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Abstract. Fugitive methane (CH4) emission occur in the whole chain of oil and gas production, from the extraction, trans-

portation, storage and distribution. The detection and quantification of such emissions are conducted usually from surveys as

close as possible to the source location. However, these surveys are labor intensive, costly and they do not provide continuous

monitoring of the emissions. The deployment of permanent networks of sensors in the vicinity of industrial facilities would

overcome the limitations of surveys by providing accurate estimates thanks to continuous sampling of the plumes. High pre-5

cision instruments are too costly to deploy in such networks. Low-cost sensors like Metal oxide semiconductors (MOS) are

presented as a cheap alternative for such deployments due to its compact dimensions and to its sensitivity to CH4. In this

study we test the ability of two types of MOS sensors from the manufacturer Figaro® (TGS 2611-C00 and TGS 2611-E00)

deployed in six chambers to reconstruct an actual signal from a source in open air corresponding to a series of controlled CH4

releases and we assess the accuracy of the emission estimates computed from reconstructed CH4 mole fractions from voltages10

measurements of these sensors. A baseline correction of the voltage linked to background variations is presented based on

an iterative comparison of neighboring observations. Two reconstruction models were compared, multilayer perceptron (MLP)

and 2nd degree polynomial, providing similar performances meeting our target requirement on all the chambers when the input

variable is the TGS 2611-C00 sensor. The emission estimates were then computed using an inversion approach based on the

adjoint of a Gaussian dispersion model obtaining promising results with an emission rate error of 25% and a location error of15

9.5 m.
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1 Introduction

Fossil fuel anthropogenic methane (CH4) emissions related to the production, exploitation and transport of coal, oil and natural

gas, account for 35% of global anthropogenic emissions (Saunois et al., 2020). Emissions from natural gas production occur

along the chain from extraction, transportation, storage, distribution and use. Emissions estimates reported by inventories rely20

on information from activity data and emission factors. Emission factors are different between sites, technologies, operating

modes and are not stationary, which makes the upscaling of fugitive CH4 emissions highly uncertain (Alvarez et al., 2018).

For instance, emissions from the oil and gas supply chain in the US constrained from ground based and aircraft measurements

were found to be 60% higher than the EPA inventory (Alvarez et al., 2018). More generally, the characterization of CH4

emissions from complex processes based on static emission factors can be challenged when the best practices are not followed25

by operators (Riddick et al., 2020).

Atmospheric measurements are increasingly used to detect and quantify CH4 leaks from industrial facilities. The measure-

ments are often interpreted with local-scale dispersion models using atmospheric inversion methods to infer the CH4 source

location and emission rates, see e.g. (Kumar et al., 2022). Current approaches generally consist in conducting atmospheric sur-

veys of the enriched concentration plume created by the emitting source. Difficulties are the accessibility to sample the plumes30

from emitting locations, labor and instrument costs given that surveys currently employ expensive high precision research-level

CH4 instruments, such as Cavity ring-down spectrometers (CRDS). Further, surveys do not provide continuous monitoring of

the sources (Travis et al., 2020). The deployment and functioning of mini-networks of continuous monitoring sensors for CH4

mole fractions is an alternative to surveys, but the costs of each instrument remain a limitation. Advances in the development

of low-cost sensors facilitates the deployment of dense sensors’ networks to increase the coverage of a site (Kumar et al., 2015;35

Mead et al., 2013). Permanent deployment of a network of sensors can overcome limitations in the quantification of leaks and

help to better characterize the plumes by limiting the impact of atmospheric transport modelling uncertainties. In addition,

the theoretical study of Chamberland and Veeravalli (2006) proved that performance is improved in differentiation of known

signals from noise by increasing the sensor density in an area.

In later years, an increase in the interest in low cost and low power sensors to be used in dense networks led to the study of40

different kinds of sensors to measure pollutants and trace gases like CO2 or CH4. One of the most common low-cost sensors

technologies for the detection and quantification of CH4 emissions is metal oxide semiconductors (MOS). MOS sensors are

composed of a metal oxide sensing material and a heater ensuring that the sensing material reaches temperatures between 300

to 500 ◦C. A chemical reaction affects the electrical conductivity of the sensing material in the presence of an electron donor

gas such as CH4 (Özgür Örnek and Karlik, 2012). The advantages of MOS sensors are that they are compact and very well45

suited to long time deployment due to their resilience to extreme weather conditions. However, their sensitivity is affected by

environmental parameters (temperature and relative humidity) (Popoola et al., 2018) and VOCs; they also present low accuracy

and drift with time (in the form of a decrease in the conductance of the sensing material), requiring periodic re-calibrations,

and the need of constant power supply due to the heater material.
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The Taguchi Gas Sensors (TGS) commercial MOS from the Figaro® manufacturer, were widely tested in different envi-50

ronments under controlled conditions and field deployment due to their sensitivity to CH4 (Eugster et al., 2020; Eugster and

Kling, 2012; Riddick et al., 2020; Collier-Oxandale et al., 2018; Bastviken et al., 2020; van den Bossche et al., 2017). The

standard technique to derive a calibration methodology is to collocate these MOS sensors with a high precision instrument

used as a reference, then apply empirical equations or data-driven approaches (Eugster et al., 2020; Eugster and Kling, 2012;

Casey et al., 2019; Bastviken et al., 2020; Collier-Oxandale et al., 2018, 2019). In a previous work (Rivera Martinez et al.,55

2021) we have studied the possibility of using Artificial neural Networks (ANN) to reconstruct the variations of CH4 mole

fractions in room air under controlled conditions from three types of Figaro sensors (TGS 2600, TGS 2611-C00 and TGS

2611-E00). A following study (Rivera Martinez et al., 2022) analyzed the potential to reconstruct spikes of CH4 generated

on top of ambient air observations, that corresponded to typical signals from leaks at industrial sites, employing two types

of Figaro sensors (TGS 2611-C00 and TGS 2611-E00). That study made a thorough comparison of the performance of five60

models for the reconstruction of CH4.

The next logical step is to test the performances of the same sensors to reconstruct CH4 from real leaks, and to use the

reconstructed mole fractions to quantify emission rates. To our knowledge, only one study attempted to do so. Riddick et al.

(2020) quantified emissions of a gas terminal using a Figaro TGS 2600 included in a logger system controlled by an Arduino

Uno. The logging system was located 1.5 m from a point source. To reconstruct CH4 mole fractions from voltage observations,65

Riddick et al. (2020) developed an empirical equation considering the measured voltage, temperature and the humidity. Then,

a Gaussian plume model was used to quantify the emission rate using information from the reconstructed CH4 mole fractions

and wind information from a nearby meteorological station. Their estimates of the emissions rates had an average value of

9.6 g CH4 s−1 and reached a maximum of 238 g CH4 s−1, given corresponding to enhancements of the CH4 mole fractions

between 2 ppm to 5.4 ppm within the plume. Their estimates based on a Figaro sensor were not confronted with high precision70

instruments nor with an independent knowledge of emission rate.

In this study, we test the ability of a network of several Figaro sensors to reconstruct the CH4 atmospheric enhancements

from a series of controlled releases of known magnitudes and duration in open air at a facility called TADI (see Methods), and

to infer the emission rate of each release by an inverse modeling approach. The accuracy of the CH4 reconstruction is evaluated

against collocated accurate CH4 measurements from high precision CRDS instruments. The accuracy of the inverted emission75

locations and rates is evaluated against the known (controlled) location and magnitude using the inversion model of Kumar

et al. (2022)

This study builds upon the research conducted by Rivera Martinez et al. (2022) and Kumar et al. (2022), demonstrating the

potential for continuous monitoring of CH4 emissions using cost-effective in situ sensors. Drawing from the insights derived

from these two studies, it seeks to address the new challenges associated with the combination of both types of analysis. Firstly,80

the challenge arises in the deployment and management of Figaro® sensors onsite, an issue not present in Rivera Martinez et al.

