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Abstract  17 

In-situ surface wind observation is a critical meteorological data source for various 18 

research fields. However, data quality is affected by factors such as surface friction 19 

changes, station relocations, and anemometer updates. Previous methods to address 20 

discontinuities have been insufficient, and processing methods have not always adhered 21 

to World Meteorological Organization (WMO) World Climate Programme guidelines. 22 

We analyzed data discontinuity caused by anemometer changes and station relocations 23 

in China’s daily in-situ near-surface (~ 10m) wind speed observations and the impact 24 

of the processing methods on wind speed trends. By comparing the wind speed 25 

discontinuities with the recorded location changes, we identified 90 stations that 26 

showed abnormally increasing wind speeds due to relocation. After removing those 27 

stations, we followed a standard quality control method recommended by the World 28 

Meteorological Organization to improve the data reliability and applied Thiessen 29 

Polygons to calculate the area-weighted average wind speed. The result shows that 30 

China's recent reversal of wind speed was reduced by 41% after removing the 31 

problematic stations, with an increasing trend of 0.017 m s-1 year-1 (R2 = 0.64, P < 0.05), 32 

emphasizing the importance of robust quality control and homogenization protocols in 33 

wind trend assessments.  34 

Keywords. wind speed trends; anemometer changes; station relocations; processing 35 

methods; quality control; data homogenization  36 
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1. Introduction 38 

In-situ surface wind observation is a key meteorological data that has been used in 39 

various avenues of research, e.g., wind power evaluation (Tian et al., 2019; Zeng et al., 40 

2019; Liu et al. 2022a), extreme wind hazard monitoring and prevention (Zhou et al., 41 

2002; Tamura, 2009; Liu et al., 2022b), and evapotranspiration analysis (Rayner, 2007; 42 

McVicar et al., 2012), to name but a few. The application of robust quality control and 43 

homogenization protocols are crucial for generating reliable wind speed time series for 44 

further trend and variability analyses (Azorin-Molina et al., 2014; Azorin-Molina et al., 45 

2019). 46 

Wind data quality is affected by surrounding surface friction change, station 47 

location issues, and anemometer changes in type and height (Masters et al., 2010; Wan 48 

et al., 2010; Cao & Yan, 2012; Hong et al., 2014; He et al., 2014; Azorin-Molina et al., 49 

2018; Camuffo et al., 2020). Surrounding surface friction changes are mainly associated 50 

with urbanization (Zhang et al., 2022) and vegetation growth (Vautard et al., 2010), 51 

which modify wind speed fields around the stations. Because of these issues, stations 52 

are relocated to satisfy observing criteria (Trewin, 2010). Station relocation is quite 53 

common in rapidly developing countries. For instance, about 60% of stations in China 54 

experienced relocation (Sohu, 2004). Some relocation-caused breakpoints have been 55 

corrected by parallel observations (i.e. operating observations for an overlapping period 56 

at both the old and new observing stations; CMA, 2011; CMA, 2012; WMO, 2020), but 57 

not all (Feng et al., 2004; Fu et al., 2011; Patzert et al., 2016; Tian et al., 2019; Yang et 58 

al., 2021). Besides relocation caused by rapid urbanization (or vegetation growth), 59 

updates to automatic anemographs at the beginning of the 21st century in China also 60 

caused discontinuities in wind series (Fu et al., 2011). 61 

Scientists have tried different methods to handle discontinuities. Tian et al. (2019) 62 

and Yang et al. (2021) deleted stations with recorded changes in latitudes, longitudes or 63 

altitudes, but they omitted to check whether those recorded relocations caused an abrupt 64 

discontinuity in the time series or if parallel observations have corrected them. This 65 

results in some stations being mistakenly deleted and significantly reduced the number 66 
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of available stations. Other research used statistical methods to detect or correct the 67 

time series’ abnormal breakpoint (Feng et al., 2004; Wang, 2008). However, without 68 

examining the causes behind the discontinuity, this may also mistakenly delete stations 69 

with natural abrupt climatic changes (Bathiany et al., 2003). Combining those two 70 

methods by matching discontinuity with recorded station relocation is needed. Li et al. 71 

(2018) have manually checked the station histories for nine stations in North West 72 

China, but an algorithm is required to apply this approach to large datasets. 73 

Besides data discontinuities, the processing method also affects the wind series. 74 

