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Abstract. Satellite measurements play an increasingly important role in the study of atmospheric ammonia (NH3). Here, we

present version 4 of the Artificial Neural Network for IASI (ANNI) retrieval of NH3. The main change is the introduction

of total column averaging kernels (AVKs), which can be used to undo the effect of the vertical profile shape assumption

of the retrieval. While the main equations can be matched term for term with analogous ones used in UV/Vis retrievals for

other minor absorbers, we derive the formalism from the ground up, as its applicability to thermal infrared measurements is5

non-trivial. A large number of other smaller changes were introduced in ANNI v4, most of which improve the consistency

of the measurements, across time and across the series of IASI instruments. This includes a more robust way of calculating

the hyperspectral range index (HRI), explicitly accounting for long-term changes in CO2 in the HRI calculation and the use

of a reprocessed cloud product that was specifically developed for climate applications. The NH3 distributions derived with

ANNI v4 are very similar to the ones derived with v3, although values are about 15–20
:::::
10–20 % larger due to the improved10

setup of the HRI. We exclude further large biases of the same nature, by showing the consistency between ANNI v4 derived

NH3 columns with columns obtained with an optimal estimation approach. Finally, with v4, we revised the uncertainty budget

and now report systematic uncertainty estimates alongside random uncertainties, allowing realistic mean uncertainties to be

estimated.

1 Introduction15

Atmospheric ammonia (NH3) primarily originates from agriculture and related activities. Its presence in the atmosphere leads

to a reduction of life quality and to millions of premature deaths via its contribution to particulate matter (Pozzer et al., 2017).

As one of the main forms of reactive nitrogen (Galloway et al., 2021), NH3 is also a key element in the global nitrogen cycle

with devastating effects on the environment when deposited in excess (Sutton et al., 2014).

Satellite measurements of NH3 abundances have in the past decade contributed to our understanding of its global distri-20

bution, spatio-temporal variations, emission sources, concentration trends, transport patterns, chemistry and deposition levels.
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Currently, the two most widely-used satellite datasets are those derived from observations of the Cross-track Infrared Sounder

(CrIS) (Shephard et al., 2020) and the three Infrared Atmospheric Sounding Interferometers (IASI) (Van Damme et al., 2021).

The CrIS product relies on optimal estimation, while the IASI product is based on the conversion of a spectral NH3 index to a

total column.25

The first version of the IASI-NH3 product (Van Damme et al., 2014) used look-up-tables (LUT) for the conversion. The

LUTs were replaced with a more flexible neural network (NN) in Whitburn et al. (2016). Since then, the Artificial Neural Net-

work for IASI (ANNI) retrieval approach underwent a series of incremental improvements that are documented in Van Damme

et al. (2017); Franco et al. (2018) and Van Damme et al. (2021). In Franco et al. (2018, 2019, 2020, 2022) and Rosanka et al.

(2021) the ANNI retrieval framework was expanded for the retrieval of other minor trace gases from IASI observations. A30

similar retrieval approach was also recently adopted for isoprene retrievals from CrIS (Wells et al., 2022).

Returning to ANNI-NH3, in Van Damme et al. (2017), a reanalysis product was introduced. This product differs in the origin

of the input parameters that are used for the NN. Whereas the baseline product (also called near-real time (NRT) product) uses

operational IASI Level 2 (L2) information on the pressure, humidity and temperature profiles and a climatology characterizing

the boundary layer height, the reanalysed product uses ERA5 model output for these parameters (Hersbach et al., 2020),35

interpolated in time and space to match the observations. The resulting product is temporally more consistent as it removes

the effect of the several changes that occurred in the L2 products throughout the years. Both NH3 products include several

empirical corrections to counter small differences observed between the three IASI instruments and small biases that occurred

as a result of sporadic changes to the IASI instrument or in the L0 to L1c processing of the spectra.

The IASI NH3 product is widely used by the scientific community. However, the absence of averaging kernels (AVKs) has40

in the past hampered model comparison and assimilation. This paper presents version 4 of the ANNI retrieval framework, with

the most important change being the introduction of AVKs. After a brief recapitulation of the retrieval algorithm in Sect. 2, the

AVK framework is presented in Sect. 3. This includes its theoretical basis, practicalities related to how the AVKs are calculated

within ANNI and a discussion on how they can be used in measurement-model comparison and assimilation. Other changes

that were introduced in ANNI v4 are detailed in Sect. 4 (for those related to temporal consistency) and Sect. 5 (for all other45

changes). In Sect. 6, an evaluation of the NH3 product is presented, comparing the v3 with the v4 product and the neural

network output with retrievals based on optimal estimation. In the final part of this paper, we present the revised uncertainty

budget of the ANNI retrieval.

2 ANNI retrieval overview

Here, we give a brief overview of the ANNI algorithm, and refer to the previously cited papers on the NH3 product for a50

detailed description and the rationale behind the different retrieval choices. Table 1 summarizes the most important quantities

and symbols used in this paper.

The retrieval consists of two independent computational steps. The first one characterizes the NH3 signal strength in a

spectrum L, via the so-called hyperspectral range index (HRI), which relies on a mean spectrum L̄ and associated covariance
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matrix S constructed from a set of spectra with no observable NH3 spectral signatures. It is defined as55

HRI =NKTS−1(L− L̄), (1)

with N a normalization constant and K an NH3 Jacobian. By construction, the HRI has a mean of zero on the spectra from

which L̄ and S are constructed. The normalization factor guarantees that the HRI has a standard deviation of one on spectra

containing only background levels of NH3.

The second part of the algorithm relies on a neural network to link the measured HRIs to estimates X̂a of the true NH3 total60

columns X , via a scaling factor SFa:

X̂a =
HRI
SFa +B, (2)

with B an NH3 background column . In the past, the background column was always assumed to be zero
::::::::::::
corresponding

::
to

::
L̄.

:::
As

::
in

:::::::
previous

:::::::
versions

:::
of

::::::
ANNI,

::
we

::::
will

::::::
assume

::
a
::::
zero

::::::::::
background

::::::
column

:
for NH3 . In

:::
for

:::::
ANNI

:::
v4.

::::::::
However,

::
in

:
what

follows, we assume
::::::
develop

:::
the

::::::
theory

::
for

:
an arbitrary background column B, so that the recipe can be applied to the other65

tracers retrieved from IASI with ANNI (e.g. CH3OH or PAN). Retrieved quantities will be indicated with a hat, as in X̂ .

Superscripts refer to the assumed or modelled vertical profile shape. In the ANNI retrieval framework, the scaling factor SFa

is the quantity that is calculated with a NN, for each individual observation, based on the state of the atmosphere (temperature

and water vapour profile, surface pressure), the surface temperature and emissivity, the zenith angle, the HRI and an assumed

vertical profile shape. For NH3, the volume mixing ratio (VMR) vertical profile is modelled as a Gaussian70

VMR(z) = VMR(z0)e
− (z−z0)2

2σ2 , (3)

with z the altitude about ground level, z0 the peak altitude and σ the width of the profile. Over land, the peak altitude is set at

the surface, with a width σ equal to the boundary layer height. Over ocean, the peak altitude is set to 1.4 km with a σ of 0.9

km. In general X̂a ̸=X because of instrumental noise, errors in the assumed vertical profile, imperfect knowledge of one of

the other input parameters and errors in the spectroscopic parameters or forward model. The NN is trained from a large set of75

forward modelled spectra. Appropriate pre- and post-retrieval flags accompany the retrieval. The pre-filter removes respectively

measurements with erroneous L1 or excess cloud coverage. The post-filter flags retrievals with limited or no sensitivity to the

measured quantity

1

|SF|
> 1.5 · 1016molec.cm molec.cm

::::::::

−2 (4)

and retrievals whose HRIs are either too noisy or for which the assumed vertical profile is incompatible with the measured HRI80

|HRI|> 1.5 and X̂
a
< 0. (5)

::::
Note

::::
that

:::
this

:::::
filter

::::
only

:::::::
removes

::
a
:::::::
fraction

::
of

:::
the

::::::::
negative

:::::::
columns

::::
(see

:::::::::::::::::::::::::::::::::::::
Clarisse et al. (2019); Whitburn et al. (2016)

::
for

::
a

::::::::
discussion

:::
on

::::
why

::
it

::
is

::::::::
important

::
to

::::
keep

::::::
these).

