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Abstract. Fugitive methane (CH4) emission
::::::::
emissions occur in the whole chain of oil and gas production, from the

::::::::
including

::::
from

:
extraction, transportation, storage,

:
and distribution. The detection and quantification of such emissions are conducted

usually from
::::
Such

:::::::::
emissions

:::
are

::::::
usually

::::::::
detected

:::
and

:::::::::
quantified

:::
by

::::::::::
conducting surveys as close as possible to the source

location. However, these surveys are labor intensive, costly and they do
:::::
labour

::::::::
intensive,

:::
are

::::::
costly,

:::
and

:::
fail

::
to

:
not provide con-

tinuous monitoring of the emissions
::::::::
emissions

:::::::::
monitoring. The deployment of permanent networks of sensors

:::::
sensor

::::::::
networks5

in the vicinity of industrial
::::
CH4 :::::::

emitting facilities would overcome the limitations of surveys by providing accurate estimates

:::::::
emission

:::::::::
estimates, thanks to continuous sampling of the plumes. High

:::::::
emission

:::::::
plumes.

::::
Yet

::::
high precision instruments are

too costly to deploy in such networks. Low-cost sensors like Metal oxide semiconductors
::::
using

:
a
:::::
metal

:::::
oxide

:::::::::::::
semiconductor

(MOS) are presented as a cheap alternative for such deployments due to its
:::
their

:
compact dimensions and to its

::::
their

:
sensitivity

to CH4. In this studywe test
:
,
:::
we

::::::::::
demonstrate

:
the ability of two types of MOS sensors from the manufacturer Figaro® (TGS10

2611-C00 and TGS 2611-E00) deployed in six chambers to reconstruct an actual signalfrom a source in open air corresponding

to a series of controlled CH4 releases and we assess the accuracy of the emission estimates computed from reconstructed

CH4 mole fractions from voltages measurements of these sensors. A baseline correction of the voltage linked to background

variations is presented
:::::::::::
manufactured

::
by

:::::::
Figaro®

:::
to

:::::::::
reconstruct

::
a

::::
CH4::::::

signal,
::
as

::::::::
measured

:::
by

:
a
::::::::::::
high-precision

::::::::
reference

::::
gas

:::::::
analyser,

::::::
during

::
a
:::::
7-day

:::::::::
controlled

::::::
release

:::::::::
campaign

:::::::::
conducted

::
by

:::::::::::::
TotalEnergies®

:::
in

::::::
autumn

:::::
2019

::::
near

:::::
Pau,

::::::
France.

::::
We15
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::::::
propose

::
a
:::::::
baseline

::::::
voltage

:::::::::
correction

::::::
linked

::
to

::::::::::
atmospheric

:::::
CH4 ::::::::::

background
::::::::
variations

:::
per

:::::::::
instrument

:
based on an iterative

comparison of neighboring observations. Two
::::::::::
neighbouring

::::::::::::
observations,

:::
i.e.

:::
data

::::::
points.

:::::
Two

::::
CH4:::::

mole
:::::::
fraction

:
recon-

struction models were compared,
:
: multilayer perceptron (MLP) and 2nd degree polynomial, providing similar performances

meeting our target requirement on all the chambers when the input variable is the TGS 2611-C00 sensor. The emission
:::
2nd

:::::
degree

:::::::::::
polynomial.

::::::::
Emission estimates were then computed using an inversion approach based on the adjoint of a Gaussian20

dispersion modelobtaining promising results with an
:
.
::::::
Despite

:::::::::
obtaining

:::::::
emission

::::::::
estimates

::::::::::
comparable

::::
with

:::::
those

::::::::
obtained

::::
using

::::
high

::::::::
precision

::::::::::
instruments

::::::::
(average emission rate error of 25% and a

::::::
average

:
location error of 9.5 m.

:
),
:::
the

::::::::::
application

::
of

::::
these

::::::::
emission

::::::::
estimates

::
is

::::::
limited

::
to

::::::::
adequate

::::::::::::
environmental

:::::::::
conditions.

::::::::
Emission

::::::::
estimates

:::
are

::::
also

:::::::::
influenced

::
by

::::::
model

:::::
errors

::
in

:::
the

:::::::
inversion

:::::::
process.

:

1 Introduction25

Fossil fuel anthropogenic
::
A

:::::
recent

:::::
study

::::::::
suggests

::::
that

::
in

:::
the

::::::
decade

::::::::::
2008-2017,

:
methane (CH4) emissions related to

::::
from

the production, exploitation and transport of
::::::::::::
transportation,

:::::::
storage,

:::
and

::::::::::
distribution

::
of

:::::
fossil

::::
fuels

:::::
(e.g. coal, oil,

:
and natural

gas, account )
:::::::::
accounted for 35% of global anthropogenic

:::
CH4:

emissions (Saunois et al., 2020). Emissions from natural gas

production occur along the chain from extraction, transportation, storage, distribution and use
::::
These

:::::::::
emissions

:::
are

::::::::
typically

::::::::
quantified

:::::::
through

::::::::
emission

:::::::::
inventories. Emissions estimates reported by inventories rely on information from activity data30

:
(
::
i.e.

:::::
human

::::::::
activities

::::::::::
contributing

:::
to

::::::::
emissions

::::
like

::::
fuel

:::::::::::
consumption)

:
and emission factors . Emission factors are different

between sites, technologies, operating modes and are not stationary
:::
(i.e

::::::::::
coefficients

::::
that

:::::
relate

:::
the

:::::::
activity

::::
data

::
to

::::::::
emission

:::::
rates).

::::::::
Although

::::::::::
generalised

:::::::
emission

::::::
factors

::::
can

::
be

::::
used

::
to

:::::::
develop

::::::::
emission

::::::::::
inventories,

:::::::
emission

::::::
factors

:::
can

:::::
vary

:::::::
between

:::::::
different

::::
sites

:::::::::
depending

::
on

::::::::::
site-specific

:::::::::::
technologies,

::::
and

::::::::
operating

:::::
modes, which makes the upscaling of fugitive CH4 emis-

sions highly uncertain (Alvarez et al., 2018). For instance,
::::::::
estimated emissions from the oil and gas supply chain in the US35

::
in

::::
2015

:
constrained from ground based and aircraft measurements were found to be 60% higher than the EPA

::::::::::::
Environmental

::::::::
Protection

:::::::
Agency

:::::
(EPA)

:
inventory (Alvarez et al., 2018). More generally, the characterization of CH4 emissions from com-

plex processes based on static
:::::::::
generalised

:
emission factors can be challenged when the

::::::::::::
underestimated

:::::
when best practices are

not followed by operators (Riddick et al., 2020).

Atmospheric measurements are increasingly used to detect and quantify CH4 leaks from industrial facilities. The measurements40

:::::
These

:::::::
methods

::::::::
primarily

:::::::
involve

:::::::::
measuring

:::::::
methane

:::::
mole

:::::::
fraction

:::::::::
downwind

::
of

:::
the

:::::::
facility.

::::::::::::
Measurements

:
are often inter-

preted with local-scale dispersion models using atmospheric inversion methods to infer the CH4 source location and emis-

sion rates
:::
rate, see e.g. (Kumar et al., 2022). Current approaches generally consist in

:
of
:

conducting atmospheric surveys

of the enriched concentration
::::
mole

:::::::
fraction

:
plume created by the emitting source. Difficulties are the

:::::
There

:::
are

:::::::
several

::::::::
challenges

:::::
with

:::
this

:::::::::
approach: accessibility to sample the plumesfrom emitting locations, labor

::::::::
downwind

::::::::
emission

:::::::
plumes,45

:::::
labour

::::::::::::
requirements, and instrument costs,

:
given that surveys currently

::::
may employ expensive high precision research-level

CH4 instruments , such as Cavity
:::::
using

:::::::::
techniques

::::
such

:::
as

:::::
cavity

:
ring-down spectrometers

::::::::::
spectrometry

:
(CRDS). Further,

::::::::
downwind

:
surveys do not provide continuous monitoring of the sources

:::::
source

::::::::::
monitoring (Travis et al., 2020). The de-
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ployment and functioning of mini-networks of
:::::::
networks

:::
of continuous monitoring sensors for CH4 mole fractions

::::::
sensors

::::::
around

:::::::
emission

:::::::
sources

:
is an alternative to surveys, but the costs of each instrument remain a limitation. Advances in the50

development of low-cost sensors facilitates the deployment of dense sensors’
:::::
sensor networks to increase the coverage of a

site (Kumar et al., 2015; Mead et al., 2013). Permanent deployment of a network of sensors can overcome limitations in the

quantification of leaks and help to better characterize the plumes by limiting the impact of
::
site

::::::::
coverage

::::::::::::::::::::::::::::::::
(Kumar et al., 2015; Mead et al., 2013)

:
.
:::
The

::::
use

::::
over

::::
long

:::::::
periods

::
of

::::
time

:::
of

:::::
dense

::::::::
networks

::
of

:::::::
sensors

::::::::
deployed

::::::::::
permanently

::::::::
increase

:::
the

:::::
ability

:::
to

:::::::
identify

:::
the

::::::::
structures

::
of

:::
the

::::::::
observed

:::::::
plumes,

::
to

:::::::
improve

:::
the atmospheric transport modelling uncertainties. In addition,

:::::::::::::
parametrization55

::
for

:::
the

:::::::::
simulation

::
of

:::::
these

::::::
plumes,

:::
and

::::
thus

::
to

:::::::
improve

:::
the

:::::::
accuracy

::
of

:::
the

::::::::::::
quantification

::
of the theoretical study of Chamberland and Veeravalli (2006)

proved that performance is improved in differentiation of known signals from noise by increasing the sensor density in an

area
::::
leaks

:::::
based

:::
on

:::
this

:::::::::
modelling.

In later years, an increase in the
:::::
recent

:::::
years,

:::::::
growing

:
interest in low cost and low power sensors to be used in dense

networks
::
for

::::
use

::
in

::::::::
relatively

::::::
dense

::::::::
networks

:::
has

:
led to the study of different kinds of sensors to measure pollutants and60

trace gases like
:::::
carbon

:::::::
dioxide

:
(CO2:

) or CH4. One of the most common low-cost sensors technologies for the detection

and quantification of CH4 emissions is metal oxide semiconductors (MOS). MOS sensors are composed of a metal oxide

sensing materialand a heaterensuring that the sensing material reaches temperatures between 300 to 500 ◦C
:
,
:::::::::::
incorporating

:::
an

::::::::
integrated

:::::
heater. A chemical reaction affects the electrical conductivity of the sensing material in the presence of an electron

donor gas such as CH4 (Özgür Örnek and Karlik, 2012). The advantages of MOS sensors are that they are compact and very65

well suited to long time deployment due to their resilience to extreme weather conditions. However, their sensitivity is affected

by environmental parameters (
::::::::
However,

:::::
MOS

:::::
sensor

:::::::::
sensitivity

::
is

::::
also

:::::::
affected

:::
by

::::
other

:::::::::::::
environmental

:::::::::
parameters

::::
such

:::
as

temperature and relative humidity ) (Popoola et al., 2018)and VOCs
::::::::::::::::::
(Popoola et al., 2018); they also present low accuracy and

:::
may

:
drift with time (in the form of a decrease in the conductance

::::::::::
conductivity

:
of the sensing material), requiring periodic

re-calibrations
:::::::::::::::::::::::::::::::::::::
(Riddick et al., 2020; Shah et al., 2023, 2024), and the need of

:::
for

:
a
:
constant power supply due to the heater70

material
:::::::::::::::
(Shah et al., 2023).

The Taguchi Gas Sensors (TGS) commercial MOS from the Figaro® manufacturer, were
:
is
::
a

:::::::::::
commercially

::::::::
available

:::::
range

::
of

::::
MOS

:::::::
sensors

:::::::::::
manufactured

::
by

::::::::
Figaro®,

:::::
which

::::
have

::::
been

:
widely tested in different environments

::::::::
(including

:
under controlled

conditions and field deployment due to their sensitivity to
::::::
during

::::
field

::::::::::
deployment)

:::
due

::
to

:::
the CH4(Eugster et al., 2020; Eugster and Kling, 2012; Riddick et al., 2020; Collier-Oxandale et al., 2018; Bastviken et al., 2020; van den Bossche et al., 2017)

. The standard technique to derive a calibration methodology is to collocate these MOS sensors
:::::::::
-sensitivity

::
of

::::::
certain

:::::
TGS75

::::::
models

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Eugster et al., 2020; Eugster and Kling, 2012; Riddick et al., 2020; Collier-Oxandale et al., 2018; Bastviken et al., 2020; van den Bossche et al., 2017; Shah et al., 2023, 2024)

:
.
:
A
::::::::
standard

::::::::
technique

::
for

:::::::::
calibrating

:::::
these

::::::
sensors

:::
has

:::::::
involved

::::::::::
collocating

::::
them

:
with a high precision instrument used as a ref-

erence, then apply
:::
and

:::
then

::::::::
applying empirical equations or data-driven approaches (Eugster et al., 2020; Eugster and Kling, 2012; Casey et al., 2019; Bastviken et al., 2020; Collier-Oxandale et al., 2018, 2019)

::
to

:::::
derive

::::
CH4::::

mole
:::::::
fraction

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Eugster et al., 2020; Eugster and Kling, 2012; Casey et al., 2019; Bastviken et al., 2020; Collier-Oxandale et al., 2019, 2018)

. In a previous work (Rivera Martinez et al., 2021) we have studied the possibility of using Artificial neural Networks
:::::::
artificial80

:::::
neural

::::::::
networks (ANN) to reconstruct the variations of

:::::::
variations

::
in
:
CH4 mole fractions in room air under controlled conditions

from three types of Figaro sensors (TGS 2600, TGS 2611-C00,
:
and TGS 2611-E00). A following study (Rivera Martinez et al.,

2022) analyzed
:::::::
analysed

:
the potential to reconstruct spikes of CH4 :::::

spikes generated on top of ambient air observations, that

3



corresponded to typical signals from leaks at industrial sites, employing two types of Figaro sensors (TGS 2611-C00 and TGS

2611-E00). That study made a thorough
::::::::::::
comprehensive comparison of the performance of five models for the reconstruction85

of CH4::::
mole

:::::::
fraction.

The next logical step is to test the performances
::::::::::
performance

:
of the same sensors to reconstruct CH4 ::::

mole
:::::::
fraction

:
from

real leaks, and to use the reconstructed mole fractions to quantify
::
and

:::::::
localise

:
emission rates. To our knowledge, only one

study attempted to do so. Riddick et al. (2020) quantified emissions of
:::::::::::::::::
Riddick et al. (2020)

::::::::
quantified

::::
CH4:::::::::

emissions
::::
from

:
a

gas terminal using a Figaro TGS 2600included in a logger system controlled by an Arduino Uno. The logging system was90

located
:
,
::::::::
deployed 1.5 m from a point

::
km

:::::
from

:::
the

:::::::
emission

:
source. To reconstruct CH4 mole fractions from voltage observa-

tions, Riddick et al. (2020)
::
the

:::::::
authors developed an empirical equation considering the measured voltage, temperatureand the

humidity . Then, a
:
,
:::
and

::::::
relative

::::::::
humidity

:::::
from

:
a
::::::
nearby

::::::::::::
meteorological

::::::
station

::::
and

::::
then

::::::
applied

:
a
:
Gaussian plume model was

used to quantify the emission rate using information from the reconstructed CH4 mole fractions and wind information from

a nearby meteorological station. Their estimates of the emissions rates had an average value
:::
local

:::::
wind

:::::::::::
information.

:::::
Their95

::::::::
estimated

::::::
average

:::::::::
emissions

:
of 9.6 g CH4 s−1and reached a maximum

:
,
::::
with

::
a
::::::::
maximum

::::::::
emission

::::
rate of 238 g CH4 s−1,

given corresponding to enhancements of the CH4 mole fractions
::::::
fraction

::::::::::::
enhancements

::
of between 2 ppm to 5.4 ppm within

the plume. Their estimates based on a Figaro sensor
:::::::::::
Figaro-based

:::::::
emission

::::::::
estimates

:
were not confronted with high precision

instruments
:::::::::::
corresponding

::::::::
emission

::::::::
estimates

::::::
derived

:::::
using

:
a
::::
high

::::::::
precision

:::
gas

::::::::
analyser nor with an independent knowledge

of
:::
the emission rate.

:::::::::
Elsewhere,

::::::::::::::::::
Riddick et al. (2022)

::::::
studied

:::
the

::::::::::
capabilities

::
to

:::::
detect

::::
and

:::::::
estimate

:::::
CH4 ::::::::

emissions
:::

of
::::
four100

:::::
Figaro

:::::
TGS

::::::::
2611-E00

:::::::
sensors

::
in

:
a
:::::::::
fence-line

:::::::::
monitoring

:::::
setup.

:::::::
Sensors

:::::
were

::::::::
deployed

:::::
closer

::
to

:::
the

::::::::
emission

::::::
source

:::
(30

:::
m)

:::
and

:::::
tested

::::
over

::
a

::
48

::::
hour

:::::::
period.

:::::::
Reported

::::::
results

:::::::
showed

::::::::
detection

::::::::::
consistency

::
for

:::::::::
emissions

:::::
above

::::
167

:
g
::::
CH4::::

h−1
::::
with

:::
an

:::::::::::
enhancement

::::::::
threshold

::
of

:
2
:::::
ppm.

::::::::
However,

:::
the

:::::::
number

::
of

::::::
sensors

:::::
used

::
to

:::::::
compute

:::
the

::::::::
emission

::::::::
estimates

:::
was

::::
not

::::::::
specified,

:::::::::
particularly

:::::
given

:::
the

::::::
spatial

:::::::::
distribution

:::
of

:::
the

::::::
sensors

:::
and

:::::::
varying

::::
wind

::::::
speed.