There are two critical steps in the processing: 1) selecting qualified stations and 2) 75 

calculating the average value. As for the first step, World Meteorological Organization 76 

(WMO) World Climate Programme suggests deleting stations with either too much 77 

missing data or continuous missing data (WMO, 2003; WMO, 2017). Previous studies 78 

only constrained the number of missing values monthly (Zeng et al., 2019), yearly (Tian 79 

et al., 2019) or even in the whole period (Yang et al., 2021) but didn’t check whether 80 

the missing values were continuous. As for the second step, most studies used the 81 

station average as the mean wind speed (Li et al., 2017; Zeng et al., 2019; Tian et al., 82 

2019; Yang et al., 2021; Shen et al., 2021; Zha et al., 2021). However, given station 83 

distribution and wind speed spatial variation are often inhomogeneous with larger wind 84 

but fewer station in Northwest while smaller wind but more stations in Southeast (Feng 85 

et al., 2004; Fu et al., 2011; Liu et al., 2019). Therefore), the station average will have 86 

spatial biaseswind variation in Northwest is underrepresented because of few stations. 87 

An improved average method (area weighted average) to rearrange the weight for each 88 

station based on the area it represents , e.g. Thiessen Polygon (Fu et al., 2011), is needed. 89 

and Thiessen Polygon (Thiessen, 1991) is widely used in which the area is only 90 

determined by the station locations while other method like grids is sensitive to the 91 

grids chosen.Thiessen Polygon (Fu et al., 2011) 92 

Herein, taking stations in China as an example, we analyzed the existing data 93 

discontinuities and their potential causes. Furthermore, we propose an improved 94 

solution by using an algorithm to compare the statistic breakpoint with the recorded 95 
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relocation to double-check the discontinuity caused by relocation. Then using WMO’s 96 

quality control criteria and Thiessen Polygon (Thiessen, 1911), we generated wind 97 

speed time series without temporal bias caused by heterogeneous missing values and 98 

spatial biases caused by uneven station distribution.  99 

 100 

2. Dataset and methodology 101 

2.1 WMO quality control method 102 

We used the China Surface Climatic Data Daily Data Set (CSD) (Version 3.0) from 103 

the China Meteorological Data Service Center (http://data.cma.cn/en/?r=data/; last 104 

accessed March 2020). The quality control method is recommended by WMO (2017), 105 

which required the following criteria before using the daily mean values in a month as 106 

monthly mean values: (1) <11 missing daily values in a month; and (2) <5 consecutive 107 

missing daily values in a month; (3) . Complete monthly values for every month during 108 

the study periodQualifying stations must have monthly values for every month during 109 

the study period; Otherwise, the station will be completely excluded from the 110 

calculation. The station excluded by each criterion can be found in Table S1. 111 

 112 

2.2 Station location changes in record 113 

CSD provides daily wind speed and location information for 840 stations for 1961-114 

2019. But there are some mistakes in the daily location records. For example, if the 115 

station location changed from A to B and back to A within a month, B is potentially a 116 

mistaken record. Therefore, we first use mode (the statistic term meaning the value that 117 

appears most often, here referring to the location with the highest frequency in a month) 118 

to resample the daily location to the monthly location. Second, considering that 119 

recorded longitude and latitude has the same spatial resolution of minutes, we defined 120 

the threshold of location change as the minimum accuracy of the longitude and latitude 121 

record, i.e., one minute. That is 1.85 km for longitude and 1.85 km × *cosφ for latitude, 122 

where φ is the latitude. Third, as for altitude, we allow a 20m measuring error following 123 

Tian et al. (2019). A station with more than 20m change in altitude will be considered 124 

http://data.cma.cn/en/?r=data/
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as relocation. It is noteworthy that CSD labels uncertain altitude records by adding 10 125 

km to the raw data (CMA, 2017), which are considered as no observations in our 126 

analysis. This way, we identified 432 stations as relocations from the 601 qualified 127 

stations after applying the WMO quality control (details in Table S2). 128 

 129 

2.3 Breakpoint detection and the comparison with recorded relocation 130 

We used Pruned Exact Linear Time (PELT) method (Killick, Fearnhead & Eckley, 131 

2012) to detect the jumps in the mean level in the monthly wind speed time series (Fig 132 