:
Via propagation of uncertainty, a total retrieval uncertainty is calculated for

each individual measurement alongside the retrieved column.

3



3 Averaging kernels85

The general AVK framework that we introduce below, bears a lot of similarity to the total column AVK formalism (Eskes

and Boersma, 2003) developed for the DOAS retrieval approach of weakly absorbing species (see also Palmer et al. (2001);

Rodgers and Connor (2003); Boersma et al. (2004, 2016); Cooper et al. (2020)). In the DOAS retrieval approach, the total

column X is retrieved as

X̂a =
SCD

AMFa , (6)90

with SCD, the slant column density and AMF the air mass factor which accounts for the atmospheric conditions and assumed

vertical profile. Eq. (6) has the same functional form as the main formula (Eq. (2)) of the ANNI retrieval formalism, with the

SCD corresponding to the HRI and the AMF to the SF provided by a NN.

One key element on which the total column AVK formalism of Eskes and Boersma (2003) relies, is linearity and additivity of

the spectrum with respect to changes in the trace gas amount. Linearity is a consequence of the curve of growth of spectral lines95

for low optical depths (Thorne et al., 1999) and in the DOAS approach also implies that the SCD is proportional to the trace

gas abundance. Additivity represents the fact that the effect of different atmospheric layers can be summed up independently

from each other. Given the definition of the HRI and the effects of thermal emission of the atmosphere, it is not obvious that

these hold in the infrared spectral domain, and for this reason, we derive both properties below.

3.1 On the linearity and additivity of the HRI100

Let LB
ν be the radiance at the sensor for a scene with climatological background levels B of the target trace gas and corre-

sponding HRI of zero. Dividing the atmosphere in n appropriately spaced layers z, we denote by Bz the corresponding partial

columns (B =
∑

zBz). We can then calculate LB
ν from the sequence of equations (Rodgers, 2000; Petty, 2006)

LB
1ν = t1ν(L0ν −B1ν)+B1ν (7)

LB
2ν = t2ν(L1ν −B2ν)+B2ν (8)105

...

LB
ν = tnν(L(n−1)ν −Bnν)+Bnν . (9)

Forward substitution of the above relations yields LB
ν as a function of the surface term L0ν . Here tzν are the layer transmittances

that account for the absorption of all atmospheric species. The z dependence of this parameter is related to vertical variations in

the atmospheric constituents and the pressure and temperature dependence of the line intensities. Bzν =Bν(Tz) corresponds110

to the Planck’s blackbody function for an averaged layer temperature Tz .

For this scene, we now introduce an additional trace amount X −B and write the corresponding observed radiance as Lν .

In each layer, the transmittance will decrease by a factor tXz−Bz
zν = e−τzν ≈ 1− τzν , with τzν the small optical depth caused
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Figure 1. Numerical demonstration of the linearity and additivity of the HRI as a function of a change in partial column. In the blue and

green scenario, NH3 was varied at one fixed altitude. In the red scenario, partial columns in both layers were varied simultaneously. The

black solid lines represent linearity, whereas the dash dotted line, being the sum of the green and blue curve, represents additivity.

by the excess Xz −Bz . With this, the sequence of equations becomes

L1ν = t1ν(1− τ1ν)(L0ν −B1ν)+B1ν (10)115

L2ν = t2ν(1− τ2ν)(L1ν −B2ν)+B2ν (11)

...

Lν = tnν(1− τnν)(L(n−1)ν −Bnν)+Bnν . (12)

For optical thicknesses of the target trace gas τzν well below one, the second (τiντjν) and higher order terms in optical depth

can be neglected. Combining both set of equations, one can verify that120

L1ν = LB
1ν − τ1ν(L0ν −B1ν)t1ν (13)

L2ν = LB
2ν − τ1ν(L0ν −B1ν)t1νt2ν − τ2ν(L1ν −B2ν)t2ν (14)

...

Lν = LB
ν −

n∑
z=1

τzν(L
B
(z−1)ν −Bzν)

n∏
j=z

tjν . (15)
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Each of the terms in the sum express the effect of the absorption in one layer due to the excess Xz −Bz and attenuated by the125

layers above. Note that the absorptions are proportional to both the optical depth and the local thermal contrast (LB
(z−1)ν−Bzν),

which are two parameters that drive the measurement sensitivity in the infrared (Bauduin et al., 2017). The optical thickness in

turn is proportional to the partial column of the target species τzν ∝ (Xz −Bz) and thus

Lν = LB
ν −

∑
z

czν(Xz −Bz). (16)

The constants czν depend on the state of the atmosphere at level z and above, but are independent of the excess trace gas130

amount X −B.

The HRI is by definition a linear combination of spectral channels ν, from Eq. (1)

HRI =
∑
ν

wνLν +C, (17)

with C and wν numerical constants. Using Eq. (16) and the fact that the HRI is zero on the background (HRI =
∑

νwνL
B
ν +

C = 0), we find135

HRI =
∑
ν

wνL
B
ν −

∑
ν,z

wνczν(Xz −Bz)+C (18)

=−
∑
ν,z

wνczν(Xz −Bz). (19)

This equation implies that for optically thin absorbers, the HRI can be written as a weighted sum of the partial column en-

hancements. This linearity and additivity of the NH3 HRI as a function of partial columns is illustrated in Fig. 1 by means

of simulations with a radiative transfer code. The line in blue illustrates the nearly linear increase in HRI for increasing NH3140

columns in the first atmospheric layer of the model. Starting from about 7 · 1016 molec.cm−1
::

−2, slow departure from linearity

is observed. The green line shows the same for the second atmospheric layer. The overall larger HRI in this second layer results

from higher thermal contrast (TC) higher up in the atmosphere. Finally, the red line represents the HRI when NH3 is increased

simultaneously in both layers. The dash-dotted line is the sum of the blue and green curve and for low columns is almost

indiscernible from the simulated HRI, illustrating additivity in the optically thin limit.145

To make the link with Eq. (2), Eq. (19) can be rewritten as

HRI =
∑
z

SFz(Xz −Bz) (20)

=
∑
z

SFz
Xz −Bz

X −B
(X −B) (21)

= SF(X −B), (22)

with SFz local scaling factors and150

SF =
∑
z

SFz
Xz −Bz

X −B
, (23)
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total scaling factors that depend on the scene conditions (e.g. surface temperature, atmospheric temperature and pressure

profiles, vertical profile of the target species). We note that whereas SF depends on the normalized vertical profile shape
Xz−Bz

X−B , both SFz and SF are independent of the total column for a fixed profile shape.