(2022), as well as extracting CH4 concentrations from measurements that are impacted by more complex perturbations. For

instance, the background air in Rivera Martinez et al. (2021, 2022) was less polluted than the one from an industrial site such as

TADI. Moreover, the environmental conditions, especially in terms of temperature and moisture, in these previous studies were
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smooth and not representative of the real field conditions as encountered in this new study. Secondly, the prescriptive precision85

and accuracy targets for CH4 reconstructions outlined in Rivera Martinez et al. (2022) were established as generic targets,

fitting for a variety of data processing strategies intended to quantify emissions from industrial sites. The specific observation

and modelling strategy implemented in Kumar et al. (2022) to localise and quantify point source emissions carries its own set

of precision/accuracy requirements. In particular, this strategy strongly relies on the characterization of gradients across the

measurement stations of concentration averages over time or wind sectors, which makes the derivation of nominal requirements90

on the reconstruction of CH4 spikes or time series quite complex. Furthermore, such requirements should be weighed against

the modelling uncertainties associated with the corresponding Gaussian plume model inversions. Ideally, the uncertainties

related to the CH4 data would not significantly add to the total uncertainty when combining them with uncertainties from the

modelling framework. This, however, does not necessarily mean that they should be much smaller than the latter. The direct

comparison of the results obtained in this study with CH4 data derived from the Figaro sensors and those from Kumar et al.95

(2022) provides insights into whether this objective is achieved.

Therefore, for 33 controlled releases at the TADI facility, we employed fixed-point measurements from both high precision

CRDS instruments and low-cost TGS. A considerable fraction of the TGS measurements were used for training models to re-

construct CH4 mixing ratios from measured TGS resistance and other variables. When reconstructing the CH4 concentrations,

we proposed a minimum accuracy target for CH4 reconstruction models at 15% of the amplitude of the largest observed excess100

within a release. This corresponds to accuracies going from 0.3 ppm for a release causing a maximum excess of 2.4 ppm,

to 18 ppm for a maximum excess of 120 ppm. This accuracy is consistent with the accuracy requirement set in our previous

study where we used TGS sensors to reconstruct CH4 spikes created in a laboratory experiment (Rivera Martinez et al., 2022).

However, the relevance of this target is implicitly re-assessed through the use of the reconstructed time series in the inversion

scheme from Kumar et al. (2022).105

The plan of the study is as follows. Section 2 presents the TADI 2019 controlled releases campaign, the logger systems, the

models employed to reconstruct CH4 from TGS data, and the atmospheric inversion approach. The data treatment, comparison

of the models for the reconstruction of CH4 and the inversion results for rates and locations of different releases are analyzed

in section 3. Results are discussed in Section 4, and conclusion are given in section 5.

2 Methods110

2.1 Sampling strategy at the TADI-2019 campaign

In October 2019, TotalEnergies® conducted an experiment with multiple controlled releases at the TotalEnergies Anomaly

Detection Initiative (TADI), to investigate the capability of detection and quantification of different technologies for local

emissions produced on industrial facilities. The TADI test site is designed and operated by TotalEnergies® to test different

technologies and methodologies of detection and quantification of gas leaks in an industrial environment, such as oil and gas115

production facilities. The platform is located northwest of Pau, France, with an approximate area of 200 m × 200 m. The site

is equipped with a series of pipes, valves, tanks, , and other equipment commonly found on oil and gas facilities to simulate
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‘realistic’ leaks. The terrain is flat but includes different obstacles that can affect the dispersion of the gases released to the

atmosphere. This experiment consisted of 41 controlled releases of CH4 and CO2 covering a wide range of emissions between

0.15 and 150 g CH4 s−1 and durations ranging between 25 to 75 minutes. We participated to this experiment to develop and120

test inverse modelling frameworks within the TRAcking Carbon Emissions (TRACE, https://trace.lsce.ipsl.fr/) program for

the estimation of emission location and rates based on CH4 mole fractions from high precision instruments (Kumar et al.,

2022). We presented the inversion results for 26 releases from single point sources based on two inversion approaches, one

relying on fixed-point measurements, and the other one on mobile near-surface measurements (the latter had already been

documented in (Kumar et al., 2021)). In both cases, the estimates of the emissions relied on CH4 mole fractions from high125

precision instruments, and on a Gaussian plume model to simulate the local atmospheric dispersion of CH4. The results from

Kumar et al. (2022) proved to be relatively good, with an error in the release rate estimates from fixed-point measurements

between ∼23 to ∼30 % and an error in the location of the point sources (within a 40 m × 50 m area) of between 8 and 10 m.

The controlled releases were emitted at different heights up to 6 m above the ground, and inside the 40 m × 50 m ATEX

zone of the TADI facility (see Fig. 1). More information on the site infrastructure and on these experiments in October 2019130

are presented respectively in Kumar et al. (2021) and Kumar et al. (2022).

The multiple controlled releases experiment was conducted from October 2, 2019, to October 10, 2019. Our atmospheric

sampling configuration for measuring CH4 is shown in figure 2. It consisted of placing 16 sampling lines on the ground

connected on one end to air intakes in tripods at heights between 2.75 to 3.50 m around the ATEX zone and on the other

end to a pump flushing at 6 LPM (KNF N811 with PTFE diaphragm). The lengths of the sampling lines varied from 10 m135

to 100 m connecting each tripod air intake to CH4 measurement instruments located inside a tent. The pump was connected

upstream from the high precision instruments (Picarro CRDS or LGR), a chamber containing a series of TGS CH4 sensors,

and other sensors measuring environmental parameters such as relative humidity, pressure and temperature. To maintain the

inline pressure at atmospheric pressure, a vent was also connected to each sampling line (Fig. 2).

Table 1 summarizes the species measured, and the identifiers of the reference high precision instruments. All reference140

instruments measured H2O to provide dry mole fractions of the species. The analysers’ sampling frequency ranges between 0.3

to 1 Hz. In a previous study by Yver-Kwok et al. (2015), it was proven that those analysers ensure high precision measurements

and a low drift over time, less than one ppb per month. Yet, two calibrations were conducted before and after the campaign. On

average 6-7 sampling lines were active for each release, each active line being connected to a high precision instrument and a

TGS chamber. The lines were activated depending on wind direction. The strategy behind the distribution of the tripods around145

the emitting area and for the inversion was to acquire continuously several measurements points within the plume generated

by each release, in addition to one or few measurements points outside the plume (to characterize the background level upon

which plumes enhancements can be assessed) for each release regardless of the wind conditions (Kumar et al., 2022).

2.2 Low-cost CH4 sensors logger system

Seven chambers were assembled for the campaign. Table 2 displays the sensors included in each chamber, the type of chamber,150

and the reference instrument with which each chamber was collocated, among other information. Each chamber contained at
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Table 1. Summary of the species measured by each reference instrument.