4a, Fig 4c). This method is a wrapped function named findchangepts in Matlab. PELT 133 

is essentially a traversing method. For a time series with N values (𝑥1, 𝑥2…𝑥𝑁), the 134 

function uses equations 1 & 2 to calculate the total residual errors (J) for each point (k) 135 

assumed as a breakpoint. The point with the most significant change in the mean (lowest 136 

total residual errors, J) is reported as the breakpoint. The breakpoints here can be caused 137 

by artificial relocations or natural climate changes. 138 

𝐽(𝑘) =∑ (𝑥𝑖 −𝑚ⅇ𝑎𝑛([𝑥1⋯𝑥𝑘−1]))
2𝑘−1

𝑖=1
+∑ (𝑥𝑖 −𝑚ⅇ𝑎𝑛([𝑥𝑘⋯𝑥𝑁]))

2𝑁

𝑖=𝑘
    (1) 139 

𝑚ⅇ𝑎𝑛([𝑥𝑚⋯𝑥𝑛]) =
1

𝑛−𝑚+1
∑ 𝑥𝑟
𝑛
𝑟=𝑚     (2) 140 

Then we use relocation records to separate changes brought by artificial relocation 141 

from changes in natural climate. If the breakpoint and one of the relocation dates (some 142 

stations have more than one relocation record) happened in the same two months, we 143 

will consider that the time series is significantly affected by the relocation, and the 144 

station will be deleted. Stations with natural-climate-caused location changes will be 145 

reserved. 146 

The change point in the trend of the annual national average wind speed (Fig 2b, 147 

Fig 5b) is detected following the method used by Wang et al. (2011). All the trends 148 

reported are based on the least square fits. 149 

 150 

3. Results and discussion 151 

3.1 Data issue due to anemometer changes 152 
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We found a clear decline in the frequency of zeros (zero wind speed) in most CSD 153 

stations between 2002 and 2007 (Figure 1a), from 10-14 days per year to less than two 154 

days per year. This clear drop is not a result of wrongly taking zero values as no 155 

observations (NaN) as happened in the Integrated Surface Dataset (ISD, Dunn et al., 156 

2022), as no abrupt increase in NaN frequency was observed (Supplementary Figure 157 

S1). Instead, the decline is accompanied by an improvement decrease in measure 158 

uncertaintyrecord accuracy: i.e., the measurement intervals became narrow (from 0, 0.3, 159 

0.5, 0.7, 0.8, 1.0 m s-1, etc. to 0, 0.1, 0.2, 0.3 m s-1, etc.; Figure 1b and Supplementary 160 

Figure S2). Taking Station Naomaohu in Xinjiang (station ID: 57432) as an example, 161 

from 2002 to 2003, zero values decreased from more than 30 days per year to less than 162 

five days per year and wind speed records changed from 0, 0.3, 0.7, 1.0 m s-1, etc. to 0, 163 

0.3, 0.5, 0.8, 1.0 m s-1, etc. Since 2004, the measurement record accuracy was further 164 

improved to 0.1, 0.2, 0.3… m s-1 and zeros values almost disappeared (Figure 1b). 165 

This change is potentially caused by the transformation in measure frequency, 166 

anemometer type and data logging, based on the station history recorded by Xin et al. 167 

(2012). As for measurement frequency, in 2003, Station Naomaohu changed from 3 168 

observations per day (i.e., 8:00, 14:00 and 20:00, China Standard Time) to four times 169 

per day (2:00, 8:00, 14:00 and 20:00, China Standard Time). The increase in the 170 

frequency of measurements decreases zeros in daily wind data, as only if all 171 

observations report zero wind speeds, will the daily data (i.e., the average of all 172 

observations in a day; CMA, 2017) be recorded as zero. Then in 2005, the EL contact 173 

anemograph (Yang, 1986; Jin, 2011; Xin et al., 2012, Zhang et al., 2020) requiring 174 

manual recording was changed to EC photoelectric encoder self-recording type (Kuang, 175 