Finally, introducing155

HRIz = SFz(Xz −Bz), (24)

we see from Eq. (20) that the HRI can be decomposed in different partial HRIz

HRI =
∑
z

SFz(Xz −Bz) =
∑
z

HRIz. (25)

These HRIz quantify how much each layer contributes to the total HRI and they are, again in the optically thin limit, indepen-

dent from each other.160

3.2 Total column averaging kernels

Equation (22) motivates the NN retrieval formula

X̂a =
HRI
SFa +B, (26)

with SFa an estimated scaling factor which depends on the best estimates of all the dependencies of SF, including the vertical

profile of the target species. As we have just shown, in the optically thin limit SFa is independent of the total column amount.165

This is no longer the case for strong absorptions when non-linear effects become increasingly important. In the ANNI retrieval

framework this is taken care off
::
of

:
by including the HRI as an input parameter in the calculation of the SF. In what follows,

we will first derive the AVK formalism in the optically thin limit, assuming both linearity and additivity (and therefore SF that

are independent of the (partial) column). In Sect. 3.5 we will then show how to correct for small errors that arise when these

conditions are not met.170

The quantities X̂z −Bz express the local enhancement of the trace gas column at an altitude z, and it is their relative

proportions that are constrained in the retrieval by the use of an a priori profile shape. We write

az =
X̂a

z −Bz

X̂a −B
, (27)

for the normalized a-priori vertical partial column profile, or partial column profile shape, with X̂a
z the partial columns cor-

responding to the retrieved X̂a and
∑

z az = 1. In the previous section we demonstrated that in the optically thin limit, the175

scaling factor SFa equals the weighted sum of the different local scaling factors defined by the profile shape:

SFa =
∑
z

SFz
Xa

z −Bz

Xa −B
=
∑
z

SFzaz. (28)

Defining the averaging kernel as

Aa
z =

SFz

SFa =
SFz∑
z SFzaz

, (29)
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Figure 2. A priori vertical profile az , averaging kernel Aa
z and vertical partitioning of signal V a

z .

we can express X̂a as a function of Xz by eliminating the HRI from Eq. (20) and Eq. (26):180

X̂a =
HRI
SFa +B (30)

=

∑
z SFz(Xz −Bz)

SFa +B (31)

=
∑
z

Aa
z(Xz −Bz)+B. (32)

As can be seen from this equation, the averaging kernel Aa
z fully characterizes the measurement, and can be used to mathemat-

ically map the true profile Xz to the measured total column X̂a.185

Two example AVKs for an NH3 retrieval are shown in the middle panel of Fig. 2, for a retrieval over land and over ocean,

with a priori profiles shown in the left panel. Both AVKs logically increase with altitude, as the temperature difference between

the surface and a given atmospheric layer, and therefore the scaling factor, increases with altitude. Apart from a multiplicative

constant (1/SFa), the AVKs are independent from the a priori profiles, which explains why both land and ocean AVKs increase

similarly with altitude. The multiplicative constant determines the altitude for which the AVK is one. This altitude can be190

interpreted as an equivalent effective NH3 altitude, where all NH3 can be thought to be located at. For the ocean and land

retrieval, this altitude is located respectively around 1.6 and 0.7 km, consistent with the a priori profiles shown in the left panel.
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Table 1. Summary of the main quantities and associated symbols that are used in the AVK formalism.

Name Symbol Notes/variations

Total column X
X̂a, X̂m (retrieved with a or m profile);

Mm,M̂a (modelled or retrieved-modelled profile)

Partial column Xz X =
∑

Xz

Confined column X̂ |z retrieval assuming the entire total column is localized at altitude z

Background column B B =
∑

Bz

Normalized a priori profile az az = (X̂a
z −Bz)/(X̂

a −B)

Normalized modelled profile mz mz = (Mm
z −Bz)/(M

m −B)

Total scaling factor SF SFa, SF|z (a priori or confined profile)

Local scaling factor SFz SF =
∑

z SFz(Xz −Bz)/(X −B), SFa =
∑

z SFzaz

Averaging kernel Aa
z Aa

z = SFz/SFa

Vertical partitioning of signal V a
z V a

z =Aa
zaz with

∑
V a
z = 1

3.3 Interpretation

It is instructive to compare the total column averaging kernel, as defined above, with the one arising in optimal estimation

retrievals (Rodgers, 2000):195

X̂a = (I−A)Xa +AX. (33)

Here, we use matrix and vector notation, with X and X̂ respectively the true and retrieved partial columns and A the AVK

matrix. I is the identity matrix. Both Eq. (32) and Eq. (33) allow simulating the retrieval process for any hypothetical X (e.g.

from a model, or an independent measurement). However, this is largely where their similarity ends, as there are important

differences when it comes to interpreting these two types of AVK.200

The first is the role of the a priori. For the total column retrieval, the a priori fixes only the vertical profile shape, while

for the optimal estimation retrieval, the a priori affects both the vertical profile shape, and the retrieved value at each altitude

separately. Eq. (33) expresses that the retrieved profile is a weighted sum of the a priori and the true profile, with the weights

provided by the AVK. When the information content of the measurement is low or the retrieval is too heavily constrained, the

AVK will tend toward zero and the solution will remain close to the a priori. Conversely, when the information content is high205

or the retrieval loosely constrained, the AVK will approach the unit matrix. The optimal estimation AVK is therefore a measure

of how much information is extracted from the measurement, with its trace commonly denoted ‘degrees of freedom for signal’.

By contrast, the total column averaging kernels introduced above, are not a measure of how much information is extracted

from the measurement, as they accompany an unconstrained retrieval. A perfect measurement would correspond to an all-ones

vector Az = 1 for all z. However, inherent to (infrared) sounding, sensitivity varies as a function of thermal contrast, and thus210

altitude, so that this ideal can never be met.
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The second important difference relates to the fact that a vertical profile is retrieved in the optimal estimation type retrievals.

The rows of A express the vertical resolution of the retrieval, where the ideal is a narrow function that peaks at its corresponding

altitude. As no vertical information is extracted in the total column retrievals, this interpretation also does not apply. Az is a

(normalized) vector that shows which layers of the atmosphere offer in principle the greatest sensitivity. It naturally peaks high215

up in the atmosphere, irrespective of the location of the trace gas. However, combining the total column AVK with the a priori

profile, does allow extracting a vector which characterizes the vertical sensitivity, as we now show. Starting from Eq. (26) and

Eq. (28) we have

HRI = SFa(X̂a −B) (34)

=
∑
z

SFz(X̂
a −B)az (35)220

=
∑
z

SFz(X̂
a
z −Bz) (36)

=
∑
z

ĤRI
a

z , (37)

where we defined ĤRI
a

z = SFz(X̂
a
z −Bz), similarly to Eq. (24) where we defined HRIz = SFz(Xz −Bz). A retrieval that

assumes a given a priori vertical profile az , therefore implicitly assumes that the HRI (the trace gas signal) can be decomposed

into partial ĤRI
a

z corresponding to spectral change at each altitude. Note that while HRI =
∑

z ĤRI
a

z =
∑

z HRIz , the same225

does not necessarily hold for each individual level ĤRI
a

z ̸= HRIz , as the assumed profile can differ from the actual profile. With

this we can define the normalized assumed HRI profile or equivalently, the probable vertical partitioning V a
z of the signal

V a
z =

ĤRI
a

z

HRI
,=

SFz(X̂
a
z −Bz)

SFa(X̂a −B)
=Aa

zaz. (38)

From the first equality follows that
∑

z V
a
z = 1 (also follows the last term and Eq. (29)). The three profiles az , Aa

z and V a
z are

illustrated in Fig. 2 for a typical NH3 retrieval. As can be seen, the maximum of V a
z is shifted upwards compared to az , due to230

the more favourable thermal contrast higher up in the atmosphere.

3.4 AVK application

There are two alternative ways in which averaging kernels can be exploited to remove the impact of the vertical profile as-

sumption of the retrieval (Palmer et al., 2001; Eskes and Boersma, 2003; Cooper et al., 2020).

3.4.1 Method 1: Simulating measurements of the modelled columns235

Let Mm
z be a modelled profile with corresponding total column Mm and normalized profile (enhancement)

mz =
Mm

z −Bz

Mm −B
. (39)

We can simulate what would have been retrieved if the modelled profiles were observed using Eq. (32):

M̂a =
∑
z

Aa
z(M

m
z −Bz)+B. (40)
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This M̂a is directly comparable with X̂a as the same a priori profile shape az is used for both retrievals. However, in case the240

a priori profile significantly differs from the truth, both X̂a and M̂a can deviate far from the truth.

