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Abstract. We report on the long-term performance of a popular low-cost PM2.5 sensor, the PurpleAir PA-II, at multiple sites

in India, with the aim of identifying robust calibration protocols. We established 3 distinct sites in India (North India: Delhi,

Hamirpur; South India: Bangalore), where we collocated PA-II with reference beta-attenuation monitors to characterize sensor

performance and to model calibration relationships between PA-IIs and reference monitors for hourly data. Our sites remained

in operation across all major seasons of India. Without calibration, the PA-IIs had high precision (NRMSE among replicate5

sensors ≤ 15%) and tracked the overall seasonal and diurnal signals from the reference instruments well (Pearson’s r ≥
0.9) but were inaccurate (NRMSE ≥ 40%). We used a comprehensive feature selection process to create optimized site-

specific calibrations. Relative to the uncalibrated data, parsimonious least-squares long-term calibration models improved

PA-II performance at all sites (cross-validated NRMSE: 20-30%, R2: 0.82-0.95), particularly by reducing seasonal and diurnal

biases. Because aerosol properties and meteorology vary regionally, the form of these long-term models differed by site.10

Likewise, using a moving-window calibration, we find a calibration scheme using seasonally specific information somewhat

improves performance relative to a static long-term calibration model. In contrast, we demonstrate that a successful short-term

calibration exercise for one season may not transfer reliably to other seasons. Overall, we demonstrate how the PA-II, when

paired with a careful calibration scheme, can provide actionable information on PM2.5 in India with only modest irreducible

uncertainty.15
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1 Introduction

Exposure to fine particulate matter, or PM2.5 (particles with aerodynamic diameter ≤ 2.5 µm), is a leading cause of adverse

health outcomes, including premature death (Lepeule et al., 2012; Vos et al., 2020). India experiences high mass concentrations

in both its population dense megacities and its rural areas, resulting in the largest number of deaths (about 0.98 million annual

deaths, about 1.5 years reduction in life expectancy) attributable to ambient PM2.5 worldwide (Apte et al., 2018; Pandey et al.,20

2021). In particular New Delhi, the surrounding Delhi National Capital Region, and the broader Indo-Gangetic Plain (IGP) of

North India regularly experience hourly mass concentrations exceeding 1000 µg/m3 (Gani et al., 2019) resulting in ill health

effects even from short-term exposure (Gupta et al., 2021; Krishna et al., 2021). South India generally experiences lower

PM2.5 concentrations, but still has population-weighted annual mass concentrations that exceed World Health Organization

recommendations by a large margin (Apte and Pant, 2019). As relatively less polluted megacities in South India continue to25

rapidly grow, the challenge of ambient PM2.5 will also increase (Guttikunda et al., 2019; Ramachandra et al., 2020).

Given the high exposure burden and complexity of PM2.5 throughout India, there is need to increase understanding of

the spatial-temporal patterns of air pollution. Traditional regulatory monitors are expensive to install and maintain, requiring

specialized teams and consistent power to maintain networks (Brauer et al., 2019). As a result, there is a dearth of monitors in

India (Brauer et al., 2019; Martin et al., 2019). Although satellite remote sensing can fill in the spatial gap, it lacks high quality30

temporal coverage and relies on ground-based monitoring for calibration algorithms (Hammer et al., 2020), which can, as is

the case in India, result in biased estimates of surface PM2.5 (Dey et al., 2020).

Starting in around 2010, advancements in miniaturized electronics and laser technology have resulted in the growth of

low-cost (< $500 USD) PM2.5 sensor (LCS) technologies. These light-scattering monitors are popular within the research

community and among citizen scientists. The company PurpleAir (PA) has been especially successful in developing (1) a 200-35

280 USD LCS that utilizes a commercially available, light-scattering sensor developed by Plantower (PMS5003) and (2) a

platform for individuals and organizations to share data from indoor and outdoor PurpleAir LCS.

Light-scattering LCS require extensive data quality control and careful selection of calibration models to offer measurements

comparable to reference quality instruments (Hagan and Kroll, 2020; Hagler et al., 2018). Optical sensors mischaracterize mass

from aerosol scattering properties, as PM2.5 is a mixture of particle sizes and chemical compositions (Hagan and Kroll, 2020;40

Levy Zamora et al., 2019; Zou et al., 2021). The roles of relative humidity, mass concentration range, sensor aging, and diverse

source profiles have been extensively studied in laboratories and field conditions in the US, Australia, and Europe. Lab studies

report the Plantower sensors fail to characterize fine particles above 0.8 microns (Kuula et al., 2020), deteriorate under extreme

mass concentrations (Mehadi et al., 2020; Tryner et al., 2020), and are vulnerable to overestimation at RH greater than 60%

(Jayaratne et al., 2018).45

Field studies in low to moderate pollution environments show PA units can be calibrated to reference instruments using

simple empirical regression techniques with environmental variables (Barkjohn et al., 2021; Malings et al., 2019; Zheng et al.,

2018). Models are often specific to a season and location, however, Barkjohn et al. (2021) demonstrated that a continental US

calibration equation could be effectively deployed for daily data.
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Recently there is increased interest in understanding LCS performance in the Global South to fill major monitoring gaps50

(Bai et al., 2020; Jha et al., 2021; Malyan et al., 2023; McFarlane et al., 2021; Puttaswamy et al., 2022; Sreekanth et al., 2022;

Zheng et al., 2018, 2019). In North India, Zheng et al. (2018) deployed Plantower models in Kanpur, Uttar Pradesh, for 90

days and found multilinear regression improved Plantower performance, albeit with significant error for hourly data. In South

India, Puttaswamy et al. (2022) calibrated Plantower units for 68-days in Chennai and found a multilinear regression approach

reduced uncertainty to within 15% and 18% for PM2.5 and PM10 respectively. LCS studies in India report the importance of55

climate and emissions variability on aerosol characteristics and advise future deployments to test calibration algorithms across

longer timelines (Malyan et al., 2023; Puttaswamy et al., 2022; Sreekanth et al., 2022; Zheng et al., 2018, 2019).

