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Abstract. Single layer nonprecipitating warm clouds are integral to Earth’s climate, and accurate estimates of cloud liquid 

water content for these clouds are critical for constraining cloud models and understanding climate feedbacks. As the only 10 

cloud-sensitive radar currently in space, CloudSat provides very important cloud profiling capabilities. However, a 

significant fraction of clouds are missed by CloudSat, because they are either too thin or too close to the earth’s surface. We 

find that the CloudSat 2B-CWC-RVOD product misses about 73 % of nonprecipitating liquid cloudy pixels, and about 63 % 

of total nonprecipitating liquid cloud water content, compared to coincident MODIS observations. Those percentages 

increase to 84 % and 69 %, respectively, if MODIS “partly cloudy” pixels are included. We develop a method, based on 15 

adiabatic parcel theory but modified to account for the fact that observed clouds are often subadiabatic, to estimate profiles 

of cloud liquid water content based on MODIS observations of cloud top effective radius and cloud optical depth combined 

with CALIPSO observations of cloud top height. We find that, for cloudy pixels that are detected by CloudSat, the resulting 

subadiabatic profiles of cloud water are similar to what is retrieved from CloudSat. For cloudy pixels that are not detected by 

CloudSat, the subadiabatic profiles can be used to supplement the CloudSat profiles, recovering much of the missing cloud 20 

water and generating realistic-looking merged profiles of cloud water. Adding this missing cloud water to the CWC-RVOD 

product increases the mean cloud liquid water path by 228 % for single layer nonprecipitating warm clouds. This method 

will be included in a subsequent reprocessing of the 2B-CWC-RVOD algorithm. 

1 Introduction 

Liquid clouds are a key part of the climate system. They have important influences on Earth’s radiative balance (Hartmann et 25 

al., 1992), the hydrological cycle, and on local and large-scale circulations (e.g., Ma et al., 1996). Low clouds reflect a large 

amount of incoming sunlight, without changing the amount of outgoing longwave radiation by very much. Because of this, 

changes in the extent and properties of low clouds have important climate feedback implications, and the representation of 

clouds has long been recognized as one of the most significant sources of uncertainty in global climate models (e.g., Cess et 

al., 1989; Stephens et al., 2010; Zelinka et al., 2016). Accurate estimates of liquid cloud water are needed for evaluating and 30 



 

2 
 

improving cloud models. Satellite datasets are well-suited to this purpose because they can provide near-global coverage 

using a consistent instrument. 

 To date, the only global-scale observations of the vertical profiles of liquid water content (LWC) of low-altitude 

liquid clouds are derived from the CloudSat satellite (Stephens et al., 2008), carrying the 94-GHZ Cloud Profiling Radar 

(CPR; Tanelli et al., 2008). These profiles provide utility for process studies, validation of model output, and as input for 35 

forward radiative transfer calculations of shortwave and longwave radiative heating profiles. For much of its lifetime (until 

2018), CloudSat was part of the A-Train constellation of satellites, a constellation that includes several other instruments 

capable of measuring cloud properties. For example, one of the instruments on the Aqua satellite is the Moderate Resolution 

Imaging Spectroradiometer (MODIS), which can passively measure various cloud optical properties (King et al., 1992).  

Meanwhile the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the CALIPSO satellite (Winker et al., 2009) 40 

can detect the presence and cloud top height of even very thin clouds, although its signal rapidly attenuates and so it does not 

possess the same profiling capabilities of CPR. Passive microwave radiometers, such as the Advanced Microwave Scanning 

Radiometer for EOS (AMSR-E) which is also on Aqua, are commonly used to estimate LWP; however, these instruments 

have large footprints that complicate direct, pixel-level comparisons with CloudSat and are sensitive to the liquid water path 

which is difficult to decompose into cloud and precipitation components (Lebsock and Su, 2014). 45 

 The CloudSat Radar-Visible Optical Depth Cloud Water Content Product, 2B-CWC-RVOD (Leinonen et al., 2016) 

provides CPR-based profiles of LWC, with MODIS observations of optical depth used as an additional constraint. One 

shortcoming of the 2B-CWC-RVOD algorithm (hereafter simply RVOD) is that it fails to account for clouds that are not 

detected by CPR. This can happen for two reasons. First, CPR’s surface clutter extends up to the third range bin above the 

surface, or about 750-1000 m (Tanelli et al., 2008). Clouds that are mostly or entirely in this part of the vertical column will 50 

be masked by clutter from the bright radar surface backscatter. Second, CPR has a minimum detectable reflectivity of about 

–30 dBZ. If the cloud droplets are not numerous or large enough to generate reflectivities of this magnitude (after averaging 

to the CPR range resolution), then RVOD will not generate LWC estimates for that cloud. The combination of these two 

effects results in a sampling bias, where the RVOD algorithm is weighted towards the thickest and highest liquid water 

content clouds. While it is not the main focus of our study, RVOD also has two important biases when precipitation is 55 

present. First, drizzle and raindrops are much more reflective than cloud drops so that the RVOD algorithm cannot 

accurately assign a cloud water content in the presence of precipitation. Second the algorithm cannot determine where the 

cloud base is so it assigns cloud water content to range bins that are beneath the cloud base where precipitation results in 

strong reflectivity values.  

 It has been noted (e.g., Christensen et al., 2013; Li et al., 2018; Lamer et al., 2020) that CloudSat misses a non-60 

trivial percentage of clouds, either because the clouds are within the radar’s surface clutter zone or because the reflectivities 

are below the radar threshold. This study attempts to quantify how much is missed, and then develops a method to “fill in” 

much of the missing cloud water mass using coincident observations from MODIS and CALIOP, which are more sensitive 

to these thin clouds. Our focus in this study is on nonprecipitating, single layer warm liquid clouds. While there are many 
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other types of clouds that are observed by CloudSat, this type of cloud is the most easily modelled by our proposed 

combination of CALIOP cloud top plus MODIS optical depth and effective radius. In addition, as mentioned above, these 

types of clouds have profound effects on Earth’s radiation budget. In section 2, we describe the data sources used in our 

study. In section 3, we develop a subadiabatic cloud model that we use to make LWC profile estimates where RVOD 

estimates are not available. In section 4, we calculate how much total cloud water from these types of clouds is missed by 70 

RVOD compared to MODIS and CALIOP, and in section 5, we evaluate the performance of the subadiabatic model. Section 

6 contains our conclusions. 

2 Data  

The data used in this study come from 3 main instruments: CPR, MODIS, and CALIOP. The specific data products used are 

detailed below. For our analysis, we consider 10 years of data, from 2007-2016, but only use days when all three instruments 75 

have valid data. This results in a total of 489,364,826 CloudSat profiles. In all cases, we use the R05 version of each product 

as obtained from the CloudSat Data Processing Center (DPC; https://www.cloudsat.cira.colostate.edu). 