In this study, we test the ability of a network of several Figaro sensors to reconstruct the
::::::::::
atmospheric

:
CH4 atmospheric105

::::
mole

:::::::
fraction enhancements from a series of controlled releases of known magnitudes and duration in open air

::::::::
magnitude

::::
and

:::::::
duration

::
to

:::
the

::::
open

::::::::::
atmosphere

:
at a facility called TADI (see Methods), and to infer the emission rate of each release by an

inverse modeling
:::::::::
modelling approach. The accuracy of the CH4 ::::

mole
::::::
fraction

:
reconstruction is evaluated against collocated

accurate CH4 measurements from high precision CRDS instruments. The accuracy of the inverted emission locations and rates

is evaluated against the known (controlled) location and magnitude using the inversion model of Kumar et al. (2022)
:
.110

This study builds upon the research conducted by Rivera Martinez et al. (2022) and Kumar et al. (2022), demonstrating the

potential for continuous monitoring of CH4 emissions using cost-effective in situ sensors. Drawing from the insights derived

from these two studies, it seeks to address the new challenges associated with the combination of both types of analysis. ,
:::
i.e

:::::::::::
reconstruction

:::
of

::::
CH4 ::::

mole
:::::::
fractions

:::::
from

::::::::
measured

::::::
voltage

::::::::
variations

::::
and

::::::::
estimation

::
of

::::::::
emission

::::
rates

:::
and

:::::::
location

:::::
from

::::
CH4

::::
mole

::::::::
fractions. Firstly, the challenge arises in the deployment and management of Figaro® sensorsonsite

:::::
onsite

::::::
Figaro

::::::
sensors,115

an issue not present in Rivera Martinez et al. (2022), as well as extracting CH4 concentrations
::::
mole

:::::::
fractions

:
from measure-

ments that are impacted by more complex perturbations. For instance, the background air in Rivera Martinez et al. (2021, 2022)

:::::::::::::::::::::::::::::
Rivera Martinez et al. (2021, 2022) was less polluted than the one

::
air

:
from an industrial site such as TADI. Moreover, the en-

4



vironmental conditions, especially in terms of temperature and moisture
::::
water

:::::
mole

:::::::
fraction, in these previous studies were

smooth and not representative of the real field conditions as encountered in this new study. Secondly, the prescriptive precision120

and accuracy targets for CH4 reconstructions outlined in Rivera Martinez et al. (2022) were established as generic targets,

fitting for a variety of data processing strategies intended to quantify emissions from industrial sites. The specific observation

and modelling strategy implemented in Kumar et al. (2022) to localise and quantify point source emissions carries its own

set of precision/accuracy requirements. In particular, this strategy strongly relies on the characterization
::::::::::::
characterisation

:
of

gradients across the measurement stations of concentration
::::
mole

::::::
fraction

:
averages over time or wind sectors, which makes the125

derivation of nominal requirements on the reconstruction of CH4 spikes or
:::
the

::::
CH4 time series quite complex. Furthermore,

such requirements should be weighed against the modelling uncertainties associated with the corresponding Gaussian plume

model inversions. Ideally, the uncertainties related to the
::::
with CH4 ::::

mole
::::::
fraction

:
data would not significantly add to

::::::::
contribute

::::::
towards

:
the total uncertainty when combining them

::::::::
combined

:
with uncertainties from the modelling framework. This, how-

ever, does not necessarily mean that they should be much smaller than the latter. The direct comparison of the results obtained130

in this study with CH4::::
mole

:::::::
fraction data derived from the Figaro sensors and those from Kumar et al. (2022) provides insights

into whether this objective is achieved.

Therefore, for 33 controlled releases at the TADI facility, we employed fixed-point measurements from both high precision

CRDS instruments and low-cost TGS
:::::
TGSs. A considerable fraction of the TGS measurements were used for training models

to reconstruct CH4 mixing ratios
::::
mole

::::::::
fractions

:
from measured TGS resistance and other variables. When reconstructing135

the CH4 concentrations
::::
mole

::::::::
fractions, we proposed a minimum accuracy target for CH4 reconstruction models at

:
of

:
15%

of the amplitude of the largest observed excess
::::
mole

:::::::
fraction

:::::::::::
enhancement

:
within a release. This corresponds to accuracies

going from 0.3 ppm for a release causing a maximum excess
::::::::::
enhancement

:
of 2.4 ppm ,

::
up

:
to 18 ppm for a maximum excess

:::::::::::
enhancement of 120 ppm. This accuracy is consistent with the accuracy requirement set

:::::::
imposed in our previous study where

we used TGS sensors to reconstruct CH4 spikes created in a laboratory experiment (Rivera Martinez et al., 2022). However,140

the relevance of this target is implicitly re-assessed through the use of the reconstructed time series in the inversion scheme

from Kumar et al. (2022).

The plan of the study is as follows. Section 2 presents the TADI 2019 controlled releases campaign, the logger systems, the

:::
data

:::::::::
treatment,

:::
the models employed to reconstruct CH4 :::::::::::

concentration from TGS data, and the atmospheric inversion approach.

The data treatment, comparison of the models for the reconstruction of CH4 and the inversion results for rates and locations of145

different releases are analyzed
:::::::
analysed in section 3. Results are discussed in Section 4, and conclusion

::::::::::
conclusions are given

in section 5.

2 Methods

2.1 Sampling strategy at the TADI-2019 campaign

In October 2019, TotalEnergies® conducted an experiment with
::::::::
performed

:
multiple controlled releases at the TotalEnergies150

Anomaly Detection Initiative (TADI)
::::::
facility, to investigate the capability of

::::::
different

:
detection and quantification of different

5



technologies for local emissions produced on
::::::::
techniques

:::
of

::::
CH4:::::::::

emissions
::::
from

:
industrial facilities. The TADI test site is

designed and operated by TotalEnergies® to test different technologies and methodologies of detection and quantification

of gas leaks in an industrial environment, such as oil and gas production facilities. The platform is located northwest of Pau,

France, with an approximate area of 200 m× 200 m. The site
:

2.
::
It is equipped with a series of

:::::::::::
infrastructure

::::::
typical

::
of

::
oil

::::
and

:::
gas155

:::::::
facilities

:
(pipes, valves, tanks, , and other equipment commonly found on oil and gas facilities

:::
etc)

:
to simulate ‘realistic’ leaks.

The terrain is flat but includes different obstacles that can affect the dispersion of the gases released to the atmosphere. This

:::
Our

:
experiment consisted of 41 controlled releases of CH4 and CO2:::::

CO2, covering a wide range of emissions
:::::::
emission

:::::
rates

::
of

between 0.15 and 150 g CH4 s−1and
:
,
::::
with durations ranging between 25 to 75 minutes. We participated to

::
in this experiment

to develop and test inverse modelling frameworks within the TRAcking Carbon Emissions (TRACE, https://trace.lsce.ipsl.fr/)160

program for the estimation of emission location and rates based on CH4 mole fractions from high precision instruments (Kumar

et al., 2022). We presented the inversion results for 26 releases from single point sources based on two inversion approaches,

one relying on fixed-point measurements, and the other one on mobile near-surface measurements (the latter had already been

documented in (Kumar et al., 2021)
::::::::::::::::
Kumar et al. (2021)). In both cases, the estimates of the emissions

:::::::
emission

::::::::
estimates relied

on CH4 mole fractions from high precision instruments, and on a Gaussian plume model to simulate the local atmospheric165

dispersion of CH4. The results from Kumar et al. (2022) proved to be relatively good, with an error in the release rate estimates

from fixed-point measurements between ∼
:::
for

::::
point

::::::
source

::::::::
emissions

:::::::
yielded

::
an

::::::::
emission

:::
rate

:::::
error

::
of

:::::::
between

:
23 to ∼

:
30 %

and an error in the location of the point sources
:
a
::::::::::
localisation

::::
error

:
(within a 40 m × 50 m area) of between 8 and 10 m.

The controlled releases were emitted at different heights up to
::::
from

:::::::
heights

::
of

:::::::
between

:::
0.1

:::
m

:::
and

:
6 m above the ground

::::::
ground

::::
level, and inside the 40 m × 50 m ATEX

::::::::::::
(ATmospheres

:::::::::::
EXplosibles) zone of the TADI facility (see Fig. 1).170

More information on the site infrastructure and on these experiments in

2.2
:::::::::

Controlled
:::::::
releases

::::
and

::::::::
sampling

::::::::::::
configuration

:
A
:::::
total

::
of

::
41

:::::::::
controlled

:::::::
releases

::::
were

:::::::::
conducted

::::
over

::
a

:::::
seven

:::
day

::::::
period,

:::::::
between

::
2 October 2019 are presented respectively

in Kumar et al. (2021) and Kumar et al. (2022).

The multiple controlled releases experiment was conducted from
:::
and

:::
10 October 2, 2019, to October 10, 2019.

:::
Six

:::::::
releases175

:::::::::::
corresponding

::
to
::::
low

::::
wind

::::::
speeds

::
(<

:::
0.6

::
m
::::
s−1)

:::::
were

:::
not

::::
used

:::
for

:::
the

:::::::
inversion

:::
as

::
in

::::::::::::::::
Kumar et al. (2022),

:::::
since

::::::::::::
measurements

::::
made

::
in

::::
low

:::::
winds

:::
are

:::
not

::::::
suitable

:::
for

::::::::::
atmospheric

:::::::
inverse

:::::::::
modelling.

::::
They

:::::
could

:::::::
however

::
be

:::::
used

::
in

::
the

:::::::
training

::
of

::::
CH4:::::

mole

::::::
fraction

::::::::::::
reconstruction

:::::::
models.

::::
The

:::
two

::::::
largest

:::::::
releases

::::::::
produced

::::
high

::::
CH4:::::

mole
::::::
fraction

:::::::
plumes

:::
that

:::::::
affected

:::
the

:::::::::
amplitude

::::::::
measured

::
by

:::
the

:::::
TGS

:::::::
sensors,

::::
such

::::
that

::
it

:::
was

:::
not

::::::::
possible

::
to

:::::::::
distinguish

:::::
large

::::
CH4::::::

spikes
::::
from

::::::::
medium

:::
and

:::::
small

::::::
spikes

::::
from

::::::
voltage

:::::
drop

::::::::::::
measurements

::::
(see

:::
fig

::::
A3)

::::
and,

::::::
hence,

::::
they

::::
were

::::
also

:::::::::
removed.

:::::::::
Therefore,

:::
our

:::::
study

::
is
:::::::

focused
:::
on

:::
33180

::::
from

:::
the

:::::
initial

:::
41

:::::::::
controlled

:::::::
releases

:::::::::
conducted

:::::
during

::::
the

::::::::
campaign.

::::::
Table

:::
A1

:::::
details

::::
the

:::::::
releases

:::
that

:::::
were

::::::::
measured

:::
by

::::
each

::::::::
chamber.

:::
The

:::::::
protocol

::::::::
followed

::
in

:::
the

::::::::
selection

::
of

:::::::
releases

::::
used

:::
for

:::
the

:::::::
training

:::
and

::::::
testing

::
of
::::::::::::

reconstruction
:::::::

models
::
is

::::::::
explained

::
in

::::::
section

:::
2.6.

:

Our atmospheric sampling configuration for measuring CH4 is shown in figure 2. It consisted of placing 16 sampling lines

::
(of

::::
6.35

::::::::
diameter)

:
on the groundconnected on one end to air intakes in tripods at heights ,

::::
with

:::
one

::::
end

::
of

::::
each

::::
line

:::::::
attached

::
to185
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::::::
tripods

::
of between 2.75 to

::
and

:
3.50 m

::::
high around the ATEX zoneand on

:
,
::::::
serving

::
as
:::

air
:::::
inlets,

::::
and the other end

::
of

::::
each

::::
line

::::::::
connected

:
to a pump flushing at 6 LPM (KNF N811 with PTFE diaphragm). The lengths of the sampling lines varied from 10

m to 100 mconnecting each tripod air intake to ,
:::::::::
connecting

:::::
each

::
air

::::
inlet

::
to

:::
the

:
CH4 measurement instruments located

::::::
sensors

inside a tent. The pump was connected upstream from
::
of

:
the high precision instruments (Picarro CRDS or LGR), a chamber

containing a series of TGS CH4 sensors, and other sensors measuring environmental parameters such as
:::::::::::
environmental

:::::::
sensors190

::::::::
measuring

:
relative humidity, pressure

:
,
:
and temperature. To maintain the inline pressure at atmospheric pressure, a vent was

also connected to each sampling line (Fig. 2).

Table 1 summarizes
::::
Table

:::
A5

::::::::::
summarises

:
the species measured , and the identifiers of the reference high precision instru-

ments. All reference instruments measured H2O to provide dry mole fractions of the species
:::
gas

:::::
mole

:::::::
fractions. The analysers’

sampling frequency ranges between 0.3 to 1 Hz. In a previous study by Yver-Kwok et al. (2015), it was proven that those
::::
these195

:::::
CRDS

:::
gas

:
analysers ensure high precision measurements and a low drift over time,

::
of less than one ppb per month. Yet, two

calibrations were conducted before and after the campaign. On average 6-7
:
,
:::::::
although

:::
the

::::::::
datasheet

::::::::
specifies

:
a
::::
drift

:::
of

:
3
::::
ppb

:::
per

:::::
month

::::::::::::::::::::::::::::::
(Picarro Inc.: Santa Clara, CA, USA)

:
.

::
On

:::::::
average

::
6 sampling lines were active for each release, each active line being connected to a high precision instrument

and a TGS chamber. The lines were activated depending on wind direction. The strategy behind the distribution of the tripods200

around the emitting area and for the inversion was to acquire continuously several measurements
::::::::::
continuously

:::::::
acquire

::::::
several

:::::::::::
measurement points within the plume generated by each release, in addition to one or a

:
few measurements points outside the

plume (to characterize the background
::::::::::
characterise

:::
the

::::::::::
background

::::
mole

:::::::
fraction

:
level upon which plumes enhancements can

be assessed) for each release,
:
regardless of the wind conditions (Kumar et al., 2022).

Summary of the species measured by each reference instrument. Serial number / Code Identifier Species measured205

CFKADS2286 / Picarro 1 Picarro CRDS G2401 CH4, CO2, CO CFKADS2301 / Picarro 2 Picarro CRDS G2401 CH4, CO2,

CO CFKADS2194 / Picarro 3 Picarro CRDS G2401 CH4, CO2, CO CFKADS2131 / Picarro 4 Picarro CRDS G2401 CH4,

CO2, CO CFIDS2067 / Picarro 5 Picarro CRDS G2201-i Isotopic 13CH4, 12CH4, 13CO2, 12CO2 CFIDS2072 / Picarro 6 Picarro

CRDS G2201-i Isotopic 13CH4, 12CH4, 13CO2, 12CO2 LGR MGGA Los Gatos Micro-portable Greenhouse gas analyzer CH4,

CO2210

2.3 Low-cost CH4 sensors logger system
:::
and

:::::::::::::
meteorological

:::::
data

Seven chambers were assembled for the campaign. Table 2 displays the sensors included
:::::
Seven

::::::::
chambers

:::::::::
containing

:::::
TGS

::::::
sensors

::::
were

:::::
used.

:::::
Table

::::
A6

:::::
shows

:::
the

:::::
TGS

::::
and

::::::::::::
environmental

::::::
sensors

:
in each chamber,

:
as

:::::
well

::
as

:
the type of chamber,

and the reference instrument with which each chamber was collocated, among other information. Each chamber contained

at least three TGS
::::
units

:
with voltage measurements sensitive to CH4 and two other sensors measuring relative humidi-215

ty/temperature and pressure/temperature. All these sensors were inserted inside an acrylic/glass or steel/glass chamber with

volumes of 100 ml and 120 ml, respectively. The sensitivity of TGS was controlled
:::::
logger

:::::::
system

::::::
design

::::
was

:::::::::
previously

::::::::::
documented

::
on

::::::::::::::::::::::::
Rivera Martinez et al. (2021)

:::
and

::::::::::::::::::::::::
Rivera Martinez et al. (2022).

::::
The

:::::::::::
measurement

::::::::
sensitivity

:::
of

::
the

:::::
TGS

:::::
signal

:::
was

::::::::::
determined by a load resistor connected in series to

::::
with

:
the sensor (Figaro®, 2013, 2005), two values of resistor were
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used, 5K
:
;
:::
the

::::
load

::::::::
resistance

::::
was

:::::
either

::
5
:
kΩ and 50K

::
or

:::
50

:
kΩ (see table 2 for details

::
A6). An AB Electronics PiPlus ADC220

board mounted on a Raspberry Pi 3B+ recorded the voltage on
:::
drop

::::::
across the load resistor

:
, providing observations every 2s

:
2

:
s. This voltage

::::
data is used for the characterization and reconstruction of the CH4 signal. Consistency was observed between

the two TGS 2611-E00 sensors installed on
::
in chamber E, and only one sensor of this type is used in this study.

Measurements of environmental parameters from the other chambers , besides chamber E ,
::
all

::::::::
chambers

::::
other

::::
than

::::::::
chamber

:
E
:
had data gaps

::
or

:::::::
recorded

:::::
poor

::::
data

:
for extended periodsor bad recordings occurring at releasesand were not included

:
,225

::::::::
including

:::::
during

::::::::
releases,

:::
and

::::
were

::::::::
therefore

:::
not

::::
used. This study focuses on reconstructing CH4 using data from TGS 2611-

C00 and TGS 2611-E00 from chambers A, C, D, E, F, and H. Data from TGS 2600
:::
data

:
were discarded since this sensor did

not respond to most of the CH4 peaks during the releases (see Figure A1).

Summary of the specifications of the chambers, the tripods to which each chamber was connected, the captured releases and

the reference instrument collocated with each chamber. Chamber Figaro TGS Load resistor Other sensors Chamber type230

Tripod # of measured Referencesensors releases instrument

2600 DHT22 1, 4, 6 2611-C00 BMP280 8, 9, 10 2611-E00 11, 14, 15 2600 SHT75 2, 7, 9 2611-C00 BMP280 14, 15, 16

2611-E00 2600 SHT75 2, 3, 9 2611-C00 BMP280 10, 11, 12 2611-E00 13, 16 2600* DHT22 1, 3, 4 2611-C00* SHT75 5, 10,

11 2611-E00* BMP180 12, 13, 16 2600 SHT75 2, 3, 4 2611-C00 BMP280 10, 11, 12 2611-E00 13, 14, 15 2600 SHT75 4, 5,

6 2611-C00 BMP180 7, 12, 13 2611-E00 14, 15235

2.4 TADI controlled releases and meteorological data

A total of 41 controlled releases were conducted during the seven days of experiment, with release durations varying between 25

to 75 minutes. Because low wind conditions (Ur < 0.6 m s−1) are not suitable for the atmospheric inverse modelling, six releases

corresponding to such low wind conditions have been excluded for the inversion modelling here such as in Kumar et al. (2022)

. However, they are used in the training of the CH4 reconstruction models. There was no TGS measurements during the five240

releases corresponding to the last day of the campaign. Two largest releases produced high CH4 mole fraction plumes that

affected the amplitude measured by the TGS sensors on which it was not possible to distinguish large spikes from medium and

small ones on the measured voltage (see fig A3) and they are removed from the study. One release was aborted due to technical

problems at the site and is as well removed from this work. This study is thus focused on 33 out of the 41 controlled releases. A

summary of these releases is shown in Table A1, where an ‘x’ indicates invalid data measured by the chambers. This invalidity245

is due to some releases producing small peaks over the background signal (with enhancements of less than 4 ppm), which the

TGS sensors were unable to detect.