In this study, we deployed and evaluated PurpleAir PA-II sensors in Delhi, Hamirpur, and Bangalore by collocating with

regulatory grade instruments for 335, 154, and 312 days respectively. We built hourly local calibration models using multilin-

ear regression. With proper data quality constraints, a relatively simple calibration model can produce high accuracy and low60

biased data. Despite this success, model performance degrades when attempting to transfer a model trained in each environ-

ment to data collected in a dissimilar environment. We found more pronounced reduction in performance when attempting to

transfer a model trained in one season to another season, as aerosol characteristics can shift rapidly even at the same site. Our

work demonstrate LCS are a viable option for measuring spatial-temporal trends throughout India, but calibration models are

vulnerable to the local and seasonal effects on aerosol properties.65

2 Methods

2.1 Low-cost Sensors

The sensor used in this study was the PurpleAir PA-II. The PA-II is marketed as PurpleAir’s outdoor aerosol monitor, composed

of a weatherproof plastic shell containing two Plantower PMS5003 sensors (labeled as “A” and “B” channels), an Adafruit

BME280 atmospheric sensor (temperature, RH, and pressure), and a wireless transmitter module to upload data via WiFi. The70

PMS5003 reports particulate matter (PM) mass concentrations (µg/m3) of all particles with aerodynamic diameter smaller than

1 µm, 2.5 µm, and 10 µm, as well as particle number concentrations (dl-1) of all particles larger than 0.3 µm, 0.5 µm, 1.0 µm,

2.5 µm, 5 µm, and 10 µm (Zhou and Zheng, 2016)).

PA-IIs reports mass concentrations in two forms: CF1 and ATM – the “uncorrected” data and atmospheric corrected data,

respectively. Other recent studies have shown a method (denoted ALT) using PM2.5 derived from the number concentration data75

to be comparable to and more transparent than the ATM data (Wallace et al., 2021, 2020). Additional details about the PA-II

channels are presented in SI Fig. S1. In this analysis we use all three in our comparisons with and calibration to regulatory

quality data.
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2.2 Regulatory-grade Monitors

We compared our PurpleAir measurements against US EPA Federal Equivalent Method (FEM) certified continuous monitors.80

Our selected FEMs are MetOne BAM models 1020 and 1022, widely used devices (Hall and Gilliam, 2016) that use the beta

wave attenuation technique to determine particle mass based on a sample deposited on a filter tape. FEM certification applies

to 24-hour averaged data, while can the BAMs provide measurements at hourly or higher time resolution. We used the 1-hour

block as our highest level of temporal resolution, similar to other LCS calibration studies using beta attenuation reference

monitors in the US and India (Johnson et al., 2018; Magi et al., 2020; Sreekanth et al., 2022; Zheng et al., 2018).85

At the Delhi site, we used the BAM-1020; data from this monitor are public and maintained by the US State Department’s

AirNow service (San Martini et al., 2015). The Hamirpur and Bangalore sites utilized BAM-1022s managed in collaboration

with field teams from the Indo-Gangetic Plains Center for Air Research and Education (IGP-CARE) and the Center for Study

of Science, Technology, and Policy (CSTEP), who manually retrieved data at regular intervals. Staff at each site followed the

manufacturer’s recommended operation and maintenance, which resulted in downtime for each dataset.90

2.3 Deployment Sites

Three separate long-term measurement efforts were conducted to evaluate the PA-II performance under different meteorolog-

ical and aerosol composition regimes. Each campaign was scheduled to last approximately one year, enabling comparison of

a range of mass loadings and the effect of season. We use the Indian Meteorological Department’s (IMD) definition of four

seasons: Winter (January, February), Pre-Monsoon (March, April, May), Monsoon (June, July, August, September), and Post-95

Monsoon (October, November, December). (Dubey et al., 2021). A reference map of the collocation sites is presented in SI

Fig. S2.

2.3.1 US Embassy, New Delhi, National Capital Territory of Delhi, India

The Indian National Capital Region (NCR), including the capital city of New Delhi (elevation about 230 m), is the second

largest megacity in the world with a metro-area population around 28.5 million people. It has also been called the most polluted100

megacity in the world, experiencing annual average PM2.5 concentrations exceeding 120 µg/m3, with peak daily (hourly) in

excess of 500 µg/m3 (1500 µg/m3) during post-monsoon and winter pollution episodes (SI Fig. S3, Gani et al. (2019)). The

NCR along with the rest of the IGP experiences dynamic meteorology with cold wet winters, warm drier post-monsoons and

pre-monsoons, and hot wet monsoons (SI Fig. S4).

Our measurement site was the US Embassy (28.5975 °N, 77.1878 °E) in the Chanakyapuri neighborhood of central New105

Delhi. The embassy is located within the city’s spacious diplomatic enclave, which has abundant greenspace, relatively low

traffic flows and minimal local industrial emissions. We collocated 2 PA-II units with the embassy BAM from 2018 July - 2020

April. During the course of our campaign, Delhi experienced extreme PM2.5 concentrations during the post-monsoon agricul-

tural burning seasons and characteristic winter inversion layers, with a relatively low-pollution monsoon season consistent with

expected seasonal trends (Guttikunda and Gurjar, 2012).110
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2.3.2 IGP-CARE, Hamirpur, Uttar Pradesh, India

We established a rural PM2.5 monitoring site in Hamirpur district, located within the IGP in India’s most populous state,

Uttar Pradesh (UP). Our monitoring site was established in partnership with the Indo-Gangetic Plains Center for Atmospheric

Research and Education (IGP-CARE). This remote solar-powered rural monitoring site is situated on a rooftop (20 m above

ground level) of a solitary building ((25.9552 °N, 80.1522 °E)) located about 800 m outside Ruri Para village in Hamirpur115

district, Uttar Pradesh. The immediate surroundings within 500 m of the site are a mixture of agricultural fields, ravines, and

scrubland forest. The closest major town, Hamirpur (population about 35,000) is approximately 30 km away from the site,

and the closest large city, Kanpur (population about 3 million) is 80 km away. Meteorological patterns are similar to Delhi (SI

Fig. S5). We collocated three PA-II sensors with a BAM-1022 on the IGP-CARE rooftop beginning in January 2020. Here, we

report on data for the year from 2020 January to 2021 January.120

Although campaign-median PM2.5 concentrations at the IGP-CARE site (Table 1) are high in global context, this site’s

remote location outside of both cities and villages means that concentrations do not reach the same peaks as in Delhi. However,

there are still many local sources of aerosol air pollution in rural North India such as biomass burning for cooking and heating

(Rooney et al., 2019). The Hamirpur dataset is additionally differentiated from the Delhi dataset in that most of the data was

collected during the first year of the COVID-19 pandemic, which was observed to change patterns of emissions throughout the125

IGP (Patel et al., 2021; Singh et al., 2020).