2.1 CloudSat 

The CPR onboard CloudSat is a 94-GHz nadir-pointing radar which measures the amount of microwave radiation 

backscattered by hydrometeors as a function of distance between the satellite and the earth’s surface (Stephens et al., 2018). 80 

It has a minimum detectable reflectivity factor of about -30 dBZ, cross-track resolution of 1.4 km, along-track resolution of 

1.7 km, and vertical resolution of 480 m (sampled every 240 m). We use radar reflectivities and geolocation variables from 

the 2B-GEOPROF product (Marchand et al., 2008), and estimates of liquid water content and cloud droplet effective radius 

from the RVOD algorithm. 

RVOD retrieves cloud water and ice contents from CPR radar reflectivity observations combined with MODIS 85 

cloud optical depths. Since MODIS cloud optical depth is only available during the daytime, RVOD is a daytime-only 

product. RVOD is based on the optimal estimation framework (Rodgers, 2000). For each CloudSat pixel, the algorithm seeks 

to retrieve a profile of hydrometeors that is consistent with the observed CPR profile of radar reflectivity, the MODIS optical 

depth, and a priori assumptions. See Leinonen (2016) for full details about the algorithm; here we review only a couple 

assumptions that are relevant to this work. 90 

First, note that RVOD only retrieves a CWC value where the 2B-GEOPROF product indicates a cloud is present, 

even if the MODIS optical depth is greater than zero (indicating the likely presence of a cloud). In these cases, it is likely 

that there is a cloud, but that the cloud is either too low to be seen by CloudSat (it is hidden by radar surface clutter), too thin 

to be seen by CloudSat (the cloud droplets do not produce reflectivities above -30 dBZ), or both. Second, note that RVOD 

assumes that liquid cloud droplets follow a lognormal size distribution 95 
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where 𝑟  is the drop radius, 𝑟-  is the geometric mean radius, 𝑁.  is the total number concentration (assumed constant 

throughout the column for liquid clouds), and 𝜎/0- is the scale parameter, fixed at 0.38 based on Miles et al. (2000). For a 

lognormal size distribution, 𝑟- is related to the effective radius, 𝑟1, by Eq. (2): 

𝑟1 = 𝑟-exp,2.5𝜎/0-
#
0.                                 (2) 100 

We use Eq. (2) to convert from the 𝑟- reported in the RVOD files to the 𝑟1 that we compare against MODIS 𝑟1 in Section 4.  

2.2 MODIS 

The MODIS instrument is a spectroradiometer that captures data in 36 spectral bands ranging in wavelength from 0.4 um to 

14.4 um and at spatial resolutions ranging from 250 m to 1 km (Justice et al., 1998). We use MODIS data from the 

instrument onboard the Aqua satellite, which flew in formation with CloudSat as part of the A-train during the period of this 105 

study, providing near-coincident observations of clouds. Specifically, we make use of the MODIS-1KM-AUX product 

produced by the CloudSat Data Processsing Center (DPC). This dataset contains a subset of MODIS MYD06 retrieved cloud 

properties that are collocated with each CPR footprint. Data are provided at 1 km resolution, and we use the 1 km MODIS 

pixel whose center is closest to the center of the CPR footprint for each matchup. 

 MODIS retrieves cloud effective radius and cloud optical thickness simultaneously using the bispectral technique ( 110 

Nakajima and King, 1990; Platnick et al., 2003). In this method, a water absorbing band is combined with a nonabsorbing 

band (either 0.65, 0.85, or 1.2 𝜇m, depending on the surface type). There are three versions of the retrieval using either the 

1.6, 2.1, or 3.7 𝜇m MODIS channel as the absorbing channel in the bispectral calculation. For our standard analysis, we 

choose to use the 3.7 𝜇m version, as this channel is the most strongly absorbing and thus the most sensitive to cloud top 

properties (Platnick et al., 2003). However, we also test the effects of using the other versions in Sect. 5. MODIS-1KM-AUX 115 

also flags some pixels as being “partly cloudy” (hereafter referred to as PCL pixels), and gives retrieved 𝑟1 and 𝜏 for those 

pixels as well. In most cases, we include PCL pixels in our analyses, although in some cases we test the effect of withholding 

them. 

2.3 CALIOP 

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite is a two-wavelength (532 120 

nm and 1064 nm) polarization-sensitive lidar that provides vertical profiles of aerosols and clouds at 333 m horizontal 

resolution and 30 m vertical resolution (Hunt et al., 2009). In our study, we use the 2B-CLDCLASS-LIDAR product from 

the CloudSat DPC, which combines and collocates CPR and CALIOP measurements for the purposes for classifying clouds 
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(Sassen et al., 2008). We use the variable “Cloud Layer” to screen for single layer clouds, the variable “Cloud Layer Top” to 

determine the cloud top height, and the variable “Cloud Phase” to determine whether a cloud is liquid phase. 125 

2.4 Auxiliary information 

In order to use the subadiabatic model described in Sect. 3.1 to estimate cloud LWCs, we must assume a temperature and 

pressure for the cloud. We use data from the European Centre for Medium-Range Weather Forecasts (ECMWF) HRES (high 

resolution) forecast model. This data is collocated to the CPR profiles and provided in the DPC’s ECMWF-AUX product. 

From ECMWF-AUX we take the temperature and pressure at cloud top, as identified by 2B-CLDCLASS-LIDAR, use these 130 

values as input to the subadiabatic cloud model described in Sect. 3.1 and Appendix A. 

3 Methods 

As mentioned in the introduction, this study is concerned exclusively with single layer, nonprecipitating warm liquid clouds. 

To be classified as nonprecipitating, a given CloudSat pixel must not have any reflectivities above -15 dBZ anywhere in the 

column (not including surface clutter). This threshold is similar to the threshold used for the rain flag from 2C-PRECIP-135 

COLUMN (Haynes et al., 2009). That algorithm uses a “near-surface” reflectivity threshold of -15 dBZ, after accounting for 

attenuation. We use 2B-CLDCLASS-LIDAR to identify pixels that have exactly one cloud layer, are liquid phase, and have 

a cloud top below 5 km.  