The protocol followed in the selection of the releases used in the training and test set for the reconstruction models is

explained in section ??. A
::
A meteorological station was installed on the TADI platform by TotalEnergies®with a sonic ,

::::
with

::
a

3D
::::
sonic

:
anemometer at 5 m height above the ground surface

:::::
above

::::::
ground

::::
level

:
(see Fig. 1), providing 1-minute averages of250

wind speed (Ur
:::
Ur), wind direction (θ),

:
and of the standard deviation of wind speed on the three axes (σu, σv , and σw)amongst

other parameters. The data of turbulence and meteorological conditions are used in the dispersion model. Table 3 gather
:
1

::::::
gathers general information for each of the 33 controlled release

::::::
releases

:
during which we have valid TGS measurements:
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the duration of the release, the actual
::::::::
controlled

:
release rate, the average wind speed over the duration of the releaseand an

indication showing if it was selected for the
:
,
:::
and

::::
their

::::::::
inclusion

:::::
status

:::
for

:
inverse modelling.255

2.4 Reconstruction
:::::::::::::
Pre-processing of spikes in CH4 mixing ratios caused by

::::
data

:::::
from the releasesThe chambers full

of TGS sensors captured different portions
::::::
sensors

::
As

::::
well

:::
as

:::::::::
resampling

:::::::
original

:::::::::::
observations

::::
with

:
a
::
2
:
s
:::::

time
:::
step

:::
to

:
a
::::::
longer

::
5

:
s
::::
time

::::
step,

:::
we

::::
also

::::::::
corrected

:::
the

:::::
time

:::::
offset

:::
due

::
to

:::
air

::::::::
travelling

:::::
from

:::
the

::
air

:::::::
intakes

::
to

:::
the

::::::::::
instruments

:::
and

:::
the

:::::
time

::::
delay

:::::
from

:::::::::::::
synchronisation

::::::::
between

::::::::::::
high-precision

:::
gas

::::::::
analysers

:::
and

:::::
TGS

::::::::
chambers

::::::::
(between

::
2
::
to

::
3

::::::::
minutes).

:::
We

::::::::
removed

::::::
invalid

::::
TGS

::::::::
chamber

::::
data

:::
due

:::
to

::::::
logging

:::::::
system260

:::::
faults.

::::::
Finally,

::
a
:::::::
baseline

::::::
voltage

:::::::::
correction

::::
was

::::::
applied

::
to

:::
the

::::
data

::::
from

:::::
each

:::::
sensor

::::::::::
considering

:::
the

:::::
entire

:::::::::
campaign.

::::::
Figure

:
3
:::::::::
illustrates

:::
the

::::::
impact

:::
of

:::
the

:::::::
baseline

::::::::::
correction,

:::::::
showing

:::
an

::::::::
improved

:::::::::
agreement

::::::::
between

::::::::
corrected

:::::
TGS

::::::
voltage

:::::
drop

:::::::::::
measurements

:::
for

::::::::
chamber

:
A
::::
(for

::::::::
example)

::::
after

:::
the

::::::::::::
pre-processing

::::
steps

::::
and

::::::::::::
corresponding

::::::::::::
measurements

::::
from

:::
the

::::::::
reference

:::
gas

:::::::
analyser

:::
for

:::
one

:::::::
release.

2.5
::::::::::::
Reconstruction

:::
of

:::::
spikes

:::
in

::::
CH4:::::

mole
::::::::
fractions

::::::
caused

:::
by

:::
the

:::::::
releases265

:::
The

::::
TGS

:::::::::
chambers

:::::::
captured

:::::::
different

::::::::
segments

:
of the plume with variations at high frequencies due to the distribution of the

tripods with regards
:::::
regard to the variable wind direction and due to the

::::::::::
atmospheric

:
turbulence. The typical signal measured

by the chambers is
:::::
shows

:
a series of spikes

:::::
voltage

::::::::::::
enhancements, ranging between

:
∼1 and

::
∼15 minutes, corresponding to

the plume lying over a slowly varying background signal associated to
::::
with remote emissions. The targeted signal is that of

the difference between the spikes and the background
::::
CH4:::::

mole
::::::
fraction

:::::
level

:
(Kumar et al., 2022). As an example, Figure270

4
:
3 shows 1-minute averages

:
of

:
CH4 mole fractions measured by the reference instruments and the voltage from the TGS

2611-C00 at six tripods during release
:
#25 (Qs :::

Qs = 5 g s−1) . We can observe that CH4 of
::::::
showing

::::::::::
consistency

::::::::
between

:::::::::::
measurements

:::::
from

:
the reference instrument and TGS voltage show good consistency at this temporal resolution. Chamber

:::::::::::
corresponding

:::::::
voltage

::::
drop

::::::::::::
measurements

::::
from

:::
the

::::
TGS

:::::::::
chambers.

:::::::::
Chambers A, C,

:
and D were in the trajectory of the plume

or very close to it measuring peaks up to
::
of

::
up

::
to
::
∼30 ppm, chambers .

:::::::::
Chambers E and F only captured one

:
a
:::::
single

:
peak of275

∼10 ppm,
:
and chamber H

:
, one large peak of

:
∼30 ppm. The mean wind speed during this release was of 3.12 m s−1 and the

wind direction had little variations , ranging
:::
with

:::::
small

:::::
wind

:::::::
direction

::::::::
variations

:::
of between 270◦ to

:::
and 272◦.

TGS sensors are known to be sensitive to variations of
:
in

::::::::
humidity

:
(H2O and T

::::
mole

:::::::
fraction)

::::
and

::::::::::
temperature

:::
(T), affecting

mainly the reconstruction of CH4 baseline
:
(
::
i.e.

::::
when

::::::::
sampling

::::::::::
background

:::
air

:::::::
without

:::::
CH4 ::::::::::::

enhancements), and thus the

characterization
:::::::::::::
characterisation

:
of peaks above this baseline (Rivera Martinez et al., 2021, 2022). Two approaches can be280

used to correct
::
for

:
the effect of variable H2O

::::
mole

:::::::
fraction

:
and T on the TGS signals baseline

:::::
voltage

::::::::
baseline

:::::
signal

:
and

separate the
::::::
voltage

:
spikes from the baseline data in the time series. The first one is the use of information from

::::::
method

::::::
consists

::
of
:::::
using

:
H2O and

::::
mole

:::::::
fraction

::::::::
(retrieved

:::::
from

::::::
relative

::::::::
humidity,

:::::::
pressure

::::
and

::::::::::
temperature)

::::
and T to correct the TGS

baseline signals correspond to these drivers
::::::
voltage

:::::::
baseline

::::::
signals. The second approach is to detect the

::::::
method

:::::::
involves

:::
the

:::::::
detection

::
of

:
voltage peaks associated to

::::
with CH4 spikes and derive

:::::::
deriving a baseline with a linear interpolation on non-peak285

voltages. For some chambers due to logging system faults, we lost H2O
:::
Due

::
to

:::::::
logging

:::::
issues

::
in

:::::
some

:::::::::
chambers,

::
we

::::
did

:::
not
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Table 1. Summary of the information for the controlled releases with single CH4 point sources during the TADI 2019 campaign. Rows in

gray shows the
:::
grey

:::::::
highlight

:
releases with low wind speed conditions.

Release Duration Emission rate Average wind speed Used in the atmospheric

number (hh:mm
::::::
minutes) (Qs (g s−1)) (Ur (m s−1)) inverse modelling

:::::::
inversions

1 00:58 CH4: 10 2.76 No

2 00:32 CH4: 1 3.31 Yes

3 00:33 CH4: 0.5 3.56 No

4 00:33 CH4: 5 3.91 No

5 00:35 CH4: 3, CO2: 85 0.65 Yes

6 00:39 CH4: 0.5 0.45 No

7 00:46 CH4: 5.0 0.80 No

8 00:50 CH4: 0.5 & 0.75 & 0.5 * 1.41 No

9 00:38 CH4: 1, C2H6: 0.5 1.46 Yes

10 00:38 CH4: 0.5 2.17 Yes

11 00:30 CH4: 0.16 2.39 No

12 00:46 CH4: 1 0.93 Yes

13 00:44 CH4: 0.2 0.26 No

14 00:55 CH4: 0.5 & 1.0 * 0.07 No

15 01:01
::
61 CH4: 2 3.50 No

16 00:44 CH4: 2 1.83 No

17 00:50 CH4: 4 1.45 No

18 00:48 CH4: 0.3 0.13 No

19 00:40 CH4: 2.0 0.41 No

20 00:58 CH4: 2 & 4 * 0.47 No

21 00:44 CH4: 1 1.31 Yes

22 00:33 CH4: 1, C2H6: 0.2 1.11 No

23 00:50 CH4: 2 1.84 No

24 00:43 CH4: 150 2.63 No

25 00:35 CH4: 5 3.12 Yes

26 00:48 CH4: 0.4 2.73 Yes

27 00:37 CH4: 0.5 3.12 No

28 00:45 CH4: 0.5 & 0.5 * 1.04 No

29 00:44 CH4: 0.6 1.07 Yes

30 00:44 CH4: 1 1.51 No

31 00:24 CH4: 2 1.70 No

32 00:34 CH4: 4 3.58 Yes

33 00:45 CH4: 2 2.49 Yes

∗ Multiple source releases.
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::::
have

::::::::
complete

::::::
relative

::::::::
humidity,

:::::::
pressure

:
and T data and the corresponding gaps in the H2O and T time series prevent us from

:::::
which

:::::::
impeded

:::
us

::
in defining a correction model. Therefore, in this study we have employed the second approach. To justify

our choice, we have trained a multilinear regression model to determine a baseline signal on TGS 2611-C00 from Chamber E

corresponding to H2O and T. The regression model was trained on using observations from midnight to 6:00 in the morning290

on the first day and we attempted to reconstruct baseline variations of TGS voltage from observations comprised between

18:00 to midnight on the same day. The results of the multilinear model are presented on Figure A2 (in addition to the derived

baseline when using the second approach). The second approach which produce a better detection of the baseline signal is also

shown (see Fig A2) where we do not need a training set or environmental variables because it consists in the detection of peaks

based on an iterative process on fixed rolling windows and a comparison with neighbouring observations
::
A

::::::::::
comparison

::
of

::::
both295

:::::::
methods

::
is

:::::
shown

::
in

::::::
Figure

:::
A2

::::::::
justifying

:::
our

::::::
choice.

To reconstruct CH4 mole fraction
::::
from

::::
TGS

::::::
voltage

::::::::::::
measurements, we calibrated empirical models that derive relationships

between TGS voltage and other input variablesand true ,
::::::::
compared

::
to
:
CH4 observed

::::
mole

:::::::
fraction

:::::::::::
measurements

:::::
made

:
by the

high-precision instruments
::
gas

::::::::
analysers. The models are calibrated (training) and evaluated (testing

::::
first

::::::::
calibrated

::::::::
(trained)

:::
and

::::
then

::::::::
evaluated

::::::
(tested) using two independent subsets of the data. Following the widespread practice in the training of300

data-driven models to standardize the input variables to prevent
::::
data.

:::
To

::::::
prevent

::
a difference in the range of magnitudes from

conditioning the determination of model parameters
::
the

:::::
input

::::::::
variables

:::
are

::::::::::
standardised, we applied a robust transformation

consisting in removing the median and dividing the
::::
input observations by their 1-99th quantile range. We selected the two re-

construction models that gave the best performances in our previous study (Rivera Martinez et al., 2022), namely a polynomial

regression and a Multilayer Perceptron
::::::::
multilayer

:::::::::
perceptron (MLP) model, described below.305

Second-degree polynomials have proven to be robust to derive relationships between the TGS voltage signal related to spikes

and the corresponding CH4 concentration (Rivera Martinez et al., 2022). Its formulation is of the form:

ŷCH4
(x1) = β0 +β1x1 +β2x

2
1

Where ŷCH4
is the predicted CH4 concentration, x1 is the Corrected voltage of the TGS after removing the effects of the

baseline.310

Artificial neural networks have been widely used to derive non-linear relationships between predictors and independent

variables in many applications, as a universal approximator method (Hornik et al., 1989) and for their generalization capabilities

(Haykin, 1998). In previous studies (Casey et al., 2019; Rivera Martinez et al., 2021, 2022) ANN was employed to derive CH4

concentrations from TGS observations on different sampling configurations (field and laboratory conditions) with good agreement

between the reference observations and the outputs produced from the models.315

The simplest architecture of an ANN is the multi-layer perceptron (MLP), conformed of a series of units (neurons) in

fully connected layers. The inputs of any unit will be the weighted sum of the outputs of the previous layer, to which an

activation function (ReLU, tanh, etc.) is applied. As a machine learning approach, it requires a training basis to learn the

relationships, adjusting the weights of its connections, between the inputs and outputs using an iterative process known as
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optimization. Problems of MLP models are either underfit of data, producing a high error on the train set which can be mitigated320

with a sufficiently large network, or overfitting, producing a high test error when they cannot generalize to new examples.

Regularizations terms and early stopping techniques are helpful to prevent overfitting (Bishop, 1995; Goodfellow et al., 2016)

.

Here, we have trained the MLP model using the Adam optimizer (Kingma and Ba, 2014; Géron, 2019) resulting in 50, 10

and 5 units per layer with ReLU as the activation function for the hidden units. A regularization factor of α=0.05 and early325

stopping was used to prevent overfitting..
::::::::::

Description
:::

of
:::
the

::::::
models

::::
and

:::::::::::::
hyperparameter

::::::
values

:
(
::
i.e.

::::::
tunable

:::::::::
parameters

::::
that

:::::::
influence

:::
the

::::::::
learning

::::::
process

::
of

::::
the

:::::
model

:::
but

:::
not

:::::::
inferred

:::::
from

:::
the

:::::
data)

:::
are

::::::::
presented

::
in

::::
SM.

:
Three configurations of the

input variables were tested: i) only with the TGS 2611-C00, ii) only with the TGS 2611-E00, and iii) with both TGS sensors

at the same time
:::::::
sampling

:::::::::::::
simultaneously. The results are shown in section 3.2.

2.6 Metrics for evaluation of the reconstruction330

:::
3.1.

:
To assess the performance of the

:::::::::::
reconstruction

:
models to provide dry CH4 concentration

::::
mole

::::::::
fractions

:
enhance-

ments (above the background) from voltage observations of the low-cost sensorswe use a normalized
::::
drop

::::::::::::
measurements

:::::::::::
corresponding

:::
to

::
the

:::::
TGS

:::::::
sensors,

:::
we

::::
used

:
a
::::::::::
normalised root mean square error (NRMSE) per release, including information

from the spikes and the background occurring in the duration of the release, defined in equation 1, the RMSE being weighted

by the inverse of the maximum peak present in the release
:
,
::::::
defined

::
as
:::::::
follows:335

NRMSE =

√∑
(yi − ŷi)

2

n
hmax

(1)

where yi is the actual concentrations (
::
are

:::
the

::::
CH4:::::

mole
::::::
fraction

::::::::::::
measurements

:
provided by the high precision instrument),

ŷi :::
are

:::
the

:::::::::::
reconstructed

:::::
CH4 :::::

mole
::::::::
fractions,

::
n

::
is the predicted concentration, n the number of observations present in the

releaseand hmax ::::
each

::::::
release,

::::
and

:::::
hmax

::
is
:
the amplitude of the maximum peak

::::
mole

:::::::
fraction

::::
peak

:::::::::::
enhancement

:
present in

the release after removing the background. The normalization allows to compare the
::::
This

:::::::::::
normalisation

::::::
allows

::
us

::
to

::::::::
compare340

performances across the different releases.

As mentioned earlier in section 2.2, the target signal on
::
in this study is of CH4 enhancements above the atmospheric back-

ground. We obtain this signal by subtracting the raw signal of
::::::
voltage

:::::
signal

:::::
during

:
the release from an inferred baseline

::::::
voltage

computed using the pic
::::
peak detection algorithm and a linear interpolation.

We consider345

:::
We

::::
pose as an acceptable notional target error for the reconstruction models to be under the

:::::::::::
reconstruction

::::::
models

:::
of

:::::
under

15% of the amplitude of the maximum peak inside the release,
:::::
spike

:::::
during

:::
the

:::::::
release; this error corresponds to a NRMSE ≤

0.15ppm.
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2.6 Selection of the training and test subsets for the reconstruction of CH4 mole fractions as input of the atmospheric

inversion of emissions350

Defining the appropriate training
::
an

::::::::::
appropriate

::::::
training

::::
data

:
set is important to allow reconstruction models to derive sufficient

information to generalize and obtain good
::::::::
generalise

::
(
::
i.e.

::
to

::::::
extend

::
its

:::::::::::
performance

::
to

::::
data

:::
not

::::::
present

::
in

:::
the

:::::::
training

:::
set)

::::
and

::
to

:::::
obtain

::::
good

:::::
mole

::::::
fraction

::::::::::::
reconstruction

:
performances in the test set. As well, the test

::::::
testing

:::
data

::::
set.