2.3.3 CSTEP, Bangalore, Karnataka, India

Bangalore, in South India, is the third largest city in India, with a population of 8.4 million, and the capital of Karnataka.

South India experiences different meteorological conditions and considerably lower air pollution burdens than North India

(Apte and Pant, 2019; Dubey et al., 2021) (SI Fig. S6, SI Fig. S7). Although continuous PM2.5 regulatory monitors are sparse130

in Bangalore, the current network estimates a citywide annual average of 30 µg/m3. While this value is low in comparison to

cities in the IGP, it exceeds the WHO guideline value of 5 µg/m3 and hourly winter concentrations often exceed 50 µg/m3,

with emissions dominated by traffic and dust resuspension (Guttikunda et al., 2019). In Bangalore, winters are milder, and the

climate is more consistent year-round than in the IGP (SI Fig. S6). The winter, and pre-monsoon seasons are distinguished

from the monsoon and post-monsoon seasons primarily by RH and precipitation. Monsoon and post-monsoon are cloudy and135

rainy, with RH typically exceeding 70% all day, and can remain above 90% before sunrise. Winter, and pre-monsoon RH are

more moderate with hourly averages fluctuating between 40-80%.

Our collocation site was the CSTEP office in northern Bangalore. CSTEP maintained a BAM-1022 on the rooftop of their

3-story office building (13.0485 °N, 77.5795 °E). Although the site is located near a highway (Outer Ring Road), the annual

diurnal patterns matched the regional signature from the average of the regulatory monitors. Furthermore, area surrounding140

CSTEP is mostly office buildings, with some residential housing. There are no large industrial sites or obvious large point

sources in the neighborhood, other than occasional small solid waste fires. It is likely the CSTEP BAM is thus mostly influenced

by urban background and regional aerosol conditions. We set up 2 PA-II sensors from 2019 June – 2020 July, during which
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Bangalore experienced hourly spikes above 100 µg/m3 during the festival of Diwali and dynamic changes in traffic patterns

due to the COVID-19 pandemic and lockdowns.145

2.4 Quality Assurance

2.4.1 PurpleAir PA-II PM2.5

Many light-scattering PM2.5 sensors, including the PA-II, can report unrealistic measurements, lack accuracy (especially at

high mass loadings), and are only recommended for operation within a specific range. To minimize these effects, we removed

unreasonably large and small points, block-averaged each individual Plantower unit, averaged across all units for a given site,150

removed imprecise points, and calibrated the resulting clean dataset. We conducted QA procedures separately for each sensor

correction factor (CF1, ATM, ALT).

We removed all raw PM2.5 data points outside of the range 5 – 500 µg/m3 (Kelly et al., 2017; Magi et al., 2020; Zhou and

Zheng, 2016). Analyses of PurpleAir data typically report the percent error between channels A and B for a given unit to remove

imprecise points, treating them as statistically paired measurements and all other nodes as statistically independent (Barkjohn155

et al., 2021). However, at our collocation sites, there was always more than one PA-II, so we treated all Plantower sensors as

replicate measurements and averaged them together as a single data point. For instance, if we had three PA-IIs at a site, we

averaged the six values together – two from each unit – to estimate a single datapoint. We established 80% completeness criteria

for each hourly block average, and at least 2 valid Plantower block averages for the resulting site PA data point. Imprecise site

points were removed using the coefficient of variation (CV), the quotient of the mean and standard deviation of the sensors for160

a given 2-min raw sample. CV values greater than 0.2 were removed, broadly consistent with approaches used by other studies

(Badura et al., 2018; Crilley et al., 2018).

2.4.2 PurpleAir PA-II Temperature and Relative Humidity

The BME280 is considered a reliable and accurate low-cost environmental sensor (Araújo et al., 2020). There are occasional

sensor miscommunications with the microprocessor, leading to unrealistic values, which we filtered out by restricting RH to 0-165

100% and temperature to -10-50°C. We computed dew point temperature from the measured temperature and RH like Malings

et al. (2019).

2.4.3 MetOne BAM-1020, BAM-1022

The BAM instrument flags low quality data with a specific code to (1) potentially remove them from analyses and (2) to

diagnose underlying issues, which can include power loss and pump errors. The BAM-1020 and BAM-1022’s default concen-170

tration range is 3 - 1000 µg/m3. Unlike the PA-II, the hourly LOD of the BAM-1022 and BAM-1020 is well constrained to 2.4

µg/m3 (Magi et al., 2020), considerably below typical concentrations in our dataset. Like other linear regression studies using

MetOne BAMs models and Plantower nephelometers, we utilized an ordinary least squares (OLS) approach (Barkjohn et al.,

2021; Malings et al., 2019; McFarlane et al., 2021; Mehadi et al., 2020; Wallace et al., 2021; Zheng et al., 2018).
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2.5 Calibration Regression175

Since nephelometers and other optical based sensors are known to provide biased measurements of PM2.5 measurements

relative to reference grade instruments, in large part due to hygroscopic growth, calibration procedures attempt to account for

bias due to RH. One approach is to leverage the environmental data (RH, temperature, etc.) from LCS nodes to develop the best

fitting model without imposing any a priori assumptions about aerosol growth or chemistry. We label this approach as “data-

driven.” From decades of work with optical instruments, corrections have been developed assigning exponential growth terms180

as a function of RH and known PM2.5 chemical characteristics. In our work, we label this approach as “theory-driven” since

it attempts to fuse the best fitting function form from theory with the best fitting regression coefficients. Although the theory-

driven model should produce the most transferable models since theory should apply in all environments, the underlying data

processing of the Plantower - a truncated nephelometer (Ouimette et al., 2021) - may result in bias structure better explained

by a linear RH correction than an exponential correction.185

2.5.1 Data-Driven Model Selection

To ensure our work is easily reproducible within India, we relied only upon variables reported or calculable by the PA-II as

independent variables: PM, RH, temperature, and dew point. For our PA-II PM2.5 variable we evaluated CF1, ATM, and ALT

values. We evaluated all regression models using OLS with the BAM PM2.5 as the dependent variable and our candidate param-

eters as independent variables. To iterate across all possible arrangements of predictors - including additive terms, interaction190

terms, as well as polynomial terms up to order 3 – we implemented Sequential Feature Selection (SFS) using the Python pack-

age scikit-learn 0.24.2. SFS produces the most relevant features for a given a priori feature number by iteratively removing

features and observing the impact on a performance metric, Bayesian Information Criterion (BIC) in our case. A user can then

iterate across the number of features and compare the best performing models for each number of explanatory variables.