3.4.2 Method 2: Using modelled vertical profiles as a priori

Rather than altering the modelled column, an attractive alternative is to alter the retrieved column to use instead of the a priori

vertical profile, the modelled profile (see Boersma et al. (2016), Appendix D)

X̂m =
HRI
SFm +B (41)245

=
SFa(X̂a −B)∑

z SFzmz
+B (42)

=
X̂a −B∑
zA

a
zmz

+B. (43)

The averaging kernel associated with X̂m is

Am
z =

SFz

SFm =Aa
z

SFa

SFm . (44)

This X̂m can be directly compared with Mm, as both employ the same profile mz . Note that X̂m depends only on the shape250

of the modelled profile, not the total column. This method can be used to obtain an improved retrieval by using a modelled

profile that approaches the reality better than a static a priori profile. Since it was first applied to NH3 (Whitburn et al., 2016),

the ANNI retrieval has been capable of using modelled profiles, by adapting the input parameters to the network. However,

when the modelled profiles were changed, the entire retrieval process had to be redone. Using Eq. (43) and the provided AVKs,

changing the a priori profile can be done a posteriori by the data users. An important pracial note is that the post-filter of the255

retrieval (see Sect. 2) includes a threshold on the scaling factor, and that this filter should be reevaluated for X̂m using SFm.

Both methods can be summarized as

Mm method 1−−−−−→ M̂a to be compared with X̂a (45)

X̂a method 2−−−−−→ X̂m to be compared with Mm. (46)

Eq. (39), (40) and (43) can be combined as260

X̂m =
(X̂a −B)(Mm −B)∑

zA
a
z(M

m
z −Bz)

+B (47)

=
(X̂a −B)(Mm −B)

M̂a −B
+B, (48)

or

X̂m −B

Mm −B
=

X̂a −B

M̂a −B
, (49)

which shows that, when the goal is to compare the ratio between model and retrieved columns, both methods are equivalent265

(Cooper et al., 2020).
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3.5 Practical considerations

In the ANNI retrieval formalism, the total scaling factor SFa is calculated directly by the NN, and not calculated via inter-

mediate SFz and application of Eq. (28). These SFz , which are required to calculate the AVKs, can however be estimated by

exploiting the flexibility of the NN. For NH3, the NN is trained for a wide variety of Gaussian profiles, with peak altitudes270

ranging from 0 to 20 km and σ from 100 m to 3 km. The SFz can be estimated from the network using the input parameters

zpeak = z and σ = 100 m for the Gaussian profile. For this calculation, an HRI input parameter is also required and the choice

was made to use the observed HRI. The corresponding column that can be calculated from this satisfies

X̂ |z =
HRI

SF|z +B, (50)

where X̂ |z is the retrieved total column assuming all the trace gas enhancement is situated in the narrow Gaussian band around275

altitude z. SF|z is the corresponding total scaling factor, which is used to approximate the local scaling factor SFz . With this

the AVK can be constructed as

Aa
z =

SFz

SFa ≈ SF|z

SFa =
(X̂a −B)HRI

(X̂ |z −B)HRI
=

X̂a −B

X̂ |z −B
. (51)

The formulas provided above are exact in the linear limit, but for large columns, SFa and SF|z have an increasingly high

dependence on the value of the HRI. The NN takes into account this dependence so that Eq. (2) and Eq. (50) are always good280

approximations of the true X , provided that either the assumed a priori profile is correct or that the tracer is confined to a

narrow layer. However, there is no guarantee that

SFa ?
=
∑
z

SFzaz, (52)

or thus that
∑

zA
a
zaz =N

::::::::

∑
zA

a
zaz equals one. A consistent AVK can however be obtained as

Aa
z =

1

N

X̂a −B

X̂ |z −B
., (53)285

This normalization
:::
with

:::::::::::::
N =

∑
zA

a
zaz :

a
::::::::::::
normalization

:::::
factor.

::::
This

:::::
factor

:
also guarantees that applying the averaging kernels

on the a priori vertical profile returns back the retrieved column:∑
z

Aa
z(X̂

a
z −Bz)+B =

∑
z

Aa
zaz(X̂

a −B)+B = X̂a. (54)

The normalization factors are shown in Fig. 3 for one day of IASI measurements(morning overpass). Over ocean they average

0.99± 0.05 and over land 0.98± 0.03
:::
and

:::
one

::::
year

:::
of

:::::
global

:::::::::::::
measurements.

:::
The

::::::::::
histograms

::::::
shown

::
in

::::
inset

:::::::
indicate

:::::::
average290

:::::
values

::::::
around

:::::::::
0.98–0.99

::::::::::::
(±0.03–0.04), illustrating the consistency of the approach and the fact that non-linear effects are

modest. The areas where the normalization factors are furthest from oneseem to be affected by clouds or aerosol (e.g.
:
,
:::
are

::::::
affected

:::
by

:::
low

::::::
clouds

::::
(e.g.

:
off the East coast of California and the East coast of North Africa)

::
or

:::
sea

:::
ice.

The necessity of using normalization factors follows from the fact that in the non-linear regime, the SFz are not uniquely

defined, depending on the concentration in the layer z (non-linearity) and the other layers (non-additivity). However, as we295
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Figure 3. AVK normalization factors
:::
(N )

:
for one day of IASI observations (17 June 2015,

:::
left)

:::
and

:::
for

:::
one

::::
year

:::::
(2015,

::::
right)

:::
of

::::
IASI

::::::::::
observations.

::
In

:::
both

:::::
cases,

::::
data

:::::::
originates

::::
from

:::
the morning overpass of IASI-Afor observations with a cloud cover less than 25 %).

:::
The

::::
insets

::::
show

:::
the

::::::::
respective

::::::::
normalized

:::::::::
histograms.

have shown, in the neighbourhood of the solution, a fully consistent AVK can be obtained after renormalization. It is this AVK

that is recommended when applying method 1 in model comparisons. However, in case method 2 is employed and when the

modelled profile concerns a narrow layer at high altitude (e.g. pyro-convective fire plume) or significantly deviates from the a

priori, it can be better not to renormalize. In particular, when we have a narrow modelled profile layer at an altitude z′, with

mz = δzz′ , the second method, without renormalization, yields the expected300

X̂m =
X̂a −B∑
zA

a
zδzz′

+B (55)

=
X̂a −B

Aa
z′

+B (56)

= (X̂ |z′
−B)+B (57)

= X̂ |z′
. (58)

The output files of the ANNI retrieval contain X̂a, X̂ |z , Bz and N . With this, Aa
z can be calculated if required from Eq. (51)305

or renormalized via Eq. (53) .

4 Temporal consistency

4.1 Generalized inverse
::::::::::::
Pseudoinverse

The generalized error covariance matrix S plays a key role in the calculation of the HRI. As a symmetric matrix, S has real

eigenvalues λi and can be decomposed as310

S =

n∑
i=1

λisis
T
i , (59)
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Figure 4. Eigenvalue spectrum of the covariance matrix S used for the calculation of the HRI of NH3. The eigenvalues are ordered from

largest to smallest.

with all si orthogonal to each other. It follows that its inverse can be written as

S−1 =

n∑
i=1

1

λi
sis

T
i . (60)

This expression leads to an intuitive interpretation of the HRI (Clarisse et al., 2013): it can be seen as a weighted projection of

the spectrum onto the Jacobian, with the directions that usually exhibit the most variability carrying the lowest weight.315

The distribution of the eigenvalues of the covariance matrix used for the NH3 HRI (with a spectral range covering 812 to

1126 cm−1) is shown in Fig. 4. Three domains can be distinguished: (i) the 30 highest values, corresponding to the principal

components, (ii) around 1200 values corresponding mainly to instrumental noise and (iii) around 20 very small eigenvalues.

These smallest eigenvalues are of the order of the numerical precision at which the covariance matrix is calculated, and in

essence correspond to directions not occurring in IASI spectra. While random instrumental noise would be expected to occur320

in all directions, apodization and L1 post-processing remove some. Such directions carry the most weight in S−1, but as they

are not found in real spectra they do not contribute much to the total HRI (as can easily be verified numerically).