Serial number / Code Identifier Species measured

CFKADS2286 / Picarro 1 Picarro CRDS G2401 CH4, CO2, CO

CFKADS2301 / Picarro 2 Picarro CRDS G2401 CH4, CO2, CO

CFKADS2194 / Picarro 3 Picarro CRDS G2401 CH4, CO2, CO

CFKADS2131 / Picarro 4 Picarro CRDS G2401 CH4, CO2, CO

CFIDS2067 / Picarro 5 Picarro CRDS G2201-i Isotopic 13CH4, 12CH4, 13CO2, 12CO2

CFIDS2072 / Picarro 6 Picarro CRDS G2201-i Isotopic 13CH4, 12CH4, 13CO2, 12CO2

LGR MGGA Los Gatos Micro-portable Greenhouse gas analyzer CH4, CO2

least three TGS with voltage measurements sensitive to CH4 and two other sensors measuring relative humidity/temperature

and pressure/temperature. All these sensors were inserted inside an acrylic/glass or steel/glass chamber with volumes of 100 ml

and 120 ml, respectively. The sensitivity of TGS was controlled by a load resistor connected in series to the sensor (Figaro®,

2013, 2005), two values of resistor were used, 5KΩ and 50KΩ (see table 2 for details). An AB Electronics PiPlus ADC board155

mounted on a Raspberry Pi 3B+ recorded the voltage on the load resistor providing observations every 2s. This voltage is

used for the characterization and reconstruction of the CH4 signal. Consistency was observed between the two TGS 2611-E00

sensors installed on chamber E, and only one sensor of this type is used in this study.

Measurements of environmental parameters from the other chambers, besides chamber E, had data gaps for extended periods

or bad recordings occurring at releases and were not included. This study focuses on reconstructing CH4 using data from TGS160

2611-C00 and TGS 2611-E00 from chambers A, C, D, E, F, and H. Data from TGS 2600 were discarded since this sensor did

not respond to most of the CH4 peaks during the releases (see Figure A1).

2.3 TADI controlled releases and meteorological data

A total of 41 controlled releases were conducted during the seven days of experiment, with release durations varying between

25 to 75 minutes. Because low wind conditions (Ur < 0.6 m s−1) are not suitable for the atmospheric inverse modelling, six165

releases corresponding to such low wind conditions have been excluded for the inversion modelling here such as in Kumar

et al. (2022). However, they are used in the training of the CH4 reconstruction models. There was no TGS measurements during

the five releases corresponding to the last day of the campaign. Two largest releases produced high CH4 mole fraction plumes

that affected the amplitude measured by the TGS sensors on which it was not possible to distinguish large spikes from medium

and small ones on the measured voltage (see fig A3) and they are removed from the study. One release was aborted due to170

technical problems at the site and is as well removed from this work. This study is thus focused on 33 out of the 41 controlled

releases. A summary of these releases is shown in Table A1, where an ‘x’ indicates invalid data measured by the chambers.

This invalidity is due to some releases producing small peaks over the background signal (with enhancements of less than 4

ppm), which the TGS sensors were unable to detect.
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Table 2. Summary of the specifications of the chambers, the tripods to which each chamber was connected, the captured releases and the

reference instrument collocated with each chamber.

Chamber Figaro TGS Load resistor Other sensors Chamber type Tripod # of measured Reference

sensors (Ω) releases instrument

A

2600

50K

DHT22

Acrylic/glass

1, 4, 6

28 Picarro CFKADS22862611-C00 BMP280 8, 9, 10

2611-E00 11, 14, 15

C

2600

50K

SHT75

Acrylic/glass

2, 7, 9

24 Picarro CFIDS20722611-C00 BMP280 14, 15, 16

2611-E00

D

2600

5K

SHT75

Steel/glass

2, 3, 9

14 Picarro CFKADS23012611-C00 BMP280 10, 11, 12

2611-E00 13, 16

E

2600*

5K

DHT22

Steel/glass

1, 3, 4

24 Picarro CFKADS21312611-C00* SHT75 5, 10, 11

2611-E00* BMP180 12, 13, 16

F

2600

50K

SHT75

Acrylic/glass

2, 3, 4

25 Picarro CFKADS21942611-C00 BMP280 10, 11, 12

2611-E00 13, 14, 15

H

2600

50K

SHT75

Acrylic/glass

4, 5, 6

22 LGR MGGA2611-C00 BMP180 7, 12, 13

2611-E00 14, 15

∗ Two versions of each type.

The protocol followed in the selection of the releases used in the training and test set for the reconstruction models is175

explained in section 2.6. A meteorological station was installed on the TADI platform by TotalEnergies® with a sonic 3D

anemometer at 5 m height above the ground surface (see Fig. 1), providing 1-minute averages of wind speed (Ur), wind

direction (θ) and of the standard deviation of wind speed on the three axes (σu, σv and σw) amongst other parameters. The

data of turbulence and meteorological conditions are used in the dispersion model. Table 3 gather general information for each

of the 33 controlled release during which we have valid TGS measurements: the duration of the release, the actual release rate,180

the average wind speed over the duration of the release and an indication showing if it was selected for the inverse modelling.
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Table 3. Summary of the information for the controlled releases with single CH4 point sources during the TADI 2019 campaign. Rows in

gray shows the releases with low wind speed conditions.

Release Duration Emission rate Average wind speed Used in the atmospheric

number (hh:mm) (Qs (g s−1)) (Ur (m s−1)) inverse modelling

1 00:58 CH4: 10 2.76 No

2 00:32 CH4: 1 3.31 Yes

3 00:33 CH4: 0.5 3.56 No

4 00:33 CH4: 5 3.91 No

5 00:35 CH4: 3, CO2: 85 0.65 Yes

6 00:39 CH4: 0.5 0.45 No

7 00:46 CH4: 5.0 0.80 No

8 00:50 CH4: 0.5 & 0.75 & 0.5 * 1.41 No

9 00:38 CH4: 1, C2H6: 0.5 1.46 Yes

10 00:38 CH4: 0.5 2.17 Yes

11 00:30 CH4: 0.16 2.39 No

12 00:46 CH4: 1 0.93 Yes

13 00:44 CH4: 0.2 0.26 No

14 00:55 CH4: 0.5 & 1.0 * 0.07 No

15 01:01 CH4: 2 3.50 No

16 00:44 CH4: 2 1.83 No

17 00:50 CH4: 4 1.45 No

18 00:48 CH4: 0.3 0.13 No

19 00:40 CH4: 2.0 0.41 No

20 00:58 CH4: 2 & 4 * 0.47 No

21 00:44 CH4: 1 1.31 Yes

22 00:33 CH4: 1, C2H6: 0.2 1.11 No

23 00:50 CH4: 2 1.84 No

24 00:43 CH4: 150 2.63 No

25 00:35 CH4: 5 3.12 Yes

26 00:48 CH4: 0.4 2.73 Yes

27 00:37 CH4: 0.5 3.12 No

28 00:45 CH4: 0.5 & 0.5 * 1.04 No

29 00:44 CH4: 0.6 1.07 Yes

30 00:44 CH4: 1 1.51 No

31 00:24 CH4: 2 1.70 No

32 00:34 CH4: 4 3.58 Yes

33 00:45 CH4: 2 2.49 Yes

∗ Multiple source releases.
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2.4 Reconstruction of spikes in CH4 mixing ratios caused by the releases

The chambers full of TGS sensors captured different portions of the plume with variations at high frequencies due to the

distribution of the tripods with regards to the variable wind direction and due to the turbulence. The typical signal measured

by the chambers is a series of spikes, ranging between 1 and 15 minutes, corresponding to the plume lying over a slowly185

varying background signal associated to remote emissions. The targeted signal is that of the difference between the spikes and

the background (Kumar et al., 2022). As an example, Figure 3 shows 1-minute averages CH4 mole fractions measured by the

reference instruments and the voltage from the TGS 2611-C00 at six tripods during release 25 (Qs = 5 g s−1). We can observe

that CH4 of the reference instrument and TGS voltage show good consistency at this temporal resolution. Chamber A, C and

D were in the trajectory of the plume or very close to it measuring peaks up to 30 ppm, chambers E and F only captured one190

peak of ∼10 ppm and chamber H one large peak of 30 ppm. The mean wind speed during this release was of 3.12 m s−1 and

the wind direction had little variations, ranging between 270◦ to 272◦.

