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Author's changes in manuscript

RC1: The manuscript is poorly written and difficult to read in some parts (for example, the title
is quite odd).
We have improved the writing of this manuscript as highlighted below. In addition we have
modified the title. The new title is:

“Using metal oxide gas sensors to estimate the emission rates and locations of methane leaks in an
industrial site: assessment with controlled methane releases”

RC1: The concept isn’t very novel and several studies have presented the conversion of voltages
output by Figaro MOS sensors into mixing ratios.
Indeed, the conversion of these voltages into mixing ratios is not the novelty of this publication.
The specific conversion used here is adapted from Rivera et al. (2023).

RC1: Novelty is the methods by which the emission location and the emission rate are
calculated.
The atmospheric dispersion inverse modelling method to derive emission locations and rates is
not the novelty of this publication either: it has been documented in detail in the publication
Kumar et al. (2022).

RC1: Details on both processes are lacking and it is currently unclear how novel the approaches
used here are.
Our recent publications explicitly refer to Rivera et al. (2023) and Kumar et al. (2022) for more
details on the overall rationale, strategies, concepts, and implementations of these two processes.
We have modified the text to state it more clearly.

The two major novelties of this new publication are
1) the application of the approach from Rivera et al. (2023) to on-site measurements during

a real blind test of controlled releases with sub-optimal constraints that we did not
manage

2) a) the combination of the two processes (derivation of mixing ratios from Figaro
voltages, and atmospheric dispersion inverse modelling to derive emission location and
rates from these mixing ratios) b) with a key underlying question: is the accuracy of the
mixing ratio derivation satisfying for the purpose of the atmospheric dispersion inverse
modelling? In previous publications, we had to derive notional targets for the
accuracy/precision of the mixing ratio derivation, but the actual signal exploited by the
atmospheric inversions from the timeseries of mixing ratios (through a complex binning
of the mixing ratio data in practice, and then through the minimization of the
model-observation misfits balanced by the modelling errors in the inversion process),
and thus the requirements in terms of mixing ratio precision/accuracy are difficult to
anticipate.



RC1: Also, this work would benefit from a deeper dive into the applicability of the approach in
the real world.
Similar comments were already raised during the preliminary review of this manuscript, and
some text had already been added in the introduction to clarify these points. We have the feeling
that it is sufficient.

RC1: Abstract: Language needs to be improved throughout. There are no details of the tests
here: flow rates, meteorological conditions, time of year, how long the test were run. Too much
extraneous detail between lines 7 and 14. Should be condensed. Last sentence (L14 to 16)
doesn’t make sense.
We have updated the abstract to address the points highlighted by the reviewer. Here is the new
version of the abstract:
Fugitive methane (CH4) emissions occur in the whole chain of oil and gas production, including
from extraction, transportation, storage, and distribution. Such emissions are usually detected
and quantified by conducting surveys as close as possible to the source location. However, these
surveys are labour intensive, are costly, and fail to not provide continuous emissions monitoring.
The deployment of permanent sensor networks in the vicinity of industrial CH4 emitting
facilities would overcome the limitations of surveys by providing accurate emission estimates,
thanks to continuous sampling of emission plumes. Yet high precision instruments are too costly
to deploy in such networks. Low-cost sensors using a metal oxide semiconductor (MOS) are
presented as a cheap alternative for such deployments due to their compact dimensions and to
their sensitivity to CH4. In this study, we demonstrate the ability of two types of MOS sensors
(TGS 2611-C00 and TGS 2611-E00) manufactured by Figaro® to reconstruct a CH4 signal, as
measured by a high-precision reference gas analyser, during a 7-day controlled release
campaign conducted by TotalEnergies in autumn 2019 near Pau, France. We propose a baseline
voltage correction linked to atmospheric CH4 background variations per instrument based on
an iterative comparison of neighbouring observations, i.e. data points. Two CH4 mole fraction
reconstruction models were compared: multilayer perceptron (MLP) and 2nd degree polynomial.
Emission estimates were then computed using an inversion approach based on the adjoint of a
Gaussian dispersion model. Despite obtaining emission estimates comparable with those
obtained using high precision instruments (average emission rate error of 25% and average
location error of 9.5 m), the application of these emission estimates is limited to adequate
environmental conditions. Emission estimates are also influenced by model errors in the
inversion process.

RC1: Introduction: Throughout the introduction - It reads like a list of barely related bullet
points. This needs to be rewritten and resubmitted for review. Currently, I find this very hard
to comment on as there are too many inaccuracies and poorly written sentences. I have picked
out some examples but this list is not exhaustive. For example:
At L18: “Fossil fuel anthropogenic methane (CH4) emissions related to the production,
exploitation and transport of coal, oil and natural gas, account for 35% of global anthropogenic
emissions (Saunois et al., 2020).” Isn’t all incorrect, only poorly written. It would be better
written as: A recent study suggests that in 20XX methane (CH4) emissions from the production,
transportation, storage and distribution of fossil fuels (e.g. coal, oil and natural) account for
35% of global anthropogenic CH4 emissions (Saunois et al., 2020). Then delete the next
sentence.



We think that this is not an obvious example of a poorly written sentence. Sharing the statement
from a publication and connecting this statement to the publication via simple parenthesis is
very common in scientific publications to lighten the text, to avoid long series of “According to
publication1…, Publication 2 indicates that….”.

However, we have accepted the correction and reformulated the phrase as suggested, and we
have reviewed the whole manuscript to improve the writing.

A recent study suggests that in the decade 2008-2017, methane (CH4) emissions from the
production, transportation, storage, and distribution of fossil fuels (e.g. coal, oil, and natural
gas) accounted for 35% of global anthropogenic CH4 emissions (Saunois et al., 2020).

RC1: Introduction: L26: “Atmospheric measurements” is too vague. Please describe what is
being measured. “The downwind measurements CH4 concentration in the air” (or similar).

Added a clarification for “atmospheric measurements”.

Atmospheric measurements are increasingly used to detect and quantify CH4 leaks from
industrial facilities. These methods primarily involve measuring methane mole fraction
downwind of the facility.

RC1: Introduction: L37: “limiting the impact of atmospheric transport modeling
uncertainties”. This is the key issue with networks of sensors.