2.5.2 Theory-Driven Model Selection195

From κ-Köhler theory, we expect wet PM scattering to increase exponentially with increasing RH, resulting in strongly non-

linear dynamics. Therefore, we applied a calibration function relying on empirically fitted coefficients from the training data,

with a non-linear RH term to capture expected trends from theory. Studies have attempted applying a non-linear RH term for

light scattering LCS, with results similar to or less accurate than an additive term (Chakrabarti et al., 2004; Malings et al.,

2019; Tryner et al., 2020; Zheng et al., 2018). Given the difference in emission sources, size distribution, mass loadings, and200

meteorology, we decided to include a non-linear RH term using the following form, Eq. (1).

C =
α×P

1 +β RH2

1−RH

(1)

Where α and β represent regression coefficients to be fitted via Non-linear Least Squares, P is the PurpleAir signal (ATM,

CF1, or ALT), RH is the unitless relative humidity scaled from 0 to 1, and C represents the corrected PM2.5.
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2.5.3 Cross-validation205

To evaluate our calibration models, we sought to design an appropriate cross-validation scheme that would permit a balanced

evaluation of model performance among all seasons. A simple test-train split would likely overrepresent seasons with more

measurements. We thus performed a stratified k-fold cross-validation, in which each fold contains equal representation from

each of the 4 seasons; we evaluated each model by leaving one-fold out in subsequent iterations.

2.5.4 Temporal Sensitivity210

As a point of contrast with the seasonally balanced calibration described above, we performed to a data experiment to inves-

tigate the temporal stability of a hypothetical shorter-term calibration. This exercise was motivated by the common practice

in many LCS deployments, of performing a short-term initial calibration, then deploying sensors in the field, and if the LCS

are available, perform another short post-study collocation. To explore the potential bias from extrapolating a short-term cali-

bration to a longer period, we fitted 4-week rolling OLS (ROLS) models with the features selected via SFS and compared the215

performance against all other 2-week periods during our yearlong data collection to understand the implications of short-term

calibration for other studies.

2.5.5 Performance Metrics

As a guiding principle, we selected for presentation those models which balanced parsimony with low error, low bias, and

strong temporal consistency. We selected analytical methods and performance metrics to optimize these parameters and have220

designated these best performing models as “robust.” Given the high concentrations and high variability within and between

sites, we report the normalized RMSE (NRMSE), allowing comparison of model performance across sites and time periods.

Additionally, we used the coefficient of determination (R2) to evaluate model accuracy. For multivariate regression models we

used the adjusted R2 metric to account for spurious correlations with increasing numbers of independent variables. To penalize

overfit and minimize the number of parameters, we used the Bayesian Information Criterion (BIC) when selecting between225

models during the SFS process. Finally, we assessed the mean bias error (MBE) as well as normalized mean bias error (NMBE)

to characterize the average direction of error.

3 Results and Discussion

3.1 Reference Instrument Data Summary and Quality Assurance

BAM and PA measurement summary statistics are summarized in Table 1 for each site, with time series plots in SI Fig. S8-S10.230

Overall, BAM monitors used at each site provided consistent performance despite challenging deployment circumstances due

to intermittent power loss; extreme weather, including heavy rains; and a relatively broad range of mass concentrations.

The US State Department monitor in Delhi employs the US EPA’s data reduction process, resulting in loss of about 3% of

data points, with a continuous gap from 2019 February 10 to 2019 March 18. For context, we compared this site’s time series
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with 39 other sites in Delhi’s regulatory network and found an R2 of 0.86 and a mean bias of -8.41 µg/m3, likely resulting235

from this monitor’s location in one of the city’s cleanest neighborhoods. The diurnal plot for the Delhi BAM in Fig. 1 reflects

the roles of time-varying emissions and boundary layer dynamics with peaks during the morning traffic rush hour (7-10 AM),

and extremes in the winter exceeding an average of 200 µg/m3 during the night and early morning. During the monsoon, we

observed a relatively low daily dynamic range of 35–50 µg/m3.

At both the IGP-CARE site in Hamirpur and the CSTEP site in Bangalore, we used the manufacturer’s specified data flags240

to perform quality assurance, resulting in 6% and 11% data loss for the IGP-CARE site and CSTEP site BAMs, respectively.

Unlike Delhi, the Bangalore network is sparse (n = 40 in Delhi versus n = 8 in Bangalore), withe relatively low data complete-

ness from the official monitors. Diurnal plots in Fig. 1 show a morning peak, with maximum values typically at 8-9 AM for

the collocation site BAM.

The closest regulatory monitor to the Hamirpur site is in Kanpur, more than 50 km away, too far for meaningful comparisons245

of local conditions. Figure 1 shows similar trends to the US Embassy site in Delhi, with a morning peak between 7 and 9 in the

morning, extreme mass concentrations throughout the winter, and low dynamic range during the monsoon. There are no long

continuous gaps from this monitor; however, power outages were more frequent in Hamirpur than the other two sites since it

is a rural site, leading to significant data loss – about 14% of the total campaign hours, concentrated in the Pre-Monsoon.

3.2 PA-II Quality Assurance250

We evaluated the unit-to-unit precision of the PA-II sensors by comparing the individual channels of all co-located Plantower

sensors at each site. Because each PA-II contains two Plantower sensors, there were always a minimum of four Plantower

sensors operating at each monitoring site. The PA-II PM2.5 channels were highly precise, with strong correlation (R2 ≥ 0.9)

both within nodes and between nodes across the mass concentration distribution, consistent with existing literature (Kelly et al.,

2017; Levy Zamora et al., 2019; Sahu et al., 2020). Bland-Altman plots indicate high precision across all sites and units, with255

mean differences centered near 0 µg/m3, and most hourly points within ≤ 20% (SI Fig. S11-S13). The between-Plantower R2

for the CF1 data across all collocated PA-II sensors was between 0.94-0.99 for the Delhi site, 0.92-0.99 for the Bangalore site,

and 0.95-0.99 for the Hamirpur site (SI Fig. S14). Disagreement was more pronounced at high concentrations (>100 µg/m3)

at which R2 ranges at each site dropped to 0.90 – 0.95, 0.83 – 0.88, and 0.92 – 0.94 for Delhi, Hamirpur and Bangalore

respectively. Similar intra-sensor correlations were found for the ATM and ALT data. Given the consistent between-sensor260

hourly precision across sites (NRMSE ≤ 10%), we can confidently state we expect random error of at most 10%.

