each metric, the diagonal pattern of the best performance from upper left to lower right illustrates how calibration models perform best in the locations where they are trained. At each site, we compute performance metrics by comparing the calibration model output to an independent test set that was held out from model training. This finding illustrates how regional differences in meteorology and aerosol composition can limit the transferability of calibration relationships. Of note, the calibration model trained in Delhi performed quite poorly in Bangalore.

	Delhi	Hamirpur	Bangalore
BAM 1020/1022 PM _{2.5} (μg/m ³)			
p_{10}	23.0	10.6	10.8
p ₂₅	39.0	17.9	15.3
p 50	71.0	34.3	21.8
p 75	142.0	67.4	30.8
p 90	237.0	125.4	42.1
PA-II CF1 PM _{2.5} (μ g/m ³)			
p_{10}	31.0	18.1	12.7
p ₂₅	52.2	31.3	18.1
p 50	117.0	63.4	31.0
p ₇₅	243.0	124.3	52.9
p 90	375.0	218.0	74.5
PA-II ATM PM _{2.5} (μ g/m ³)			
p_{10}	30.4	18.1	12.7
p ₂₅	43.0	30.2	18.1
p 50	83.8	47.0	30.0
p 75	180.0	82.7	42.4
p 90	285.0	146.7	51.3
PA-II RH (%)			
p_{10}	20.6	29.8	34.2
p ₂₅	29.6	44.1	48.0
p 50	41.0	62.9	62.9
p 75	48.5	77.4	73.8
p 90	53.1	85.7	78.6
PA-II Temperature (°C)			
p_{10}	18.7	17.2	23.7
p ₂₅	22.8	24.5	25.0
p_{50}	29.2	30.6	27.7
p ₇₅	35.1	35.3	32.3
p 90	39.0	40.3	37.1

Table 1. Summary of campaign measurements (quality assured according to methods outlined in 2.4 and summarized in 3.1 - 3.3) including 10^{th} percentile (p_{10}), 25^{th} percentile (p_{25}), 50^{th} percentile (p_{50}), 75^{th} percentile (p_{75}), and 90^{th} percentile (p_{90}) for the campaign periods (Delhi: 2018 July – 2020 April, Hamirpur: 2020 January – 2021 January, Bangalore: 2019 June – 2020 August)

	CF1	ATM	ALT
	$PM_{2.5}$	PM _{2.5}	$PM_{2.5}$
Delhi	RH	RH^2	$RH^2 \times T$
	$PM_{2.5} \times RH$	$PM_{2.5} \times RH^2$	$PM_{2.5}^2 \times D$
	PM _{2.5}	PM _{2.5}	PM _{2.5}
Hamirpur	RH	RH	$PM_{2.5} \times RH \times T$
	RH^3	RH^2	$PM_{2.5}^2 \times D$
	$PM_{2.5} \times T$	$PM_{2.5}^2 \times T$	PM _{2.5}
Bangalore	$PM_{2.5} \times T \times D$	$PM_{2.5}^{\ \ 3}$	$PM_{2.5} \times RH^2$
	$PM_{2.5}^2 \times T$	$PM_{2.5}^{2}$	$PM_{2.5}^2 \times T$

Table 2. Most relevant parameters selected through Sequential Feature Selection for each PurpleAir $PM_{2.5}$ channel by site: CF1 ("uncorrected" PurpleAir $PM_{2.5}$), ATM ("atmospheric corrected" PurpleAir $PM_{2.5}$), and ALT ("alternative" PurpleAir $PM_{2.5}$ – reconstructed from modeled size distribution data). Parameters: Relative Humidity (RH), Temperature (T), and Dew Point (D).