TGS sensors are known to be sensitive to variations of H2O and T, affecting mainly the reconstruction of CH4 baseline,

and thus the characterization of peaks above this baseline (Rivera Martinez et al., 2021, 2022). Two approaches can be used to

correct the effect of variable H2O and T on the TGS signals baseline and separate the spikes from the baseline data in the time195

series. The first one is the use of information from H2O and T to correct the TGS baseline signals correspond to these drivers.

The second approach is to detect the voltage peaks associated to CH4 spikes and derive a baseline with a linear interpolation

on non-peak voltages. For some chambers due to logging system faults, we lost H2O and T data and the corresponding gaps in

the H2O and T time series prevent us from defining a correction model. Therefore, in this study we have employed the second

approach. To justify our choice, we have trained a multilinear regression model to determine a baseline signal on TGS 2611-200

C00 from Chamber E corresponding to H2O and T. The regression model was trained on using observations from midnight

to 6:00 in the morning on the first day and we attempted to reconstruct baseline variations of TGS voltage from observations

comprised between 18:00 to midnight on the same day. The results of the multilinear model are presented on Figure A2 (in

addition to the derived baseline when using the second approach). The second approach which produce a better detection of the

baseline signal is also shown (see Fig A2) where we do not need a training set or environmental variables because it consists in205

the detection of peaks based on an iterative process on fixed rolling windows and a comparison with neighbouring observations.

To reconstruct CH4 mole fraction, we calibrated empirical models that derive relationships between TGS voltage and other

input variables and true CH4 observed by the high-precision instruments. The models are calibrated (training) and evaluated

(testing) using two independent subsets of the data. Following the widespread practice in the training of data-driven models to

standardize the input variables to prevent difference in the range of magnitudes from conditioning the determination of model210

parameters, we applied a robust transformation consisting in removing the median and dividing the observations by their 1-

99th quantile range. We selected the two reconstruction models that gave the best performances in our previous study (Rivera

Martinez et al., 2022), namely a polynomial regression and a Multilayer Perceptron (MLP) model, described below.

Second-degree polynomials have proven to be robust to derive relationships between the TGS voltage signal related to spikes

and the corresponding CH4 concentration (Rivera Martinez et al., 2022). Its formulation is of the form:215
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ŷCH4(x1) = β0 + β1x1 + β2x
2
1 (1)

Where ŷCH4 is the predicted CH4 concentration, x1 is the Corrected voltage of the TGS after removing the effects of the

baseline.

Artificial neural networks have been widely used to derive non-linear relationships between predictors and independent

variables in many applications, as a universal approximator method (Hornik et al., 1989) and for their generalization capabilities220

(Haykin, 1998). In previous studies (Casey et al., 2019; Rivera Martinez et al., 2021, 2022) ANN was employed to derive

CH4 concentrations from TGS observations on different sampling configurations (field and laboratory conditions) with good

agreement between the reference observations and the outputs produced from the models.

The simplest architecture of an ANN is the multi-layer perceptron (MLP), conformed of a series of units (neurons) in

fully connected layers. The inputs of any unit will be the weighted sum of the outputs of the previous layer, to which an225

activation function (ReLU, tanh, etc.) is applied. As a machine learning approach, it requires a training basis to learn the

relationships, adjusting the weights of its connections, between the inputs and outputs using an iterative process known as

optimization. Problems of MLP models are either underfit of data, producing a high error on the train set which can be

mitigated with a sufficiently large network, or overfitting, producing a high test error when they cannot generalize to new

examples. Regularizations terms and early stopping techniques are helpful to prevent overfitting (Bishop, 1995; Goodfellow230

et al., 2016).

Here, we have trained the MLP model using the Adam optimizer (Kingma and Ba, 2014; Géron, 2019) resulting in 50, 10 and

5 units per layer with ReLU as the activation function for the hidden units. A regularization factor of α=0.05 and early stopping

was used to prevent overfitting.Three configurations of the input variables were tested: i) only with the TGS 2611-C00, ii) only

with the TGS 2611-E00, and iii) with both TGS sensors at the same time. The results are shown in section 3.2.235

2.5 Metrics for evaluation of the reconstruction

To assess the performance of the models to provide dry CH4 concentration enhancements (above the background) from voltage

observations of the low-cost sensors we use a normalized root mean square error (NRMSE) per release, including information

from the spikes and the background occurring in the duration of the release, defined in equation 2, the RMSE being weighted

by the inverse of the maximum peak present in the release:240

NRMSE =

√∑
(yi− ŷi)2

n
hmax

(2)

where yi is the actual concentrations (provided by the high precision instrument),ŷi the predicted concentration, n the number

of observations present in the release and hmax the amplitude of the maximum peak present in the release after removing the

background. The normalization allows to compare the performances across the different releases.
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As mentioned earlier in section 2.4, the target signal on this study is of CH4 enhancements above the atmospheric back-245

ground. We obtain this signal by subtracting the raw signal of the release from an inferred baseline computed using the pic

detection algorithm and a linear interpolation. We consider as an acceptable notional target error for the reconstruction models

to be under the 15% of the amplitude of the maximum peak inside the release, this error corresponds to a NRMSE≤ 0.15 ppm.

2.6 Selection of the training and test subsets for the reconstruction of CH4 mole fractions as input of the atmospheric

inversion of emissions250

Defining the appropriate training set is important to allow reconstruction models to derive sufficient information to generalize

and obtain good performances in the test set. As well, the test set should be chosen to allow evaluating the performances of the

models under a wide variety of conditions. Regarding the inverse modelling, in order to provide a meaningful assessment of

the estimation of emission rates and locations, inversion should be conducted using reconstructed CH4 mole fractions that are

not from the training data set to avoid introducing bias in the evaluations of errors. Furthermore, depending on magnitude of255

release rates, the atmospheric turbulence, and the locations/distances of the downwind active tripods from the emission sources,

the six chambers did not measure CH4 mole fractions in all the releases, therefore a separate training and test set needs to be

defined for each chamber.

The previous considerations constrain the selection of the training and test sets from the data of each chamber. The test set of

the releases for inversions was defined based on two criteria: 1) the releases which have the reconstructed CH4 mole fractions260

by at least three chambers simultaneously, and 2) the releases corresponding to the more favourable wind speed conditions (Ur

≥ 1.4 m s−1) for inversions. We determined seven releases that meet these considerations: release #2, #9, #10, #25, #26, #32

and #33. Because this test set was not sufficiently large for all the chambers, we decided to increase it by data from four more

releases with low wind speed conditions (0.65 ≤ Ur ≤ 1.31) (release #5, #12, #21 and #29). This selection led to a test set of

40% of the releases. All remaining data were used as a training set (Table 4). The reconstruction models are trained and tested265

only once per chamber following the distribution of the releases from table 4.

2.7 Atmospheric inversion of the release locations and emission rates

Our derivation of the release location and rates relies on the inversion framework developed and tested by Kumar et al. (2022)

on the measurements of the high precision instruments. This framework uses adjoint of a Gaussian plume model to simulate

the sensitivity of the CH4 mole fraction enhancements above the background at a measurement location to the emissions at270

all potential source locations. For each release, the optimal horizontal and vertical location and rate are derived based on

the minimization of the root sum square (RSS) misfits between averages of the observed and simulated CH4 mole fraction

enhancements above the background. The bins of the measurements and of the simulated mole fractions for the averages

correspond to sectors of wind directions of equal ranges during the release. The optimal release location and rates are searched

simultaneously, looping on a finite but large ensemble of potential locations, using an analytical formulation of the problem275

to derive the optimal rate and corresponding RSS misfits for each potential location and then identifying the optimal location

and rate providing the smallest RSS misfits. The 40 m × 50 m (horizontally) × 8 m (vertically) volume above the ATEX zone
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Table 4. Summary of the releases included in the training set and test set of the CH4 reconstruction models. The mixing ratios modelled for

the test set are also used as input of the inversion model to infer the emission rate of CH4 and their location.