Additionally, we screen out pixels which have cloud top temperatures colder than 273 K (according to the 

temperature profile from ECMWF-AUX and the cloud top height from 2B-CLDCLASS-LIDAR). This is done because 140 

RVOD classifies these clouds as mixed phase, even though the CALIOP observations suggest that the clouds are frequently 

composed of supercooled liquid. This scenario proves problematic for the RVOD algorithm. RVOD was primarily designed 

with liquid clouds in mind, and for any cloud colder than 273 K, the algorithm artificially partitions the total water path to be 

a mixture of liquid and ice that depends on temperature. The ice estimate comes from the 2C-ICE algorithm, and the result in 

many cases is an unrealistically low retrieved value of 𝑟1  for the water droplets. This is demonstrated in Fig. 1. This 145 

deficiency will be addressed in future releases of the RVOD by forcing the algorithm to assume liquid cloud droplets when 

CALIOP indicates the cloud is liquid phase. Here, we simply restrict our analysis to warm clouds that are unequivocally 

liquid. After all screening, we are left with about 10.8 % of all CloudSat pixels that are classified as nonprecipitating, single 

layer warm liquid clouds. This percentage is highly variable regionally, as explored further in Sect. 4 (and Fig. 3).  

3.1 Sub-adiabatic cloud model 150 

Where RVOD does not retrieve any cloud water, but CALIOP and MODIS both indicate the presence of a cloud, we can be 

fairly confident that such a cloud exists, but that it is either too thin or too low to be detected by the CPR. The general idea of 

our scheme is to use the MODIS measurements to estimate how much total cloud water is present in the column, and then 

use the cloud top height from CALIOP combined with some assumptions about vertical structure to apportion the cloud 
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water in the vertical. There are two classical approaches to this problem. The first is to assume that LWC is vertically 155 

homogenous (e.g., Stephens, 1978). The second is to assume that cloud water linearly increases from base to cloud top, 

while cloud droplet number concentration stays constant (e.g., Brenguier et al., 2003). This assumption corresponds to 

adiabatic growth of cloud droplets as they are lifted through the saturated air of the cloud. Both assumptions are convenient 

as they lead to tidy expressions for the LWP of a cloud as a function of cloud top droplet effective radius 𝑟1 and cloud optical 

depth 𝜏. These expressions have the form  160 

𝐿𝑊𝑃 = γ𝜌/𝑟1𝜏,                                               (3) 

where 𝜌/ is the density of liquid water and γ = 2/3 for the vertically uniform cloud and γ = 5/9 for the adiabatically stratified 

cloud (Wood and Hartmann, 2006). 

However, field studies have shown that real liquid clouds tend to fall somewhere between these two assumptions. 

They have LWCs that do increase from cloud base towards cloud top, but the rate of increase is less than that predicted by 165 

the adiabatic model (e.g., Brenguier et al., 2000; Rangno and Hobbs, 2005; Rauber et al., 2007; Min et al., 2012). Boers et al. 

(2006) was one of the first studies to lay out a framework for modelling the subadiabaticity of a cloud as a function of cloud 

depth. We use a simpler adjustment to the adiabatic model, first proposed by Wood et al. (2009), that is meant to account for 

entrainment, mixing, and other processes that tend to give actual clouds sub-adiabatic growth rates. In a fully adiabatic 

model, the LWC 𝑙 of a cloud would vary with height ℎ above cloud base according to Eq. (4): 170 

𝑙(ℎ) = 𝑐(𝑇, 𝑃)ℎ,                                               (4) 

where 𝑐(𝑇, 𝑃) is the moist adiabatic condensation rate at temperature 𝑇 and pressure 𝑃, given by Eq. (5): 

c(T, P) = 	𝜌23&
4&
5' (Γ6 − Γ7).                                (5) 

Here is 𝜌23&  is the air density of a fully saturated air parcel at temperature 𝑇 and pressure 𝑃, 𝑐8 = 1004 J/kg K is the specific 

heat of dry air at constant pressure, 𝐿9= 2.26 x 106 J/K is latent heat of vaporization of water, Γ6 = 9.8 K/km is the dry 175 

adiabatic lapse rate, and Γ7 is the moist adiabatic lapse rate at 𝑇 and 𝑃. Wood (2009) modifies Eq. (4) by introducing a 

scaling factor, 𝑧:: 

𝑙(ℎ) = c(T, P)ℎ
;(

;(<=
.                                 (6) 

With this formulation, shallow clouds tend to be closer to adiabatic than deeper ones. We use Eq. (6) in our subadiabatic 

model. In most cases we assume 𝑧: = 500 m, following in situ data from Ragno and Hobbes (2005), although we do test 180 

other values of 𝑧: in Sect. 5. 

 The liquid water content of a cloud droplet size distribution given by 𝑛(𝑟) is defined as 

 𝑙 = >
?
π𝜌/ ∫ 𝑟

?𝑛(𝑟)𝑑𝑟.                                 (7) 
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The effective radius is defined as 

𝑟1 = ∫&
)$(&)6&

∫&
%$(&)6&

.                                  (8) 185 

The extinction coefficient is given by  

𝑘1CD = ∫𝑄1CD𝜋𝑟
#𝑛(𝑟)𝑑𝑟,                                 (9) 

where 𝑄1CD is the extinction efficiency. Combining Eqs. (7-9) yields 

𝑘1CD =
?E*+,/
>F"&*

.                                        (10) 

The optical depth is the integral of this equation over the cloud depth H: 190 

𝜏 = ?E*+,
>F" ∫

/
&*
𝑑ℎG

: .                               (11) 

If one has estimates of 𝜏 and cloud top 𝑟1, then one can use Eqs. (6), (7), (8), and (11) to solve for 𝐻 and the profile of 𝑙(ℎ). 

The details of the inversion are given in Appendix A. It is using this procedure that we convert MODIS estimates of 𝜏 and 𝑟1 

into a modelled profile of cloud liquid water. The LWP is then the integral of 𝑙(ℎ) over the cloud depth. We note that the 

MODIS retrieval itself assumes a vertically uniform cloud in estimating 𝜏 and 𝑟1, which means that these estimates can be 195 

biased when the retrieval is applied to vertically inhomogenous clouds (Platnick, 2000). Saito et al. (2019) find that biases 

due to this effect are generally small for adiabatic clouds. Figure 2 shows a comparison of the subadiabatic, adiabatic, and 

vertically homogenous methods of distributing cloud water, for a cloud with a cloud top height of 1500 m, a cloud top 𝑟1 of 

15 𝜇m, and an optical depth of 29. It can be seen that, compared to the fully adiabatic model, the subadiabatic model yields 

clouds that are slightly deeper, with vertical gradients in LWC that are more gradual near the top of the cloud, lower 200 

maximum LWCs, and lower cloud droplet number concentrations. 