We have rewritten the phrase:

“The use over long periods of time of dense networks of sensors deployed permanently increase the
ability to identify the structures of the observed plumes, to improve the atmospheric transport
modelling parametrization for the simulation of these plumes, and thus to improve the accuracy of
the quantification of the leaks based on this modelling.”

RC1: Introduction: L38: “Chamberland and Veeravalli (2006)” this is an older study to be
referencing. Also, the main issue with quantifying fugitive emissions on production sites is
differentiating the vented and combustion emissions from fugitives.

Removed the phrase and reference from the manuscript.

RC1: Introduction: L40: “dense network” another key issue with monitoring O&G productions
sites. How many sensors? Typically, only four are deployed by a solution provider regardless of
site size. Key question is how to optimize?

We have expanded the discussion section to cover the density of the sensor network. This
discussion outlines our empirical approach in deploying a network of 16 tripods equipped with
dual-sensor setups at strategic distances ranging from 40 to 50 metres from the emission source.
Our findings suggest that while the industry standard might lean towards deploying only four
sensors regardless of site size, our campaign demonstrates that a configuration of 4 to 5 sensors,
strategically placed, can effectively minimise errors in methane emission quantification.

We acknowledge that the question of optimising sensor count and placement is critical,
especially considering varying site sizes and environmental conditions. Our analysis,



particularly of cases with uniform emission rates (1 g CH4/s), indicates that a careful balance
between sensor count and their strategic placement plays a pivotal role in achieving accurate
emission estimations. However, we also highlight that determining the optimal configuration for
a sensor network is complex and warrants a thorough investigation, potentially through
simulations that explore typical emissions scenarios and the impact of adding or removing
sensors. Given the scope of our study and the limited data points captured, a comprehensive
exploration of optimal sensor network configuration was beyond our research boundaries.

RC1: Introduction: L43: “metal oxide sensing material” not strictly true. The metal oxide
doesn’t sense anything, more physically changes in the presence of methane.

Rephrased to improve clarity. The new phrase is:

MOS sensors are composed of a metal oxide sensing material, incorporating an integrated
heater. A chemical reaction affects the electrical conductivity of the sensing material in the
presence of an electron donor gas such as CH4 (Örnek and Karlik, 2012)

RC1: Introduction: L46: “suited to long time deployment” Again, not true. These sensors
require relatively high amounts of energy (as you state in the following sentence), work poorly in
low humidity and work poorly in low temperatures (as you state in the nest sentence).

Accepted correction. The content was reformulated, this is the new version of the text:

However, MOS sensor sensitivity is also affected by other environmental parameters such as
temperature and relative humidity (Popoola et al., 2018); they also present low accuracy and
may drift with time (in the form of a decrease in the conductivity of the sensing material),
requiring periodic re-calibrations (Riddick et al., 2020; Shah et al., 2023, 2024), and the need for
a constant power supply due to the heater material (Shah et al., 2023).

RC1: Introduction: L62 – L71 Suggest you read: Riddick, S. N., Ancona, R., Cheptonui, F., Bell,
C. S., Duggan, A., Bennett, K. E. and Zimmerle, D. J. (2022) A cautionary report of calculating
methane emissions using low-cost fence-line sensors. Elementa: Science of the Anthropocene
10(1). https://doi.org/10.1525/elementa.2022.00021

The study of Riddick et al. (2022) was added to the introduction. Here is the new version of the
paragraph:

The next logical step is to test the performance of the same sensors to reconstruct CH4 mole
fraction from real leaks, and to use reconstructed mole fractions to quantify and localise
emission rates. Riddick et al. (2020) quantified CH4 emissions from a gas terminal using a
Figaro TGS 2600, deployed 1.5 km from the emission source. To reconstruct CH4 mole fractions
from voltage observations, the authors developed an empirical equation considering the
measured voltage, temperature, and relative humidity from a nearby meteorological station and
then applied a Gaussian plume model to quantify the emission rate using reconstructed CH4

mole fractions and local wind information. Their estimated average emissions of 9.6 g CH4 s-1,
with a maximum emission rate of 238 g CH4 s-1, given corresponding CH4 mole fraction
enhancements of between 2 ppm to 5.4 ppm within the plume. Their Figaro-based emission
estimates were not confronted with corresponding emission estimates derived using a high
precision gas analyser nor with an independent knowledge of the emission rate. Elsewhere,

https://doi.org/10.1525/elementa.2022.00021


Riddick et al. (2022) studied the capabilities to detect and estimate CH4 emissions of four Figaro
TGS 2611-E00 sensors in a fence-line monitoring setup. Sensors were deployed closer to the
emission source (30 m) and tested over a 48 hour period. Reported results showed detection
consistency for emissions above 167 g CH4 h-1 with an enhancement threshold of 2 ppm.
However, the number of sensors used to compute the emission estimates was not specified,
particularly given the spatial distribution of the sensors and varying wind speed.

RC1: Introduction: L78 – L109 Much of this is methods and should be condensed.

The text was updated to present the context and contribution of the study more clearly.

This study builds upon the research conducted by Rivera et al., (2022) and Kumar et al. (2022),
demonstrating the potential for continuous monitoring of CH4 emissions using cost-effective in
situ sensors. Drawing from the insights derived from these two studies, it seeks to address the
new challenges associated with the combination of both types of analysis, i.e reconstruction of
CH4 mole fractions from measured voltage variations and estimation of emission rates and
location from CH4 mole fractions. Firstly, the challenge arises in the deployment and
management of onsite Figaro sensors, an issue not present in Rivera et al. (2022), as well as
extracting CH4 mole fractions from measurements that are impacted by more complex
perturbations. For instance, the background air in Rivera et al., (2021, 2022) was less polluted
than air from an industrial site such as TADI. Moreover, the environmental conditions,
especially in terms of temperature and water mole fraction, in these previous studies were
smooth and not representative of field conditions as encountered in this new study. Secondly, the
prescriptive precision and accuracy targets for CH4 reconstructions outlined in Rivera et al.
(2022) were established as generic targets, fitting for a variety of data processing strategies
intended to quantify emissions from industrial sites. The specific observation and modelling
strategy implemented in Kumar et al., (2022) to localise and quantify point source emissions
carries its own set of precision/accuracy requirements. In particular, this strategy strongly relies
on the characterisation of gradients across measurement stations of mole fraction averages over
time or wind sectors, which makes the derivation of nominal requirements on the reconstruction
of CH4 spikes or the CH4 time series quite complex. Furthermore, such requirements should be
weighed against the modelling uncertainties associated with the corresponding Gaussian plume
model inversions. Ideally, the uncertainties related with CH4 mole fraction data would not
significantly contribute towards the total uncertainty when combined with uncertainties from
the modelling framework. This, however, does not necessarily mean that they should be much
smaller than the latter. The direct comparison of the results obtained in this study with CH4

mole fraction data derived from Figaro sensors and those from Kumar et al., (2022) provides
insights into whether this objective is achieved.