Chamber
Releases in the Releases in the Number of releases in the Number of releases in the Percentage of releses in the

training set test set training set test set training/test set

A

6, 7, 8, 11, 14, 2, 5, 9,

15 9 62.5 % / 37.5 %15, 16, 17, 18, 19, 10, 21, 25,

20, 24, 27, 28, 30 26, 29, 32

C

14, 15, 17, 18, 9, 10, 21,

12 8 60 % / 40 %19, 20, 22, 24, 25, 26, 29,

27, 28, 30, 31 32, 33

D 6, 7, 8, 13, 14 5, 9, 12, 25 5 4 55.5 % / 44.5 %

E

3, 4, 6, 7, 2, 5, 9,

11 9 55.5 % / 44.5 %8, 13, 14, 19, 12, 21, 25,

20, 22, 23 26, 32, 33

F

3, 4, 6, 7, 8, 2, 5, 9,

13 8 62 % / 38 %13, 14, 15, 18, 10, 12, 21,

19, 20, 22, 24 25, 29

H

1, 3, 4, 13, 2, 21, 25,

12 7 63 % / 37 %14, 18, 19, 20, 26, 29, 32,

23, 24, 28, 30 33

is discretized with a high resolution (1 m × 1 m horizontally and 0.5 m vertically) 3D grid to define the finite ensemble of

potential locations. The inversion exploits the change of wind direction during a release and the corresponding variations and

spatial gradients in average mole fractions respectively at and between the different measurement locations crossed by the280

plumes to triangulate the release location. The amplitude of the enhancements directly constrains the release rate estimate.

The Gaussian model and its adjoint are driven by averaged wind directions and averaged turbulence parameters derived from

3D sonic measurements, using the same bins for these averages as for the mole fractions. Those bins are defined during each

release based on 1-min averaged wind directions. These bins partition the lower and upper range of potential wind directions,

and they have equal width in terms of range of wind directions. The total number of bins during this initial partition is defined285

as the rounding integer of the division of the release duration (in min) by approximately 7 min. However, only bins gathering

at least four 1-min averages are retained. The aim is that the mole fraction and meteorological averages are representative of a

timescale that is long enough for use in or comparison to the Gaussian model. Depending on the releases, the number of bins

ranges between 2 and 7.
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Here, we slightly revise the reference computations of release location and rate estimates based on the high precision instru-290

ments from Kumar et al. (2022). Indeed, in order to compare the release location and rate estimates from such a reference and

the one derived here based on the TGS sensors, we restrain the set of high precision observations that are used in the reference

computation to the station and time corresponding to the data availability from the TGS sensors.

3 Results

3.1 Pre-processing of the data from the low-cost CH4 sensors295

Original observations with a time step of 2 s were resampled to 5 s. We corrected the time offset corresponding to delays of

the air travel through the air intake from the tripods to the instruments, time delay from synchronization between analysers and

chambers. Also, we removed invalid data produced by the logging system on each chamber. The baseline correction was then

applied for each sensor chamber considering the entire campaign. As an illustration of the impact of the baseline correction

Figure 4 shows the signal corresponding to one release for the chamber A after these pre-processing steps. The corrected signal300

in the TGS voltage measurements showed better agreement with the reference between the occurrences of spikes and phases.

3.2 Reconstruction of CH4 mole fractions

Due to the diversity of the releases, environmental conditions, distribution of the tripods and selection of the training and test

sets for each chamber, there is no single release that can be viewed as representative for the test set across the chambers. Yet,

we chose release #25 as an example of the signal measured across the chambers and the reconstructed signal for each chamber305

using the MLP model (Figure 5) and the 2nd order polynomial model (Figure 6), for each chamber we shown the reconstructed

CH4 mole fractions estimated using only the type C sensors (red), the type E sensor (yellow) and both sensors used as inputs

for the models at the same time (green).

We found that the MLP and 2nd degree polynomials gave similar performances across the releases regardless of the chamber

used for the CH4 reconstruction. For two releases on chamber A (release #10 and #26, see Fig A6 and A9 for MLP model and310

A11 and A12 for the polynomial model respectively) where amplitudes are below 10 ppm, the polynomial model provides a

noisy signal as output regardless the configuration of the inputs used. There were however some cases on which the polynomial

model produced better outputs than the MLP, for example the four releases on chamber D where MLP model produced a

systematic underestimation of the reconstructed CH4 on the three configurations of inputs.

Regarding the TGS types, the type C sensor gave better reconstructions than the type E or both types used as the same time315

as inputs for the model. The reconstruction of CH4 with the type E sensor shows phasing errors in the form of a slow decay

after large spikes. In addition, there are some cases where type E sensors showed a response whereas no spikes were measured

by the reference instrument. For example, release #9 (Figure A5 and A10, for the MLP and the polynomial model respectively)

of chamber D shows few spikes between 10 to 30 ppm reconstructed from data of the type E sensor with the polynomial model

which are not present on the reconstructed data from the type C sensor. Using Type C and E sensors at the same time as training320
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data for models produced outputs closer to models trained only with type C sensor. Some cases of reconstruction with MLP

model produced a saturation of the outputs (release #9, #12 and #25 for chamber D (Figure A5, A7 and 5), release #21 for

chamber H (Figure A8)) or a systematic bias (releases #2, #10 and #26, see Figure A4, A6 and A9). For releases with peaks’

amplitudes above 40 ppm a systematic underestimation is observed regardless the model or the sensor’s type used as input.

On figure 7, we present a summary of the performance of the reconstruction of the signal on the test set, given the NRMSE325

error defined in eq. 2. All chambers have reached our target error of NRMSE ≤ 0.15 ppm, except for Chamber A with the

polynomial model using as input the type E sensor and the MLP model for chambers A and C as well for the type E sensor.

With a stricter target requirement of NRMSE≤ 0.1 ppm, only Chamber H met the target error regardless of the model or sensor

used. Performances are similar when using the type C sensor as input regardless the model across all the chambers. When used

both types at the same time as input, the 2nd degree polynomial provide better reconstruction than the MLP specially on330

chambers C, D and H (NRMSE = 0.09, 0.09 and 0.04 ppm for the polynomial model and 0.11, 0.13 and 0.07 ppm for the

MLP). Chamber D, where there is little training data available, produced a systematic lower error with the polynomial model

than with the MLP regardless the input variable used.

In summary, the model used in the reconstruction is important only for the cases where little information is available for the

training. This was the case for chamber D where the polynomial model provides better performances than the MLP model. We335

also found that Type C sensors produced a better reconstruction of CH4 spikes than Type E ones, and a combination of data

from both types of sensors did not improve the reconstruction producing similar outputs than the other types.