Applying the detection limit thresholds removed 1% of the total Delhi dataset, and <1% from the Hamirpur and Banga-

lore datasets. The CV test removed 15%, 15%, and 14% from the Delhi, Hamirpur, and Bangalore datasets averaged across

CFs, with the differences across sites likely due to the higher average mass concentrations in the IGP. RH and temperature

microcontroller errors were limited to about 4% of the total data in Delhi and Hamirpur and <1% in Bangalore.265

After removing the filtered data points, accounting for power losses, and applying the completeness criteria for 1-hr block

averages, the site averaged PA data resulted in average coverage of 47% (N=9260 hours), 63% (N=5958 hours), 86% (N=8567

hours) for Delhi, Hamirpur, and Bangalore respectively across CFs. Finally, the reference dataset was synchronized with the
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PA dataset and the combined dataset coverage is 38% (N=7504), 39% (N=3744), 75% (N=7473) for Delhi, Hamirpur, and

Bangalore respectively.270

3.3 PurpleAir Data Summary

Across sites, the PA-II captured diurnal and seasonal trends with similar results to collocated BAMs, as evident in Fig. 1 and SI

Fig. S15. However, inconsistent biases among season and location were also observed for all three PM2.5 channels (CF1, ATM,

ALT), resulting in poor accuracy for the uncalibrated dataset. Although poor accuracy is unsurprising, our findings highlight

the importance of dynamic emissions and meteorology across the Indian subcontinent as well as field performance at extreme275

mass concentrations.

In Delhi, the PA data (CF1) correctly identified winter and post-monsoon as the most polluted seasons, with strong diurnal

range peaking 8-9 AM (Fig. 1). The PA also well characterized the Delhi monsoon, with low diurnal range and a daily average

less than 60 µg/m3. The uncalibrated LCS overestimates concentrations during the extremely polluted and humid post-monsoon

and winter, with a strong underestimate during the dry and hot pre-monsoon. The PA units at Hamirpur follows a similar280

trend. Although both IGP sites feature relatively low bias in the pre-monsoon period, they frequently underestimate mass

concentrations in this season, perhaps due to the influence of coarse mineral dust (particle diameter > 1 µm), as observed

elsewhere in field and lab evaluations (Kuula et al., 2020; Levy Zamora et al., 2019; Sahu et al., 2020; Sayahi et al., 2019).

Since Bangalore’s meteorology exhibits comparatively low seasonality, and emissions are more strongly influenced by mo-

bile sources rather than the more complex mixture in the IGP, LCS performance is different than in North India. During the285

day (9 AM - 7 PM), accuracy is biased by more than +25% during the winter, pre-monsoon, and post-monsoon, with systemi-

cally lower bias including underestimates in the less polluted monsoon season (Fig. 1). Accuracy is lower during higher mass

loadings at night and during early morning hours, with strong overestimates across seasons, peaking during the most polluted

hour (7 - 8 AM).

3.4 Model Selection290

3.4.1 Data-Driven Model Fitting

The SFS procedure results are summarized in Table 2 (with extended results in SI Tables S1-S3), where the four most relevant

parameters are listed in order of decreasing importance for each CF and site. Across sites, R2 stabilized at 2 parameters (about

0.8 for Delhi, and about 0.9 for Hamirpur and Bangalore). For all sites, sensor estimated PM2.5 was generally selected as the

single most relevant parameter for predicting concentrations measured by BAM followed by a variation of RH (i.e., RH2,295

RH3). The form of the most robust Bangalore model is different from the IGP sites with ALT PM2.5 (rather than CF1 PM2.5)

selected as the most predictive PM2.5 data stream. Furthermore, the Bangalore dataset ranked temperature and dew point as

more relevant than the Hamirpur and Delhi datasets. Constraining Bangalore to the same top parameters as the North India

sites (CF1 PM2.5 and RH) reveals only marginal differences (∆NRMSE ≈ 2%) in performance from the most robust model
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selected by SFS (ALT PM2.5 and RH3). As such we choose to standardize our calibration across all sites with only CF1 PM2.5300

and RH as relevant parameters.

Regression coefficients of CF1 PM2.5 data were positive values less than 1, indicating the CF1 data generally overestimate,

but are positively correlated with reference monitors. RH term coefficients at the IGP sites are negative, indicating increasing

RH should negatively weigh the PA reading, consistent with the expected artifacts of hygroscopic growth in the atmosphere.

The Bangalore dataset similarly assigns RH terms a negative weight. Temperature and dewpoint terms receive both negative305

and positive coefficients across orders of magnitude, and it is not determinable if the models are deriving a spurious correlation

or detecting underlying aerosol or instrument properties.

3.4.2 Theory-Driven Model Fitting

SI Table S4 summarizes the best fitting model coefficients from the training dataset for each site and each CF. Across sites, the

PM2.5 regression coefficient (α) does not vary substantially: about 14% for CF1. Hygroscopic growth regression coefficients310

(β) vary greatly from site to site for CF1 even within the same region, βCF1 for Delhi is double that for Hamirpur, perhaps due

to a higher abundance of hygroscopic species (Chen et al., 2022; Gani et al., 2019).

The lack of consistency in fit is reasonable, as the Plantower proprietary algorithm and underlying physical-optical design

of nephelometers means the sensor does not explicitly account for the underlying aerosol size distribution and composition.

The resulting datasets are therefore somewhat divorced from the expected pattern based on κ-Köhler theory. The ALT dataset315

removes the proprietary ATM correction, as well as assumptions of particle density present in the CF1 data, resulting in more

consistent β intra-regional values, though with less consistent α values.

3.4.3 Model Evaluation

For the Delhi and Hamirpur sites, both located in the IGP region, 2 parameter ATM and CF1 models yielded the consistent

improvements from 1 parameter models, as summarized in SI Fig. S16 for Delhi and Hamirpur respectively. The CF1 models320

were consistently more accurate than their ATM counterparts in Hamirpur, albeit by about 1% NRMSE and less than 1% R2.

Conversely, in Delhi, the ATM models systematically outperformed CF1 models by about 1% NRMSE and R2. As evident in

Fig. 1, Hamirpur experiences overall lower mass loadings than Delhi. Consequently, the absolute difference between the two

signals due to the Plantower piecewise function (SI Fig. 1) above about 35 µg/m3 is likely less important in Hamirpur than in

Delhi, where mass loadings are consistently elevated.325

The theory-driven hygroscopic growth correction consistently improved performance from the uncalibrated baseline data

across sites and CFs by 12% for ATM and 60% for CF1, on average. In North India, the theory-driven model performs within

about2% of the 1 parameter models, even outperforming the 1 parameter ATM model in Hamirpur by 4.3%.