Therefore, for 33 controlled releases at the TADI facility, we employed fixed-point
measurements from both high precision CRDS instruments and low-cost TGSs. A considerable
fraction of the TGS measurements were used for training models to reconstruct CH4 mole
fractions from measured TGS resistance and other variables. When reconstructing CH4 mole
fractions, we proposed a minimum accuracy target of 15% the amplitude of the largest
observed mole fraction enhancement within a release. This corresponds to accuracies from 0.3
ppm for a release causing a maximum enhancement of 2.4 ppm up to 18 ppm for a maximum
enhancement of 120 ppm. This accuracy is consistent with the accuracy requirement imposed in
our previous study where we used TGS sensors to reconstruct CH4 spikes created in a



laboratory experiment (Rivera Martinez et al., 2022). However, the relevance of this target is
implicitly re-assessed through the use of the reconstructed time series in the inversion scheme
from Kumar et al. (2022).

RC1: Methods:
The section was reorganised to present the methods in a more coherent and logical manner. In
the current methods section we first introduce the TADI 2019 campaign (Section 2.1), then we
present the Controlled releases and the sampling configuration (Section 2.2). The low cost logger
system and the meteorological data is presented in Section 2.3. On Section 2.4 we talk about the
preprocessing steps of the TGS data. Section 2.5 describes the reconstruction of Ch4 mole
fraction from TGS voltage data and the metric used to evaluate the performance of
reconstruction models. The selection of the training and testing sets are presented in section 2.6.
Finally, Section 2.7 presents the inverse modelling framework used to estimate the release rates
and locations.
RC1: Methods: L112 – L128: Please condense this section to a description of the site. Please
remove any extra detail superfluous to this study.

The description of the site was updated, the corrected text is shown below:

In October 2019, TotalEnergies® performed multiple controlled releases at the TotalEnergies
Anomaly Detection Initiative (TADI) facility, to investigate the capability of different detection
and quantification techniques of CH4 emissions from industrial facilities. The TADI test site is
located northwest of Pau, France, with an approximate area of 200 m2. It is equipped with
infrastructure typical of oil and gas facilities (pipes, valves, tanks, etc) to simulate ‘realistic’
leaks. The terrain is flat but includes different obstacles that can affect the dispersion of the
gases released to the atmosphere. Our experiment consisted of 41 controlled releases of CH4 and
CO2, covering a wide range of emission rates of between 0.15 and 150 g CH4 s-1, with durations
ranging between 25 to 75 minutes. We participated in this experiment to develop and test
inverse modelling frameworks within the TRAcking Carbon Emissions (TRACE,
https://trace.lsce.ipsl.fr/) program for the estimation of emission location and rates based on
CH4 mole fractions from high precision instruments (Kumar et al., 2022). We presented the
inversion results for 26 releases from single point sources based on two inversion approaches,
one relying on fixed-point measurements, and the other one on mobile near-surface
measurements (the latter had already been documented in Kumar et al. (2021)). In both cases,
the emission estimates relied on CH4 mole fractions from high precision instruments, and on a
Gaussian plume model to simulate the local atmospheric dispersion of CH4. The results from
Kumar et al. (2022) for point source emissions yielded an emission rate error of between ~23 to
~30 % and a localisation error (within a 40 m × 50 m area) of between 8 and 10 m. The
controlled releases were emitted from heights of between 0.1 m and 6 m above ground level, and
inside the 40 m × 50 m ATEX (ATmospheres EXplosibles) zone of the TADI facility (see Fig. 1).

RC1: Methods: L129: Which heights? What is the ATEX zone?

The heights and the ATEX acronym meaning were added to the manuscript. Here is the new
text:



The controlled releases were emitted from heights of between 0.1 m and 6 m above ground level,
and inside the 40 m × 50 m ATEX (ATmospheres EXplosibles) zone of the TADI facility (see Fig.
1).

RC1: Methods: L131: I would like the information here instead of having to find a different
paper.

We acknowledge the remark and we have removed the phrase. The relevant information of the
TADI test site for this study is included in section 2.1.

RC1: Methods: L136: I have concerns over air drawn through 100m of tubing at 6 lpm. I
assume transit time will be significant as will gas mixing in the tubing.

The transit time for air through a 10 m length of 1/4" OD Synflex tubing is approximately 1.5
seconds, and for a 100 m length, it extends to approximately 14.5 seconds. We have empirically
determined these transit times on-site by introducing a short exhalation of breath into the inlet
tubing and subsequently measuring the time taken to detect the resultant CO2/H2O spike. The
precise timing of these spikes was captured using GPS timestamps, ensuring high accuracy in
our measurements.

Regarding the potential impact of gas mixing within the tubing, with the Reynolds number
around 1970. This indicates that the flow regime within the tubing remains laminar,
significantly limiting the extent of mixing. Consequently, our findings suggest that gas mixing
within the tubing is minimal and should not adversely affect the measurement of controlled
methane releases. In addition, we have aligned our data to correct any time shift that might
arise due to transit delays, thereby preserving the accuracy of our emission estimates.

RC1: Methods: Tables 1 & 2 aren’t adding much. Could go to SI

Tables were moved to SI.

RC1: Methods: L150 – L158: How were the supply voltage controlled? Also, sensitivity would
be affected by the ADC used, can you comment on that?

The power supply to our sensor system was fixed at a constant 5V throughout the duration of
the experiment.