3.3 Release rate and location estimates based on the observations from the TGS sensors

Averages of mole fractions enhancements above the background and their spatial gradients are displayed for release #25 in

figure 8. The figure compares the values of reconstructions from the low-cost sensors (with the MLP model; see figure A14340

for the values corresponding to the polynomial model), with the high precision measurements, and of the simulations resulting

from the inversions assimilating either the reference high precision data or the reconstructions from the low-cost sensors. Since

the best reconstruction performances were obtained when using the type C sensor, the inversion results presented here are based

on the reconstructions from those sensors only. For the release #25, used as an example here, the procedure to define average

values per wind sectors has resulted in four bins of wind sectors with an approximate size of 10◦. Average mole fractions are345

derived from the six chambers. To simplify the numbering when mentioning the reference instrument or the TGS, we refer to

the chamber identifier X (REF-X and TGS-X respectively, with X the name of the chamber).

In general, the observed spatial CH4 gradients between the different stations are similar when considering the reference

measurements and the estimates of the TGS, except for few cases where the reference is more consistent to the expected signal.

For example for release 25 (see Fig. 8) observed gradient from TGS-D data underestimate the actual gradients given by REF-D350

for θ = 308.3◦ and overestimate them for θ = 279.2◦, where θ is the average direction of the wind sector.

The modelled average mole fractions enhancements and thus the modelled gradients assimilating reference data are very

close, in general, to the ones from these reference data, although some discrepancies can occur, e.g., for release #25, for REF-

H with θ = 279.2◦, REF-C with θ =301.4◦ and θ =289.1◦ and REF-A with θ =301.4◦ and 308.3◦. For most of the cases, the
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modelled gradients assimilating the TGS data are closer to the modelled gradients assimilating the reference data than to the355

observed TGS ones. In addition, the observed TGS data, for some cases, is closer to the observed reference one than to the

modelled gradients assimilating either reference or TGS data, highlighting the higher impact of the model error on the inversion

than the reconstruction error of CH4 mole fractions.

Figure 9 shows the comparison of the emission rate estimates with corresponding errors, and of the location errors for the

different inversions across the eleven releases. In this figure, estimates assimilating CH4 mole fractions from the TGS using360

the reconstruction with the MLP models (see Figure A14 for the results when assimilating the reconstruction based on the 2nd

degree polynomial model).

Regarding the release rate estimates, those from inversions assimilating the reference mole fractions bear an average error

of 30% and those from the inversion assimilating data from the TGS sensors bear an average error of 25%.

In the case of the estimation of the release location, the assimilation of the reference data produces a slightly smaller average365

error location of 7.86 m (σ = 5.47 m) compared to 9.49 m (σ = 4.58 m) from the assimilation of TGS data. For five releases

(#2, #10, #12, #25 and #26) the assimilation of reference data yields a better estimate of the location and for one release (#21)

both inversions yield similar location errors.

In general, estimates of the emission rate (see fig 9a) from reference data and TGS data are similar. For three releases

(#12, #25 and #32), we observe large errors in the estimate of the release rate. Inversion assimilating TGS data or reference370

data highly underestimate the rate for release #5 (1.41 and 1.34 g CH4 s−1 respectively, with an actual emission rate of

3.0 g CH4 s−1) and strongly overestimate the rate for release #32 (5.14 and 6.55 g CH4 s−1 respectively, with an actual

emission rate of 4.0 g CH4 s−1). Reference data provide a slightly better estimation of the location of releases than the TGS.

Only for releases #29 and #33, the inversion assimilating TGS observations provide a slightly better location of the source.

Conversely, for releases #2, #12, #25 and #26, the location error from the inversion assimilating TGS observations is almost375

double than the one of the reference. The errors on the emission rate estimate from both inversions was smaller than 30%

for most of the releases, except on four cases, where errors reached 80% for the inversion assimilating TGS data and 65%

for the inversion assimilating reference data, respectively. There were two cases, the release #26 and #33, when the inversion

assimilating TGS observations produced a much lower error (2.5% and 5.3% respectively) in the quantification of the emission

rate than the inversion assimilating reference observations (20.9% and 22.7% respectively). The fact that the assimilation of the380

TGS reconstructed CH4 data can yield better results than when using accurate CH4 mole fractions measured by the reference

instrument highlights the impact of the transport model error (associated to the simulation of the average mole fractions with

the Gaussian model) in the inversion process. These errors dominate the resulting errors in the estimates of the release rate and

location when assimilating the reference data Kumar et al. (2022). They appear to have a weight larger than that of the errors

in the reconstructed mole fraction from TGS data when assimilating these data.385
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Table 5. Comparison of the emission rate estimates (Qe), location error (El) and relative error on the rate estimates for the inversions

assimilating the reference data and the reconstruction of the CH4 from the TGS low-cost sensor based on the MLP model

Release Actual emission Reference TGS

N◦ (g CH4 s−1) Qe (g CH4 s−1) El (m) error (%) Qe (g CH4 s−1) El (m) error (%)

2 1.0 1.10 5.26 10.8 0.89 12.40 10.1

5 3.0 1.34 21.57 55.2 1.41 19.55 52.8

9 1.0 0.88 14.29 11.9 1.11 12.78 11.8

10 0.5 0.40 9.29 18.9 0.42 10.80 14.8

12 1.0 0.34 3.08 65.7 1.84 7.15 84.9

21 1.0 0.63 3.61 36.1 0.66 3.61 33.8

25 5.0 4.61 4.57 7.8 5.41 10.02 8.2

26 0.4 0.31 5.10 20.9 0.39 10.10 2.5

29 0.6 0.45 3.40 24.5 0.43 2.34 28.3

32 4.0 6.55 10.55 63.8 5.14 10.28 28.6

33 2.0 2.45 5.77 22.7 2.10 5.37 5.3

Average error 7.86 30.7 9.49 25.5

σerror 5.47 20.3 4.58 23.6

4 Discussion

Our study showed the capability of the signal from metal oxide sensors to produce estimates of the emission rate and location

from controlled CH4 releases typical of those expected from leaks in industrial facilities. The used baseline correction algorithm

allows to extract the variations of voltages from the TGS signal related to the high frequency variation of the plume across

the different sensors’ inlets. We compared the performances of two models, 2nd degree polynomials and MLP, to reconstruct390

CH4 mole fractions during the controlled releases for three configurations of inputs. The reconstructed CH4 mole fractions

were used as input to an inversion modelling framework to estimate the emission rate and location for each release. Results of

inversions assimilating TGS data were compared with those assimilating reference (CRDS) data.

The correction of baseline in TGS sensors assumes that the targeted signal measured by the sensors corresponds to a series

of spikes at high frequency produced by the plume reaching and leaving the inlet tube of the sensors, due to the atmospheric395

turbulence and high frequency variations of the wind. Our approach of deriving a baseline signal from observations surround-

ing the spikes in an iterative process, offers a suitable alternative to correct the TGS observations when little or insufficient

information is available to derive a baseline correction model (e.g. from observations of H2O and temperature). This approach

is interesting for conditions when the environmental parameters are highly variable or models does not dispose of sufficient

observations to derive robust relationships to correct the effects of environmental variables on the sensors’ baseline signal.400
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This corresponds well with the measurements presented in this study. However, in some cases, the plume can touch the inlet

tube of the sensors during a prolonged period producing a signal not only having high frequency spikes but also continuous

varying enhancements above the background. For those cases, this method would not be able to distinguish the enhancements

on sensors’ voltage corresponding to the CH4 plume from the background and then we need to reconsider the derivation of a

baseline based on environmental parameters (H2O and T). Regarding the type of sensor used in the reconstruction of CH4 mole405

fractions, we obtain best performances using only with Type C sensor as input for the models. The fast decay observed on the

reconstructed CH4 after the spikes was attributed to the response time of the TGS sensor. The slow decay observed on Type