However, since the Plantower PMS5003 is a nephelometer, the signal should not necessarily follow the expected non-linear

hygroscopic growth with increasing RH above 60% as expected from a size resolved measurement technique (Crilley et al.,330

2020; Hagan and Kroll, 2020). As a result, the 2 parameter ATM and CF1 models in the IGP, with their additive RH terms,

outperformed theory-driven by at least 2-3%. In Bangalore, the ATM theory-driven model performance was comparable to

11

https://doi.org/10.5194/amt-2023-35
Preprint. Discussion started: 6 March 2023
c© Author(s) 2023. CC BY 4.0 License.



the ATM 2 parameter data-driven model (see SI Fig. S16). This contrast to the stark difference in performance between the

two methods in North India is likely a result of the more stable meteorology and source mixture in Bangalore, leading to less

dynamic aerosol hygroscopicity.335

Since CF1 data produces models as accurate as or more accurate than ATM models, has been validated in studies around

the world, and does not feature the same non-linear behavior as the ATM channel, we recommend using CF1 for calibration in

the IGP. In Bangalore, the ALT data maybe useful and warrants further study in similar environments, including across South

India. From our results the CF1 data is suitable for deployment in Bangalore and provides uniformity in calibration guidance.

Additionally, the 2-parameter model (with RH as additive terms to PM2.5) follows previous studies (Barkjohn et al., 2021;340

McFarlane et al., 2021; Zheng et al., 2018) across continents and aerosol regimes.

Given these findings, we selected the following multi-season correction equations (Eq. (2-4)) for Delhi, Hamirpur, and

Bangalore respectively. Although relatively simple, our calibration models greatly improve the reliability of low-cost sensor

data across aerosol regimes. SI Figure S16 summarizes model accuracy, with NRMSE improvements from uncalibrated data

ranging between 5-20%. Figure 2 summarizes each model’s bias in at each collocation site with seasonally, and diurnally345

segregated residuals. Across all sites, monthly bias of the calibrated data is within ±25%, in contrast to the uncalibrated data.

SI Figure S17 additionally explores the residual structure and demonstrates the value of the selected model forms at reducing

bias due to RH, and mass loading factors. The selected calibration equations reduce median bias to near 0% across sites, from

median bias as high as 150% using the uncalibrated data at RH > 60%.

C = 0.546×CF1− 93.6×RH + 50.3 (Delhi) (2)350

C = 0.496×CF1− 29.6×RH + 22.0 (Hamirpur) (3)

C = 0.515×CF1− 13.9×RH + 14.1 (Bangalore) (4)

3.5 Model Evaluation

3.5.1 Temporal Sensitivity

To identify the stability of the model and its parameters, we computed the 4-week ROLS for each of our selected models and355

compared performance to all other 4-week moving ROLS models. Each model’s NMBE across time is shown in Fig. 4, where

the grey squares in the top panel indicate less than 50% data completeness. Additionally, the bottom panel of Fig. 4 tracks the

distribution of the diagonal of the matrices present in the top panel of the figure. Across sites, the choice of calibration period

greatly changes the performance of the regression throughout the rest of the dataset and influences the selection of regression

coefficients. SI Figure S18 additionally explores the absolute bias, demonstrating that Eq. (2-4) bias are centered near 0. SI360
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Figure S19 illustrates the same analysis with NRMSE, showing that monthly ROLS model performance is generally stronger

than the annual model within the training month, but rapidly deteriorates.

In Delhi, model performance and coefficient selection exhibit a seasonal pattern, with post-monsoon, and winter month

models (Jan, Feb, March, Sept, Oct, Nov, Dec) performing well and selecting similar regression coefficients even across years

(SI Fig. S20). When evaluating model performance on data within the same season, NRMSE is typically below 30% and R2 is365

above 0.7. However, the post-monsoon and winter models perform poorly when evaluated on pre-monsoon data (March, Apr),

with NRMSE exceeding 100% and R2 falling below 0.1. For even the best performing pre-monsoon models, NRMSE rises

above 50% during the pre-monsoon period data and above 70% for other seasons. Monsoon models (May, June, July, August)

also lack transferability to other seasons, but perform well when evaluated on data from the same season (NRMSE < 30%).

The Hamirpur ROLS results are like those of Delhi, but over a shorter period and with more robust summer performance.370

The pre-monsoon models fit the largest magnitude PM2.5 regression coefficient and fail to perform well (NRMSE > 50%) both

within their own seasons’ data and across other seasons’ data. All other windows perform well (NRMSE ≤ 25%, R2 ≥ 0.9)

within their training window and across all other non-pre-monsoon test windows. The regression coefficients stabilize (βPM2.5

≈ 0.5, βRH ≈ -25), resulting in less seasonally variable model performance than in Delhi. Most likely the Delhi’s models less

robust performance across seasons relative to the Hamirpur model’s performance is due to the broader diversity of sources375

in Delhi, making it more difficult to constrain the uncertainty due to factors including hygroscopic growth and particle size

distribution.

Bangalore and Hamirpur results are similar in that both models are relatively stable and transferable across seasons. Ban-

galore model performance degrades and features less season-to-season transferability in the monsoon season months (July

and Aug) but features accurate performance (NRSME < 20%) for the other seasons. Regression coefficients in Bangalore are380

relatively consistent even, albeit with more spread during the pre-monsoon.

Although model results and calibration formulation differ across sites, the temporal sensitivity analysis reveals several key

lessons. First, there is no “free lunch” or universal model. Rather, aerosol and meteorological regimes shift rapidly, leading

to underfit for annual models or overfit for seasonal models. Since annual models use data from across the distribution of

aerosol compositions and size distributions, they generally perform within 5% of monthly models (SI Fig. S21). Outliers can385

be especially concerning at the physical limitations of nephelometers such as during Pre-Monsoon dust storms or the extremely

humid Monsoon. Therefore, models trained within one single monthlong period do not necessarily transfer well to the next

month, even within the same season and model feature selection. Consequently, we recommend calibration procedures in India

and other similar environments maintain a long-term collocation with at least one LCS-FEM pair after the initial collocation

period in the region of interest.390

3.5.2 Spatial Transferability

Due to proximity and similarities in climate and aerosol characteristics, and since data-driven models from both IGP sites share

the same parameters (CF1 and RH), we hypothesized that Delhi and Hamirpur models may be transferable. Figure 5 summa-

rizes the relevant performance metrics with respect to spatial calibration transferability. The Hamirpur dataset performance
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weakened after applying the Delhi model (R2 decreased to 0.82, NRMSE increased to 39%) but still outperformed uncali-395

brated CF1 data. The Delhi dataset performance also weakened after applying the Hamirpur model (R2 decreased to 0.78,

NRMSE increased to 35%), a relatively modest performance degradation. From this exercise, we understand that although

PM2.5 is highly variable in the IGP, there may be enough of a “fingerprint” in aerosol characteristics from the background site

that a single calibration equation could provide adequate performance improvement. However, a local calibration can provide

performance improvements due to fine scale PM2.5 variability unique to urban environments, especially for a megacity like400

Delhi.