Regarding the analog-to-digital converter (ADC) and its impact on our measurements, it is
important to clarify that while the ADC plays a critical role in defining the resolution and
accuracy of the voltage readings, it does not directly affect the sensitivity of the sensor itself. The
sensitivity of the sensor remains determined by its inherent properties and the environmental
conditions under which it operates. The ADC's function in our setup was to accurately translate
the analog signals from the sensor into digital data for analysis. Any potential disparities
between the measured voltage and the actual voltage due to the ADC's characteristics were
consistent throughout the experiment. This consistency ensures that while the ADC's resolution
and accuracy are crucial for precise data capture, they do not alter the sensor's sensitivity to
methane concentrations.



RC1: Methods: Section 2.3 – Please filter this for unnecessary information. Why mention data
that were not used?

The text now belongs to section 2.2. The following text that mentions the controlled releases was
updated to include only information relevant to the study and explain our motivation to use only
a subset of 33 releases from the original 41 conducted during the campaign:

A total of 41 controlled releases were conducted over a seven day period, between 2 October
2019 and 10 October 2019. Six releases corresponding to low wind speeds (< 0.6 m s-1) were not
used for the inversion as in Kumar et al. (2022), since measurements made in low winds are not
suitable for atmospheric inverse modelling. They could however be used in the training of CH4

mole fraction reconstruction models. The two largest releases produced high CH4 mole fraction
plumes that affected the amplitude measured by the TGS sensors, such that it was not possible
to distinguish large CH4 spikes from medium and small spikes from voltage drop measurements
(see fig A3) and, hence, they were also removed. Therefore, our study is focused on 33 from the
initial 41 controlled releases conducted during the campaign. Table A1 details the releases that
were measured by each chamber.

RC1: Methods: L173 – Not being able to detect < 4 ppm is concerning.

The challenge of not being able to detect methane concentrations below 4 ppm arises from a
combination of factors that influence the sensitivity and accuracy of our sensor system. Firstly,
the presence of a strong baseline signal at the Lacq site, caused by variations in relative
humidity (RH), significantly impacts the sensor's ability to detect low methane concentrations.
Additionally, discrepancies in the resistances of some loggers, which used 50kOhm resistors
instead of 5kOhm, could have altered the sensitivity of the voltage measurements. These factors
collectively contribute to the observed limitation in detecting methane concentrations below 4
ppm on some of the releases.

RC1: Methods:L177 – Why 1-minute averages? Seems a long time. Was the sonic near
anything else?

Although the 3-D sonic anemometer measured variables at high frequency (20 Hz), due to
logistical constraints on field, we would only have had access to the 1-min average data.
However, our atmospheric inverse modelling framework relies on the process of average winds,
especially since we use a Gaussian plume model to simulate the local dispersion. Therefore,
there was no incentive to ensure that we could have access to higher frequency data.

Using data collected at shorter temporal scales, we commonly compute averages of
meteorological variables such as wind speed and wind direction over longer durations or in
specific wind sectors. However, computations of turbulent fluxes to use in the dispersion model
to parameterize the diffusion parameters generally require high-frequency data.

RC1: Methods: Table 3 -Why were these emission rates chosen? 1.4 to 18 kg h-1 are quite high
emissions, what would be typical emission rates on a production site? What have other people
measured as fugitives?

The emission rates were chosen by the operator, TotalEnergies, to encompass the typical range
of emissions encountered in production sites. This decision was based on the objective to ensure



that our measurements and subsequent analyses would be representative of real-world
conditions, as well as to provide insights into the scale of emissions that could be expected under
various operational scenarios.

RC1: Methods: Section 2.4 – This is particularly badly written. I am finding it difficult to
follow. It also has too much information that could be put in the SI. Essentially TGS data were
fitted to the methane analyzer data.

This section, now in section 2.5, was updated to include only the relevant information to our
study.

RC1: Methods: L197 – Can you described the strengths and shortcomings of the two
approaches. The main issue with approach 2 is the TGS sensors give erroneous output in low
humidity conditions. This could strongly affect your linear interpolation if properly considered.
At the very least, I would have thought the data were filtered for low RH.

Regarding the first approach, using H2O mole fraction and T data for correction, offers direct
consideration of environmental variables affecting sensor accuracy. Its strength lies in its
context-sensitive adjustment, aligning sensor data closely with real-time environmental
conditions. However, its primary shortcoming in our study was the inconsistent availability of
H2O and T data due to logging issues, which limited its comprehensive application.

Respecting the second approach, involving linear interpolation to establish a baseline from
non-peak voltages, provides a practical solution when environmental data are lacking. This
method's strength is its independence from environmental data, making it applicable even with
incomplete datasets. However, its shortcoming, as pointed out, is its vulnerability to erroneous
outputs in low humidity conditions. TGS sensors' performance can be significantly skewed in
such environments, potentially affecting the accuracy of the interpolated baseline. Implementing
a filter for low RH would have significantly reduced the amount of usable data in our study,
limiting the number of available releases for analysis

RC1: Methods: Section 2.6 – Again, should be condensed.

The text was rewritten to improve clarity:

Defining an appropriate training data set is important to allow reconstruction models to derive
sufficient information to generalise (i.e. to extend its performance to data not present in the
training set) and to obtain good mole fraction reconstruction performances in the testing data
set. In addition, the testing data set should be chosen to allow for the evaluation of model
performances under a wide variety of conditions. Regarding inverse modelling, in order to
provide a meaningful assessment of the estimation of emission rates and locations, inversion
should be conducted using reconstructed CH4 mole fractions from outside the training data set
to avoid introducing bias in the evaluations of errors. Furthermore, depending on the
magnitude of emission release rates, atmospheric turbulence, and locations/distances of the
downwind active tripods from the emission sources, each of the six chambers could not be used
to detect CH4 mole fractions during each release; therefore a separate training and test set needs
to be defined for each chamber.



These previous considerations constrain the selection of the training and testing data sets from
each chamber. The testing data set of the releases for use in inversions was defined based on two
criteria: 1) releases which yield reconstructed CH4 mole fractions from at least three chambers
simultaneously, and 2) releases corresponding to the more favourable wind speed conditions (Ur

≥ 1.4 m s-1) for inversions. We determined seven releases that meet these considerations (#2, #9,
#10, #25, #26, #32 and #33). Because this testing data set was of insufficient size for all of the
chambers, we decided to increase it by using data from four more releases with low wind speed
conditions (0.65 <= Ur <=1.31) (#5, #12, #21 and #29). This selection led to a testing data set of
40% of the releases. All remaining data were used as a training data set. The reconstruction
models are trained and tested only once per chamber, following the distribution of the releases
from table 2.