E sensors was probably due to a combination of the response time and the carbon filter added on top of the sensitive material

to improve the selectivity of gases. Concerning the reconstruction models, the polynomial and the MLP models in general

produced equivalent results with few differences. It confirms our previous study (Rivera Martinez et al., 2022) in which we410

observed that the performances of models to reconstruct CH4 mole fractions were mainly driven by the type of sensor used,

rather than from the model chosen for the reconstruction. With a low content of information (only few spikes, limited range

and variability of the spike magnitude, frequency and duration) in the training set (e.g. when reconstructing the CH4 mole

fractions of chamber D), the 2nd degree polynomial provides more accurate estimates than the MLP. This is probably due to

the distribution of the data in the training set that MLP used to compute its parameters, which does not represent the same415

range of variations than the one in the test set. For spikes with enhancements under 5 ppm, the MLP model with the Type C

sensor signal as input, produced a more accurate reconstruction than the Type E or both sensor’s types when used as inputs

at the same time. The noise present in the voltage signal on some releases, for example release #26 on chamber A, were not

correctly removed in the reconstruction with the Polynomial model. However for the type C sensor, the MLP model reduces

the noise on the signal producing a more accurate reconstruction.420

Regarding the inversion of emission rates and locations using the Gaussian plume model framework developed by Kumar

et al. (2022), we obtained good estimates and performances with the reconstructed time series of CH4 spikes from voltage

measurements of TGS sensors and the results are comparable to those obtained when assimilating the reference data. We

observed that the simulated gradients of the Gaussian model assimilating observation from the TGS chambers were close to

the simulated gradients of the reference inversions (assimilating high precision measurements), even if the observed gradients425

were sometimes in a different direction. In most cases errors from both inversions ranges between 2.5% and 55% except for

release #12 and #32 where error reached 65% and 63% for simulated gradients assimilating the reference data respectively

and release #12 with an error of 85% for simulated gradients assimilating the TGS data. The overall inversion performance

assimilating TGS data and reference data are good and consistent. The slightly better average performance in the release rate

estimates using TGS data (25% error) than the estimates using reference data (30% error) is not significant in regards of the430

variability of the results. It highlights the weight of the model errors associated to the simulation of the average mole fraction

with a Gaussian model. The results demonstrate that the errors in the release rate and location estimations from inversions using

both reference and TGS data are dominated by these model errors. The errors in the reconstruction of CH4 spikes from the

TGS data are thus sufficiently low for use in the inverse modelling problem analysed here. One should note that, as mentioned

on section 2.7, in this study, the reference inversions rely on a restrained subset of the reference data that match the available435
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data from TGS sensors. Results from Kumar et al. (2022), considering the entire dataset available on the reference instruments,

yielded significantly improved results.

While our work presents promising results regarding the use of low-cost MOS sensors for estimating CH4 emission rates

and locations, it’s imperative to acknowledge the high degree of uncertainty associated with continuous emission monitoring

(CM) solutions, as evidenced by the study conducted by Bell et al. (2023). In their study, various CM technologies were440

tested against a series of controlled releases, revealing a broad range of true positive rates, false positive rates, and significant

errors in the estimation of emission rates. Bell et al. found considerable variability in the performance of CM technologies,

with mean relative errors (MRE) ranging from -44% to +586% for release rates of 0.1 - 1 kg/h and for release rates above 1

kg/h, an MRE between -40% and +93%. These findings underscore the current limitations and inconsistent performance of

CM solutions, even under less complex conditions than typically encountered in the field. While our study is encouraging, it445

represents just one step in the progression of this approach. Further research, rigorous testing, and critical interpretation of

results are necessary for future advancements.

5 Conclusions

This study presents different techniques to reconstruct CH4 mole fractions from the voltage signal measured by metal oxide

low cost TGS sensors deployed downwind an area of points of controlled releases during a campaign at TADI in 2019. The450

data from this reconstruction are assimilated in an inverse modelling framework to quantify the rate (ranging from 0.4 to 5

g CH4 s−1) and location of these controlled release. The approach employed to extract the baseline signal on TGS voltage

measurements based on surrounding observations allowed us to derive and successfully correct the baseline signal on TGS

sensors without the need of using other environmental parameters. The reconstruction of CH4 mole fraction from voltage

observations measured during controlled releases showed good agreement with observed CH4 mole fractions from the reference455

instruments. The reconstruction was consistently better with TGS 2611-C00 sensor regardless the reconstruction model used.

Both models had met our requirement target of NRMSE of reconstructed CH4 lower than 0.15 ppm across all chambers when

trained with the TGS 2611-C00 sensor. Emission rate and source location estimates using an inversion based on a gaussian

plume model produced similar results using reconstructed CH4 mole fraction from TGS sensors data to those obtained with

high precision instruments, with an average estimate rate error of 25.5% and a mean source location error of 9.5 m from TGS460

data. In this study, the reconstruction of the CH4 mole fractions was conducted independently from the inversion modelling.

The estimation error could probably be reduced with a better understanding of inverse modelling sensitivity to the misfits

from the reconstruction models. In consequence, a sensitivity study is encouraged to determine the best approach for the

reconstruction of the observations from TGS sensors.

Data availability. The dataset was collected in the frame of the Chaire Indutrielle TRACE ANR-17-CHIN-0004-01. It is publicly accessible465

at this link: https://doi.org/10.5281/zenodo.8399829
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station installed by TotalEnergies® .
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Figure 1. Diagram of the experimental setup on top of a satellite image of the TADI platform (source: © Google Earth). The locations of the

releases are inside the red rectangle (ATEX zone). The locations of the 16 tripods are presented as black symbols and denoted with a Tx

where x is the index of the tripod from 1 to 16. The blue rectangle indicates the tent location. Examples of the sampling lines connecting

the tripods to the tent are shown as dashed lines, only showing 7 of 16 in total. The white symbol shows the location of the Meteorological
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Figure 2. Diagram of the measurement stations and their connection to the sampling lines.
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Figure 3. An example of 1-minute averaged CH4 mole fraction (ppm) and voltage (V) measurements respectively measured by six high

precision instruments and one type of TGS sensor (TGS 2611-C00) for release 25 (Qs = 5 g s−1). CH4 measurements from the high

precision instruments are denoted as ‘CH4’ and the voltage measurements from TGS sensor are denoted as ‘2611C’. The top panel shows

the 1-minute averaged wind speed (Ur) and wind direction (θ) measured by the 3D sonic anemometer.
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Figure 4. Comparison of the voltage signal for one release (#8) from Chamber A before (Uncorrected) and after (Corrected) the baseline

correction on (b) TGS 2611-C00 and (c) TGS 2611-E00, on which it is appreciated the correction of the offset preserving the amplitude

enhancements linked to CH4 variations. (a) Reference CH4 mole fractions, also corrected using the spike correction algorithm.
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Figure 5. Example of reconstruction of release #25 using an MLP model. On left panels are shown the reconstructed CH4 mole fractions

for each chamber that captured the release, we present the reference signal (black dotted line), the reconstructed CH4 mole fractions when

the model has as input the TGS 2611-C00 sensor (red), the TGS 2611-E00 (yellow) or both types at the same time (green). The right panels

show the 1:1 plot of the reference against the output of the model for the three configurations of inputs. Note the difference in the x-axis for

Chamber F.
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Figure 6. Example of reconstruction of release #25 using a Polynomial model. Notations are the same as in Figure 5.
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Figure 7. Comparison of the mean NRMSE of the two types of models trained with the three configurations of the inputs. The 2nd degree

polynomials are denoted as ‘Poly’ and the multilayer perceptron as ‘MLP’. The three input configurations are denoted inside parentheses,

