1	Supplemental Material for:
2	
3	Stability assessment of organic sulfur and organosulfate compounds in filter samples for
4	quantification by Fourier Transform-Infrared Spectroscopy
5	Marife B. Anunciado ¹ , Miranda De Boskey ² , Laura Haines ² , Katarina Lindskog ² , Tracy
6	Dombek ² , Satoshi Takahama ³ , Ann M. Dillner ¹
7	
8	¹ Air Quality Research Center, University of California Davis, Davis, California, United States
9	² Research Triangle Institute, Research Triangle Park, North Carolina, United States
10	³ Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
11	

- 12 Table S1. Reference wavenumbers and % transmissions from SBDS database ¹ compared to
- 13 wavenumbers obtained from laboratory standards for organosulfur and organosulfate compounds
- 14 of interest. Percent transmissions increase with peak intensity.

Organosulfur or	Wavenumber,	Τ%	Wavenumber,
organosulfate compound	reference	transmission	laboratory
			standards
Methanesulfonic acid	1415	62	1414
	1342	4	1338
	1173	4	*
	1049	39	1061,
			1050
	987	6	987
	895	7	900
	768	18	766
	536	6	535
	504	12	*
Hydroxymethanesulfonate,	1432	60	1414
sodium sait	1343	64	No peak
	1229, 1204, 1150		PTFE
	1086	31	1092
	1042	10	1041
	1033	10	No peak/shoulder of 1042
	933	79	934
	761		*
	732		*
	707		*
	605		*
	538		*
	522		*
Methyl sulfate, sodium	1458	16	1458
Sau	1376	26	*

¹ Reference spectra of each compound was taken from https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi.

1366	30	*
1209	12	*
1177	16	*
1154	25	*
		1135 (new peak)
1115	44	1115
1076	31	1073
999	16	1020, 1000
795	33	795
783	25	784
722	74	*
615	30	*
596	18	591
568	32	*
1		

16 Note: * denotes a peak that is excluded from spectral characterization due to PTFE interference.

Table S2.	Vendor in	formation	for primary	and seconda	ry sources
-----------	-----------	-----------	-------------	-------------	------------

Name of Solution or	Primary Source	Secondary Source
Salt		
1000 µg/mL Sulfate	SPEX CertiPrep (Metuchen, NJ)	NSI Lab Solutions (Raleigh, NC)
MSA	Sigma Aldrich, ≥ 99 % purity (St	Acros Organics 99% purity (Fisher
	Louis, MO)	Scientific,Waltham, MA)
HMS	Alfa Aesar ,sodium salt, 95%	TCI, sodium salt, >97.0% purity
	purity (Ward Hill, MA)	(Fisher Scientific, Waltham, MA)
MS	TCI, sodium salt, > 98.0 % purity	MP Biomedicals, potassium salt,
	(Fisher Scientific, Waltham, MA)	99.7% purity (Santa Ana, CA)

Figure S2. FT-IR spectra (split into two regions of four methanesulfonic acid (MSA) filters on day 1 in blue and day 51 in orange relative to ammonium sulfate (olive green) and blank (red).

40 OES. Recoveries of QC samples were $97 \pm 6\%$, suggesting inconsistent and incomplete

extraction. However, the extracts with the filters remaining in the extraction liquid were
analyzed over time and the extraction efficiency increases over time and averages 100 ± 24% on
day 68 (Figure S5). This suggest that improved extraction procedures could increase extraction
efficiency. Further work may be need to improve the consistency of the extraction.

45

46 Figure S5. Total sulfur concentrations via ICP-OES for eight 2-MTS filter samples analyzed six

47 times over a two month period. D0 stands for day 0, D4 is the fourth day, etc.