RC1: Methods: Section 2.7 – This needs to be unpacked and explained clearly. Is there a figure
that could help the reader? From what is written here, you are using the mole fraction (as
calculated by a TGS) to infer four unknown variables (x, y, z and emission rate). Surely you
need more than one measurement to do this, how many? What assumptions does this approach
use? How realistic is it to well pad emissions? Again, this is impenetrable and needs to be
written succinctly. A figure also helps the reader.

The text was rewritten to improve clarity:

Derivation of release locations and emission rates relies on an atmospheric inversion framework
developed and tested by Kumar et al. (2022), which is based on measurements from high
precision instruments. The details of the approach and implementation for this atmospheric
inversion framework are given in this publication and they are just briefly summarised here.

This framework processes averages of the timeseries of the observed CH4 mole fraction
enhancements above the background from the different stations: from either the high precision
measurements or from the reconstruction of CH4 mole fraction based on the TGS sensors that is
detailed above. For each station, these averages correspond to temporal averages within 2 to 7
bins of the observations defined by sectors of wind directions that are of equal ranges during the
release (see below the practical definition of the wind sectors).

The atmospheric inversion relies on the simulation of these average CH4 mole fractions using a
Gaussian plume model. It uses the adjoint of this Gaussian plume model to simulate the
sensitivity of these average CH4 mole fraction enhancements above the background at a
measurement location to the emissions at all potential source locations. This computation
implicitly informs about the numerical operator corresponding to the simulation with the
Gaussian plume model of the average CH4 mole fraction enhancements above the background
per wind sector and station as a function of the source location and rate. For each release, based
on these sensitivities, the optimal horizontal and vertical location and emission rate are derived
as the horizontal and vertical location and rate minimising the root sum square (RSS) misfits
between averages of the observed and simulated CH4 mole fraction enhancements above the
background. In practice, optimal release location and emission rates are identified
simultaneously, looping on a finite but large ensemble of potential locations, using an analytical
formulation of the problem to derive the optimal rate and corresponding RSS misfits for each
potential location and then identifying the optimal location and rate providing the smallest RSS
misfits. The 40 m × 50 m (horizontally) × 8 m (vertically) volume above the ATEX zone is



discretized with a high resolution (1 m × 1 m horizontally and 0.5 m vertically) 3D grid to define
a finite ensemble of potential locations. The inversion exploits the change of wind direction
during a release at the different measurement locations and the corresponding variations and
spatial gradients in average mole fractions between the different measurement locations
intersected by the plumes to triangulate the release location. The amplitude of mole fraction
enhancements directly constrains the release rate estimate.

The Gaussian model (in practice: its adjoint) is driven by averaged wind directions and
averaged turbulence parameters derived from 3D sonic anemometer measurements, using the
same bins for these averages as for mole fractions. Those bins are derived during each release
based on the analysis of 1-min averaged wind directions: they correspond to a partition of the
lower to upper range of potential 1-min average wind directions, into wind sectors of equal
width in terms of range of wind directions. The total number of bins during this initial partition
is defined as the rounding integer of the division of the release duration (in min) by
approximately 7 min. However, only bins gathering at least four 1-min averages are retained.
The aim is that the mole fraction and meteorological averages are representative of a timescale
that is long enough for use in or comparison to the Gaussian model. This explains why,
depending on the releases, the number of bins ranges between 2 and 7.

In this work, we slightly revise the reference computations of release location and rate estimates
based on mole fractions from high precision instruments from Kumar et al. (2022). Indeed, in
order to compare the release location and rate estimates from such a reference and to the results
based on the TGS sensors, we restrain the set of high precision observations that are used in the
reference computation to the station and time corresponding to data availability from the TGS
sensors.

RC1: Methods: L282: What data were used in the Gaussian plume model? Please be explicit.

See the answer to the previous comment and the update of the section 2.7

RC1: Methods: How do you overcome the GP’s inability to work at distances less than 100 m?

Gaussian plume models have regularly been used to model the local atmospheric dispersion
over such short distances, see (Venkatram et al., 2004, Korsakissok and Mallet, 2009; Sharan
and Kumar 2009, Korbeń et al. 2022, etc.). In fact, Kumar et al. (2022) evaluated the Gaussian
plume model with actual source parameters for this experimental campaign at such distances
and found it to be suitable for simulations of averaged plumes at such short distances. Here, we
simulate average plumes for the different wind sectors during each release, which strengthens
the relevance of using such a model. Furthermore, the good accuracy of our results
demonstrates that the model was suitable for such an atmospheric dispersion inverse modelling
problem. We have added a sentence in section 4 to highlight the use of GP models over such
short distances in a series of past studies.

RC1: Methods: L290 – L293: I do not know what this means. Please rewrite.

The text was rewritten. See answer for Comment on Section 2.7.

RC1: Results: The current information presented here could be condensed.
The result section was updated improving clarity and condensing the information.



RC1: Results: I would really like to know how applicable this method would be in the real
world. For example, a well pad does not only have emissions from a single fugitive point which
remain active until someone fixes it. Need to consider and comment on:

● There could be multiple emissions at the same time: vented, combustion and fugitive. How
would this approach distinguish between types? Emissions (all types) can be intermittent.
How long does an emission have to run to be detected?

Added a paragraph on the discussion section:

The inversion approach applied here, described for a single emission source only as
required by the controlled releases experiments, can be easily extended to estimate
emissions from multiple sources (see Singh et al. 2012). However, estimating emissions
from multiple sources may require a more denser network of sensors to constrain a larger
number of parameters for all sources. However, significant uncertainties may arise in
emission estimates when measurements are taken in very close proximity to the emission
sources. Our methodology requires that emissions be sustained long enough to be
captured within the sampling intervals. The principal limitation is the requirement for at
least four 1-minute averages, restraining the detection of short-lived emissions. Another
challenge lies in the detection of emission types, such as vented, combustion or fugitive
emissions. This aspect, out of the scope of our study, would require a detailed study of the
characteristics of each kind of emission requiring additional tools to distinguish the
particularities of them.