::
In

:::::::
addition,

:::
the

::::::
testing

:::
data

:
set should be chosen to allow evaluating the performances of the models

:::
for

:::
the

:::::::::
evaluation

::
of

:::::
model

::::::::::::
performances under

a wide variety of conditions. Regarding the inverse modelling, in order to provide a meaningful assessment of the estimation355

of emission rates and locations, inversion should be conducted using reconstructed CH4 mole fractions that are not from
::::
from

::::::
outside the training data set to avoid introducing bias in the evaluations of errors. Furthermore, depending on magnitude of

:::
the

::::::::
magnitude

:::
of

:::::::
emission

:
release rates, the atmospheric turbulence, and the locations/distances of the downwind active tripods

from the emission sources,
::::
each

::
of the six chambers did not measure

::::
could

:::
not

::
be

:::::
used

::
to

:::::
detect

:
CH4 mole fractions in all the

releases,
::::::
during

::::
each

::::::
release;

:
therefore a separate training and test set needs to be defined for each chamber.360

The
::::
These

:
previous considerations constrain the selection of the training and test sets from the data of

:::::
testing

::::
data

:::
sets

:::::
from

each chamber. The test
:::::
testing

::::
data

:
set of the releases for

:::
use

::
in inversions was defined based on two criteria: 1) the releases

which have the
::::::
releases

:::::
which

:::::
yield reconstructed CH4 mole fractions by

::::
from

:
at least three chambers simultaneously, and 2)

the releases corresponding to the more favourable wind speed conditions (Ur
:::
Ur ≥ 1.4 m s−1) for inversions. We determined

seven releases that meet these considerations : release
:
(#2, #9, #10, #25, #26, #32 and #33. Because this test set was not365

sufficiently large for all
:::
33).

:::::::
Because

::::
this

:::::
testing

::::
data

:::
set

:::
was

:::
of

:::::::::
insufficient

:::
size

:::
for

:::
all

::
of the chambers, we decided to increase

it by
::::
using

:
data from four more releases with low wind speed conditions (0.65 ≤ Ur

::
Ur:

≤ 1.31) (release #5, #12, #21 and #29).

This selection led to a test
::::::
testing

:::
data

:
set of 40% of the releases. All remaining data were used as a training set (Table ??)

::::
data

::
set. The reconstruction models are

:::
were

:
trained and tested only once per chamber,

:
following the distribution of the releases

from table ??
::::
Table

::
2.370

2.7 Atmospheric inversion of the release locations and emission rates

Our derivation of the release location and
::::::::
Derivation

:::
of

::::::
release

::::::::
locations

:::
and

::::::::
emission

:
rates relies on the

::
an

:::::::::::
atmospheric

inversion framework developed and tested by Kumar et al. (2022)on the measurements of the ,
::::::
which

:
is
:::::
based

:::
on

::::::::::::
measurements

::::
from

:
high precision instruments. This framework uses adjoint of a

:::
The

::::::
details

::
of

:::
the

::::::::
approach

::::
and

:::::::::::::
implementation

:::
for

::::
this

::::::::::
atmospheric

::::::::
inversion

:::::::::
framework

:::
are

::::::
given

::
in

::::
this

:::::::::
publication

::::
and

::::
they

:::
are

::::
just

::::::
briefly

::::::::::
summarised

:::::
here.

::::
This

::::::::::
framework375

::::::::
processes

:::::::
averages

::
of

:::
the

:::::::::
timeseries

::
of

:::
the

:::::::
observed

::::
CH4:::::

mole
::::::
fraction

::::::::::::
enhancements

:::::
above

:::
the

::::::::::
background

:::::
from

::
the

::::::::
different

:::::::
stations:

::::
from

::::::
either

:::
the

::::
high

::::::::
precision

::::::::::::
measurements

:::
or

::::
from

:::
the

:::::::::::::
reconstruction

::
of

::::
CH4:::::

mole
:::::::
fraction

:::::
based

:::
on

:::
the

:::::
TGS

::::::
sensors

::::
that

::
is

:::::::
detailed

::::::
above.

:::
For

:::::
each

::::::
station,

:::::
these

::::::::
averages

:::::::::
correspond

:::
to

::::::::
temporal

:::::::
averages

::::::
within

::
2
::
to

::
7
::::
bins

:::
of

:::
the

::::::::::
observations

::::::
defined

:::
by

::::::
sectors

::
of

::::
wind

:::::::::
directions

:::
that

:::
are

::
of

:::::
equal

::::::
ranges

:::::
during

:::
the

::::::
release

::::
(see

:::::
below

:::
the

::::::::
practical

::::::::
definition

::
of

:::
the

::::
wind

:::::::
sectors).

::::
The

::::::::::
atmospheric

::::::::
inversion

:::::
relies

::
on

:::
the

:::::::::
simulation

::
of

:::::
these

:::::::
average

::::
CH4 ::::

mole
::::::::
fractions

:::::
using

:
a
::::::::
Gaussian380

:::::
plume

::::::
model.

::
It
::::
uses

::::
the

::::::
adjoint

::
of

::::
this

:
Gaussian plume model to simulate the sensitivity of the

::::
these

:::::::
average CH4 mole
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Table 2. Summary of the releases included in the training
:::
data set and test

:::::
testing

:::
data

:
set of the CH4 reconstruction models. The mixing

ratios
:::

mole
:::::::
fractions modelled for the test set are also used as input of the inversion model to infer the emission rate of CH4 :::::::

emission
:::
rate

and their location.

Chamber
Releases in the Releases in the Number of releases in the Number of releases in the Percentage of releses

::::::
releases in the

training set test set training set test set training/test set

A

6, 7, 8, 11, 14, 2, 5, 9,

15 9 62.5 % / 37.5 %15, 16, 17, 18, 19, 10, 21, 25,

20, 24, 27, 28, 30 26, 29, 32

C

14, 15, 17, 18, 9, 10, 21,

12 8 60 % / 40 %19, 20, 22, 24, 25, 26, 29,

27, 28, 30, 31 32, 33

D 6, 7, 8, 13, 14 5, 9, 12, 25 5 4 55.5 % / 44.5 %

E

3, 4, 6, 7, 2, 5, 9,

11 9 55.5 % / 44.5 %8, 13, 14, 19, 12, 21, 25,

20, 22, 23 26, 32, 33

F

3, 4, 6, 7, 8, 2, 5, 9,

13 8 62 % / 38 %13, 14, 15, 18, 10, 12, 21,

19, 20, 22, 24 25, 29

H

1, 3, 4, 13, 2, 21, 25,

12 7 63 % / 37 %14, 18, 19, 20, 26, 29, 32,

23, 24, 28, 30 33

fraction enhancements above the background at a measurement location to the emissions at all potential source locations.
::::
This

::::::::::
computation

::::::::
implicitly

:::::::
informs

:::::
about

:::
the

:::::::::
numerical

:::::::
operator

::::::::::::
corresponding

::
to

:::
the

:::::::::
simulation

::::
with

:::
the

::::::::
Gaussian

:::::
plume

::::::
model

::
of

:::
the

::::::
average

:::::
CH4 ::::

mole
:::::::
fraction

::::::::::::
enhancements

:::::
above

:::
the

::::::::::
background

:::
per

::::
wind

::::::
sector

:::
and

::::::
station

::
as

::
a

:::::::
function

::
of

:::
the

::::::
source

::::::
location

::::
and

::::
rate. For each release,

::::
based

:::
on

::::
these

:::::::::::
sensitivities, the optimal horizontal and vertical location and

:::::::
emission

:
rate385

are derived based on the minimization of
::
as

:::
the

::::::::
horizontal

::::
and

::::::
vertical

:::::::
location

:::
and

::::
rate

:::::::::
minimising

:
the root sum square (RSS)

misfits between averages of the observed and simulated CH4 mole fraction enhancements above the background. The bins of

the measurements and of the simulated mole fractions for the averages correspond to sectors of wind directions of equal ranges

during the release. The
:
In

::::::::
practice, optimal release location and rates are searched

:::::::
emission

::::
rates

:::
are

::::::::
identified simultaneously,

looping on a finite but large ensemble of potential locations, using an analytical formulation of the problem to derive the optimal390

rate and corresponding RSS misfits for each potential location and then identifying the optimal location and rate providing the

smallest RSS misfits. The 40 m × 50 m (horizontally) × 8 m (vertically) volume above the ATEX zone is discretized with a
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high resolution (1 m × 1 m horizontally and 0.5 m vertically) 3D grid to define the
:
a finite ensemble of potential locations. The

inversion exploits the change of wind direction during a release
:
at

:::
the

:::::::
different

::::::::::::
measurement

:::::::
locations

:
and the corresponding

variations and spatial gradients in average mole fractions respectively at and between the different measurement locations395

crossed
:::::::::
intersected

:
by the plumes to triangulate the release location. The amplitude of the

::::
mole

::::::
fraction

:
enhancements directly

constrains the release rate estimate.

The Gaussian model and its adjointare
::
(in

:::::::
practice:

:::
its

::::::
adjoint)

::
is driven by averaged wind directions and averaged turbulence

parameters derived from 3D sonic
:::::::::
anemometer

:
measurements, using the same bins for these averages as for the mole fractions.

Those bins are defined
::::::
derived during each release based on

:::
the

:::::::
analysis

::
of 1-min averaged wind directions. These bins partition400

the lower and
:
:
::::
they

:::::::::
correspond

::
to

::
a
:::::::
partition

::
of

:::
the

:::::
lower

::
to

:
upper range of potential

::::
1-min

:::::::
average wind directions, and they

have
:::
into

:::::
wind

::::::
sectors

::
of equal width in terms of range of wind directions. The total number of bins during this initial partition

is defined as the rounding integer of the division of the release duration (in min) by approximately 7 min. However, only

bins gathering at least four 1-min averages are retained. The aim is that the mole fraction and meteorological averages are

representative of a timescale that is long enough for use in or comparison to the Gaussian model. Depending
:::
This

::::::::
explains405

::::
why,

:::::::::
depending on the releases, the number of bins ranges between 2 and 7.

Here
::
In

:::
this

:::::
work, we slightly revise the reference computations of release location and rate estimates based on the

::::
mole

:::::::
fractions

::::
from

:
high precision instruments from Kumar et al. (2022). Indeed, in order to compare the release location and rate

estimates from such a reference and the one derived here
:
to

:::
the

::::::
results

:
based on the TGS sensors, we restrain the set of high

precision observations that are used in the reference computation to the station and time corresponding to the data availability410

from the TGS sensors.

3 Results

3.1 Pre-processing of the data from the low-cost CH4 sensors

Original observations with a time step of 2 s were resampled to 5 s. We corrected the time offset corresponding to delays of

the air travel through the air intake from the tripods to the instruments, time delay from synchronization between analysers and415

chambers. Also, we removed invalid data produced by the logging system on each chamber. The baseline correction was then

applied for each sensor chamber considering the entire campaign. As an illustration of the impact of the baseline correction

Figure 3 shows the signal corresponding to one release for the chamber A after these pre-processing steps. The corrected signal

in the TGS voltage measurements showed better agreement with the reference between the occurrences of spikes and phases.

3.1 Reconstruction of CH4 mole fractions420

Due to the diversity of the
:::::::
emission

::::
rates

::::::
across

:::
the

:::::::::
controlled releases, environmental conditions, distribution of the tripods

and
:::
the

::::::
spatial

:::::::::
distribution

:::
of

::
air

:::::
inlets

:::
and

:::
the

:
selection of the training and test

::::::
testing

:::
data

:
sets for each chamber, there is no

single release that can be viewed as representative for the test set across the chambers. Yet, we chose release #25 as an example
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of the signal measured across the chambers and the reconstructed signal for each chamber
::
all

:::
the

:::::::::
chambers.

:::
The

::::::::::::
reconstructed

:::::
signal using the MLP model (Figure 5 ) and the 2nd

::
is

:::::
shown

:::
on

::::::
Figure

:
5
:::
and

:::
for

:::
the

:::
2nd

:
order polynomial model (Figure 6 ),425

for
::
on

::::::
Figure

:
6
:::::::::::
respectively.

:::
For each chamber we shown the reconstructed CH4 mole fractions estimated using only the type

C sensors (red), the type E sensor (yellow) and both sensors used as inputs for the models at the same time (green).

We found that
::::
both

:
the MLP and 2nd degree polynomials gave

::
2nd

::::::
degree

::::::::::
polynomial

::::::
models

::::
had

:
similar performances

across the releases,
:
regardless of the chamber used for the CH4::::

mole
:::::::

fraction
:
reconstruction. For two releases on

::::::
sampled

:::
by

chamber A (release #10 and #26, see Fig A6 and A9 for MLP model and A11 and A12 for the polynomial model respec-430

tively)where amplitudes are
:
,
:::::::::::
characterised

:::
by

:::::::::
amplitudes

:
below 10 ppm, the polynomial model provides a noisy signal as

output regardless
::
of

:
the configuration of the inputs used. There were however some cases on

::
in

:
which the polynomial model

produced better outputs than
:::::::::::
outperformed

:
the MLP, for example

:
, the four releases on

:::::::
sampled

::
by

:
chamber D where

::
the

:
MLP

model produced a systematic underestimation of the reconstructed CH4 ::::
mole

::::::
fraction

:
on the three configurations of inputs.

Regarding the TGS types
:::
two

::::
TGS

:::::
types

::::::
tested

::
in

::::
this

:::::
work, the type C sensor gave

:::
used

:::::
alone

:::::::::
produced better recon-435

structions than
:::
both

:
the type E or

::::::
sensor

:::::
alone,

::
as

:::::
well

::
as

:
both types used as the same time as inputs for the model . The

reconstruction of CH4 with the type E sensor shows
::::::::::
simultaneous

::::::
model

:::::
input.

:::::
Type

:
E
:::::::
sensors

:::::::
showed phasing errors in the

form of a slow decay after large spikes . In addition, there are some cases where type E sensors showed a response whereas

no spikes were measured
:::
and

:::::::::::
uncorrelated

:::::
spikes

::::
not

:::::::
detected by the reference instrument. For example ,

:::
gas

::::::::
analysers

:::
for

:::::::
example

::::::
during release #9

::::
from

::::::::
chamber

::
D

:
(Figure A5 and A10, for the MLP and the polynomial model respectively) of440

chamber D shows few spikes between 10 to 30 ppm reconstructed from data of the type E sensor with the polynomial model

which are not present on the reconstructed data from the type C sensor. Using .
::::::::::::
Simultaneous

:::
use

::
of

::::
both

::::::
sensors

::
(Type C and

Esensors at the same time as training data for models
:
)
::
as

::::::
model

:::::
input produced outputs closer to models trained only with

:::::
model

::::::
outputs

:::::::
trained

::::
with

::::
only type C sensor . Some cases of reconstruction with MLP model produced

::::
data.

::::
MLP

:::::::
models

:::
also

:::::::::
presented,

:::
for

:::::
some

:::::::
releases,

:
a saturation of the outputs (release #9, #12 and #25 for chamber D (Figure A5, A7 and 5),445

release #21 for chamber H (Figure A8)) or a systematic bias (releases #2, #10 and #26, see Figure A4, A6 and A9). For re-

leases with peaks’
::::
peak amplitudes above 40 ppm

:
, a systematic underestimation is observed regardless the

::
of

:::
the

::::::::::::
reconstruction

model or the sensor ’s type
::::
type,

:
used as input.

On figure 7 , we present a summary of
:::::
Figure

::
7
::::::::::
summarises the performance of the reconstruction of the signal on the test set ,

given
::
on the

:::::
testing

::::
data

:::
set

:::::
using

::
the

:
NRMSE error defined in eq. 1

::
(1). All chambers have reached our target error of

:
(NRMSE450

≤ 0.15ppm, except for Chamber A with the polynomial model using as input the
:
),

::::::
except

::
in

::::
three

:::::
cases

::::::::::::
corresponding

:::
to

::::::
models

:::::
using type E sensor

:
as

:::::
input

::::::::
(chamber

::
A

:::
for

::::::::::
polynomial

:::::
model

::::
and

::::
MLP

:
and the MLP model for chambers A and C

as well for the type E sensor. With
:::::::
chamber

::
C

::
for

::::::
MLP).

:::::::::
Imposing a stricter target requirement of NRMSE ≤ 0.1ppm, only

Chamber H met
:::::::
satisfied the target error regardless of the model or

:::::::::::
reconstruction

::::::
model

::
or

:::
the

:
sensor used. Performances are

similar when using the type C sensor as input regardless the model
:::::
model

:::::
input

::::::::
regardless

::
of

:::
the

::::::
choice

::
of
:::::::

model, across all455

the chambers. When used both
::::
using

::::
both

::::::
sensor types at the same time as

:::::
model input, the 2nd degree polynomial provide

:::
2nd

:::::
degree

::::::::::
polynomial

::::::::
provides better reconstruction than the MLP specially on

::::::
model,

:::::::::
especially

::
for

:
chambers C, D and H

(NRMSE = 0.09, 0.09 and 0.04 ppm for the polynomial model and 0.11, 0.13 and 0.07 ppm for the MLP). Chamber D, where
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there is little training dataavailable
::::::::::
characterised

:::
by

::::::
having

::::::
limited

:::::::
training

::::
data, produced a systematic lower error with

:::::
when

::::
using

:
the polynomial model than with the MLP regardless

::::
when

:::::
using

:::
the

:::::
MLP

::::::
model,

::::::::
regardless

::
of
:
the input variable used.460

In summary, the model used in the reconstruction is important only for the cases where little information is available for the

training. This was the case for chamber D where the polynomial model provides better performances than the MLP model. We

also found
::::
cases

::::::
where

::::
there

::
is

::::::
limited

::::::::::
information

::::::::
available

:::
for

:::::
model

::::::::
training.

:::
We

::::
also

:::::::
conclude

:
that Type C sensors

:::::
alone

produced a better reconstruction of CH4 spikes than Type E ones, and a combination of data from
::::
either

:::::
using

:::::
Type

:
E
:::::::
sensors

::::
alone

::
or
:::::
using

:
both types of sensors did not improve the reconstruction producing similar outputs than the other types

:
as

::::::
model465

::::
input.

3.2 Release rate and location estimates based on the observations from the TGS sensors

Averages of mole fractions
:::::::
Average

::::
CH4:::::

mole
:::::::
fraction

:
enhancements above the background and

:
of
:

their spatial gradients

are displayed for release #25 in figure 8. The
:::
This

:
figure compares the values of reconstructions from the low-cost sensors

(with
::::
using

:
the MLP model ; see figure A14

:::
(see

::::::
figure

:::
?? for the values corresponding to the polynomial model), with470

:::::::::::
corresponding

:::::::::::::
measurements

:::::
made

::
by

:
the high precision measurements, and of the

:::
gas

:::::::
analyser.