However, small changes to the instrument calibration or post-processing can alter the contribution of these directions in

the IASI spectra, and because they carry such a large weight in the HRI, they can affect its value considerably. This explains

why the HRI in the past has been found to be very sensitive to such changes (Van Damme et al., 2021). It also explains the325

occurrence of (small) biases between the different instruments. The solution is fortunately simple (Rodgers and Connor, 2003;

Eaton, 2007), and is obtained by disregarding the terms corresponding to the very small eigenvalues in Eq. (60). As we will

show later, using such a generalized inverse
:::::::::::
pseudoinverse

:
does not eliminate the effects of L1C changes completely, but

reduces their magnitude considerably.

After the generalized inverse
::::::::::::
pseudoinverse was implemented, an unexpected change was observed in the value of the HRIs330

on spectra from the period on which the covariance matrix was built. It turns out that while the scalar product of observed IASI

spectra with the eigenvectors corresponding to the lowest eigenvalues LTsi/λi is near zero, this is not the case for spectra
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generated with the forward model. This is due to small discrepancies between spectra generated by the forward and actual

spectra, that are magnified by the 1/λi factors. Hence, synthetic HRIs calculated on the training set of the neural network, have

in the past been overestimated, resulting in low biases in the retrieved columns. As we will show in Sect. 6, the magnitude of335

this bias was in ANNI-v3 around 18%. For the retrieval of other trace gases presented in Franco et al. (2018), especially those

operating on a smaller spectral range, the bias has been evaluated to be much smaller.

4.2 Carbon dioxide

As the mean spectrum and covariance matrix that are used for the HRI are calculated from spectra measured within one

reference year (2013), long-term changes in atmospheric composition that affect the spectral region of interest, can have340

unwanted effects on the HRI. This was first noted in Van Damme et al. (2021), where a spurious trend was seen in the HRI

NH3 data over remote regions. It was attributed to the increase in global carbon dioxide (CO2) concentrations, because of

the presence of a weak CO2 absorption band in the 920–990 cm−1 spectral region (Whitburn et al., 2021) where NH3 has

its strongest absorption. A linear correction on the HRI of the order of 0.03 per year was introduced to compensate for this

effect. However, because of seasonal variations, and possible temperature dependence of the interference, an HRI which is less345

sensitive to CO2 changes is preferable. One option is to build the covariance matrix from spectra spanning the entire period of

IASI measurements.

An alternative approach is to account directly for the effects of CO2 in the calculation of the HRI. The HRI formula is

related to generalized least squares estimation and can be expanded to include multiple variables that are simultaneously

estimated (Walker et al., 2011; Theys et al., 2022). In our case, the Jacobian vector becomes a two-column matrix, one column350

corresponding to NH3 and the other to CO2. The HRI formula Eq. (1) remains formally identical (with only the first component

of the two-element HRI vector of interest). The effect of this change on the long-term trend of the HRI is detailed in Sect. 4.4.

4.3 Cloud clearing

The ERA5 model output replaces satisfactorily the IASI L2 for all input parameters, except for the surface temperature and

cloud cover. These are spatially and temporally too variable for model output to be representative for an IASI footprint at a given355

time. All previous reanalysed ANNI-NH3 products still relied on different versions of the IASI L2 cloud product. Recently,

Whitburn et al. (2022) developed a NN-based cloud flag. Trained with data from the latest version (v6.5) of the official L2

cloud product, it inherits all its advantages as a proven and well-validated product. The NN utilises carefully selected IASI

channels as input (excluding channels affected by long-lived tracers CO2, N2O, CH4, CFC-11 and CFC-12) and was shown

to be temporally consistent, and coherent across the three IASI instruments. The network presented in Whitburn et al. (2022)360

was trained to distinguish completely clear scenes (0% cloud cover) from the rest. For the NH3 processing, two additional

networks were trained to distinguish scenes with a cloud cover below 10% and 25% respectively. With this, three cloud flags

are available and these have now been integrated in the v4 of the reanalysed ANNI-NH3 product. The results presented in the

rest of this paper utilise the flag corresponding to the 10% threshold.
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Figure 5. Monthly average HRI time series over 10 remote regions for the three IASI instruments separately. The top panel shows the

uncorrected timeseries, and the other panels, from top to bottom, show the effects of the corrections that are applied consecutively.

4.4 Residual bias corrections365

The stability of the HRI was evaluated over ten remote regions, where only background columns of NH3 are expected. Their

average monthly HRI is shown in Fig. 5 for the three IASI instruments separately. The top panel shows the average as obtained

with the HRI setup as described above, i.e. with generalized inverse
::::::::::::
pseudoinverse and with a CO2 Jacobian. As with previous

versions of the product, a spurious linear trend is observed, but thanks to the introduction of the CO2 Jacobian, its magnitude is

reduced to about 0.01 per year, compared to 0.03 per year previously. A slightly steeper decrease is observed for Metop B. We370

correct for these trends by adding a time-dependent offset as in Van Damme et al. (2021). The result after correction is shown

in the second panel of Fig. 5.

A detailed analysis was made of this time series to detect offsets between the different instruments and shifts that coincide

with known changes in the IASI L1C data. The largest of these is the offset of 0.11 seen between IASI-C and the two other in-

struments. Small offsets in the HRI time series of IASI-A were found in 2010, 2015 and 2017 and in the HRI of IASI-B in 2015.375

For each of these, offset corrections were calculated in the range of 0.01–0.03. Thanks to the generalized inverse
:::::::::::
pseudoinverse,

their magnitude is drastically reduced (previously, offsets as large as 0.6 were observed). The resulting corrected time series

is shown in the third panel. This time series is temporally stable and shows an excellent consistency between the three instru-

ments, but exhibits a weak seasonal cycle, likely due to the combined effect of seasonal changes in the concentrations of H2O
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and volatile organic compounds that absorb in the same spectral range as NH3. To remove this seasonality an offset depending380

on latitude and month of the year was calculated from 2012–2014 IASI-A data and applied on all data. The HRI after correction

is shown in the bottom panel of Fig. 5. Thanks to the improved setup of the HRI, and the new cloud product, the magnitude

and therefore also uncertainty of all these corrections is lower than in the previous product, which in the end results in much

improved temporal consistency.

5 Other changes to the retrieval network385

An additional change in the setup of the HRI concerns the choice of the spectra used for determining the mean background

spectra and its associated covariance matrix. As before (Franco et al., 2018) we use a random selection of IASI spectra from the

year 2013, but now with a proportionally larger number of spectra from selected parts of the Saharan, Arabian, Great Australian

and Namib desert. It was found that this was an efficient way for countering the small negative biases that are seen over these

areas and that are associated with surface emissivity variations. It also leads to a better detection of NH3 transport over deserts.390

Since ANNI v2 (Van Damme et al., 2017) the reanalysis product relies on a surface temperature retrieved from a custom-built

neural network, rather than the IASI L2 surface temperature. With ANNI v4, this network has been retrained from data that

were generated using latest version (v6.5) of the IASI L2 algorithm. The input parameters of the NN for the retrieval of surface

temperature include 60 selected baseline channels (a subset of the channels used in the cloud NN), surface altitude, total water

vapour column and the three output values of the cloud NNs. Mean and standard deviation of the difference between the L2395

surface temperature and that retrieved from the network are of the order of 0.5 K and 1.5 K for cloud fraction up to 25%.

A final series of changes concern the network architecture and training database. In previous versions, separate neural net-

works were employed for the retrieval over land and ocean. These were trained respectively with Gaussian a priori profiles

peaking at the surface, and a larger, more general one, with profiles peaking at different altitudes. However, a careful com-

parison showed that the more general network performed as good as the network trained specifically for profiles peaking at400

the surface. For this reason, only one network was trained for version 4, for a priori profiles peaking at altitudes z0 from 0

to 20 km, with a width σ in the range of 0.1 to 3 km. In view of the averaging kernel calculation, 20% of the profiles of the

training database have an NH3 profile with a σ of 100 m.