● Gas coming out could be very hot, how does this affect your approach? Are any of the
Gaussian Plume assumption violated? How does the GP approach work with distances <
100m?

The elevated temperature of the gas emission is indeed a crucial factor to consider. In the
Gaussian plume model, we need to consider the plume rise for a hot gas to include the
effective source height in the computations. As mentioned before, the Gaussian plume
model has been applied for distances less than 100 m. In fact, recently, Korbeń et al.
(2022) applied the Gaussian plume model approach for the quantification of methane
emission rate from oil and gas wells in Romania using ground-based measurement
techniques less than 100 m. However, as mentioned previously and discussed in the revised
manuscript, there may be significant modelling uncertainties for the measurements taken
in close proximity to the emission source.

● Density of sensors – is it realistic to have 16 sensor locations on a site? What is the
optimum for your approach and what is realistic?

The following text was added to the discussion section and table 3 was updated including
the number of sensors used to compute the emission estimates for each release:



Density of sensor network

In our campaign, we deployed 7 chambers connected to air inlets placed on tripods at
distances of between 40 and 50 m from the emission source to capture methane plumes
under various conditions. Table 3 details the number of sensors used for emission flux
estimations across the controlled releases.
The optimal number of sensors for emission flux localisation and estimation is complex,
influenced by varying emission rates, environmental conditions, and setup configurations.
Notably, when examining cases with uniform emission rates (1 g CH4/s), such as releases
12, 2, and 21 (with 3, 4 and 5 chambers respectively), a configuration of 4 to 5 sensors
consistently produced the lowest errors for both sensor types. Yet, release 21
demonstrated that even five sensors may not guarantee low errors if the plume capture is
suboptimal due to environmental factors or sensor placement.
We can contrast our setup with Riddick et al. (2022), who used four sensors
approximately 30 m away from the source, but without detailing their individual
contributions to emission calculations.
The optimal configuration of such a relatively dense network necessitates a thorough
investigation, possibly through simulations of typical emissions and the strategic addition
or removal of sensors to assess their impact. However, a comprehensive analysis of
optimal network configuration was beyond the scope of our study due to the limited
number of data points recorded.”

● Computational time. How long does it take to calculate the RSS matrix? Is this realistic?

The following text was added to the discussion section. Table A7 was added to SI.

Computational efficiency of the inversion framework

Our inversion framework, developed in Python 3.8 utilising numpy, pandas, and scipy
libraries, efficiently computes the RSS matrix through vectorized operations and a nested
for-loop. This approach achieves an average computation time per release of 0.1 seconds
for the RSS matrix and 1.46 seconds for full code execution, including data preprocessing
on an 8-core Apple Silicon M1 processor. The framework, which can be further optimised
with multiprocessing, is detailed in Table A7, showcasing computational times across
different releases. It effectively estimates emission rates and source locations on a fine grid
(40m x 50m x 8m, discretized at 1m x 1m x 0.5m), demonstrating practicality for
real-world applications at minimal computational costs.

RC1: Technical comments: Currently, the manuscript is difficult to follow and I strongly suggest
a comprehensive rewrite.
We have undertaken a thorough review and comprehensive revision of our manuscript to

enhance its clarity and coherence. This revision includes significant improvements to the

grammar and style to ensure the manuscript is accessible and easy to follow.



We thank the reviewer for his helpful review of our manuscript. We have carefully considered
all the comments and revised the manuscript accordingly. We have noted that the references to
specific lines of the manuscript and some remarks correspond to the initial submitted version
and do not consider the updated changes to the manuscript after the preliminary review on the
current version.

Below our answers to the commentaries raised by the reviewer.

RC2: Line106-107 showed that inversion errors from high precision measurements are 23-30%
and 8-10m, and inversions from low-cost sensors can reach the same level in the abstract (25%,
9.5m), why is this? And the authors need to point these out in the abstract, which are associated
with L336-337 and L410-412: “highlighting the higher impact of the model error on the
inversion than the reconstruction error of CH4 mole fractions”. Without high precision
instruments (e.g. the background information), can this be achieved? Add the role of high
precision instruments in the abstract. Since performances of inversions are associated with wind
conditions, the applications also have such limitations, which should be pointed out. Add
limitations and conditions of this method and implications of this study in the abstract.

We have updated the abstract considering the comments raised by the reviewer:

Fugitive methane (CH4) emissions occur in the whole chain of oil and gas production, including
from extraction, transportation, storage, and distribution. Such emissions are usually detected
and quantified by conducting surveys as close as possible to the source location. However, these
surveys are labour intensive, are costly, and fail to not provide continuous emissions monitoring.
The deployment of permanent sensor networks in the vicinity of industrial CH4 emitting
facilities would overcome the limitations of surveys by providing accurate emission estimates,
thanks to continuous sampling of emission plumes. Yet high precision instruments are too costly
to deploy in such networks. Low-cost sensors using a metal oxide semiconductor (MOS) are
presented as a cheap alternative for such deployments due to their compact dimensions and to
their sensitivity to CH4. In this study, we demonstrate the ability of two types of MOS sensors
(TGS 2611-C00 and TGS 2611-E00) manufactured by Figaro® to reconstruct a CH4 signal, as
measured by a high-precision reference gas analyser, during a 7-day controlled release
campaign conducted by TotalEnergies in autumn 2019 near Pau, France. We propose a baseline
voltage correction linked to atmospheric CH4 background variations per instrument based on
an iterative comparison of neighbouring observations, i.e. data points. Two CH4 mole fraction
reconstruction models were compared: multilayer perceptron (MLP) and 2nd degree polynomial.
Emission estimates were then computed using an inversion approach based on the adjoint of a
Gaussian dispersion model. Despite obtaining emission estimates comparable with those
obtained using high precision instruments (average emission rate error of 25% and average
location error of 9.5 m), the application of these emission estimates is limited to adequate
environmental conditions. Emission estimates are also influenced by model errors in the
inversion process.