::
It
::::
also

::::::
shows simulations

resulting from the inversions assimilating either the reference high precision data or the reconstructions from the low-cost

sensors
:::::::::::
reconstructed

::::
TGS

::::
data. Since the best reconstruction performances were obtained when using the type C sensor, the

inversion results presented here are based on the reconstructions from those sensors only . For the
::::::::::::
reconstructions

::::
from

::::
only

::::
this

:::
type

:::
of

::::::
sensors.

::::
For release #25, used as an example here, the procedure to define average values per wind sectors has resulted475

in four binsof wind sectors
:
, with an approximate size of 10◦. Average mole fractions are derived from the six chambers. To

simplify the numbering when mentioning the reference instrument or the TGS, we refer to the chamber identifier X (REF-X

and TGS-X respectively, with X the name of the chamber).
:::
The

::::::
contour

::::
plot

:::
of

:::
the

::::
cost

:::::::
function

::
is

::::::::
presented

:::
in

:::::
figure

:::
??

:::::::
showing

:::
the

::::::::
controlled

::::::
release

:::::::
location

::::
and

:::
the

:::::::
inversion

:::::::::
estimated

:::::::
location

::::
when

:::::::::::
assimilating

::::
TGS

::::
data.

:

In general, the observed spatial CH4 ::::
mole

:::::::
fraction gradients between the different stations are

::
to

::
be

:
similar when considering480

the reference
:::
gas

:::::::
analyser measurements and the estimates of

::::::::::
reconstructed

:::::
CH4 ::::

mole
::::::::
fractions

::::
from

:
the TGS, except for few

cases where the reference is more consistent to the expected signal. For
:::::
better,

:::
for example for release

:
#25 (see Fig. 8)observed

gradient
:
.
::::::
During

::::::
release

::::
#25,

:::::::
observed

::::::::
gradients

:
from TGS-D data underestimate the actual gradients given by REF-D for θ=

308.3◦ and overestimate them for θ = 279.2◦, where θ is the average direction of the wind sector.

The modelled average mole fractions
::::::
fraction

:
enhancements and thus the modelled gradients assimilating reference data are485

very close, in general, to the ones from these reference data, although some discrepancies can occur, e.g., for release #25, for

REF-H with θ = 279.2◦, REF-C with θ =301.4◦ and θ =289.1◦ and REF-A with θ =301.4◦ and 308.3◦. For most of the cases,

the modelled gradients assimilating the TGS data are closer to the modelled gradients
::::
those

:
assimilating the reference data

than to the observed TGS ones
::::
data. In addition, the observed TGS data, for some cases, is closer to the observed reference one

than to the modelled gradients assimilating either reference or TGS data, highlighting the higher impact of the model error on490

the inversion than the reconstruction error of CH4 mole fractions.
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Figure 9 shows the comparison of the
:
a
::::::::::
comparison

::
of emission rate estimates with corresponding errors, and of the location

errors for the different inversions
::::::
relative

::::
error

:::
in

:::
the

::::::::
estimation

:::
of

:::::::
emission

::::
rate

:::
and

:::::::
location

:::::
error across the eleven releases

. In this figure ,
::
of

:::
the

::::::
testing

::::
data

:::
set.

::::
This

::::::
figure

:::::
shows

:
estimates assimilating CH4 mole fractions from the TGS using the

reconstruction with the MLP models
::::::::::::
reconstructions

:::::
from

:::
the

:::::
MLP

:::::
model

:
(see Figure A14 for the results when assimilating495

the reconstruction
:::::::::::
reconstructed

::::
mole

:::::::
fraction

::::::::::::
measurements based on the 2nd

:::
2nd degree polynomial model).

Regarding the release rate estimates, those from inversions assimilating the reference mole fractions bear an average error

of 30% and those from the inversion assimilating data from the TGS sensors bear an average error of 25%.

In the case of the estimation of the release location, the assimilation of the reference data produces a slightly smaller average

error location
::::::::::
localisation

::::
error

:
of 7.86 m (σ = 5.47 m) compared to 9.49 m (σ = 4.58 m) from the assimilation of TGS data.500

For five releases (#2, #10, #12, #25 and #26),
:
the assimilation of reference data yields a better estimate of the location

:
, and for

one release (#21),
:
both inversions yield similar location

:::::::::
localisation

:
errors.

In general, estimates of the emission rate
:::::::
emission

::::
rate

::::::::
estimates

:
(see fig 9a) from reference data and

:::::
derived

:::::
using

:::::
CH4

::::
mole

:::::::
fraction

::::
from

::::::::
reference

:::
gas

:::::::
analyser

::::
and

:::::::::::
reconstructed

::::
from

:
TGS data are similar. For three releases (#12, #25 and #32),

we observe large errors in the estimate of the release rate
:::::
release

::::
rate

::::::::
estimate. Inversion assimilating

:::::::::::
reconstructed

:
TGS505

data or reference data
:::
gas

:::::::
analyser

:::::
mole

:::::::
fraction

::::::::::::
measurements

:
highly underestimate the rate for release #5 (1.41 and 1.34

g CH4 s−1 respectively, with an actual emission
:
a
:::::::::
controlled

::::::
release

:
rate of 3.0 g CH4 s−1) and strongly overestimate the

rate for release #32 (5.14 and 6.55 g CH4 s−1 respectively, with an actual
:
a

::::::::
controlled

:::::::
release emission rate of 4.0 g CH4

s−1). Reference data
::::::::
Modelling

:::::
using

::::::::::::
measurements

::::
from

:::
the

::::::::
reference

:::
gas

:::::::
analyser

:
provide a slightly better estimation of the

location of releases than the TGS
:::::
release

::::::::
locations

::::
than

:::
the

:::::
using

::::::::::::
reconstructed

::::
TGS

::::
data. Only for releases #29 and #33, the510

inversion assimilating TGS observations provide a slightly better location of the source
:::::::::::
reconstructed

::::
TGS

::::
data

::::::
provide

:::::::
slightly

:::::
better

:::::
source

::::::::::
localisation. Conversely, for releases #2, #12, #25 and #26, the location error from the inversion assimilating

TGS observations
:::::::::::
reconstructed

:::::
TGS

::::
data is almost double than the one of the reference

:::
that

:::::::
derived

:::::
using

::::::::
reference

::::
gas

:::::::
analyser

::::::::::::
measurements. The errors on the emission rate estimate from both inversions was smaller than 30% for most of the

releases, except on
:::
for four cases, where errors reached 80% for the inversion assimilating

:::::::::::
reconstructed TGS data and 65% for515

the inversion assimilating reference data
::
gas

::::::::
analyser

::::::::::::
measurements, respectively. There were two cases, the release

:::::::
releases

#26 and #33, when the inversion assimilating TGS observations
:::::::::::
reconstructed

:::::
TGS

::::::::::::
measurements produced a much lower

error (2.5% and 5.3% respectively) in the quantification of the emission rate
:::::::
emission

::::
flux

::::::::::::
quantification than the inversion

assimilating reference
:::
gas

:::::::
analyser

:
observations (20.9% and 22.7% respectively). The fact that the assimilation of the TGS

reconstructed CH4 data can yield better results than when using accurate CH4 mole fractions measured
::::::
fraction

::::::::::::
measurements520

::::
made

:
by the reference instrument highlights the impact of the transport model error (associated to the simulation of the average

mole fractions with the Gaussian model) in the inversion process. These errors dominate the resulting errors in the estimates

of the release rate and location when assimilating the reference data Kumar et al. (2022)
:::::::::::::::::
(Kumar et al., 2022). They appear to

have a weight larger than that of the errors in the
:::::
errors

::
in

:
reconstructed mole fraction from TGS data when assimilating these

data.525
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Table 3. Comparison of the emission rate estimates
::::::
estimate (Qe), location error (El) and relative error on the

::
of

:::
flux

:
rate estimates for the

inversions assimilating the reference data
::
gas

:::::::
analyser

::::::::::
measurements

:
and the reconstruction of the CH4 from the

:::::::::
reconstructed

:
TGS low-cost

sensor based on
:::
mole

:::::::
fractions

:::::
using the MLP model

:
.

Release Actual emission
:::
N◦

::::::::
Controlled

::::::
release Reference TGS

N◦
::::::::
Chambers

::::::
emission

::::
rate Qe (g CH4 s−1) El (m) error (%) Qe (g CH4 s−1) El (m) error (%)

(g CH4 s−1)

2
:
4 1.0 1.10 5.26 10.8 0.89 12.40 10.1

5
:
4 3.0 1.34 21.57 55.2 1.41 19.55 52.8

9
:
5 1.0 0.88 14.29 11.9 1.11 12.78 11.8

10
:
3 0.5 0.40 9.29 18.9 0.42 10.80 14.8

12
:
3 1.0 0.34 3.08 65.7 1.84 7.15 84.9

21
:
5 1.0 0.63 3.61 36.1 0.66 3.61 33.8

25
:
6 5.0 4.61 4.57 7.8 5.41 10.02 8.2

26
:
4 0.4 0.31 5.10 20.9 0.39 10.10 2.5

29
:
4 0.6 0.45 3.40 24.5 0.43 2.34 28.3

32
:
4 4.0 6.55 10.55 63.8 5.14 10.28 28.6

33
:
3 2.0 2.45 5.77 22.7 2.10 5.37 5.3

Average error 7.86 30.7 9.49 25.5

σerror 5.47 20.3 4.58 23.6

4 Discussion

Our study showed the capability of the signal from metal oxide sensors to produce estimates of the emission rate and location

from controlled CH4 releases typical of those expected from leaks in industrial facilities. The used baseline correction algorithm

allows to extract the variations of voltages from the TGS signal related to the high frequency variation of the plume across

the different sensors’ inlets. We compared the performances of two models, 2nd degree polynomials and MLP, to reconstruct530

CH4 mole fractions during the controlled releases for three configurations of inputs. The reconstructed CH4 mole fractions

were used as input to an inversion modelling framework to estimate the emission rate and location for each release. Results of

inversions assimilating TGS data were compared with those assimilating reference (CRDS) data.

The correction of baseline in TGS sensors
::::::
Baseline

:::::::
voltage

::::::::
correction

::
of

::::
TGS

:::::::
sensors,

::
in

:::
this

::::::
study, assumes that the targeted

::::::
voltage signal measured by the sensors corresponds to a series of spikes at high frequency produced by the plume reaching and535

leaving the inlet tube of the sensors
::::
high

::::::::
frequency

:::::
spikes

::::::::
produced

::
as

::
a
:::::
result

::
of

:::
the

:::::::
emission

::::::
plume

:::::::::::
intermittently

::::::::::
intersecting

::
the

:::::::
various

:::::
sensor

:::
air

:::::
inlets, due to the atmospheric turbulence and high frequency variations of the wind

::::
wind

:::::::::
variations. Our

approach of deriving a baseline signal from observations surrounding the spikes in an iterative process,
::::::
voltage

::::::
signal offers

a suitable alternative to
::::::::
otherwise

:
correct the TGS observations when little or insufficient information is available to derive a
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baseline
::
an

::::::::
analytical

:::::::
baseline

:::::::
voltage correction model (e.g. from observations of H2O

::::::::::::
measurements

::
of

::::
H2O

:::::
mole

:::::::
fraction540

and temperature). This approach is interesting for conditions when the environmental parameters are highly variable or models

does
:::::::
baseline

::::::
voltage

:::::::::
correction

::::::
models

:::
do not dispose of sufficient observations to derive robust relationships to correct

:::
for

the effects of environmental variables on the sensors’ baseline
::::
TGS

:::::::
baseline

::::::
voltage

:
signal. This

:::
case

:
corresponds well with

the measurements presented in this study. However, in some cases, the plume can touch the inlet tube of the sensors during

a prolonged period producing a
:::::::
intersect

:::
the

::::::
sensor

:::
air

::::
inlet

:::
for

::
a
::::::::
prolonged

::::::::
duration

::::::::
resulting

::
in

:
a
:::::::
voltage signal not only545

having
::::::::
exhibiting

:
high frequency spikes but also continuous varying

:::::::
resulting

::
in

:::::::::::
continuously

::::::
varying

:::::::
voltage enhancements

above the background
::::::
baseline

::::::
voltage

:::::
level. For those cases, this

:::
our

:::::::
baseline

::::::
voltage

:
method would not be able to distinguish

the enhancements on sensors’ voltage
:::::
sensor

::::::
voltage

::::::::::::
enhancements

:
corresponding to the CH4 plume from the background

and then we
::::
mole

::::::
fraction

::::::::::::
enhancements

::::
due

::
to

:::
the

::::::
plume

::
as

:::::::
opposed

:::
to

:::
the

::::::::::
atmospheric

:::::::::::
background;

:::
we

:::::
would

::::
then

:
need

to reconsider the derivation of a
:::::
option

::
of

::::::::
deriving

:
a
:::::::
voltage baseline based on environmental parameters (H2O

::::
H2O

:::::
mole550

::::::
fraction

:
and T).

Regarding the type of sensor used in the reconstruction of
::::
TGS

::::
used

:::
in

:
CH4 mole fractions

::::::
fraction

::::::::::::
reconstruction, we

obtain best performances using only with Type C sensor as input for the models
::::::::
(compared

::
to

:::
the

::::::::
reference

:::
gas

::::::::
analyser)

:::::
using

::::
only

::::
Type

::
C
:::::::
sensors

::
as

::::::
model

:::::
input. The fast decay observed on the

::
for

:
reconstructed CH4 after the spikes

::::
mole

:::::::
fraction

:::::::::::
measurements

:::::
after

::::
each

:::::::
voltage

::::
spike

:
was attributed to the response time of the TGS sensor. The slow decay observed on555

Type E sensors was probably due to a combination of the response time and the carbon filter added on top of the sensitive

material to improve the selectivityof gases
::::
filter

:::::::::
integrated

:::::
inside

:::
the

::::::
sensor

:::::::
causing

::
to

:::::::
improve

::::
CH4:::::::::

selectivity. Concerning

the reconstruction models, the polynomial and the MLP models in general produced equivalent
::::::::
produced

::::::
similar results with

few differences. It
:::
This

:
confirms our previous study (Rivera Martinez et al., 2022) in which

:::::
where we observed that the

performances of models to reconstruct CH4 mole fractions
::::::
fraction

::::::::::::
reconstruction

:::::::
models were mainly driven by the type of560

sensor used
::::
used

:::::
sensor, rather than from the model chosen for the reconstruction . With a low content of information (only

few
::
the

::::::
choice

::
of

::::::::::::
reconstruction

:::::::
model.

::
In

:::::
cases

::::
with

::
a
:::
low

:::::::::::
information

::::::
content

::
of
::

(
::
i.e.

:::
only

::::
few

::::::::
observed

:::::::
voltage spikes,

limited range
::::::
voltage

:::::
range,

:
and variability of the spike magnitude, frequency

:
, and duration) in the training

:::
data

:
set (e.g. when

reconstructing the CH4 mole fractions of
::::::
fraction

:::
for

:
chamber D), the 2nd degree polynomial

::
2nd

::::::
degree

::::::::::
polynomial

::::::
model

provides more accurate
::::
mole

:::::::
fraction estimates than the MLP

:::::
model. This is probably due to the distribution of the data in the565

training set that MLP used
::::
data

::::::::::
distribution

:::::
within

:::
the

:::::::
training

::::
data

:::
set

::::
used

:::
by

:::
the

:::::
MLP

::::::
model to compute its parameters,

which does not represent
::
not

:::::::::::
representing the same range of variations than the one in the test

:::::
within

:::
the

::::::
testing

::::
data

:
set. For

spikes with enhancements
::::
mole

:::::::
fraction

::::::::::::
enhancements

::
of under 5 ppm, the MLP model with the Type C sensor signal as input

, produced a more accurate reconstruction than
:::::
either

::::
using

:
the Type E or both sensor’s types when used as inputs at the same

time. The noise present
:::::
sensor

:::::
alone

:::
or

:::::
using

::::
both

::::::
sensor

:::::
types

::::::::::::
simultaneously

:::
as

:::::
model

:::::::
inputs.

:::
The

:::::::::::
combination

::
of

:::::
both570

::::::
sensors

::
as

:::::
input

::::::::
produced

:
a
::::::::::::

reconstruction
:::

of
::::
CH4:::::

mole
:::::::
fractions

::::::
similar

:::
to

::::
using

:::::
only

:::
one

::
of

:::
the

:::::::
sensors

:::::
(TGS

::::::::::
2611-C00).

::::
This

:::
can

::
be

:::::::::
explained

::
by

:::
the

::::
fact

::::
that

::::
both

::
of

:::
the

::::
TGS

:::::::
signals

:::
are

:::::
highly

:::::::::
correlated

:::
and

:::
do

:::
not

::::
add

::::
more

:::::::::::
information

::
to

:::
the

::::::
model,

::::
and

:::
the

::::::
phase

::::::::
mismatch

:::::::
between

:::::
both

:::::
input

::::::
signals

::::::::
produced

:::
by

:::
the

:::::
filter

::
on

:::::
TGS

::::::::
2611-E00

:::::::
sensor.

:::
The

:::::
noise

:
in

the voltage signal on
:::::
during

:
some releases, for example release #26 on chamber A, were

:::
was not correctly removed in the
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reconstruction with the Polynomial model . However
:::::
during

:::
the

::::::::::
Polynomial

:::::
model

:::::
mole

::::::
fraction

:::::::::::::
reconstruction.

::::::::
However, for575

the type C sensor, the MLP model reduces the noise on the signal producing
:::::
voltage

::::::
signal

:::::
noise,

:::::::
resulting

:::
in a more accurate

::::
mole

::::::::
fraction reconstruction.