 The final step in creating subadiabatic profiles of LWC for comparison against RVOD is to average the resulting 

profiles to the resolution of CPR. To accomplish this, once we have solved for a profile of 𝑙(ℎ) as described above, that 

profile is run through a Gaussian-weighted moving average filter. The filter has a 6 dB window size of 480 m, corresponding 

to CPR’s range resolution. The filtered profile is then sampled every 240 m, at the center of each CPR bin.  205 

4 Comparisons between A-Train estimates of liquid cloud water 

In this section we compare estimates of single layer nonprecipitating warm (SLNPW) clouds from CPR, MODIS, and 

CALIOP. We first consider estimates of cloud frequency, and then consider estimates of the total amount of water present in 

these clouds. 
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4.1 Cloud Frequency 210 

Let us first quantify how often CloudSat pixels have retrieved RVOD and MODIS cloud optical properties associated with 

them. We note that MODIS in particular reports a significant number of cloudy pixels with no associated cloud properties 

from the optical properties algorithm. It is clear when looking at the co-located data that CloudSat and MODIS both fail to 

report cloud properties for a significant portion of the SLNPW clouds that are seen by CALIOP, but also that MODIS 

captures many more of these clouds than does CloudSat. This can be seen in Figure 3, which shows a map of the fraction of 215 

CloudSat pixels that are identified as containing SLNPW clouds by each of these satellites. From all of the maps, it is clear 

that the SLNPW cloud fraction is greatest in the subtropical areas to the west of the continents. These are areas known for 

commonly having extensive stratocumulus cloud decks (Klein and Hartmann, 1993). According to RVOD, these areas only 

have SLNPW clouds 10-15 % of the time, while MODIS reports cloud properties closer to 25 % of the time, or up to 35 % 

of the time if partly cloudy (PCL) pixels are included. Outside of these areas where stratocumulus clouds are common, the 220 

detection percentages are even worse. Overall, for all SLNPW clouds detected by CALIOP, only 6 % are detected by 

RVOD, 22 % detected by MODIS, and 37 % detected by MODIS if PCL pixels are included. 

 Why are these CALIOP-detected clouds being missed by CloudSat? One possibility that we considered was that 

RVOD was missing these clouds because they are too close to the surface, and thus masked by surface clutter in the CPR 

reflectivities. However, Figure 4 demonstrates that this is only part of the explanation. This figure shows the fraction of 225 

lidar-detected SLNPW clouds that are detected by CloudSat and MODIS, as a function of cloud top height. Sure enough, 

clouds with tops below 1 km are almost never detected by CloudSat, but even clouds with higher tops have detection 

percentages only between 10-20 %. Meanwhile, MODIS detects these clouds around a third of the time (or near 40 % 

including PCL pixels), without too much of a dependence on cloud top height. The higher MODIS detection percentages for 

cloud top heights below 500 m are likely an artifact of the small sample size of clouds that are that shallow, while the small 230 

bump in detection percentages at cloud top heights near 1500 m is likely due to the fact that this is around the typical depth 

of the boundary layer over the oceans, where a lot of the thickest SLNPW clouds tend to top out. 

4.2 How much cloud water is missed by RVOD?  

From the previous section, it is clear that RVOD fails to detect a majority of SLNPW clouds. However, the clouds that are 

missed are likely to be particularly thin, since they do not generate large enough radar reflectivities to be seen by CPR. Is the 235 

total amount of liquid cloud water that is missed by RVOD significant? Once again, the answer is yes. The average SLNPW 

cloud LWP, averaged over all CloudSat observations (that is, including observations where there is no cloud or the cloud is 

not a SLNPW cloud), is only 5.4 g m-2 for RVOD, compared to 14.4 g m-2 for MODIS (retrieved using our subadiabatic 

model) or 17.5 g m-2 for MODIS including PCL pixels. Figure 5 shows the cumulative distribution of these averages as a 

function of cloud top height. Once again it is clear that, while a significant portion of the missing cloud water comes from 240 

clouds with tops below 1 km, there is a large gap between RVOD and MODIS cloud water even for cloud top heights above 
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this level (i.e., the lines in Figure 5 continue to diverge). Figure 6 plots the spatial distribution of the missing cloud water. 

Unsurprisingly, the areas of the world where RVOD misses the most SLNPW cloud water overlap heavily with where 

SLNPW cloud fractions are highest. It should be noted that these estimates of missing cloud water do not include the water 

in the clouds that CALIOP sees but MODIS does not, as we do not have independent estimates of LWP for these clouds that 

are detected only by CALIOP. 250 

5 Augmenting CloudSat LWC profiles using information from MODIS and CALIOP 

We have shown that the CloudSat radar (in particular, the RVOD retrieval algorithm) misses a lot of liquid cloud water that 

is seen by MODIS. It is desirable to augment the RVOD profiles of cloud water with estimates from MODIS in areas where 

MODIS detects a cloud but RVOD doesn’t. These MODIS-derived profiles are likely to be less accurate than the CloudSat 

derived ones (because they are not constrained by radar observations), but are nonetheless much more useful for model 255 

evaluation than assuming that all of these areas of thin clouds and completely free of cloud water, as RVOD currently does. 

 We first test the reliability of the subadiabatic cloud model by constructing profiles of LWC for all SLNPW pixels 

in our dataset that are seen by RVOD. The profiles are generated using MODIS cloud top 𝑟1 and 𝜏 and CALIOP cloud top 

height, according to the procedure described in Section 3. Then we compare these subadiabatic estimates of liquid cloud 

water against the RVOD estimates for the same pixels. Figure 7 shows RVOD estimates of LWP, column-maximum LWC, 260 

and cloud top 𝑟1 alongside the corresponding estimates from the subadiabatic model. There is good agreement between the 

two methods, especially when it comes to the integrated LWP estimate. Note that the LWP agreement is better for the 

subadiabatic model than it would be if we used the standard LWP estimates included in the MODIS-1KM-AUX data files, as 

these assume a vertically uniform profile of cloud water. There is decent agreement when it comes to the profiles of LWC as 

well; however, the subadiabatic model tends to create clouds that are slightly less thick than the RVOD profiles suggest. A 265 

sign of this is seen in the distributions of column-maximum LWC shown in Fig. 7. The maximum LWC from the 

subadiabatic model tends to be slightly higher than the maximum from RVOD, indicative of a thinner cloud with a sharper 

gradient in LWC. Nevertheless, the modelled clouds are still thicker than they would be if we used the adiabatic model to 

distribute cloud water. Finally, the MODIS 𝑟1 estimates tend to be a bit larger than the estimates of RVOD, a finding that has 

been reported in other studies as well (Zhang and Platnick, 2011; Painemal and Zuidema, 2011). 270 