6 Evaluation

6.1 Comparison with version 3405

As outlined before, v4 has an improved temporal consistency compared with v3. In this section, we provide a short assessment

of the new NH3 spatial distributions and how they compare with previous versions. As an illustration of the new product, a

seasonal average over 2007–2022 is presented in Fig. 6. The distributions follow closely the ones of previous versions (Van

Damme et al., 2015). Comparisons with version 3 are provided in Fig. 7 and Fig. 8. The main differences are: (1) Overall larger

columns, especially in areas with high columns. As explained in Sect. 4.1, this is due to the more robust way of calculating410

17



MAM JJA

SON DJF

2×1015 1016 3×1016

NH₃ total column  (molec.cm⁻²)

Figure 6. NH3 seasonal average, derived from 0.5°× 0.5° monthly averages of the reanalysis product of ANNI v4. Data includes all

measurements from IASI-A (October 2007 to December 2019), IASI-B (March 2013 to September 2022) and IASI-C (September 2019 to

September 2022), with a cloud fraction below 10 %.

the HRI, which makes it less sensitive to small errors in the forward model. Comparing individual observations,with an HRI

above 3, the new version is about 15%
::::
10%

:::
(for

::::
low

::::
HRI)

:
to 20%

:::
(for

::::
high

:::::
HRI) larger. (2) A notable improvement over high

latitudes thanks to the improved bias correction (see Sect. 4.4). Averaged columns were clearly overestimated in ANNI v3 for

such observations, especially over Greenland and Antarctica, but also Canada and Russia. (3) Slightly higher concentrations

over deserts, in part due to the overall increase in v4, in part due to the larger weight of deserts in the construction of mean415

background spectra and associated covariance matrix (see Sect. 5). In v3, negative HRIs were consistently observed over certain

deserts, resulting in negative average columns, or low biases. This problem is not entirely gone (e.g. the average HRI over parts

of the Arabian desert is still negative), but much improved, resulting in more consistent pronounced transport patterns over e.g.

the Saharan desert. (5) Overall larger concentrations over oceans. The improved bias correction (last step of the HRI correction

presented in Sect. 4.4) enables to remove practically all negative values on a long term average. Average columns over remote420

ocean are now around 7 · 1014 molec.cm−1
::

−2
:
almost everywhere. An adverse effect of the correction might be overestimated

columns over the Red Sea, Persian gulf and Mediterranean Sea.
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Figure 7. Comparison between retrieved columns with ANNI v3 and v4 for all morning observations of 17 June 2015.The slope was

determined from observations with an HRI above 3.

The most obvious remaining artefact in the v4 distribution concerns the continuity of the land-sea transitions. While they are

reasonable for some regions of outflow (Gulf of Mexico, Mediterranean Sea), off the West coast of Africa, over the Arabian

Sea, Gulf of Bengal or Yellow Sea, the transition is too abrupt to be realistic. The origin of this problem is that different NH3425

profiles are used for land and ocean. With the introduction of the AVKs, this does not constitute a problem in model comparison

or assimilation. However, for stand-alone use of the product, it would be desirable in the future to improve the parametrization

of the a priori vertical profile shape.

6.2 Comparison with an optimal estimation retrieval

Given the low bias in ANNI NH3 v3, it is important to exclude the presence of other biases related to the HRI calculation.430

Here, we present the results of an independent intercomparison that was conducted between the ANNI v4 retrieval output and

that of an optimal estimation approach which relies on spectral fitting.

For the optimal estimation retrieval, the Atmosphit forward and inverse model was used (Coheur et al., 2005), which is the

same tool whose forward model is used for the construction of the ANNI training database. The optimal estimation was set

up as follows. The retrieval range was set to 900 to 975 cm−1. Total columns of NH3 were retrieved with a fixed vertical435

profile, using the same parametrization as in ANNI NRT. The NH3 variance was set to 1000 %, corresponding to an almost

unconstrained retrieval. Together with NH3, H2O was retrieved in 10 partial columns, with the a priori coming from the IASI

L2. Total columns of CO2, O3 and CFC-12 were retrieved as well as the surface temperature. Spectral emissivity was taken

from Zhou et al. (2013). Before presenting the results, it should be emphasized that despite the similarities in both retrieval

approaches (same input parameters, vertical profiles, forward model), no perfect agreement is expected because of: (1) use of440
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Figure 8. Comparison between the NH3 columns of the near real time products of ANNI v3 (top) and v4 (bottom) on a 0.5°× 0.5° grid.

:::
The

::::
inset

:::::
shows

::
the

::::::::
difference

::::::
between

:::
the

:::
two

:::::
maps. Data includes all morning IASI-A data from 2008–2018, with a cloud fraction below

10 %.
::::::
Parallels

:::
are

::::
drawn

:::::
every

:::
15°

:::
and

:::::::
meridians

:::::
every

:::
30°.

20



40°N

50°N

La
tit

ud
e

 0° 10°E
Longitude

0 2 4 6 8 10
ANNI v4 NH₃ (10¹⁶ molec.cm⁻²)       

0

1

2

3

4

5

6

7

8

9

10

O
EM

 N
H

₃ (
10

¹⁶ 
m

ol
ec

.c
m

⁻²)

Nr. of meas.: 1613
Slope: 0.97 ± 0.01
Interc.: -8 ± 1 × 10¹⁴ molec.cm⁻²

0

10

20

30

Th
er

m
al

 c
on

tra
st

 (K
)

-3 -2 -1 0 1 2 3
ANNI v4 - OEM NH₃ (10¹⁶ molec.cm⁻²)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

N
or

m
al

iz
ed

 c
ou

nt

Mean:  12.1 × 10¹⁴  molec.cm⁻²
Median:  10.5 × 10¹⁴ molec.cm⁻²
Std:  4.1 × 10¹⁵ molec.cm⁻²

30°N

45°N

La
tit

ud
e

120°W 110°W 100°W
Longitude

 500 mi 
 1000 km 

0 5 10

0 2 4 6 8 10
ANNI v4 NH₃ (10¹⁶ molec.cm⁻²)       

0

1

2

3

4

5

6

7

8

9

10

O
EM

 N
H

₃ (
10

¹⁶ 
m

ol
ec

.c
m

⁻²)

Nr. of meas.: 4927
Slope: 1.05 ± 0.00
Interc.: -9 ± 0 × 10¹⁴ molec.cm⁻²

0

10

20

30
Th

er
m

al
 c

on
tra

st
 (K

)

-3 -2 -1 0 1 2 3
ANNI v4 - OEM NH₃ (10¹⁶ molec.cm⁻²)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

N
or

m
al

iz
ed

 c
ou

nt

Mean:  3.6 × 10¹⁴  molec.cm⁻²
Median:  5.8 × 10¹⁴ molec.cm⁻²
Std:  3.1 × 10¹⁵ molec.cm⁻²

0 5 10
NH₃ (10¹⁶ molec.cm⁻²)

0 5 10
NH₃ (10¹⁶ molec.cm⁻²)

Figure 9. Comparison between ANNI v4 NH3 columns and retrievals based on optimal estimation for two scenes, one over Europe (top

panels, 18 April 2013, Metop A morning overpass) and North America (bottom panels, 6 May 2021, Metop B morning overpass). The left

panels depict the optimal estimation retrieved columns. The middle panels are scatter plots between the two retrievals, where each observation

is colour coded according to thermal contrast (brightness temperature of the surface minus the temperature at half the boundary layer height).

The right panels summarize the comparison by means of histograms of the differences.

a narrower spectral range in the optimal estimation retrieval; (2) different propagation of instrumental noise to the retrieval
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result; (3) limitations of the fitting model (e.g. with respect to fitting water vapour or surface emissivity); (4) errors related to

the imperfect training of the neural network.

For the comparison, two days were selected, one over Europe and one over North America, with relative high NH3 columns.