Regarding the inversion of emission rates and locations using the Gaussian
:::::::
gaussian

:
plume model framework developed by

Kumar et al. (2022), we obtained good estimates and performances with the reconstructed time series of CH4 ::::
mole

:::::::
fraction

spikes from voltage measurements of TGS sensors and the results are comparable to those obtained when assimilating the580

reference data
:::::::::::
corresponding

:::::
mole

:::::::
fraction

::::::::::::
measurements

::::
from

::::
the

::::::::
reference

:::
gas

::::::::
analyser. We observed that the simulated

gradients of the Gaussian model assimilating observation
:::::::
gaussian

::::::
model

::::::::::
assimilating

::::::::::
observations

:
from the TGS chambers

were close to the simulated gradients of the reference inversions (assimilating high precision measurements
:::::::::::
measurements

:::::
from

::
the

:::::
high

::::::::
precision

:::
gas

:::::::
analyser), even if the observed gradients were sometimes in a different direction. In most cases errors

from both inversions ranges
::::::
ranged between 2.5% and 55% except for release #12 and #32where

:
,
:::::
where

:::
the

:
error reached585

65% and 63% for simulated gradients assimilating the reference datarespectively ,
:::::::::::
respectively, and release #12 with an error

of 85%
::::
error

:
for simulated gradients assimilating the TGS data. The overall inversion performance assimilating TGS data and

reference data are good and consistent. The slightly better average performance in the release rate estimates using TGS data

(25% error) than the estimates using reference data (30% error) is not significant in regards of the
:::
with

:::::::
regards

::
to

:::
the

::::::
overall

variability of the results . It
:::
and highlights the weight of the model errors associated to

::::
with the simulation of the average mole590

fraction with a Gaussian model. The
::::
These

:
results demonstrate that the errors in the release rate and location estimations from

inversions using both reference and TGS data are dominated by these model errors
:::::
model

:::::
errors

::
in

:::
the

::::::::
inversion

:::::::::
framework.

The errors in the reconstruction of
::
the

:
CH4 ::::

mole
:::::::
fraction spikes from the TGS

::::::
voltage

:
data are thus sufficiently low for use in

the inverse modelling problem analysed here.

One should note that, as mentioned on section 2.3
::
2.7, in this study, the reference inversions rely on a restrained subset of595

the reference data that match the available data from TGS sensors. Results from Kumar et al. (2022) , considering the entire

dataset available on the reference instruments, yielded significantly improved results.
::::::::::
considering

:::
the

:::
full

::::::::
reference

:::::::
dataset

::::::
yielded

::::::::::
significantly

:::::::
superior

:::::::
results.

::::::::
Detection

:::::::::
threshold

:::
and

:::::::::::::
differentiation

::
of

::::::::
emission

:::::
types

:::
Our

:::::::::::
methodology

:::::::
requires

:::
for

:::::::::
emissions

::
to

:::
be

::::::::
sustained

:::
for

::::
long

::::::
enough

:::
to

::
be

::::::::
captured

:::::
within

:::::
each

::::::::
sampling

:::::::
interval.

::::
The600

:::::::
principal

::::::::
limitation

::
of

::::
our

::::::
method

::
is

:::
the

::::::::::
requirement

:::
for

:
at
:::::
least

:::
four

::::::::
1-minute

::::::::
averages,

:::::::::
restraining

:::
the

::::::::
detection

::
of

:::::::::
short-lived

::::::::
emissions.

::::::::
Another

::::::::
challenge

:::
lies

::
in

:::
the

::::::::
detection

::
of

::::::::
emission

:::::
types,

:::::
such

::
as

::::::
vented,

:::::::::::
combustion,

::
or

:::::::
fugitive

:::::::::
emissions.

::::
This

:::::
aspect,

::::
out

::
of

:::
the

:::::
scope

::
of

::::
our

:::::
study,

:::::
would

:::::::
require

:
a
:::::::
detailed

:::::
study

::
of

:::
the

::::::::::::
characteristics

::
of
:::::

each
::::
kind

::
of

::::::::
emission

::::::::
requiring

::::::::
additional

::::
tools

::
to
::::::::::
distinguish

::::
their

::::::::
individual

::::::::::::
particularities.

:

::::::::::
Limitations

::
of

:::
the

:::::::::
inversion

::::::::::
framework605

:::
The

::::::::
inversion

::::::::
approach

:::::::
applied

:::::
here,

::::::::
described

::::
for

:
a
::::::

single
::::::::
emission

::::::
source

::::
only

:::
as

:::::::
required

:::
by

::::
the

:::::::::
controlled

:::::::
releases

::::::::::
experiments,

:::
can

:::
be

:::::
easily

:::::::
extended

::
to
::::::::
estimate

::::::::
emissions

::::
from

:::::::
multiple

:::::::
sources

:::
(see

::::::::::::::::
Singh et al. (2013)

:
).

::::::::
However,

:::::::::
estimating

::::::::
emissions

::::
from

:::::::
multiple

:::::::
sources

::::
may

::::::
require

:
a
:::::
more

::::::
denser

:::::::
network

::
of

::::::
sensors

::
to
::::::::
constrain

::
a
:::::
larger

::::::
number

:::
of

:::::::::
parameters

:::
for

::
all

:::::::
sources.

::::::::
However,

::::::::::
significant

::::::::::
uncertainties

:::::
may

::::
arise

::
in

::::::::
emission

::::::::
estimates

:::::
when

::::::::::::
measurements

:::
are

:::::
taken

:::
in

::::
very

:::::
close
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::::::::
proximity

::
to

:::
the

::::::::
emission

:::::::
sources.

::::
Our

:::::::::::
methodology

:::::::
requires

:::
that

:::::::::
emissions

::
be

::::::::
sustained

::::
long

:::::::
enough

::
to

:::
be

:::::::
captured

::::::
within610

::
the

::::::::
sampling

::::::::
intervals.

::::
The

:::::::
principal

:::::::::
limitation

:
is
:::
the

:::::::::::
requirement

::
for

::
at
::::
least

::::
four

::::::::
1-minute

::::::::
averages,

:::::::::
restraining

:::
the

::::::::
detection

::
of

:::::::::
short-lived

:::::::::
emissions.

:::::::
Another

:::::::::
challenge

:::
lies

::
in
::::

the
::::::::
detection

::
of

::::::::
emission

:::::
types,

:::::
such

::
as

:::::::
vented,

::::::::::
combustion

::
or

:::::::
fugitive

::::::::
emissions.

:::::
This

::::::
aspect,

:::
out

::
of
::::

the
:::::
scope

::
of

::::
our

:::::
study,

::::::
would

::::::
require

::
a

:::::::
detailed

:::::
study

::
of

:::
the

::::::::::::
characteristics

:::
of

::::
each

::::
kind

:::
of

:::::::
emission

::::::::
requiring

::::::::
additional

:::::
tools

::
to

:::::::::
distinguish

:::
the

::::::::::::
particularities

::
of

:::::
them.

::::::
Density

:::
of

::::::
sensor

:::::::
network615

::
In

:::
our

::::::::
campaign,

:::
we

::::::::
deployed

:
7
::::::::
chambers

:::::::::
connected

::
to

::
air

:::::
inlets

::::::
placed

::
on

::::::
tripods

::
at

:::::::
distances

:::
of

:::::::
between

::
40

:::
and

:::
50

::
m

::::
from

:::
the

:::::::
emission

::::::
source

::
to

::::::
capture

::::::::
methane

::::::
plumes

:::::
under

::::::
various

::::::::::
conditions.

:::::
Table

:
3
::::::
details

:::
the

::::::
number

:::
of

::::::
sensors

::::
used

:::
for

::::::::
emission

:::
flux

::::::::::
estimations

:::::
across

:::
the

:::::::::
controlled

:::::::
releases.

::::
The

::::::
optimal

:::::::
number

::
of

:::::::
sensors

:::
for

:::::::
emission

::::
flux

::::::::::
localisation

:::
and

:::::::::
estimation

::
is

:::::::
complex,

:::::::::
influenced

:::
by

::::::
varying

::::::::
emission

:::::
rates,

::::::::::::
environmental

:::::::::
conditions,

:::
and

:::::
setup

:::::::::::::
configurations.

:::::::
Notably,

:::::
when

:::::::::
examining

::::
cases

::::
with

:::::::
uniform

::::::::
emission

::::
rates

:::
(1

:
g
::::
CH4:::::

s−1),
::::
such

:::
as

:::::::
releases

::::
#12,

:::
#2,

:::
and

::::
#21

::::
(with

:::
3,

:
4
::::
and

:
5
::::::::
chambers

::::::::::::
respectively),620

:
a
:::::::::::
configuration

::
of

::
4
::
to

::
5

::::::
sensors

::::::::::
consistently

::::::::
produced

:::
the

::::::
lowest

:::::
errors

:::
for

::::
both

::::::
sensor

:::::
types.

::::
Yet,

::::::
release

:::
#21

::::::::::::
demonstrated

:::
that

::::
even

::::
five

::::::
sensors

::::
may

:::
not

:::::::::
guarantee

:::
low

:::::
errors

::
if
:::
the

::::::
plume

::::::
capture

::
is

:::::::::
suboptimal

::::
due

::
to

::::::::::::
environmental

::::::
factors

::
or

::::::
sensor

:::::::::
placement.

:::
We

:::
can

:::::::
contrast

:::
our

:::::
setup

::::
with

:::::::::::::::::
Riddick et al. (2022),

::::
who

::::
used

::::
four

:::::::
sensors

::::::::::::
approximately

::
30

::
m
:::::
away

::::
from

:::
the

:::::::
source,

:::
but

::::::
without

::::::::
detailing

::::
their

:::::::::
individual

:::::::::::
contributions

::
to

:::::::
emission

:::::::::::
calculations.

::::
The

::::::
optimal

::::::::::::
configuration

::
of

::::
such

::
a

::::::::
relatively

:::::
dense625

:::::::
network

::::::::::
necessitates

:
a
::::::::
thorough

:::::::::::
investigation,

:::::::
possibly

:::::::
through

::::::::::
simulations

::
of

::::::
typical

:::::::::
emissions

:::
and

:::
the

:::::::
strategic

:::::::
addition

:::
or

::::::
removal

:::
of

::::::
sensors

::
to
::::::

assess
::::
their

:::::::
impact.

::::::::
However,

:
a
:::::::::::::

comprehensive
:::::::
analysis

::
of

:::::::
optimal

:::::::
network

::::::::::::
configuration

:::
was

:::::::
beyond

::
the

:::::
scope

:::
of

:::
our

:::::
study

:::
due

::
to

:::
the

::::::
limited

:::::::
number

::
of

::::
data

:::::
points

::::::::
recorded.

:::::::::::::
Computational

::::::::
efficiency

:::
of

:::
the

::::::::
inversion

::::::::::
framework630

:::
Our

::::::::
inversion

::::::::::
framework,

:::::::::
developed

:::
in

::::::
Python

:::
3.8

::::::::
utilising

:::::::
numpy,

::::::
pandas,

::::
and

:::::
scipy

::::::::
libraries,

:::::::::
efficiently

::::::::
computes

::::
the

::::
RSS

:::::
matrix

:::::::
through

:::::::::
vectorized

:::::::::
operations

::::
and

::
a

:::::
nested

::::::::
for-loop.

::::
This

:::::::::
approach

:::::::
achieves

:::
an

::::::
average

:::::::::::
computation

::::
time

::::
per

::::::
release

::
of

:::
0.1

:::::::
seconds

::
for

:::
the

::::
RSS

::::::
matrix

::::
and

::::
1.46

::::::
seconds

:::
for

::::
full

::::
code

:::::::::
execution,

::::::::
including

::::
data

:::::::::::
preprocessing

:::
on

::
an

::::::
8-core

:::::
Apple

::::::
Silicon

::::
M1

::::::::
processor.

::::
The

::::::::::
framework,

:::::
which

::::
can

::
be

::::::
further

:::::::::
optimised

::::
with

::::::::::::::
multiprocessing,

::
is

:::::::
detailed

::
in

:::::
Table

::::
A7,

:::::::::
showcasing

::::::::::::
computational

:::::
times

::::::
across

:::::::
different

:::::::
releases.

::
It

:::::::::
effectively

::::::::
estimates

:::::::
emission

:::::
rates

:::
and

::::::
source

:::::::
locations

:::
on

:
a
::::
fine635

:::
grid

:::::
(40m

::
x
::::
50m

::
x
::::
8m,

:::::::::
discretized

::
at

:::
1m

::
x
:::
1m

::
x
::::::
0.5m),

::::::::::::
demonstrating

::::::::::
practicality

:::
for

:::::::::
real-world

::::::::::
applications

::
at
::::::::

minimal

:::::::::::
computational

:::::
costs.

:

While our work presents promising results regarding the use of low-cost MOS sensors for estimating CH4 emission rates

and locations, it ’s
:
is

:
imperative to acknowledge the high degree of uncertainty associated with continuous emission monitoring

(CM) solutions, as evidenced by the study conducted by Bell et al. (2023). In their study, various CM technologies were tested640

against a series of controlled releases, revealing a broad range of true positive rates, false positive rates, and significant errors

in the estimation of emission rates. Bell et al. found considerable variability in the performance of CM technologies, with

mean relative errors (MRE) ranging from -44% to +586% for release rates of
:::::::
between 0.1 -

:::
and 1 kg /h and for release rates

above 1 kg/h, an MRE
::::
h−1,

::::
and

:::::
MREs

:::::::
ranging

:
between -40% and +93%

::
for

:::::::
release

::::
rates

::::::
above

:
1
:::
kg

::::
h−1. These findings
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underscore the current limitations and inconsistent performance of CM solutions, even under less complex conditions than645

typically encountered in the field. While our study is encouraging, it represents just one step in the progression of this approach.

Further research, rigorous testing, and critical interpretation of results are necessary for future advancements.

5 Conclusions

This study presents different techniques
:::
Our

:::::
study

::::::::::::
demonstrated

:::
the

::::::::
capability

:::
of

:::::
metal

:::::
oxide

:::::::
sensors

::
to

::
be

:::::
used

::::
with

::::
flux

:::::::::
algorithms

::
to

:::::::
estimate

::::::::
emission

::::
rate

:::
and

:::::::
location

::::::
during

::
a
:::::::::
controlled

::::
CH4::::::

release
::::::::::
experiment,

:::::
with

::::::
release

::::
rates

::::::
typical

:::
of650

::::
those

::::::::
expected

::::
from

:::
gas

:::::
leaks

::::
from

:::::::::
industrial

:::::::
facilities.

::::
Our

::::
TGS

:::::::
voltage

:::::::
baseline

::::::::
correction

:::::::::
algorithm

:::::::
allowed

::
us

::
to

:::::::
identify

::::
TGS

::::::
voltage

:::::::::
variations

::::::
related

::
to

:::
the

::::
high

:::::::::
frequency

::::::::
variation

::
of

:::
the

::::::
plume

:::::
across

:::
the

::::::::
different

:::::
sensor

::::::
inlets.

:::
We

:::::::::
compared

::
the

::::::::::::
performances

::
of

::::
two

::::::
models,

:::
2nd

::::::
degree

:::::::::::
polynomials

:::
and

:::::
MLP, to reconstruct CH4 mole fractions from the voltage signal

measured by metal oxide low cost TGS sensors deployed downwind an area of points of controlled releases during a campaign

at TADI in 2019. The data from this reconstruction are assimilated in an inverse modelling framework to quantify the rate655

(ranging from 0.4 to 5 g CH
::::::
voltage

::::
drop

:::::::::::::
measurements

:::::
during

::::
the

::::::::
controlled

:::::::
releases

:::
for

:::::
three

::::::::::::
configurations

::
of

::::
data

:::::
from

::::
TGS

::::
units

::
as

::::::
inputs

::
for

:::
the

::::::::::::
reconstruction

:::::::::
algorithm.

:::
The

::::::::::::
reconstructed

:::
CH4 s−1) and location of these controlled release . The

approach employed to extract the baseline signal on TGS voltage measurementsbased on surrounding observations allowed us

to derive and successfully correct the baseline signal on TGS sensors without the need of using other environmental parameters.

::::
mole

::::::::
fractions

::::
were

::::
used

:::
as

:::::
input

::
to

::
an

::::::::
inversion

:::::::::
modelling

:::::::::
framework

:::
for

::::::::
emission

::::::::::
localisation

:::
and

::::
flux

::::::::::::
quantification

:::
for660

::::
each

::::::
release

:::
not

::::::::
otherwise

::::
used

:::
for

:::::
model

:::::::
training

:
(
::
i.e.

::
the

::::::
testing

::::
data

::::::
subset).

:::::::
Results

::
of

::::::::
inversions

:::::::::::
assimilating

:::::::::::
reconstructed

::::
TGS

::::
mole

:::::::
fraction

::::
were

:::::::::
compared

::::
with

:::::
those

::::::::::
assimilating

::::::::::::
corresponding

::::::::
reference

:::::::
(CRDS)

::::
mole

:::::::
fraction

::::::::::::
measurements.

:

The reconstruction of CH4 mole fraction from voltage observations measured
:::::::::::
measurements

:::::
made during controlled releases

showed good agreement with observed CH4 mole fractions from the reference instruments
::::::::::::
corresponding

::::::::::::
measurements

:::::
made

::
by

::::::::::::
high-precision

::::::::
reference

:::
gas

::::::::
analysers. The reconstruction was consistently better with

:::::
using

::::
data

::::
from

:::
the TGS 2611-C00665

sensor regardless
::::::::
regardless

::
of

:
the reconstruction model used. Both models had met our requirement target of NRMSE of

reconstructed CH
:::
CH4 ::::

mole
:::::::
fraction

::::::::::::
reconstruction

::::::
models

:::::::
satisfied

:::
our

:::::::
targeted

::::::::
NRMSE

::::::::::
requirement

::
of lower than 0.15 ppm

across all chambers
::
for

::
all

:::::::::
chambers,

:
when trained with the TGS 2611-C00sensor. Emission rate and source location estimates

using an inversion based on a gaussian plume model produced similar results using reconstructed CH4 mole fraction
::::::
derived

from TGS sensors data to those obtained with high precision instruments
::::
using

::::
high

::::::::
precision

::::::::::::
measurements, with an average670

estimate
::::::::
estimated

::::
TGS

::::::::
emission rate error of 25.5 % and a mean source location error of 9.5 mfrom TGS data. In this study,

the reconstruction of the CH4 mole fractions was conducted independently from the
::
of

:
inversion modelling. The

:::::::
emission

::::
flux

estimation error could probably be reduced with a better understanding of inverse modelling sensitivity to the misfits from

the reconstruction models. In consequence, a sensitivity study is encouraged
::
in

:::::
future

:
to determine the best approach for the

reconstruction of the observations from TGS sensors
:::::::::::
TGS-derived

:::::::
methane

::::
mole

:::::::
fraction.675
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Data availability. The dataset was collected in the frame of the Chaire Indutrielle TRACE ANR-17-CHIN-0004-01. It is publicly accessible

at this link: https://doi.org/10.5281/zenodo.8399829

Code availability. The codes developed in the frame of the Chaire Indutrielle TRACE ANR-17-CHIN-0004-01. They are accessible upon

request to the corresponding author.
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Appendix A:
::::::
Models

:::::::::
employed

::
in

:::
the

:::::::::::::
reconstruction

::
of

:::::
CH4 :::::::::::::

concentrations
::::
from

:::::
TGS

:::::::
voltage

::::::::::::
measurements680

::::::::::::
Second-degree

::::::::::
polynomials

::::::
proven

::
to

:::
be

:::::
robust

::
to

::::::
derive

::::::::::
relationships

::::::::
between

::::
TGS

::::::
voltage

::::::
signal

::::::
related

::
to

:::::
spikes

::::
and

::::
CH4

::::
mole

::::::::
fraction

::::::
(Rivera

::::::::
Martinez

::
et

:::
al.,

:::::
2022),

:::
are

:::::::
defined

:::
by:

ŷCH4
(x1) = β0 +β1x1 +β2x

2
1

:::::::::::::::::::::::::
(A1)

:::::
Where

:::::
ŷCH4::

is
:::
the

::::::::
predicted

:::::
CH4 ::::::::::::

concentration,
::
x1::

is
:::
the

:::::::::
Corrected

::::::
voltage

:::
of

:::
the

::::
TGS

::::
after

::::::::
removing

::::
the

:::::
effects

:::
of

:::
the

:::::::
baseline.