5.1 Case Studies 

Two case studies illustrate the usefulness and potential shortfalls of the subadiabatic model for filling in profiles of LWC in 

areas where RVOD misses clouds. The first case is shown in Figure 8, and comes from 1 February 2007, when the A-train 

observed a deck of low clouds off the west coast of Chile. According to our screening criteria, the entire segment of 

observations shown in Fig. 8 consists of single layer nonprecipitating warm clouds, with CALIOP cloud top heights between 275 

1-2 km. The fact that clouds are present are confirmed by the MODIS true color image shown in panel (a). The subadiabatic 

model yields LWP estimates that are very similar to RVOD for the pixels that CloudSat sees, as seen in panel (b). However, 
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RVOD misses over half of the cloudy pixels. Most of these missed pixels have LWPs (as determined by the subadiabatic 

model) smaller than around 75 g m-2. Panels (c) and (d) show the profiles of retrieved LWC from both RVOD and the 

subadiabatic model. For the clouds that are seen by CloudSat, the cloud depths from the subadiabatic model (in terms of 

number of radar bins) are similar to the cloud depths from RVOD. However, the modelled liquid water content tends to be 

slightly more concentrated in the top half of the cloud for the subadiabatic model. Perhaps the biggest benefit of the 285 

subadiabatic model estimates is that it allows us to created merged LWC profiles, as demonstrated in panel I. In the merged 

model we use the RVOD-estimated profile of LWC where available but, for columns that have no RVOD retrieval, use the 

estimate from the subadiabatic model instead. For this case, the merging process creates a smooth and very plausible-looking 

thin layer of liquid cloud water, with no sharp discontinuities at the edges of the clouds that are thick enough to be detected 

by RVOD. 290 

 The second case comes from the Indian Ocean on 2 January 2007, and is shown in Figure 9. This case includes 

clouds that are slightly higher in altitude, and includes some pixels that are flagged as precipitating. Once again, as indicated 

by the infrared brightness temperatures, this entire scene consists of clouds, but RVOD detects only about half of the cloudy 

pixels. For the thinner, nonprecipitating clouds, there is good agreement between the RVOD and subadiabatic model 

estimates of liquid water path (for the clouds that are detected by RVOD). However, where rain is present, the subadiabatic 295 

model yields lower estimates of LWP than RVOD. This is not surprising, as the radar reflectivity is dominated by the larger 

precipitation drops, whereas the MODIS observations are primarily sensitive to the smaller cloud drops. For a precipitating 

cloud, the radar reflectivity will be maximized lower in the column, as the larger drops grow by coalescence and precipitate 

out of the base of the cloud. The cloud depths from RVOD are significantly complicated by the fact that precipitation 

particles dominate the CPR radar return, as discussed in the introduction, and are likely too thick. The merged LWC model, 300 

which in this case uses the subadiabatic model estimate for pixels flagged as precipitating as well as pixels with no cloud 

retrieved from RVOD, still performs well in filling in the gaps between CloudSat-detected clouds. However, there are some 

discontinuities in the cloud thickness for the precipitating regions, which probably represents residual influence from drizzle 

drops that do not quite meet our -15 dBZ threshold. In the future, we plan to transition precipitating pixels’ cloud water 

content to the subadiabatic model and have the radar derive the precipitation water content following Lebsock and L’Ecuyer 305 

(2011). For the time being we emphasize that pixels that are identified as precipitating are likely to have water contents 

which are too high. 

5.2 VOCALS Cross Section Analysis 

Next, we explore the performance of RVOD and the subadiabatic model in detecting and estimating profiles of liquid cloud 

water in an area of the world dominated by a persistent marine stratocumulus cloud deck. The VAMOS Ocean-Cloud-310 

Atmosphere-Land Study (VOCALS) was an international research program focused on the improved understanding and 

modelling of the southeastern Pacific climate system (Mechoso et al., 2014). As part of VOCALS, instrumented moorings 

were installed near 20° S, 85° W and 20° S, 75° W (Colbo and Weller, 2007, 2009). Many previous studies of stratocumulus 
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clouds in this region have thus focused on the 20° S parallel (e.g., Serpetzoglou et al., 2008; Zuidema et al., 2009). For our 

purposes, we cut a cross section centered on 20° S from 90° W to 70° W and call this the “VOCALS” cross section. All     

A-train observations included in our dataset and within ±5° of 20° S are binned in two degrees wide longitude bins for 

plotting in Figures 10 and 11. 

 Figure 10 shows the fraction of the time each CPR bin along the VOCALS cross section contains a single layer 320 

nonprecipitating warm cloud, as detected by CALIOP, RVOD, or the merged model. As before, the merged model uses the 

RVOD LWC profiles for clouds detected by RVOD, but adds the subadiabatic profiles for clouds not seen by RVOD. In 

some bins, the SLNPW cloud fraction from CALIOP is near 80 %, reiterating just how prevalent those types of clouds are in 

this area. The CALIOP plot also shows that the cloud heights tends to increase as one moves further away from the coast 

(i.e., east to west), consistent with the growth of the marine boundary layer as it advects over warmer sea surface 325 

temperatures (Krueger et al., 1995). RVOD alone detects only a small portion of these SLNPW clouds, and it particularly 

struggles to detect clouds close to the coast, which tend to be lower and thinner. Using the merged model greatly improves 

SLNPW cloud detection, even though a lot of clouds that are seen by CALIOP are still missed. The gains are especially 

striking below 1 km and in the eastern part of the domain. 

 Figure 11 shows a similar series of plots for the VOCALS cross section, but looking at SLNPW cloud liquid water 330 

content instead of cloud fraction. Because CALIOP alone does not give LWC estimates, only estimates from RVOD and the 

merged model are compared. The average cloud liquid water contents from the merged model are between 0.01 and 0.02 g 

m-3 larger than from the RVOD algorithm. Note that those values come from averaging over all pixels, not just pixels that 

contain SLNPW clouds. Similar to Fig. 10, we see that the largest differences between the merged model and RVOD occur 

closer to the coast, where the clouds tend to be lower. 335 

5.3 Sensitivities and Uncertainties 

The subadiabatic LWC profile derived from MODIS observations of 𝑟1 and 𝜏 depends both upon which MODIS absorbing 

channel is used in the bispectral technique, and the value of the scaling factor, 𝑧:, used to describe the shape of the vertical 

profile. To explore the effect of these choices, we calculated SLNPW cloud LWC profiles from the year 2016 using nine 

different combinations of MODIS channel and scaling factor. Specifically, we tested using the 1.6, 2.1, and 3.7 𝜇m MODIS 340 

channels with 𝑧: equal to either 100, 250, or 500 m. The mean and standard deviation of several relevant derived cloud 

parameters for each of the nine experiments are given in Table 1. The 1.6 𝜇m MODIS channel misses about 50 % of the 