The results are shown in Fig. 9. Intercepts, mean and median differences are all of the order of 1015 molec.cm−1
::

−2
:

or445

below. Regression slopes, calculated using iteratively reweighted least squares to remove the impact of outliers, are 0.97

and 1.05. While the scatter around the 1–1 lines is not negligible (with standard deviation of the differences around 3–4

·1015 molec.cm−1
::

−2), these numbers demonstrate the overall consistency of both retrieval approaches and do not indicate

a significant bias.
::::
Note

:::
that

:::
the

::::::
ANNI

:::::::
retrieval

::::::::
approach

::::
has

::::::::
numerous

::::::::::
advantages

::::
over

::::::
optimal

::::::::::
estimation,

::
as

:::::::::
discussed

::
in

::::::::::::::::::
Whitburn et al. (2016).

:
450

:::
The

:::
last

:::::::
detailed

:::::
global

:::::::::
validation

::
of

:::
the

::::
IASI NH3 ::::::

product
:::
was

:::::
based

:::
on

:
a
::::::::::
comparison

::
of

:::::::::::
ground-based

:::::
FTIR

::::::::::::
measurements

::
of NH3 ::::

with
:::
the

::::::::::
LUT-based NH3 :::::::

product,
:::::
where

::
a
::::
low

::::
bias

::::::
around

:::::
35%

::::
was

:::::
found

:::::::::::::::::::
(Dammers et al., 2016)

:
.
:::::
Since

:::::
then,

:::
two

::::::::::
independent

:::::::::
validation

::::::
studies

::::
have

:::::
been

:::::::::
conducted.

::::
One

:::::
study

:::::::::::::::
(Guo et al., 2021)

::::::::
compared

:::::
IASI

:::::
ANNI

:::
v3

::::
with

::
in

::::
situ

:::::::::::
measurements

:::
in

::::::::
Colorado,

:::::
U.S.

:::
and

::::::
found

:::::::::
regression

:::::
slopes

:::::::
ranging

:::::
from

::::
0.78

::
to

::::
1.1,

:::
and

:::::::::
intercepts

::
of

:::
the

:::::
order

:::
of

:
1
:::

to

:
2
:::::
·1015

:::::::::::
molec.cm−2.

::
A
:::::::

second
:::::
study

::::::::::::::::
(Wang et al., 2020)

::::::::
compared

:::::
IASI NH3 :::::::

columns
::::
with

:::::::
columns

::::::::
obtained

:::::
from

:::::
FTIR455

:::::::::::
measurements

:::
in

:::::
Hefei,

::::::
China.

::::::
Here,

:::::
mean

:::::::::
differences

:::::::
around

:::
3.5

:::::
·1015

:::::::::::
molec.cm−2

:::::
(IASI

:::::
being

::::::
lower)

:::::
were

:::::
found

::::
and

::::::::
regression

::::::
slopes

::::
close

::
to
::::
one.

::::::
Given

:::
the

:::::
results

:::
of

:::
the

::::::::::
comparison

::::
with

:::
the

::::::
optimal

:::::::::
estimation

:::::::
method,

:::
we

:::
do

:::
not

:::::
expect

::::
any

::::::::
significant

::::
bias

::
in

:::
v4

:::
for

:::::::
columns

:::::
above

::::::
1·1016

::::::::::
molec.cm−2

:::
in

::::::::::
comparisons

::::
that

::::::
correct

:::
for

:::
the

::::::
vertical

::::::
profile

::::::::::
assumption

::
of

::
the

::::::::
retrieval.

::
A

:::::::::::::
comprehensive

::::::::
validation

:::
of

:::
the

:::
v4

::::::
product

::
is
::::::::
foreseen

:::::
within

:::
the

::::::::::
framework

::
of

::::::
ESA’s

:::::
CCI+

:::::::::
precursors

:::
for

::::::
aerosol

:::
and

:::::
ozone

:::::
ECV

::::::
project,

::::
that

::::::
should

:::::::
confirm

:::
this,

:::
as

::::
well

::
as

:::::
assess

:::
the

:::::::::::
performance

::
of

:::
the

::::::::
algorithm

:::
on

:::
low

::::::::
columns.460

7 Uncertainties

7.1 Propagation of uncertainty

In previous ANNI versions, an estimated uncertainty σX̂ was calculated for each individual measurement X̂ via (Ku, 1966)

σ2
X̂
=
∑
i

(
∂X̂

∂pi

)2

σ2
pi
, (61)

with σpi the uncertainties of the different input parameters pi. This formula assumes uncorrelated uncertainties, but as this465

cannot always be justified, in ANNI v4, we switch to the more general (Tellinghuisen, 2001)

σ2
X̂
= JTSpJ , (62)

with Sp the error covariance matrix of the input parameters (with covariances Sp,ij = σpipj
) and J the Jacobian of the retrieval,

with components ∂X̂
∂pi

.

In the ANNI retrieval framework, the input parameters include the skin temperature, the surface pressure, the HRI, the470

surface emissivity, the zenith angle, the width and the peak of the Gaussian vertical NH3 profile, the temperature profile (15
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levels) and the water vapour profile (7 levels). After some preliminary analysis, it was concluded that only the correlations

between the uncertainties in the temperature profile cannot be neglected. We therefore employ a block diagonal covariance

matrix, block diagonal for the elements pertaining to the temperature profile, and diagonal for all other input parameters. As

for uncertainty on the vertical profile, this source of uncertainty is removed when applying averaging kernels. For this reason,475

uncertainties are reported with and without the vertical profile uncertainty, to be used according to whether or not AVKs are

applied.

7.2 Random and systematic uncertainties

In total, we report four types of uncertainty for each observation: random or systematic, and with or without the vertical pro-

file uncertainty included. Reporting random and systematic uncertainties separately , is a generally recommended practice480

(Boersma et al., 2004; Merchant et al., 2017; Sayer et al., 2020). Random uncertainties describe errors specific to a single mea-

surement, and assuming a normal distribution, these average out over many repeated measurements. Systematic uncertainties

are those that exhibit correlations in time or space, and are thus associated with more than one measurement. This type of

errors
::::
error can lead to biases in the measurement dataset. In ANNI v4, both random σrX̂ and systematic σsX̂ uncertainties are

calculated using Eq. (62) and estimates of the random and systematic uncertainties/covariances of the input parameters.485

Random and systematic uncertainties can be combined and averaged in different ways, according to the needs of the user. In

particular, for a given measurement X̂ , a total uncertainty estimate can be obtained as (Gomez-Pelaez et al., 2013)

σ2
X̂
= σ2

rX̂
+σ2

sX̂
. (63)

An average measurement uncertainty can be associated with an average X̄ of a series of n measurements X̂i as

σ2
X̄ = σ2

rX̄ +σ2
sX̄ (64)490

=
1

n2

n∑
i=1

σ

(
σrX̂i

n
::::

)2

rX̂i
+

1

n

(
n∑

i=1

σ
σsX̂i

n
::::

)2

sX̂i
. (65)

Note here especially the difference between n2 and n in the denominators. For the special case where all random and systematic

uncertainties are the same, we obtain

σ2
X̄ =

1

n
σ2
rX̄ +σ2

sX̄ , (66)

which tends to the expected σX̄ = σsX̄ for large n.495

7.3 Uncertainties of the input parameters

As most input parameters come without
:
an

:
uncertainty budget, let alone covariances, we made best-effort estimates of the

co(variance) based on the limited information that is available. For now, the same (co)variances were used for the near-real

time as for the reanalysed NH3 product. It is also important to note that the systematic uncertainties of the input parameters

vary according to the time and space scales that are considered (Boersma et al., 2004; Merchant et al., 2017; Sayer et al., 2020).500
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Temperature profiles, for example, may be more biased monthly than annually. Here, we estimate systematic uncertainties with

a typical L3 gridded data product in mind, i.e. for spatial scales of the order of one degree latitude/longitude or less, and for

time periods of the order of one month or less.