:
685

:::::::
Artificial

::::::
neural

::::::::
networks

::::
have

:::::
been

::::::
widely

:::::
used

::
to

::::::
derive

::::::::
non-linear

:::::::::::
relationships

::::::::
between

:::::::::
predictors

:::
and

:::::::::::
independent

:::::::
variables

::
in

:::::
many

::::::::::
applications,

::
as
::
a
:::::::
universal

::::::::::::
approximator

::::::
method

:::::::::::::::::
(Hornik et al., 1989)

:::
and

:::
for

::::
their

:::::::::::
generalisation

::::::::::
capabilities

::::::::::::
(Haykin, 1998)

:
.
::
In

:::::::
previous

::::::
studies

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Casey et al., 2019; Eugster et al., 2020; Rivera Martinez et al., 2021, 2022),

:::::
ANN

::::
was

::::::::
employed

::
to

:::::
derive

::::
CH4::::

mole
::::::::
fractions

::::
from

::::
TGS

:::::::::::
observations

::
on

:::::::
different

::::::::
sampling

::::::::::::
configurations

::::
(field

::::
and

::::::::
laboratory

::::::::::
conditions)

::::
with

::::
good

:::::::::
agreement

:::::::
between

:::
the

::::::::
reference

:::::::::::
observations

:::
and

:::
the

:::::::
outputs

::::::::
produced

:::::
from

:::
the

::::::
models.

::::
The

:::::::
simplest

::::::::::
architecture

:::
of690

::
an

:::::
ANN

::
is

:::
the

:::::::::
multi-layer

:::::::::
perceptron

:::::::
(MLP),

::::::::
consisting

::
of

::
a
:::::
series

::
of

::::
units

:::::::::
(neurons)

::
in

::::
fully

:::::::::
connected

:::::
layers.

::::
The

::::::
inputs

::
of

:::
any

::::
unit

:::
will

:::
be

:::
the

::::::::
weighted

::::
sum

::
of

:::
the

:::::::
outputs

::
of

:::
the

:::::::
previous

::::::
layer,

::
to

:::::
which

:::
an

::::::::
activation

:::::::
function

:::::::
(ReLU,

:::::
tanh,

::::
etc.)

::
is

::::::
applied.

:::
As

:
a
:::::::::
supervised

::::::::
machine

:::::::
learning

::::::::
approach,

:
it
:::::::
requires

::
a
::::::
training

:::::
basis

::
to

::::
learn

:::
the

:::::::::::
relationships,

::::::::
adjusting

:::
the

:::::::
weights

::
of

::
its

:::::::::::
connections,

:::::::
between

:::
the

:::::
inputs

:::
and

:::::::
outputs

:::::
using

::
an

:::::::
iterative

::::::
process

::::::
known

:::
as

:::::::::::
optimization.

::::::::
Problems

::
of

::::
MLP

:::::::
models

::
are

::::::
either

::::::
underfit

:::
of

::::
data,

:::::::::
producing

:
a
::::
high

:::::
error

::
on

:::
the

::::
train

:::
set

::::::
which

:::
can

::
be

::::::::
mitigated

::::
with

::
a
:::::::::
sufficiently

:::::
large

::::::::
network,

::
or695

:::::::::
overfitting,

::::::::
producing

::
a
::::
high

:::
test

:::::
error

::::
when

::::
they

::::::
cannot

:::::::::
generalise

::
to

::::
new

::::::::
examples.

::::::::::::
Regularisation

:::::
terms

::::
and

::::
early

::::::::
stopping

:::::::::
techniques

:::
are

::::::
helpful

::
to

:::::::
prevent

:::::::::
overfitting

::::::::::::::::::::::::::::::::
(Bishop, 1995; Goodfellow et al., 2016)

:
.
:::::
Here,

:::
we

::::
have

::::::
trained

:::
the

:::::
MLP

::::::
model

::::
using

:::
the

::::::
Adam

::::::::
optimizer

:::::::::::::::::::::::::::::::
(Kingma and Ba, 2014; Géron, 2019),

::::
and

:::
the

::::::
optimal

:::::::
number

::
of

:::::
units

:::
and

:::::
layers

::::
was

::::::::::
determined

::::
using

::
a
::::
grid

:::::
search

:::::::::
technique

:::::::::::
Géron (2019)

:::::::
resulting

:::
in

:::
50,

::
10

::::
and

:
5
:::::
units

:::
per

::::
layer

:::::
with

:::::
ReLU

::
as

:::
the

:::::::::
activation

:::::::
function

:::
for

::
the

::::::
hidden

:::::
units.

::
A

::::::::::::
regularisation

:::::
factor

::
of

::
α

:
=
::::
0.05

::::
and

::::
early

::::::::
stopping

:::
was

::::
used

:::
to

::::::
prevent

:::::::::
overfitting.

:
700

25



Author contributions. Olivier Laurent and Ford Cropley designed the Figaro® logger system. Olivier Laurent, Christopher Caldow and

Ford Cropley conducted the field measurement campaign. Rodrigo Rivera and Diego Santaren developed the CH4 reconstruction models.

Rodrigo Rivera, Olivier Laurent and Cécile Mallet developed the baseline correction methodology of TGS sensors. Pramod Kumar and

Rodrigo Rivera developed the inversion framework to estimate the release locations and emission rates. Rodrigo Rivera, Gregoire Broquet

and Philippe Ciais prepared the manuscript with collaboration of the other co-authors.705

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This work was supported by the Chaire Industrielle Trace ANR-17-CHIN-0004-01 co-funded by the ANR French

national research agency, Total Energies-Raffinage Chimie, SUEZ - Smart & Environmental Solutions and THALES ALENIA SPACE.

26



References

Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R., Brandt, A. R., Davis, K. J., Herndon, S. C., Jacob, D. J., Karion,710

A., Kort, E. A., Lamb, B. K., Lauvaux, T., Maasakkers, J. D., Marchese, A. J., Omara, M., Pacala, S. W., Peischl, J., Robinson, A. L.,

Shepson, P. B., Sweeney, C., Townsend-Small, A., Wofsy, S. C., and Hamburg, S. P.: Assessment of methane emissions from the U.S. oil

and gas supply chain, Science, p. eaar7204, https://doi.org/10.1126/science.aar7204, 2018.

Bastviken, D., Nygren, J., Schenk, J., Parellada Massana, R., and Duc, N. T.: Technical note: Facilitating the use of low-cost methane (CH4)

sensors in flux chambers – calibration, data processing, and an open-source make-it-yourself logger, Biogeosciences, 17, 3659–3667,715

https://doi.org/10.5194/bg-17-3659-2020, 2020.

Bell, C., Ilonze, C., Duggan, A., and Zimmerle, D.: Performance of Continuous Emission Monitoring Solutions under a Single-Blind

Controlled Testing Protocol, Environmental Science & Technology, 57, 5794–5805, https://doi.org/10.1021/acs.est.2c09235, pMID:

36977200, 2023.

Bishop, C. M.: Neural Networks for Pattern Recognition, Oxford University Press, Inc., 1995.720

Casey, J. G., Collier-Oxandale, A., and Hannigan, M.: Performance of artificial neural networks and linear models to quan-

tify 4 trace gas species in an oil and gas production region with low-cost sensors, Sensors and Actuators B: Chemical, 283,

https://doi.org/10.1016/j.snb.2018.12.049, 2019.

Chamberland, J.-F. and Veeravalli, V.: How Dense Should a Sensor Network Be for Detection With Correlated Observations?, IEEE Trans-

actions on Information Theory, 52, 5099–5106, https://doi.org/10.1109/TIT.2006.883551, 2006.725

Collier-Oxandale, A., Casey, J. G., Piedrahita, R., Ortega, J., Halliday, H., Johnston, J., and Hannigan, M. P.: Assessing a low-cost

methane sensor quantification system for use in complex rural and urban environments, Atmospheric Measurement Techniques, 11,

https://doi.org/10.5194/amt-11-3569-2018, 2018.

Collier-Oxandale, A. M., Thorson, J., Halliday, H., Milford, J., and Hannigan, M.: Understanding the ability of low-cost MOx sensors to

quantify ambient VOCs, Atmospheric Measurement Techniques, 12, https://doi.org/10.5194/amt-12-1441-2019, 2019.730

Eugster, W. and Kling, G. W.: Performance of a low-cost methane sensor for ambient concentration measurements in preliminary studies,

Atmospheric Measurement Techniques, 5, https://doi.org/10.5194/amt-5-1925-2012, 2012.

Eugster, W., Laundre, J., Eugster, J., and Kling, G. W.: Long-term reliability of the Figaro TGS 2600 solid-state methane sensor under low-

Arctic conditions at Toolik Lake, Alaska, Atmospheric Measurement Techniques, 13, https://doi.org/10.5194/amt-13-2681-2020, 2020.

Figaro®: Figaro (2005), https://www.figaro.co.jp/en/product/entry/tgs2600.html, accessed on 10 February 2020 accessed on 10 February735

2020, 2005.

Figaro®: Figaro (2013), https://www.figaro.co.jp/en/product/entry/tgs2611-c00.html, accessed on 10 February 2020, 2013.

Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning, MIT Press, http://www.deeplearningbook.org, 2016.

Géron, A.: Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent sys-

tems, O’Reilly Media, 2019.740

Haykin, S.: Neural Networks: A Comprehensive Foundation, Prentice Hall PTR, 2nd edn., 1998.

Hornik, K., Stinchcombe, M., and White, H.: Multilayer feedforward networks are universal approximators, Neural Networks, 2,

https://doi.org/10.1016/0893-6080(89)90020-8, 1989.

Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980, 2014.

27

https://doi.org/10.1126/science.aar7204
https://doi.org/10.5194/bg-17-3659-2020
https://doi.org/10.1021/acs.est.2c09235
https://doi.org/10.1016/j.snb.2018.12.049
https://doi.org/10.1109/TIT.2006.883551
https://doi.org/10.5194/amt-11-3569-2018
https://doi.org/10.5194/amt-12-1441-2019
https://doi.org/10.5194/amt-5-1925-2012
https://doi.org/10.5194/amt-13-2681-2020
https://www.figaro.co.jp/en/product/entry/tgs2600.html
https://www.figaro.co.jp/en/product/entry/tgs2611-c00.html
https://doi.org/10.1016/0893-6080(89)90020-8


Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Sabatino, S. D., Bell, M., Norford, L., and Britter, R.: The rise of low-cost745

sensing for managing air pollution in cities, Environment International, 75, https://doi.org/10.1016/j.envint.2014.11.019, 2015.

Kumar, P., Broquet, G., Yver-Kwok, C., Laurent, O., Gichuki, S., Caldow, C., Cropley, F., Lauvaux, T., Ramonet, M., Berthe, G., Mar-

tin, F., Duclaux, O., Juery, C., Bouchet, C., and Ciais, P.: Mobile atmospheric measurements and local-scale inverse estimation of the

location and rates of brief CH{4} and CO{2} releases from point sources, Atmospheric Measurement Techniques, 14, 5987–6003,

https://doi.org/10.5194/amt-14-5987-2021, 2021.750

Kumar, P., Broquet, G., Caldow, C., Laurent, O., Gichuki, S., Cropley, F., Yver-Kwok, C., Fontanier, B., Lauvaux, T., Ramonet, M., Shah, A.,

Berthe, G., Martin, F., Duclaux, O., Juery, C., Bouchet, C., Pitt, J., and Ciais, P.: Near-field atmospheric inversions for the localization and

quantification of controlled methane releases using stationary and mobile measurements, Quarterly Journal of the Royal Meteorological

Society, https://doi.org/10.1002/qj.4283, 2022.

Mead, M., Popoola, O., Stewart, G., Landshoff, P., Calleja, M., Hayes, M., Baldovi, J., McLeod, M., Hodgson, T., Dicks, J., Lewis, A.,755

Cohen, J., Baron, R., Saffell, J., and Jones, R.: The use of electrochemical sensors for monitoring urban air quality in low-cost, high-

density networks, Atmospheric Environment, 70, 186–203, https://doi.org/10.1016/j.atmosenv.2012.11.060, 2013.

Picarro Inc.: Santa Clara, CA, USA: .

Popoola, O. A., Carruthers, D., Lad, C., Bright, V. B., Mead, M. I., Stettler, M. E., Saffell, J. R., and Jones, R. L.:

Use of networks of low cost air quality sensors to quantify air quality in urban settings, Atmospheric Environment, 194,760

https://doi.org/10.1016/j.atmosenv.2018.09.030, 2018.

Riddick, S. N., Mauzerall, D. L., Celia, M., Allen, G., Pitt, J., Kang, M., and Riddick, J. C.: The calibration and deployment of a low-cost

methane sensor, Atmospheric Environment, 230, 117 440, https://doi.org/10.1016/j.atmosenv.2020.117440, 2020.

Riddick, S. N., Ancona, R., Cheptonui, F., Bell, C. S., Duggan, A., Bennett, K. E., and Zimmerle, D. J.: A cautionary re-

port of calculating methane emissions using low-cost fence-line sensors, Elementa: Science of the Anthropocene, 10, 00 021,765

https://doi.org/10.1525/elementa.2022.00021, 2022.

Rivera Martinez, R., Santaren, D., Laurent, O., Cropley, F., Mallet, C., Ramonet, M., Caldow, C., Rivier, L., Broquet, G., Bouchet, C., Juery,

C., and Ciais, P.: The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric CH4

Variations around Background Concentration, Atmosphere, 12, https://doi.org/10.3390/atmos12010107, 2021.

Rivera Martinez, R. A., Santaren, D., Laurent, O., Broquet, G., Cropley, F., Mallet, C., Ramonet, M., Shah, A., Rivier, L., Bouchet, C., Juery,770

C., Duclaux, O., and Ciais, P.: Reconstruction of high-frequency methane atmospheric concentration peaks from measurements using

metal oxide low-cost sensors, Atmospheric Measurement Techniques Discussions, 2022, 1–45, https://doi.org/10.5194/amt-2022-200,

2022.

Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., Houweling, S.,

Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P., Blake, D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol,775

M., Castaldi, S., Chandra, N., Crevoisier, C., Crill, P. M., Covey, K., Curry, C. L., Etiope, G., Frankenberg, C., Gedney, N., Hegglin,

M. I., Höglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K. M., Joos, F., Kleinen, T., Krummel,

P. B., Langenfelds, R. L., Laruelle, G. G., Liu, L., Machida, T., Maksyutov, S., McDonald, K. C., McNorton, J., Miller, P. A., Melton,

J. R., Morino, I., Müller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O’Doherty, S., Parker, R. J., Peng, C., Peng, S., Peters, G. P.,

Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W. J., Rosentreter, J. A., Segers, A., Simpson, I. J., Shi, H., Smith, S. J., Steele, L. P.,780

Thornton, B. F., Tian, H., Tohjima, Y., Tubiello, F. N., Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T. S., van Weele, M., van der Werf,

G. R., Weiss, R. F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, Q., and Zhuang,

28

https://doi.org/10.1016/j.envint.2014.11.019
https://doi.org/10.5194/amt-14-5987-2021
https://doi.org/10.1002/qj.4283
https://doi.org/10.1016/j.atmosenv.2012.11.060
https://doi.org/10.1016/j.atmosenv.2018.09.030
https://doi.org/10.1016/j.atmosenv.2020.117440
https://doi.org/10.1525/elementa.2022.00021
https://doi.org/10.3390/atmos12010107
https://doi.org/10.5194/amt-2022-200


Q.: The Global Methane Budget 2000–2017, Earth System Science Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020,

2020.

Shah, A., Laurent, O., Lienhardt, L., Broquet, G., Rivera Martinez, R., Allegrini, E., and Ciais, P.: Characterising the methane gas and785

environmental response of the figaro taguchi gas sensor (TGS) 2611-E00, Atmospheric Measurement Techniques, 16, 3391–3419,

https://doi.org/10.5194/amt-16-3391-2023, publisher: Copernicus GmbH, 2023.

Shah, A., Laurent, O., Broquet, G., Philippon, C., Kumar, P., Allegrini, E., and Ciais, P.: Determining methane mole fraction at a landfill

site using the figaro taguchi gas sensor 2611-C00 and wind direction measurements, Environmental Science: Atmospheres, 4, 362–386,

https://doi.org/10.1039/D3EA00138E, 2024.790

Singh, S. K., Sharan, M., and Issartel, J.-P.: Inverse modelling for identification of multiple-point releases from atmospheric concentration

measurements, Boundary-Layer Meteorology, 146, 277–295, https://doi.org/10.1007/s10546-012-9765-y, 2013.

Travis, B., Dubey, M., and Sauer, J.: Neural networks to locate and quantify fugitive natural gas leaks for a MIR detection system, Atmo-

spheric Environment: X, 8, 100 092, https://doi.org/10.1016/j.aeaoa.2020.100092, 2020.

van den Bossche, M., Rose, N. T., and De Wekker, S. F. J.: Potential of a low-cost gas sensor for atmospheric methane monitoring, Sensors795

and Actuators B: Chemical, 238, 501–509, https://doi.org/https://doi.org/10.1016/j.snb.2016.07.092, 2017.