SLNPW clouds that are detected by the 2.1 and 3.7 𝜇m channels. This is mostly due to the fact that several of the 1.6 𝜇m 

MODIS detectors on Aqua are inoperable (K. Meyer, personal communication, 2023). For pixels which are detected by all 

MODIS channels, using a smaller wavelength channel tends to give wider distributions of 𝑟1 and N, and a slightly larger 345 

LWP, on average. For 𝑧:, using smaller values gives larger cloud depths, smaller number concentrations, slightly higher 

liquid water paths, and lower maximums in LWC. The effect is much more pronounced when comparing 𝑧: = 100 m to 

𝑧: = 250 m than when comparing 𝑧: = 250 m to 𝑧: = 500 m. 
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 We can use these sensitivity tests to generate a crude estimate of the uncertainty inherent in the cloud liquid water 

paths derived from the subadiabatic model. We define the fractional uncertainty of each cloudy pixel using Eq. (12): 350 

𝜖 = H-.+'H-/0
H1*2,

,                                             (12) 

where 𝑊72C is the maximum LWP estimated from the 9 sensitivity experiments, 𝑊73$ is the minimum LWP, and 𝑊I1JD is 

our best estimate, defined to be the estimate of the LWP using the 3.7 𝜇m MODIS channel and 𝑧: = 500 m (i.e., the version 

used in the rest of this paper). The median fractional uncertainty in the LWP for all SLNPW cloudy pixels is 0.38, with a 25th 

percentile value of 0.214 and a 75th percentile value of 0.666. Figure 12 shows that this uncertainty tends to be smallest 355 

(typically less than 0.3) in the areas of the world where the single layer nonprecipitating warm clouds are most prevalent. 

This represents the typical uncertainty in the LWP retrieved at each pixel; the uncertainty in the mean LWP is considerably 

less. As Table 1 shows, the lowest estimate for the mean SLNPW LWP from the 9 experiments is 53 g m-2 while the highest 

estimate is 62 g m-3, a fractional uncertainty of about 0.17. 

6 Conclusion 360 

Single layer, nonprecipitating warm clouds make up about 11 % of all A-train pixels in our dataset, including a prevalence 

above 75 % over key areas of the globe dominated by stratocumulus cloud decks. Given the radiative importance of these 

clouds, it is troubling that the current RVOD product fails to detect many of these clouds. Globally, our analysis indicates 

that greater than 90 % of all CloudSat pixels which at least partially contain a single layer nonprecipitating warm cloud 

(according to CALIOP) have no cloud water content in the RVOD product. Performance is better, but still problematic, over 365 

the stratocumulus cloud decks. While MODIS also misses many of these thin clouds, it finds about 6 times as many 

CloudSat pixels containing SLNPW clouds (if PCL pixels are included). 

 This creates an opportunity to leverage coincident daytime MODIS observations in order to augment RVOD 

estimates of SLNPW cloud water. While it is common to use MODIS estimates of 𝑟1 and 𝜏 to estimate cloud liquid water 

path, this study is novel in the way that profiles of cloud liquid water content are generated. Instead of assuming a vertically 370 

homogeneous or adiabatically stratified cloud, we assume a subadiabatic cloud model that, when combined with CALIOP 

estimates of cloud top height, generates a full LWC profile. That said, our method still produces estimates of liquid water 

path. One of the more striking results of the study is that, when considering only cloudy pixels that are seen by RVOD, the 

RVOD and subadiabatic model estimates of LWP agree extremely well. This allows us to feel more confident in extending 

the method to produce profiles of LWC for clouds that are too low or too thin to be detected by RVOD and to a lesser extent 375 

to clouds which are precipitating. The case studies that we have presented indicate that when we merge the two methods; i.e., 

the heritage RVOD algorithm combined with the subadiabatic model for pixels where RVOD does not see a cloud, we obtain 

smooth and realistic-looking curtains of cloud liquid water content. 

 We intend to include these merged LWC profiles in the next reprocessing of RVOD that will be produced when the 

full CloudSat dataset is reprocessed at the end of the mission towards the end of 2023. These merged profiles could be useful 380 
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for other products as well, such as the CloudSat FLXHR-Lidar product (Henderson et al., 2013). This product currently uses 

RVOD profiles of LWC where available but uses climatological averages for LWC and 𝑟1 where CALIOP detects a cloud 

but RVOD does not. This study provides a better method for assigning LWC based on actual MODIS observations and 

providing vertically resolved inputs including a physically plausible cloud base to the radiative transfer model. 

 There are several limitations to our method that must be mentioned. For one, it does not account for clouds that are 385 

missed even by MODIS. In these cases, it may be possible to use the attenuated backscatter and/or the path integrated 

attenuation from CALIOP to constrain the cloud optical depth and with the assumption of a cloud effective radius the 

method might be extended to more pixels. Since this method relies upon measurements at near-visible wavelengths from 

MODIS, it can only be used during the daytime (this is also a limitation of the existing RVOD algorithm). We have also not 

considered precipitating clouds, multi-layered clouds, or clouds with ice in them. These types of clouds all create different 390 

kinds of uncertainties for LWC retrievals. It is also worth noting that the inversion method derived here, which includes a 

vertically varying subadiabaticity, influences the derived cloud droplet number concentration in addition to the LWC profile. 

This sensitivity deserves future study in its own right. There are a large number of papers that use an adiabatic or 

subadiabatic model to derive cloud droplet number (see Grosvenor et al., 2018, and references therein). 

 Finally, this method of partitioning cloud LWC will be relevant to future cloud observing satellite missions such as 395 

EarthCARE (Illingworth et al., 2015) and NASA’s planned Atmosphere Observing System (AOS). Both missions will 

combine a cloud-sensitive radar with a lidar and MODIS-like instruments. EarthCARE’s radar is projected to have better 

sensitivity (-35 dBZ) than CPR, but will still likely miss some thin and/or low liquid clouds (Lamer et al. 2020). Meanwhile 

AOS’s sensitivity is still being determined but is likely to be less sensitive than CPR. In both cases, the method presented 

here could be used to supplement LWC profile estimates. 400 

Appendix A 

Here we describe how we invert MODIS estimates of 𝜏 and cloud top 𝑟1 to obtain a profile of cloud liquid water content, 

𝑙(ℎ), using the assumptions of the sub-adiabatic model outlined in Sect. 3.1. As derived in Martin et al. (1994) and 

elsewhere, the effective radius of a droplet distribution can be related to the liquid water content 𝑙 and total droplet number 

concentration 𝑁 (assumed to be constant throughout the cloud) by Eq. (A1): 405 

𝑟1? =
/(=)

>
?K LF"M!