The (co)variances, summarized in Table 2, were determined as follows:

HRI By definition, the random uncertainty on the HRI equals one. We estimate a systematic uncertainty of 0.1 due to poten-505

tial and residual interferences (e.g. surface emissivity, VOCs). To account for potential biases in the spectroscopy and

generalized error covariance matrix, we add to this an additional 10% on the calculated HRI value.

Skin temperature Random and systematic uncertainties were set to 1.5 and 0.5 K respectively. These values are in line with

the difference between the IASI L2 skin temperature product and the dedicated neural network used for the reanalysis

product of ANNI (see Sect. 5).510

Emissivity For emissivity, which originates from the monthly climatology of Zhou et al. (2013), an uncertainty of 0.01 and

0.005 was assumed for respectively the random and systematic components.

Temperature profile Variances were set based on validation results of the IASI level 2 (Eumetsat, 2021): systematic uncer-

tainties of 1 K for the surface level and 0.5 K for the other levels; random uncertainties of 2 K for the surface level and

1 K for the other levels for land observations and 1 K for the surface level and 0.5 K for the other levels for ocean obser-515

vations. Covariance matrices were then built by appropriate scaling of correlation matrices. These were built, based on a

statistical analysis of the differences between collocated ERA5 and IASI L2 profiles. Correlation coefficients were set to

0.5 between neighbouring levels, and 0.25 between levels that are two levels apart. Above 10 km, no strong correlations

were observed, and the covariance was therefore assumed to be diagonal for these levels.

Water vapour profiles Relying again on the IASI level 2 validation report (Eumetsat, 2021), random uncertainties were set520

to 10 % below 3 km and 20% above. Systematic uncertainties were set to half these numbers.

Surface pressure A random and systematic uncertainty of 500 and 250 Pa was used.

NH3 profiles The uncertainties related to NH3 profile are characterized by uncertainties on the width and the peak of the

Gaussian shaped vertical profile. Random and systematic uncertainties of 200 and 100 m were used for both parameters.

Given the short lifetime of NH3 in the atmosphere, these are likely of the right order of magnitude. To obtain better525

estimates in the future, a thorough analysis using in situ measurements or modelled profiles would be desirable.

7.4 Uncertainty budget of NH3

It is useful, remembering the general form X̂
a
= HRI/SFa +B of the retrieval, to rewrite the propagation of uncertainty in

terms of the uncertainty of the nominator and denominator (see also Boersma et al. (2004); van Geffen et al. (2022)). Neglecting

24



Table 2. Estimated random and systematic uncertainties of the input parameters.

Component Random σr Systematic σs

HRI 1 0.1 + 10%

Surface temperature (K) 1.5 0.5

Emissivity 0.01 0.005

Temperature profile, land (K) 1 – 2 0.5 – 1

Temperature profile, sea (K) 0.5 – 1 0.5 – 1

Surface pressure (Pa) 500 Pa 250 Pa

Water vapour profile 10 – 20% 5 – 10%

NH3 profile peak altitude (m) 200 100

NH3 profile width (m) 200 100

the small dependence of the SF on the HRI, we obtain530

σ2
X̂
=

(
∂X̂

∂HRI

)2

σ2
HRI +

(
∂X̂

∂SF

)2

σ2
SF (67)

=
σ2

HRI

SF2 +
σ2

SF

SF2 (X −B)2. (68)

Taking into account both random and systematic uncertainties, we see from Table 2 that the uncertainty on the HRI has an

absolute (constant) and a relative (proportional to the value of the HRI) component, so that

σ2
X̂
=

σ2
abs,HRI

SF2 +
σ2

rel,HRI

SF2 +
σ2

SF

SF2 (X −B)2 (69)535

=
12 +0.12

SF2︸ ︷︷ ︸
σ2

abs

+

(
0.12 +

σ2
SF

SF2

)
(X −B)2︸ ︷︷ ︸

σ2
rel

. (70)

7.4.1 Absolute uncertainty contribution

The first term is in the optically thin limit independent of the HRI and thus the column, and solely depends on the scene

conditions:

σabs =
σabs,HRI

|SF|
=

√
1+0.12

|SF|
≈ 1

|SF|
. (71)540

It is this term that is used as part of the post-filter to determine whether there is enough intrinsic sensitivity (thermal contrast)

to make a valid measurement, i.e. one whose uncertainty is not completely overwhelmed by the instrumental noise. Currently,

the post-filter threshold is set to σabs < 1.5 · 1016 molec.cm−2. Note also that a scene-dependent detection threshold of the

measurements (typically taken as HRI>3), is conveniently expressed in terms of the absolute uncertainty as Xthres = 3σabs.
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Figure 10. Illustration of the absolute (left) and relative (right) components of the retrieval uncertainty. The top panels illustrate their

dependence on thermal contrast, the bottom panels show the normalized count. Data in this plot originates from IASI-B observations on 15

January, April, July and October 2021, morning overpass, land only and between 60° S and 60° N. The approximations from Eq. (72) and

Eq. (76) are in shown in black in the top panels.

The absolute uncertainty contribution is illustrated on the left panels of Fig. 10 for the IASI morning overpass (land ob-545

servations between 60° S and 60° N), as a function of thermal contrast (TC). As before, we define TC as the brightness

temperature of the surface minus the temperature at half the boundary layer height. The absolute uncertainty starts from around

1·1015 molec.cm−2 and increases as expected with decreasing thermal contrast, with a global median of 4·1015 molec.cm−1
::

−2.

Observing the inverse proportionality with thermal contrast, the following empirical formula can be used to obtain ballpark

estimates of the absolute uncertainty or sensitivity of the IASI NH3 retrieval (for positive thermal contrasts):550

σabs =
3.6 · 1016

TC
molec. K

cm2
(72)

The constants were determined from a fit of the data shown in Fig. 10. Expressed in terms of Q20 and Q80 quantiles the

estimated absolute retrieval uncertainty of IASI (mid-latitude, land, morning overpass) can also be summarized as

σabs = [2.5− 6.6] · 1015molec.cm−2. (73)
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7.4.2 Relative uncertainty contribution555

The term σrel is proportional to the column and hence expresses a relative uncertainty for fixed atmospheric conditions:

σrel =

√
0.12 +

σ2
SF

SF2 (X −B)≈ σSF

|SF|
(X −B), (74)

or

σrel

(X −B)
=

σSF

|SF|
. (75)

This term is illustrated on the right panels of Fig. 10. Again, we observe an inverse proportionality with thermal contrast, which560

can be approximated as

σrel =

(
0.07+

1.6K
TC

)
NH3. (76)

For typical morning land observations, the relative contribution to the uncertainty starts from around 14% (corresponding to a

TC of 20 K). Expressed in terms of Q20 and Q80 quantiles, the estimated relative retrieval uncertainty of ANNI (mid-latitude,

land, morning overpass) can be summarized as565

σrel = [19− 36]%NH3. (77)

8 Conclusions

In this paper, we presented v4 of the NH3 ANNI retrieval. The most important change is the introduction of averaging kernels,

which will greatly ease future model assimilation and comparisons with independent measurements or model output. Most

other changes to ANNI v4 contribute to the overall consistency of the product. An example is the incorporation of the tempo-570

rally consistent cloud flag. The improved way of calculating the HRI makes the product more robust across the different IASI

instruments and more temporally harmonious. Importantly, the HRI became also less sensitive to small errors in the forward

model related to the instrumental line shape function. Previous versions were biased low by some 15–20
:::::
10–20 % due to such

errors. Theoretically we can now exclude the existence of large biases of this sort. We also demonstrate this with an optimal

estimation experiment. In addition to the AVKs, we revised the uncertainty calculation and now provide better and more com-575

prehensive information on the expected error of the measurement. We also show how the retrieval uncertainty contains a part

proportional to the column and a part that is independent of the column. In the near future, the most important changes will

gradually be implemented for all the other tracers retrieved with ANNI (AVKs, the use of generalized covariance matrices and

the better treatment of uncertainties).

Data availability. The IASI-NH3 datasets are available from the Aeris data infrastructure (http://iasi.aeris-data.fr/NH3).580
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