‘C’ when the model’s input was only the TGS 2611-C00, ‘E’ for the TGS 2611-E00 and ‘CE’ when both sensors were used as inputs at the

same time. The color code of the bars corresponds to the chambers.
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Figure 8. Observed and modelled average CH4 mole fractions from the reference, denoted ‘REF’, and low-cost sensor, denoted TGS,

corresponding to the release #25. The reconstructed CH4 was computed using the MLP model. The index of the tripods is denoted as T-x

and the average wind direction (θ) for the binning of wind sectors is shown on the top right of each panel in red.
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Figure 9. Comparison of the emission rate estimate (Qe) (a), of the location error (El) (b) and of the relative error in the emission rate estimate

(c) from the inversions assimilating the Reference data (in red) and the reconstruction of the CH4 mole fraction from the TGS sensors (in

orange). The reconstructed CH4 mole fractions used in these inversions are computed with the MLP model
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Figure A1. Comparison of the voltage measurements from three types of TGS included on chamber A. Upper plot shows the reference CH4

observations measured from the reference instrument. Lower plot shows the voltage observations from TGS 2611-C00, 2600 and 2611-E00.
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Figure A2. Comparison of the performance in deriving a baseline signal for the TGS 2611-C00 (red) of Chamber E between a function of

H2O and Temperature (yellow) and a spike detection algorithm (green). The multilinear model derived baseline was trained on six hours of

non-release periods at the start of the first day of the campaign and evaluated on the last eight hours of the same day (shown in the figure). The

Spike detection algorithm, an iterative function, does not need any prior training and detects the baseline based on neighboring observations

and fixed parameters.
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Figure A3. Comparison of the response of the TGS 2611-C00 and TGS 2611-E00 sensors with CH4 measurements from the reference

instrument for the release #2 which contains spikes with high concentration. The spikes observed on the TGS sensors corresponding from

amplitudes between 100 ppm to more than 200 ppm are not distinguishable from spikes with amplitudes lower than 50 ppm.
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Figure A4. Reconstruction of release #2 using a MLP model. On left panels are shown the reconstructed CH4 mole fractions for each

chamber that captured the release, we present the reference signal (black dotted line), the reconstructed CH4 mole fractions when the model

has as input the TGS 2611-C00 sensor (red), the TGS 2611-E00 (yellow) or both types at the same time (green). The right panels show

the 1:1 plot of the reference against the output of the model for the three configurations of inputs. Note the difference in the x-axis for the

chambers.
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Figure A5. Reconstruction of release #9 using a MLP model. Notations are the same as in Figure A4. Note the difference in the x-axis for

the chambers.
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Figure A6. Reconstruction of release #10 using a MLP model. Notations are the same as in Figure A4. Note the difference in the x-axis for

the chambers.
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Figure A7. Reconstruction of release #12 using a MLP model. Notations are the same as in Figure A4. Note the difference in the x-axis for

the chambers.
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Figure A8. Reconstruction of release #21 using a MLP model. Notations are the same as in Figure A4. Note the difference in the x-axis for

the chambers.
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Figure A9. Reconstruction of release #26 using a MLP model. Notations are the same as in Figure A4. Note the difference in the x-axis for

the chambers.
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Figure A10. Reconstruction of release #9 using 2nd degree polynomials. Notations are the same as in Figure A4. Note the difference in the

x-axis for the chambers.
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Figure A11. Reconstruction of release #10 using 2nd degree polynomials. Notations are the same as in Figure A4. Note the difference in the

x-axis for the chambers.
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Figure A12. Reconstruction of release #26 using 2nd degree polynomials. Notations are the same as in Figure A4. Note the difference in the

x-axis for the chambers.
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Figure A13. Observed and modelled average CH4 mole fractions from the reference, denoted ‘REF’, and low-cost sensor, denoted TGS,

corresponding to the release #25. The reconstructed CH4 was computed using the polynomial model of 2nd degree. The index of the tripods

is denoted as T-x and the average wind direction (θ) for the binning of wind sectors is shown on the top right of each panel in red.
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Figure A14. Comparison of the emission rate estimates (Qe), location error (El) and relative error on the rate estimates for the inversions

assimilating the reference data and the reconstruction of the CH4 from the TGS low-cost sensor based on the Polynomial model of 2nd

degree.
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Table A1. Distribution of the releases by chamber. For each chamber is denoted with an ‘o’ the releases for which the TGS sensors produced

valid measurements and with an ‘x’ the invalid ones.

Release Chamber Release Chamber

number A C D E F H number A C D E F H

1 - - - x x o 19 o o - o o o

2 o - - o o o 20 o o - o o o

3 - - - o o o 21 o o - o o o

4 - - - o o o 22 - o - o o -

5 o - o o o - 23 - - - o - o

6 o - o o o - 24 o o x - o o

7 o - o o o - 25 o o o o o o

8 o - o o o - 26 o o x o - o

9 o o o o o - 27 o o - - - x

10 o o x x o - 28 o o - - - o

11 o x - - - - 29 o o - - o o

12 x x o o o - 30 o o - - - o

13 - x o o o o 31 - o - - - -

14 o o o o o o 32 o o - o - o

15 o o - - o - 33 x o - o - o

16 o - - x - -

17 o o - - - x

18 o o - - o o
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Table A2. Comparison of the emission rate estimates (Qs), location error (Le) and percentage of error of the rate estimates (Qe) for the

reference instrument and the TGS low-cost sensor from reconstructed CH4 of the 2nd degree polynomial model.

Release Actual emission Reference TGS

N◦ (g CH4 s−1) Qe (g CH4 s−1) El (m) error (%) Qe (g CH4 s−1) El (m) error (%)

2 1.0 1.10 5.26 10.8 1.19 12,40 19,1

5 3.0 1.34 21.57 55.2 1.53 19,55 48,8

9 1.0 0.88 14.29 11.9 1.03 13,60 2,9

10 0.5 0.40 9.29 18.9 0.34 7,74 30,7

12 1.0 0.34 3.08 65.7 2.99 9,55 199,2

21 1.0 0.63 3.61 36.1 0.64 3,61 35,7

25 5.0 4.61 4.57 7.8 6.50 10,02 30,0

26 0.4 0.31 5.10 20.9 0.43 10,04 9,1

29 0.6 0.45 3.40 24.5 0.41 2,34 30,8

32 4.0 6.55 10.55 63.8 5.42 10,28 35,6

33 2.0 2.45 5.77 22.7 2.11 5,37 5,5

Average error 7.86 30.7 9.5 40.6

σerror 5.46 20.3 4.6 51.9

47

https://doi.org/10.5194/amt-2023-52
Preprint. Discussion started: 1 November 2023
c© Author(s) 2023. CC BY 4.0 License.



Table A3. Summary of the tripods that were connected to each chamber.

Chamber Tripod N◦

A 1, 4, 6, 8, 9, 10, 11, 14, 15

C 2, 7, 9, 14, 15, 16

D 2, 3, 9, 10, 11, 12, 13, 16

E 1, 3, 4, 5, 10, 11, 12, 13, 16

F 2, 3, 4, 10, 11, 12, 13, 14, 15

H 4, 5, 6, 7, 12, 13, 14, 15
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Table A4. Comparison between TGS sensors included on the low-cost logging systems during the TADI 2019 campaign.

Type Target gas Approximate price Comments

2600 C2H5OH, C4H10, CO, H2, CH4 15 $us Designed as a smoke detector.

2611-C00 CH4, C2H5OH, C4H10, CO, H2 20 $us Designed for CH4 detection. Fast response.

2611-E00 CH4, H2 20 $us

Designed for CH4 detection.

Increased selectivity due to a carbon filter installed

on top of the sensing material.

2602 C7H8, H2S, C2H5OH, NH3, H2 17 $us High sensitive to VOC and odor gases.
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