Applying the North India models to the Bangalore test dataset resulted in contrasting performance, with an NRMSE of

71% and 24% from the Delhi and Hamirpur models respectively. It is likely the largely regional aerosol from Hamirpur

has enough overlap in speciation and mass concentration range with the Bangalore aerosol that the models are somewhat

interchangeable. This hypothesis is additionally evidence from the overlap in coefficients from the theory-driven hygroscopic405

growth equations. Clearly, the uniqueness of the Delhi aerosol prevents exchange between Delhi and Bangalore models, but

with enough preserved from the regional contribution to support some support from the Hamirpur model to the Delhi data

(although not from a Delhi model to Hamirpur data).

Some calibration efforts have sought a unified continental model for LCS by combining multiple reference-LCS pairs into

one regression model (Barkjohn et al., 2021). Other studies have focused on interpolating between calibration sites to avoid410

washing out local effects, typically in a dense sensor network (Zheng et al., 2019). Our results show that although there

are overarching similarities in model parameter selection, urban and rural environments are heterogeneous to the point of

potentially barring a unified model. Additionally, seasonal variability within India necessitates at least monthly updates to

model coefficients.

4 Conclusions415

We collocated LCS with reference grade PM2.5 monitors in three environments in India, two urban (Delhi, and Bangalore)

and one rural (Hamirpur) over the course of multiple seasons to characterize LCS performance across shifting emissions and

meteorological regimes and develop calibration models. Internally, PA-II units demonstrated strong consistency, with low

intra-sensor bias and high correlation. Relative to reference instruments, uncalibrated sensor performance varied diurnally and

seasonally with shifts strongly associated with extreme mass concentrations, RH, and coarse mode particles. The LCS signal420

generally overestimated mass concentrations relative to the reference instruments, a trend observed in literature to be associated

with hygroscopic growth (Jayaratne et al., 2018; Malings et al., 2019). We also identified several dust storm episodes where

the LCS signal underestimated by a factor of 2 – 6×.

We showed a relatively simple multilinear regression model using only the LCS PM2.5 signal and LCS RH could produce

results well correlated (R2 ≥ 0.8) with the reference signal at each site. These site-specific models provide the basis for a425

computationally efficient, well constrained (NRMSE ≤ 25%), and scalable calibration approach for low-cost sensing in India,

despite the non-stationary and diverse aerosol dynamics of the region. Furthermore, we showed our models can be transferred
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from site to site and still improve performance above the uncalibrated baseline, although a site-specific model generally has

superior performance.

Our work also highlights a key caveat to LCS deployments and calibration in India, especially long-term deployment.430

Models trained at a site with only data from one season may perform more accurately within that season than a seasonally

balanced model but are unreliable at other times of the year. Our results showed that this is especially important given the

contrast in meteorology and mass concentrations between the Pre-Monsoon and Monsoon seasons. Although a multilinear

regression approach produces well constrained results, these models are not transferrable among seasons. Therefore, we advise

future deployments to continuously operate a collocation site with at least one LCS-Reference pair to evaluate calibration drift.435

Accounting for the temporal and spatial dynamics of aerosol characteristics allow of the rapid scaling of LCS for communities

in India to communities in need of transparent and accurate data.
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A., Poznańska, A., Prada, S. I., Prakash, V., Pribadi, D. R. A., Pupillo, E., Quazi Syed, Z., Rabiee, M., Rabiee, N., Radfar, A., Rafiee, A.,

Rafiei, A., Raggi, A., Rahimi-Movaghar, A., Rahman, M. A., Rajabpour-Sanati, A., Rajati, F., Ramezanzadeh, K., Ranabhat, C. L., Rao,675

P. C., Rao, S. J., Rasella, D., Rastogi, P., Rathi, P., Rawaf, D. L., Rawaf, S., Rawal, L., Razo, C., Redford, S. B., Reiner, R. C., Reinig,

N., Reitsma, M. B., Remuzzi, G., Renjith, V., Renzaho, A. M. N., Resnikoff, S., Rezaei, N., Rezai, M. s., Rezapour, A., Rhinehart, P.-A.,

Riahi, S. M., Ribeiro, A. L. P., Ribeiro, D. C., Ribeiro, D., Rickard, J., Roberts, N. L. S., Roberts, S., Robinson, S. R., Roever, L., Rolfe,

S., Ronfani, L., Roshandel, G., Roth, G. A., Rubagotti, E., Rumisha, S. F., Sabour, S., Sachdev, P. S., Saddik, B., Sadeghi, E., Sadeghi,

M., Saeidi, S., Safi, S., Safiri, S., Sagar, R., Sahebkar, A., Sahraian, M. A., Sajadi, S. M., Salahshoor, M. R., Salamati, P., Salehi Zahabi,680

S., Salem, H., Salem, M. R. R., Salimzadeh, H., Salomon, J. A., Salz, I., Samad, Z., Samy, A. M., Sanabria, J., Santomauro, D. F., Santos,

I. S., Santos, J. V., Santric-Milicevic, M. M., Saraswathy, S. Y. I., Sarmiento-Suárez, R., Sarrafzadegan, N., Sartorius, B., Sarveazad,

A., Sathian, B., Sathish, T., Sattin, D., Sbarra, A. N., Schaeffer, L. E., Schiavolin, S., Schmidt, M. I., Schutte, A. E., Schwebel, D. C.,

Schwendicke, F., Senbeta, A. M., Senthilkumaran, S., Sepanlou, S. G., Shackelford, K. A., Shadid, J., Shahabi, S., Shaheen, A. A., Shaikh,

M. A., Shalash, A. S., Shams-Beyranvand, M., Shamsizadeh, M., Shannawaz, M., Sharafi, K., Sharara, F., Sheena, B. S., Sheikhtaheri, A.,685