Yver-Kwok, C., Laurent, O., Guemri, A., Philippon, C., Wastine, B., Rella, C. W., Vuillemin, C., Truong, F., Delmotte, M., Kazan,

V., Darding, M., Lebègue, B., Kaiser, C., Xueref-Rémy, I., and Ramonet, M.: Comprehensive laboratory and field testing of cav-

ity ring-down spectroscopy analyzers measuring H2O, CO2, CH4 and CO, Atmospheric Measurement Techniques, 8, 3867–3892,

https://doi.org/10.5194/amt-8-3867-2015, 2015.800

Özgür Örnek and Karlik, B.: An overview of metal oxide semiconducting sensors in electronic nose applications, vol. 2, pp. 506–515, 2012.

29

https://doi.org/10.5194/essd-12-1561-2020
https://doi.org/10.5194/amt-16-3391-2023
https://doi.org/10.1039/D3EA00138E
https://doi.org/10.1007/s10546-012-9765-y
https://doi.org/10.1016/j.aeaoa.2020.100092
https://doi.org/https://doi.org/10.1016/j.snb.2016.07.092
https://doi.org/10.5194/amt-8-3867-2015


Figure 1. Diagram of the experimental setup on top of a satellite image of the TADI platform (source: Google Earth©). The locations of the

releases are inside the red rectangle (ATEX zone). The locations of the 16 tripods are presented as black symbols and denoted with a Tx

where x is the index of the tripod from 1 to 16. The blue rectangle indicates the tent location. Examples of the sampling lines connecting

the tripods to the tent are shown as dashed lines, only showing 7 of 16 in total. The white symbol shows the location of the Meteorological

station installed by TotalEnergies® .
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Figure 2. Diagram of the measurement stations and their connection to the sampling lines.
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Figure 3. An example of 1-minute averaged CH4::::
CH4 mole fraction (ppm) and voltage

:::
drop

:
(V) measurements

:
, respectivelymeasured by

:
,

::::::
obtained

::::
from six high precision instruments and one type of TGS sensor (TGS 2611-C00) for release 25 (Qs = 5 g s−1). CH4 measurements

from the high precision instruments are denoted as ‘CH4’ and the voltage measurements from TGS sensor are denoted as ‘2611C’. The top

panel shows the 1-minute averaged wind speed (Ur
::
Ur) and wind direction (θ) measured by the 3D sonic anemometer.
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Figure 4. Comparison of the voltage signal for one release (#8) from Chamber A before (Uncorrected) and after (Corrected) the baseline

correction on (b) TGS 2611-C00 and (c
:
d) TGS 2611-E00, on which it is appreciated the correction of the offset preserving the ampli-

tude enhancements linked to
:::
CH4

:::::::::
variations.

:::::
Scatter

::::
plot

::
of

:::
the

:::::::
corrected

:::::::
(orange)

::::
and

:::::::::
uncorrected

::::
(red)

:::::
signal

::
vs

:::
the

::::::::
reference CH4

variations
:::::::::
observations

:::
for

::
(c)

::::
TGS

::::::::
2611-C00

:::
and

::
(e)

::::
TGS

::::::::
2611-E00. (a) Reference CH4 mole fractions, also corrected using the spike cor-

rection algorithm.
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Figure 5. Example of reconstruction of release #25 using an MLP model. On left panels are shown the reconstructed CH4 mole fractions

for each chamber that captured the release, we present the reference signal (black dotted line), the reconstructed CH4 mole fractions when

the model has as input the TGS 2611-C00 sensor (red), the TGS 2611-E00 (yellow) or both types at the same time (green). The right panels

show the 1:1 plot of the reference against the output of the model for the three configurations of inputs. Note the difference in the x-axis for

Chamber F.
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Figure 6. Example of reconstruction of release #25 using a Polynomial model. Notations are the same as in Figure 5.
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Figure 7. Comparison of the mean NRMSE of the two types of models trained with the three configurations of the inputs. The 2nd
:::
2nd degree

polynomials are denoted as ‘Poly’ and the multilayer perceptron as ‘MLP’. The three input configurations are denoted inside parentheses,

‘C’ when the model’s input was only the TGS 2611-C00, ‘E’ for the TGS 2611-E00 and ‘CE’ when both sensors were used as inputs at the

same time. The color code of the bars corresponds to the chambers.
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Figure 8. Observed and modelled average CH4 mole fractions from the reference
::
gas

:::::::
analyser, denoted ‘REF’, and low-cost sensor

::::
TGS

:::::::
2611-C00

::::::
sensors, denoted TGS, corresponding to the release #25. The reconstructed

:::::::::::
Reconstructed CH4 was

::::::::::
measurements

::::
were

:
computed

using the MLP model. The index of the tripods
::
air

::::
inlets

:
is denoted as T-x and the average wind direction (θ) for the binning of wind sectors

is shown on the top right of each panel in red.
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Figure 9. Comparison of the emission rate estimate (Qe) (a), of the location error (El) (b) and of the relative error in the emission rate estimate

(c) from the inversions assimilating the Reference data (in red) and the reconstruction of the CH4 mole fraction from the TGS sensors (in

orange). The reconstructed CH4 mole fractions used in these inversions are computed with the MLP model.
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Figure A1. Comparison of the voltage measurements from three types of TGS included on chamber A. Upper plot shows the reference CH4

observations measured from the reference instrument. Lower plot shows the voltage observations from TGS 2611-C00, 2600 and 2611-E00.
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Figure A2. Comparison of the performance in deriving a baseline signal for the TGS 2611-C00 (red) of Chamber E between a function of

H2O and Temperature (yellow) and a spike detection algorithm (green). The multilinear model derived baseline was trained on six hours of

non-release periods at the start of the first day of the campaign and evaluated on the last eight hours of the same day (shown in the figure). The

Spike detection algorithm, an iterative function, does not need any prior training and detects the baseline based on neighboring
::::::::::
neighbouring

observations and fixed parameters.
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Figure A3. Comparison of the response of the TGS 2611-C00 and TGS 2611-E00 sensors with CH4 measurements from the reference

instrument for the release #2 which contains spikes with high concentration. The spikes observed on the TGS sensors corresponding from

amplitudes between 100 ppm to more than 200 ppm are not distinguishable from spikes with amplitudes lower than 50 ppm.
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Figure A4. Reconstruction of release #2 using a MLP model. On left panels are shown the reconstructed CH4 mole fractions for each

chamber that captured the release, we present the reference signal (black dotted line), the reconstructed CH4 mole fractions when the model

has as input the TGS 2611-C00 sensor (red), the TGS 2611-E00 (yellow) or both types at the same time (green). The right panels show

the 1:1 plot of the reference against the output of the model for the three configurations of inputs. Note the difference in the x-axis for the

chambers.

42



Figure A5. Reconstruction of release #9 using a MLP model. Notations are the same as in Figure A4. Note the difference in the x-axis for

the chambers.
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Figure A6. Reconstruction of release #10 using a MLP model. Notations are the same as in Figure A4. Note the difference in the x-axis for

the chambers.
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Figure A7. Reconstruction of release #12 using a MLP model. Notations are the same as in Figure A4. Note the difference in the x-axis for

the chambers.
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Figure A8. Reconstruction of release #21 using a MLP model. Notations are the same as in Figure A4. Note the difference in the x-axis for

the chambers.
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Figure A9. Reconstruction of release #26 using a MLP model. Notations are the same as in Figure A4. Note the difference in the x-axis for

the chambers.
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Figure A10. Reconstruction of release #9 using 2nd
::
2nd

:
degree polynomials. Notations are the same as in Figure A4. Note the difference in

the x-axis for the chambers.
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Figure A11. Reconstruction of release #10 using 2nd
::
2nd degree polynomials. Notations are the same as in Figure A4. Note the difference in

the x-axis for the chambers.
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Figure A12. Reconstruction of release #26 using 2nd
::
2nd degree polynomials. Notations are the same as in Figure A4. Note the difference in

the x-axis for the chambers.
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Figure A13. Observed and modelled average CH4 mole fractions from the reference
::
gas

::::::
analyser, denoted ‘REF’, and low-cost sensor

::::
TGS

:::::::
2611-C00

::::::
sensors, denoted TGS, corresponding to the release #25. The reconstructed

:::::::::::
Reconstructed CH4 was

::::::::::
measurements

::::
were

:
computed

using the
::
2nd

:::::
degree

:
polynomial modelof 2nd degree. The index of the tripods

::
air

::::
inlets is denoted as T-x and the average wind direction (θ)

for the binning of wind sectors is shown on the top right of each panel in red.
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Figure A14. Comparison of the emission rate estimates (Qe), location error (El) and relative error on the rate estimates for the inversions

assimilating the reference data and the reconstruction of the CH4 from the TGS low-cost sensor based on the Polynomial model of 2nd
::

2nd

degree.
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Table A1. Distribution of the releases by chamber. For each chamber is denoted with an ‘o’ the releases for which the TGS sensors produced

valid measurements and with an ‘x’ the invalid ones.

Release Chamber Release Chamber

number A C D E F H number A C D E F H

1 - - - x x o 19 o o - o o o

2 o - - o o o 20 o o - o o o

3 - - - o o o 21 o o - o o o

4 - - - o o o 22 - o - o o -

5 o - o o o - 23 - - - o - o

6 o - o o o - 24 o o x - o o

7 o - o o o - 25 o o o o o o

8 o - o o o - 26 o o x o - o

9 o o o o o - 27 o o - - - x

10 o o x x o - 28 o o - - - o

11 o x - - - - 29 o o - - o o

12 x x o o o - 30 o o - - - o

13 - x o o o o 31 - o - - - -

14 o o o o o o 32 o o - o - o

15 o o - - o - 33 x o - o - o

16 o - - x - -

17 o o - - - x

18 o o - - o o
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Table A2. Comparison of the emission rate estimates
::::::
estimate

:
(Qs ::

Qe), location error (Le::
El) and percentage of

:::::
relative

:
error of the

:::
flux

rate estimates (Qe) for the
:::::::
inversions

:::::::::
assimilating

:
reference instrument

::
gas

:::::::
analyser

:::::::::::
measurements

:
and the TGS low-cost sensor from

reconstructed CH4 of
:::
TGS

::::
mole

:::::::
fractions

::::
using

:
the 2nd

::
2nd degree polynomial model.

Release N◦ Controlled release Reference TGS

N◦ Chambers emission rate Qe (g CH4 s−1) El (m) error (%) Qe (g CH4 s−1) El (m) error (%)

(g CH4 s−1)

2 4 1.0 1.10 5.26 10.8 1.19 12,40 19,1

5 4 3.0 1.34 21.57 55.2 1.53 19,55 48,8

9 5 1.0 0.88 14.29 11.9 1.03 13,60 2,9

10 3 0.5 0.40 9.29 18.9 0.34 7,74 30,7

12 3 1.0 0.34 3.08 65.7 2.99 9,55 199,2

21 5 1.0 0.63 3.61 36.1 0.64 3,61 35,7

25 6 5.0 4.61 4.57 7.8 6.50 10,02 30,0

26 4 0.4 0.31 5.10 20.9 0.43 10,04 9,1

29 4 0.6 0.45 3.40 24.5 0.41 2,34 30,8

32 4 4.0 6.55 10.55 63.8 5.42 10,28 35,6

33 3 2.0 2.45 5.77 22.7 2.11 5,37 5,5

Average error 7.86 30.7 9.5 40.6

σerror 5.46 20.3 4.6 51.9
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Table A3. Summary of the tripods that were connected to each chamber.

Chamber Tripod N◦

A 1, 4, 6, 8, 9, 10, 11, 14, 15

C 2, 7, 9, 14, 15, 16

D 2, 3, 9, 10, 11, 12, 13, 16

E 1, 3, 4, 5, 10, 11, 12, 13, 16

F 2, 3, 4, 10, 11, 12, 13, 14, 15

H 4, 5, 6, 7, 12, 13, 14, 15
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Table A4. Comparison between TGS sensors included on the low-cost logging systems during the TADI 2019 campaign.

Type Target gas Approximate price Comments

2600 C2H5OH, C4H10, CO, H2, CH4 15 $us Designed as a smoke detector.

2611-C00 CH4, C2H5OH, C4H10, CO, H2 20 $us Designed for CH4 detection. Fast response.

2611-E00 CH4, H2 20 $us

Designed for CH4 detection.

Increased selectivity due to a carbon filter installed

on top of the sensing material.

2602 C7H8, H2S, C2H5OH, NH3, H2 17 $us High sensitive to VOC and odor gases.
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Table A5.
:::::::
Summary

::
of

::
the

::::::
species

:::::::
measured

:::
by

:::
each

::::::::
reference

::::::::
instrument.

::::
Serial

:::::::
number

:
/
::::
Code

::::::::
Identifier

:::::
Species

::::::::
measured

:::::::::::
CFKADS2286

:
/
:::::
Picarro

::
1

:::::
Picarro

:::::
CRDS

::::::
G2401

::::
CH4,

::::
CO2,

:::
CO

:::::::::::
CFKADS2301

:
/
:::::
Picarro

::
2

:::::
Picarro

:::::
CRDS

::::::
G2401

::::
CH4,

::::
CO2,

:::
CO

:::::::::::
CFKADS2194

:
/
:::::
Picarro

::
3

:::::
Picarro

:::::
CRDS

::::::
G2401

::::
CH4,

::::
CO2,

:::
CO

:::::::::::
CFKADS2131

:
/
:::::
Picarro

::
4

:::::
Picarro

:::::
CRDS

::::::
G2401

::::
CH4,

::::
CO2,

:::
CO

:::::::::
CFIDS2067

:
/
:::::
Picarro

::
5

:::::
Picarro

::::::
CRDS

::::::
G2201-i

::::::
Isotopic

: ::::::

13CH4,
:::::

12CH4,
::::::

13CO2,
::::::

12CO2

:::::::::
CFIDS2072

:
/
:::::
Picarro

::
6

:::::
Picarro

::::::
CRDS

::::::
G2201-i

::::::
Isotopic

: ::::::

13CH4,
:::::

12CH4,
::::::

13CO2,
::::::

12CO2

:::
LGR

::::::
MGGA

: :::
Los

:::::
Gatos

:::::::::::
Micro-portable

:::::::::
Greenhouse

:::
gas

::::::
analyzer

: :::
CH4,

::::
CO2:
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Table A6.
:::::::
Summary

::
of

:::
the

::::::::::
specifications

::
of

:::
the

:::::::
chambers,

:::
the

::::::
tripods

:
to
:::::

which
::::
each

:::::::
chamber

:::
was

::::::::
connected,

:::
the

:::::::
captured

::::::
releases

:::
and

:::
the

:::::::
reference

::::::::
instrument

::::::::
collocated

:::
with

::::
each

:::::::
chamber.

:::::::
Chamber

:::::
Figaro

::::
TGS

::::
Load

::::::
resistor

:::::
Other

::::::
sensors

:::::::
Chamber

::::
type

::::::
Tripod

:
#
::
of

::::::::
measured

:::::::
Reference

::::::
sensors (Ω)

::::::
releases

:::::::::
instrument

A
:::
2600

:

50K
:::::

DHT22

Acrylic/glass
:

1,
::
4,

:
6
:

28 Picarro CFKADS2286
:::::::
2611-C00

: :::::::
BMP280

:
8,
::

9,
:::
10

:::::::
2611-E00

: ::
11,

:::
14,

::
15

:

C
:::
2600

:

50K
:::::
SHT75

Acrylic/glass
:

2,
::
7,

:
9
:

24 Picarro CFIDS2072
:::::::
2611-C00

: :::::::
BMP280

::
14,

:::
15,

::
16

:

:::::::
2611-E00

:

D
:::
2600

:

5K
:::::
SHT75

Steel/glass
:

2,
::
3,

:
9
:

14 Picarro CFKADS2301
:::::::
2611-C00

: :::::::
BMP280

::
10,

:::
11,

::
12

:

:::::::
2611-E00

: ::
13,

::
16

:

E
:::::
2600*

5K
:::::

DHT22

Steel/glass
:
1,

::
3,

:
4
:

24 Picarro CFKADS2131
:::::::::
2611-C00*

:::::
SHT75

:
5,

:::
10,

::
11

::::::::
2611-E00*

:::::::
BMP180

::
12,

:::
13,

::
16

:

F
:::
2600

:

50K
:::::
SHT75

Acrylic/glass
:

2,
::
3,

:
4
:

25 Picarro CFKADS2194
:::::::
2611-C00

: :::::::
BMP280

::
10,

:::
11,

::
12

:

:::::::
2611-E00

: ::
13,

:::
14,

::
15

:

H
:::
2600

:

50K
:::::
SHT75

Acrylic/glass
:

4,
::
5,

:
6
:

22 LGR MGGA
:::::::
2611-C00

: :::::::
BMP180

:
7,

:::
12,

::
13

:::::::
2611-E00

: ::
14,

::
15

:

∗ Two versions of each type.
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Table A7.
:::::::::
Computation

::::
time

::
in

::::::
seconds

::
of

:::
the

:::
RSS

::::::
matrix

:::
and

::
the

:::::
entire

:::::::
inversion

:::::::
including

:::
the

:::::::::::
preprocessing

::
of

::
the

::::
data

::
for

::::
each

::::::
release

:
in
:::
the

::::
test

:::
set.

::::::
Release

:::
N◦

::
N◦

:::::::::
Receptors

::::
RSS

:::::
matrix

::
(s)

::::
Data

:::::::::::
preprocessing

:
+
::::::::

inversion
::
(s)

:
2

:
4

::::
0.148

::::
1.497

:
5

:
4

::::
0.099

::::
1.498

:
9

:
5

::::
0.092

::::
1.260

::
10

: :
3

::::
0.034

::::
0.992

::
12

: :
3

::::
0.073

::::
1.428

::
21

: :
5

::::
0.094

::::
1.286

::
25

: :
6

::::
0.146

::::
1.511

::
26

: :
4

::::
0.156

::::
1.859

::
29

: :
4

::::
0.152

::::
1.923

::
32

: :
4

::::
0.094

::::
1.425

::
33

: :
3

::::
0.086

::::
1.455

:::::::
Average

::::
0.107

::::
1.467
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