	,                              (A1) 

where k relates the effective radius to the volume mean radius (𝑘 = &')

&*)
) and is assumed to be equal to 0.8 in accordance with 

Grosvenor et al. (2018). Using the expression for 𝑙(ℎ) given in Eq. (6), and evaluating at cloud top, we arrive at Eq. (A2): 

𝑟1(𝐻) = 	 O
?;(4G

>LF"M!(;(<G)P
N ?⁄

.                             (A2) 
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Meanwhile, substituting our expressions for  𝑙(ℎ) and 𝑟1 given in Eqs. (6) and (A1), respectively, into the expression for 𝜏 

given in Eq. (11) yields the relation 

𝜏 = Q
?4
>F"R

# ?⁄
𝑄1CD𝜋N ?⁄ (𝑘𝑁)N ?⁄ ∫Q

;(
;(<=

ℎR
# ?⁄

𝑑ℎ .                     (A3) 

For positive ℎ and 𝑧:, the integral on the right hand side of Eq. (A3) is given by  

∫Q
;(

;(<=
ℎR

# ?⁄
𝑑ℎ = 	 ?

P
ℎP ?⁄ #FN Q

#
?
, P
?
, Q
?
, − =

;#R ,                     (A4) 415 

where 2F1 is the hypergeometric function. Substituting Eq. (A4) into Eq. (A3) and evaluating from cloud base to cloud top 

gives the following expression for optical depth: 

𝜏 = ?E*+,
P Q

?4
>F"R

# ?⁄
(𝑘𝜋𝑁)N ?⁄ 𝐻P ?⁄ #𝐹N Q

#
?
, P
?
, Q
?
, − G

;#R.                     (A5) 

Now, Eqs. (A2) and (A5) form a system of two equations with two unknowns, 𝑁 and 𝐻. However, there is no analytical 

solution. Instead we must numerically search for a combination of (𝑁,𝐻) that satisfies both conditions.  420 

We do this by first using Eqs. (A2) and (A5) to directly calculate 𝑟1(𝐻) and 𝜏 for narrowly spaced values of 𝑁, 𝐻, 𝑐, and 

𝑧:. The values used are given in Table A1. Let this table of values be known as lookup table 1 (LUT_1). Next, we create a 

second pre-calculated lookup table of (𝑁,𝐻) given 𝑟1(𝐻), 𝜏, 𝑐, and 𝑧:. We shall call this LUT_2. For LUT_2 we use the 

same selection of values for 𝑐 and 𝑧:, and evenly spaced values of 𝑟1and 𝜏	(see Table A1). For each (𝑟1, 𝜏) combination at 

given 𝑐 and 𝑧:, we search LUT_1 for the combination of (𝑁,𝐻) that minimizes the sum of the absolute percentage errors in 425 

𝑟1and 𝜏. Finally, when performing inversions on MODIS observations of 𝑟1	and 𝜏, we linearly interpolate LUT_2 to yield 

estimates of 𝑁 and 𝐻. In very rare cases, this process yields a cloud depth 𝐻 that is greater than the cloud top height (that is, 

physically impossible). In these cases, we iteratively increase the value of the assumed condensation rate (𝑐) by 1 percent 

and re-compute 𝐻, repeating this process until we arrive at a value of 𝐻 that is less than the cloud top height. 

In Fig. (A1) we show the values of 𝑁 and 𝐻 retrieved by this method for a range of 𝑟1	and 𝜏. Here we assume 𝑧: = 500 430 

m with a temperature of 280 K and pressure of 900 hPA (corresponding to c = 0.002 g m-4). We also show the difference in 

retrieved 𝑁 and 𝐻 compared to assuming a fully adiabatic cloud. For some (𝑟1, 𝜏) combinations, the differences are small. 

However, for clouds with larger 𝜏, the subadiabatic model yields deeper clouds with lower number concentrations. The 

differences in 𝐻 are greatest for clouds with large 𝑟1, and the differences in 𝑁 are greatest for clouds with small 𝑟1. 

Code availability 435 

All code used to produce the results presented in this study is available from the Zenodo repository 

(https://doi.org/10.5281/zenodo.7706791, Schulte, 2023). 
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 600 
Figure 1: Histograms of cloud top effective radius retrieved by RVOD, for cloud top temperatures less than or equal to 273 K 
(blue) or warmer than 273 K (red). CloudSat pixels from 2007-2016 that are classified as single layer liquid clouds from 2B-
CLDCLASS-LIDAR and have no CPR reflectivities above -15 dBZ in the column are included. Cloud top height comes from 2B-
CLDCLASS-LIDAR and the temperature at that height is taken from ECMWF-AUX. 
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Figure 2: Profiles of (a) liquid water content and (b) cloud droplet effective radius for a cloud with an optical depth of 29 and a 
cloud top effective radius of 15 𝝁m. Each profile assumes a different vertical distribution of cloud water. The blue profiles use the 
subadiabatic model described in the text (with z0 = 500 m), the red profiles assume adiabatic growth of cloud droplets from base to 
cloud top, and the gold profiles assume a vertically homogeneous cloud with the same cloud depth as the adiabatic cloud. LWP is 610 
the liquid water path of each cloud, and N is the cloud droplet number concentration (assumed constant throughout the cloud in 
each case). 
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 615 
Figure 3: Fraction of all CloudSat pixels that are identified as cloudy by RVOD, CALIOP, MODIS, or MODIS (including “partly 
cloudy” pixels), and that are further identified to be single layer nonprecipitating warm (SLNPW) clouds, according to the 
screening procedures laid out in the text. The bottom two panels show the difference in SLNPW cloudy pixels between RVOD and 
MODIS (with and without partly cloudy pixels included).  