Shetty, R. S., Shibuya, K., Shiferaw, W. S., Shigematsu, M., Shin, J. I., Shiri, R., Shirkoohi, R., Shrime, M. G., Shuval, K., Siabani, S.,

Sigfusdottir, I. D., Sigurvinsdottir, R., Silva, J. P., Simpson, K. E., Singh, A., Singh, J. A., Skiadaresi, E., Skou, S. T. S., Skryabin, V. Y.,

Sobngwi, E., Sokhan, A., Soltani, S., Sorensen, R. J. D., Soriano, J. B., Sorrie, M. B., Soyiri, I. N., Sreeramareddy, C. T., Stanaway, J. D.,
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Figure 1. Diurnal profiles of mean hourly seasonal BAM (reference) and uncorrected PA PM2.5 signals for Delhi, Hamirpur, and Bangalore

using the CF1 channel. The number of valid hourly averages (quality assured according to methods outlined in Sect. 2.4 and summarized

in Sects. 3.1 - 3.3) in each dataset is presented in the bottom left of each subplot. Winter (January, February), Pre-Monsoon (March, April,

May), Monsoon (June, July, August, September), and Post-Monsoon (October, November, December).
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Figure 2. Normalized Residual distributions for the uncalibrated PurpleAir data (CF1) and the Calibration Models for each site. Bold lines

represent the median (p50) of the distribution, while the shaded area represents the interquartile range (p75 – p25). The panel (a) shows the

diurnal distribution, while panel (b) shows the normalized residual distribution binned by month. Compared to the residual distribution for

uncalibrated (raw) data, the calibration effectively eliminates most seasonal and diurnal bias.
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Figure 3. Scatter plots of the best performing 2 parameter hourly models for each of the sites in panel (a), with the corresponding normalized

model residuals in panel (b) segregated by season and segregated by time of day in panel (c). In panel (a), sold line represents unity. In panels

(b) and (c), dashed line represents normalized residual value of 0. In comparison to Fig. 2a, the normalized diurnal residuals in panel (c) are

presented over a restricted y-axis, accentuating the residual structure.
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Figure 4. Panel (a) depicts box plots of the distribution of Normalized Mean Bias for a given model starting month of a 4-week rolling

ordinary least-squares (ROLS) model on all other windows. The bottom, solid line and top of the boxes represent the 25th, 50th, and 75th

percentiles respectively. Panel (b) presents the median Normalized Mean Bias Error (NMBE) of a 4-week ROLS model trained starting in the

month (colored by season) on the x-axis and evaluated on all other windows as binned by starting month on the y-axis. Gray boxes represent

months without sufficient data. Models trained in the Pre-Monsoon (April, May) underpredicted in other seasons, contrary to the typical

pattern of overprediction – this pattern is consistent at Delhi and Hamirpur on a normalized basis. Due to the more consistent meteorology

and aerosol regime in Bangalore, there is more consistent performance regardless of training window. Finally, as a point of comparison, we

present the performance of our long-term calibration in individual months at each site in the column in (b) titled “All.” Consistent with our

observation that 4-week models trained in a single month generally do not perform as well in other months, we also note that in general,

monthly models perform somewhat better for a given month than the long-term model does. SI Figs S19 and S20 explore the MBE and

NRMSE of this data.
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Figure 5. Performance evaluation metrics of Eq. (2-4) with the training site on the x-axis and the test-site on the y-axis. Metrics are Coefficient

of Determination (R2) (left), Normalized Root Mean Square Error (NRMSE) (center), and Mean Bias Error (right). For each metric, the

diagonal pattern of best performance from upper left to lower right illustrates how calibration models perform best in the locations where

they are trained. This finding illustrates how regional differences in meteorology and aerosol composition can limit the transferability of

calibration relationships. Of note, the calibration model trained in Delhi performed quite poorly in Bangalore.
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Delhi Hamirpur Bangalore

BAM 1020/1022 PM2.5 (µg/m3)

p10 23.0 10.6 10.8

p25 39.0 17.9 15.3

p50 71.0 34.3 21.8

p75 142.0 67.4 30.8

p90 237.0 125.4 42.1

PA-II CF1 PM2.5 (µg/m3)

p10 31.0 18.1 12.7

p25 52.2 31.3 18.1

p50 117.0 63.4 31.0

p75 243.0 124.3 52.9

p90 375.0 218.0 74.5

PA-II ATM PM2.5 (µg/m3)

p10 30.4 18.1 12.7

p25 43.0 30.2 18.1

p50 83.8 47.0 30.0

p75 180.0 82.7 42.4

p90 285.0 146.7 51.3

PA-II RH (%)

p10 20.6 29.8 34.2

p25 29.6 44.1 48.0

p50 41.0 62.9 62.9

p75 48.5 77.4 73.8

p90 53.1 85.7 78.6

PA-II Temperature (°C)

p10 18.7 17.2 23.7

p25 22.8 24.5 25.0

p50 29.2 30.6 27.7

p75 35.1 35.3 32.3

p90 39.0 40.3 37.1
Table 1. Summary of campaign measurements (quality assured according to methods outlined in 2.4 and summarized in 3.1 - 3.3) including

10th percentile (p10), 25th percentile (p25), 50th percentile (p50), 75th percentile (p75), and 90th percentile (p90) for the campaign periods (Delhi:

2018 July – 2020 April, Hamirpur: 2020 January – 2021 January, Bangalore: 2019 June – 2020 August)
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CF1 ATM ALT

PM2.5 PM2.5 PM2.5

Delhi RH RH2 RH2 × T

PM2.5 × RH PM2.5 × RH2 PM2.5
2 × D

PM2.5 PM2.5 PM2.5

Hamirpur RH RH PM2.5 × RH × T

RH3 RH2 PM2.5
2 × D

PM2.5 × T PM2.5
2 × T PM2.5

Bangalore PM2.5 × T × D PM2.5
3 PM2.5× RH2

PM2.5
2 × T PM2.5

2 PM2.5
2 × T

Table 2. Most relevant parameters selected through Sequential Feature Selection for each PurpleAir PM2.5 channel by site: CF1 (“uncor-

rected” PurpleAir PM2.5), ATM (“atmospheric corrected” PurpleAir PM2.5), and ALT (“alternative” PurpleAir PM2.5 – reconstructed from

modeled size distribution data). Parameters: Relative Humidity (RH), Temperature (T), and Dew Point (D).
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