RC2: Line 140-141 reported that 2600 are useless, but there are reports that they are useful e.g.
in Eugster et al., 2020 (AMT), and it needs more discussions on Rs/R0 ratio, which is sensitive to
methane (10-100ppm) from 0.7-1.0 in the datasheet (see below figure), and also RL:



Indeed, the datasheet shows that TGS 2600 is sensitive to CH4, as other studies (Eugster et al.,
2020, 2019; Riddick et al., 2022, 2020) have used it to derive CH4 mole fractions. Our
motivation to exclude this sensor from the study was based on the observed response to CH4
enhancements of the controlled releases. Figure A1 shows a comparison of a typical signal
measured by the three sensors for one controlled release, as well as the signal measured by the
reference instrument. The TGS 2611-C00 and TGS 2611-E00 sensors show voltage drops that
correlate with the signal measured by the reference instrument, whereas for TGS 2600, only
low-frequency voltage variations are observed. This inability to observe such high-frequency
variations of CH4 mole fraction prevents us from applying any reconstruction model and,
consequently, from obtaining reliable emission estimates.



Figure A1. Comparison of the voltage measurements from three types of TGS included on chamber A.
Upper plot shows the reference CH4 observations measured from the reference instrument. Lower plot

shows the voltage observations from TGS 2611-C00, 2600 and 2611-E00.

RC2: The writing and expression need substantial improvements. And many parts are very
hard to follow. The manuscript needs to be polished by an experienced language editor, to
thoroughly improve the fluency and remove grammar errors.
The writing of the manuscript was thoroughly reviewed. As well the methods section was
reorganised to present the information in a more logical manner. In the current methods section
is structured as follows:

● Section 2.1: We introduce the TADI 2019 campaign.
● Section 2.2: We present the controlled releases and the sampling configuration.
● Section 2.3: We describe the low cost logger system and the meteorological data.
● Section 2.4: We present the preprocessing steps of the TGS data.
● Section 2.5: We describe the reconstruction of CH4 mole fraction from TGS voltage data

and the metric used to evaluate the performance of reconstruction models.
● section 2.6: We explain the rationale in the selection of the training and testing sets.
● Section 2.7: We describe the inverse modelling framework used to estimate the release

rates and locations.

RC2: Discuss why E00 is bad compared with C00, e.g. in Fig.4 and 7.
Our experiment has demonstrated that the TGS 2611-E00 sensor shows lower performance than
the TGS 2611-C00 sensor in reconstructing CH4 mole fractions. This difference in performance
was also observed and documented in a previous study (Rivera Martinez et al., 2022), where
sensors measured artificial CH4 peaks under controlled conditions. In both experiments, we
attribute the inferior performance of TGS 2611-E00 to the presence of a filter on top of the
sensing material, designed to improve its selectivity to CH4 but with an effect on the sensor's
sensitivity, acting as a low-pass filter.
The TGS 2611-E00 signal presents a lower amplitude compared to the TGS 2611-C00 signal,
and a noticeable decay after each peak. This decay produces phase effects in the signal, which
are also observed in the reconstructed CH4 mole fraction but absent in the TGS 2611-C00
signal. The lower performance is observed as a phase mismatch and a filtering of
high-frequency features present in the measured peaks. Our suspicions regarding this
performance difference were included in the discussion section with the following phrase:

The fast decay observed for reconstructed CH4 mole fraction measurements after each voltage
spike was attributed to the response time of the TGS sensor. The slow decay observed on Type E
sensors was probably due to a filter integrated inside the sensor causing to improve CH4

selectivity.

RC2: Add designs, and photos on low-cost sensor instrument.
The logger system used in this study is the same as the one used in our previous studies (Rivera
Martinez et al. 2021, 2022). We have added the following sentence in section 2.3:

The logger system design was previously documented on Rivera Martinez et al. (2021) and

Rivera Martinez et al. (2022).

RC2: I suggest the authors provide spatial distributions of simulations and inversions for typical
cases, e.g. to show the real emission sources and the inversed sources and their distances.



The following figure, corresponding to the cost function, was added into the supplementary
material to show the spatial distribution of the controlled release and the estimated location
using the inversion framework.

Figure A15. Contour plot of the cost function for release #25 computed using assimilated gradients from
TGS reconstructed data. The black and white stars show the location of the actual and estimated location

respectively.

RC2: I recommend the authors to make the inversion code publicly available to improve the
wide influences and applications of this study.
We have added the following text to the manuscript:
The codes developed in the frame of the Chaire Indutrielle TRACE ANR-17-CHIN-0004-01.
They are accessible upon request to the corresponding author.
RC2: Add regression coefficients (slope, intercept and p value) in all related figures (e.g. Fig.5-6;
Fig. A4-A12) that are statistically significant.
The figures were updated adding the R2 and the p-value.
RC2: Figure 4: Add scatter plots (and coefficients) of the corrected and reference data.
The figure was updated. Currently it corresponds to figure 3.



Figure 3. Comparison of the voltage signal for one release (#8) from Chamber A before (Uncorrected) and
after (Corrected) the baseline correction on (b) TGS 2611-C00 and (d) TGS 2611-E00, on which it is

appreciated the correction of the offset preserving the amplitude enhancements linked to CH4 variations.
Scatter plot of the corrected (orange) and uncorrected (red) signal vs the reference CH4 observations for
(c) TGS 2611-C00 and (e) TGS 2611-E00. (a) Reference CH4 mole fractions, also corrected using the spike

correction algorithm.

RC2: Line99: participate in;
Section 2.1 was updated to improve clarity:
In October 2019, TotalEnergies® performed multiple controlled releases at the TotalEnergies
Anomaly Detection Initiative (TADI) facility, to investigate the capability of different detection
and quantification techniques of CH4 emissions from industrial facilities. The TADI test site is
located northwest of Pau, France, with an approximate area of 200 m2. It is equipped with
infrastructure typical of oil and gas facilities (pipes, valves, tanks, etc) to simulate ‘realistic’
leaks. The terrain is flat but includes different obstacles that can affect the dispersion of the
gases released to the atmosphere. Our experiment consisted of 41 controlled releases of CH4 and
CO2, covering a wide range of emission rates of between 0.15 and 150 g CH4 s-1, with durations
ranging between 25 to 75 minutes. We participated in this experiment to develop and test
inverse modelling frameworks within the TRAcking Carbon Emissions (TRACE,
https://trace.lsce.ipsl.fr/) program for the estimation of emission location and rates based on
CH4 mole fractions from high precision instruments (Kumar et al., 2022). We presented the
inversion results for 26 releases from single point sources based on two inversion approaches,
one relying on fixed-point measurements, and the other one on mobile near-surface
measurements (the latter had already been documented in Kumar et al. (2021)). In both cases,