 620 
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Figure 4: Fraction of all CALIOP-detected single layer nonprecipitating warm clouds that are detected by RVOD, MODIS, or 
MODIS (including “partly cloudy” pixels), as a function of cloud top height.  625 



 

24 
 

 
Figure 5: Cumulative distributions of retrieved single layer nonprecipitating warm (SLNPW) cloud liquid water path, for RVOD, 
MODIS, and MODIS (including “partly cloudy” pixels), as a function of cloud top height. The MODIS estimates come from our 
subadiabatic model. For each curve the numerator is the sum of the LWPs for all SLNPW pixels with cloud top heights up to the 
value given on the x-axis, while the denominator is always the total number of SLNPW pixels in the dataset.  630 
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Figure 6: Average single layer nonprecipitating warm cloud liquid water path (SLNPW CLWP) retrieved from the 
MODIS+CALIOP subadiabatic model, subtracted from the average SLNPW CLWP retrieved by RVOD. In both cases the 
denominator in the average is all CloudSat pixels (regardless of cloudiness), but only SLNPW clouds are considered in the 635 
numerator. 
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Figure 7: (Left) Distributions of (a) cloud liquid water path, (c) column maximum cloud liquid water content, and (e) cloud top 
effective radius, as retrieved by either RVOD or our combined MODIS + CALIOP subadiabatic model, for all single layer 640 
nonprecipitating warm clouds with valid RVOD retrievals. (Right) Density plots comparing RVOD values of the three variables to 
the values retrieved from the MODIS + CALIOP model. 
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Figure 8: A nonprecipitating case study from 1 Feb 2007, CloudSat granule 4069. (a) MODIS visible imagery, with the CloudSat 645 
ground track overlain on top. (b) Retrieved liquid water path from RVOD (blue) and the MODIS subadiabatic model (red). (c) 
Retrieved liquid water content from RVOD. (d) Retrieved liquid water content from the MODIS subadiabatic model. (e) Merged 
liquid water content, where the subadiabatic model is used for all pixels where RVOD has no retrieved liquid water.  
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Figure 9: A case study with precipitation, from 2 Jan 2007, CloudSat granule 3626. The panels follow the convention introduced in 
Fig. 8. In (b), the blue dots indicate CloudSat pixels for which the maximum reflectivity is greater than -15 dBZ (indicating the 
possibility of precipitation). Note that the RVOD liquid water content (Panel C) includes contributions from both the cloud and 
precipitation categories in the RVOD output. 655 
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Figure 10: Percentage of all pixels that are classified as nonprecipitating warm clouds by either RVOD (a), the RVOD/MODIS 
merged model (b), or CALIOP (c), for the VOCALS cross section defined in the text. The cloud fractions are stratified by 
longitude (in 2 degrees bins) and height (in 250 m bins). Panel (d) shows the difference between the merged model and RVOD. 660 
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Figure 11: Average single layer nonprecipitating warm cloud liquid water content retrieved by (a) RVOD and (b) the 
RVOD/MODIS merged model, stratified by longitude and height for all observations of the VOCALS cross section. Panel (c) 665 
shows the difference between the merged model and RVOD. 

 

Experiment 

SLNPW 
cloud 

detection 
% 

Mean 
(SD) 

Effective 
Radius 
𝒓𝒆 [𝝁m] 

Mean 
(SD) 

Cloud 
Thickness 

H [m] 

Mean (SD) 
Number 

Concentration 
N [cm-3] 

Mean (SD) 
Liquid 
Water 

Path LWP 
[g m-2] 

Mean (SD) 
Column Max. 
Liquid Water 

Content 
LWC [g m-3] 

𝜆 = 3.7𝜇m, z0 = 500m 

𝜆 = 3.7𝜇m, z0 = 250m 

𝜆 = 3.7𝜇m, z0 = 100m 

57.7 % 

57.7 % 

57.7 % 

12.1 (3.8) 

12.1 (3.8) 

12.1 (3.8) 

135 (84) 

151 (104) 

203 (175) 

167 (191) 

145 (164) 

104 (116) 

53 (62) 

54 (64) 

57 (67) 

0.16 (0.17) 

0.15 (0.16) 

0.14 (0.11) 

𝜆 = 2.1𝜇m, z0 = 500m 

𝜆 = 2.1𝜇m, z0 = 250m 

𝜆 = 2.1𝜇m, z0 = 100m 

53.6 % 

53.6 % 

53.6 % 

12.7 (4.2) 

12.7 (4.2) 

12.7 (4.2) 

139 (86) 

156 (108) 

211 (181) 

147 (154) 

127 (130) 

91.2 (92) 

56 (64) 

57 (66) 

60 (69) 

0.16 (0.17) 

0.16 (0.15) 

0.14 (0.11) 

𝜆 = 1.6𝜇m, z0 = 500m 

𝜆 = 1.6𝜇m, z0 = 250m 

𝜆 = 1.6𝜇m, z0 = 100m 

25.4 % 

25.4 % 

25.4 % 

13.2 (5.9) 

13.2 (5.9) 

13.2 (5.9) 

142 (92) 

160 (115) 

217 (192) 

184 (237) 

162 (208) 

121 (160) 

59 (68) 

60 (70) 

62 (73) 

0.18 (0.21) 

0.17 (0.18) 

0.15 (0.12) 

Table 1: Single layer nonprecipitating warm cloud detection percentage, plus the mean values of 𝒓𝒆, H, N, LWP, and column max 
LWC (with the standard deviations in parentheses), for each of the nine versions of the subadiabatic MODIS model described in 
the text. Each version uses a different combination of MODIS channel wavelength and scaling parameter z0. 670 
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Figure 12: Map of the median fractional uncertainty in the liquid water path estimate of all single layer nonprecipitating warm 
clouds contained within each latitude/longitude bin. The fractional uncertainty is based on 9 sensitivity tests using different 
MODIS channels and different values of z0 and is described further in the text. Only bins with greater than 50 SLNPW pixels are 675 
included. 
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Parameter Look-up Table(s) Values Used 

Droplet number concentration (N) 

Cloud thickness (H) 

Cloud top effective radius (𝑟1) 

Cloud optical depth (𝜏) 

Adiabatic condensation rate (c) 

Scaling parameter (z0) 

LUT_1 

LUT_1 

LUT_2 

LUT_2 

LUT_1, LUT_2 

LUT_1, LUT_2 

100 logarithmically spaced values from 1 to 10,000 cm-3 

10, 20, 30, …, 500; 550, 600, …, 5000 m 

2, 3, 4, …, 30 𝜇m 

60 logarithmically spaced values from 0.1 to 500 

1.0, 1.2, 1.4, …, 4.0; 4.5, 5.0, …, 25 g m-3 km-1 

50, 100, 150, …, 500; 750, 1000 m 

Table A1: Values used to calculate the look-up tables LUT_1 and LUT_2. LUT_1 gives 𝒓𝒆 and 𝝉 as a function of N, H, c, and z0, 
and LUT_2 gives N and H as a function of  𝒓𝒆, 𝝉, c, and z0. 
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Figure A1: (Top) Cloud depth H (left) and droplet number concentration N (right) calculated by the subadiabatic cloud model for 685 
various combinations of optical depth and cloud top effective radius. (Bottom) Difference between the subadiabatic values of H 
and N and the values that would result from assuming a purely adiabatic cloud. 

 

 