the emission estimates relied on CH4 mole fractions from high precision instruments, and on a
Gaussian plume model to simulate the local atmospheric dispersion of CH4. The results from
Kumar et al. (2022) for point source emissions yielded an emission rate error of between ~23 to
~30 % and a localisation error (within a 40 m × 50 m area) of between 8 and 10 m. The
controlled releases were emitted from heights of between 0.1 m and 6 m above ground level, and
inside the 40 m × 50 m ATEX (ATmospheres EXplosibles) zone of the TADI facility (see Fig. 1).
RC2: Line100-101: ambiguous for “for the estimation of … based on …high precision”, better
to separate this for another sentence? “And the TRACE program is …”;
See answer for comment 3.
RC2: L112: consist of doing is better to be changed to consist of sth.
See answer for comment 3.
RC2: L115: You may mean “connected to an upstream chamber which holds the high precision
instruments…”
See answer for comment 3.
RC2: L116: (Picarro CRDS or LGR), or provide specific type;
See answer for comment 3.
RC2: L122: better to use the datasheet parameter: “less than 3 ppb per month”
We have update the phrase:
“In a previous study by Yver-Kwok et al. (2015), it was proven that these CRDS gas analysers
ensure high precision measurements and a low drift over time, of less than one ppb per month,
although the datasheet specifies a drift of 3 ppb per month (Picarro, 2017).”
RC2: L124-127: hard to follow, needs to be rewritten in short sentences;
See answer for comment 3.
RC2: L129: redundant, combine sensors: “the CH4 and environmental sensors”
Sentence corrected:
Table A6 shows the TGS and environmental sensors in each chamber, as well as the type of
chamber.
RC2: L131: two sensors other sensors;
Updated sentence:
Each chamber contained at least three TGS units with voltage measurements sensitive to CH4

and two other sensors measuring relative humidity/temperature and pressure/temperature.
RC2: L134-135: add “a”…ADC board ;… change “recorded” to records
Updated the sentence:
An AB Electronics PiPlus ADC board mounted on a Raspberry Pi 3B+ recorded the voltage
drop across the load resistor, providing observations every 2 s.
RC2: L146: Why they are used in the training of models?
To reconstruct CH4 mole fraction from observed voltage from the TGS sensors we employed a
data driven approach consisting in minimising the error between the predicted output and the
reference measurement on an iterative process, using a multi layer perceptron or a 2nd degree
polynomial. This approach requires a sufficient number of examples from which the model can
learn the relationships between voltage variations and CH4 concentration. Contrary to the case
of inverse modelling, it is not affected by the wind conditions since reconstruction models do not
use wind information to derive CH4 mole fractions.
RC2: L217: We used
Sentence corrected:
To assess the performance of the reconstruction models to provide dry CH4 mole fractions
enhancements (above the background) from voltage drop measurements corresponding to the



TGS sensors, we used a normalised root mean square error (NRMSE) per release, weighted by
the inverse of the maximum peak present in the release
RC2: L219 and 222: presented
The text was corrected:

where are the CH4 mole fraction measurements provided by the high precision instrument,𝑦
𝑖

𝑦
𝑖

^

are the reconstructed CH4 mole fractions, n is the number of observations present in each
release, and is the amplitude of the maximum mole fraction peak enhancement present inℎ

𝑚𝑎𝑥

the release after removing the background.
RC2: L220: the unit of hmax is ppm? And thus the NRMSE is dimensionless?
Yes, the NRMSE is dimensionless. The figures and the text was updated accordingly.

RC2: L244: change “are” to “were”
The sentence was corrected:
The reconstruction models were trained and tested only once per chamber, following the
distribution of the releases from Table 2.

RC2: L245: Table 4
Table 1 and 2 were moved to SM. Table 4 was updated to Table 2 (see previous comment).

RC2: L275-276: how long is the typical time decay?
The time delay from synchronisation between high-precision gas analysers and TGS chambers
varies between 2 to 3 minutes depending on the day of the campaign.

RC2: L316: discuss a bit on why
The following text was added to the discussion section.
The combination of both sensors as input produced a reconstruction of CH4 mole fractions
similar to using only one of the sensors (TGS 2611-C00). This can be explained by the fact that
both of the TGS signals are highly correlated and do not add more information to the model,
and the phase mismatch between both input signals produced by the filter on TGS 2611-E00
sensor.

RC2: L333-335: redundant and a bit ambiguous
The phrase was corrected to reduce redundancy and ambiguity:
For most of the cases, the modelled gradients assimilating the TGS data are closer to those
assimilating the reference data than to the observed TGS data.

RC2: L340, 348: comply with the journal requirements on capitals of figures and keep
consistency through the text (Figure A14 and fig 9a).
The manuscript was reviewed to comply with the journal requirements.

RC2: L366-372: These contents seems to be more suitable for conclusion
The paragraph was moved to the conclusion section.
RC2: L431-433: The study of how many sensors are needed and the layout of these sensors are
also needed.
We have added the following text in the discussion section about the density of the network:
Density of sensor network



In our campaign, we deployed 7 chambers connected to air inlets placed on tripods at distances

of between 40 and 50 m from the emission source to capture methane plumes under various

conditions. Table 3 details the number of sensors used for emission flux estimations across the

controlled releases.

The optimal number of sensors for emission flux localisation and estimation is complex,

influenced by varying emission rates, environmental conditions, and setup configurations.

Notably, when examining cases with uniform emission rates (1 g CH4/s), such as releases 12, 2,

and 21 (with 3, 4 and 5 chambers respectively), a configuration of 4 to 5 sensors consistently

produced the lowest errors for both sensor types. Yet, release 21 demonstrated that even five

sensors may not guarantee low errors if the plume capture is suboptimal due to environmental

factors or sensor placement.

We can contrast our setup with Riddick et al. (2022), who used four sensors approximately 30 m

away from the source, but without detailing their individual contributions to emission

calculations.

The optimal configuration of such a relatively dense network necessitates a thorough

investigation, possibly through simulations of typical emissions and the strategic addition or

removal of sensors to assess their impact. However, a comprehensive analysis of optimal

network configuration was beyond the scope of our study due to the limited number of data

points recorded.