2016; Jin, 2011; Xin et al., 2012). Both EL and EC type anemographs use cup 176 

anemometers to measure wind speed. This anemograph change further decreases the 177 

likelihood of recording zero daily wind speed because the updated new anemometers 178 

are more sensitive, and even very low wind speeds will be measured with a value 179 

instead of recorded as zero (Azorin-Molina et al., 2018). The smooth increasing 180 

frequency of zero values from 1960 until 2000 also supports this statement (Figure 1a): 181 
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the longer the anemometer is used, the less sensitive it will become, and hence a greater 182 

wind speed will be required to record a non-zero value (Azorin-Molina et al., 2018), 183 

overall increasing the zero values. As for the change in data accuracy, there are two 184 

reasons: 1) EL type anemograph only measures the times of electronic contact (200 185 

meters rotation distance per contact) in 10 mins, therefore it has discrete records. For 186 

example, one contact means 0.3 m s-1 (200m/600s) and two contacts means 0.7 m s-1 187 

(400m/600s) (Hu et al., 2009) while EC type has more accurate records using the Grey 188 

Code; 2) the data logging changed from manual reading, calculating and rounding to 189 

instrument automatically calculating and retaining one decimal place. This example 190 

shows us the importance of recording siting criteria, required functional specifications 191 

of wind sensors and maintenance policy. However, those records are missing for most 192 

of the stations which hindered the quality classification and data processing. 193 

 194 

Figure 1. Changes in wind speed data caused by anemoter updates. a) Decrease of 195 

frequency of zeros. Each horizontal bar in the upper figure represents one station and 196 

there are 840 stations in total. The color indicates the frequency of zeros (days per year). 197 

The black dotted line in the lower figure is the average annual frequency of zeros of all 198 

the stations. The 300 grey lines are sample averages, each containing 40% amount of 199 

the total stations. b) Frequency (days per year) of daily wind speed measurements 200 

between 2001 and 2006 for Station #52112 Naomaohu (43°45′N, 94°59′E, 479.0 m 201 
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a.s.l.) 202 

 203 

3.2 Quality-controlled series 204 

Following WMO’s criteria, we generated the monthly average wind speed for each 205 

station (Figure 2a). We found that since January 2016, there have been 126 stations that 206 

no longer have records (distribution see Figure S3). We compared the time series with 207 

and without these stations and found the difference is not significant (t-test P < 0.001, 208 

Figure 2b). To obtain a longer time series including recent years’ data, we deleted the 209 

126 stations and only used the 601 stations with complete monthly average wind speeds 210 

for 1980-2019. The breakpoint was detected in 2011 (P < 0.001) with a decreasing trend 211 

of -0.011 m s-1 year-1 (R2 = 0.84, P < 0.001) before the breakpoint and an increasing 212 

trend of +0.022 m s-1 year-1 (R2 = 0.87, P < 0.001) after.  213 

 214 

 215 

Figure 2. Monthly average wind speed after being filtered by WMO’s criteria. a) 216 

Each horizontal bar represents one station. Months with no data (NaNs) are represented 217 

by the deepest blue. b) Comparison of the monthly average wind speed for the short- 218 

(1980-2015; 727 stations) and long-period (1980-2019; 601 stations)  219 

 220 

3.3 Station relocations caused by urbanization 221 

Another key factor influencing wind speed measurements is the relocation of 222 

stations. We found that there is a clear data jump caused by relocations in some of the 223 

stations. Taking the station located in Qinghai (station ID 52974) as an example, we 224 

detected an abrupt jump in wind speed in January 2016. This date coincides with the 225 



10 

 

relocation of the station from 35°31′N, 102°01′E (ID 52974-1) in December 2015 to 226 

35°33′N, 102°02′E (ID 52974-2) in January 2016 (Figures 3c & 3d). The relocation is 227 

potentially attributed to the urban growth around the station. As viewed by satellite 228 

images from Google Earth Pro, there is a rapid urban expansion from 2006 (Figure 3a) 229 

to 2012 (Figure 3b), especially towards the Northeast of the station, during wind speed 230 

records also experienced a decrease (Figure 3c). A similar decrease in both daily mean 231 

wind speed and maximum wind speed caused by urbanization was also reported in the 232 

Yangtze River region (Zhang et al., 2022). To eliminate the effect of buildings on the 233 

wind speed measurements, Station 52974 was moved to 4 km away from its previous 234 

location (Figure 3d) so that wind speed is properly measured without artificial obstacles 235 

in the surroundings. However, this estimation of roughness change based on satellite 236 

data is rough. A more proper way as required by the World Climate Data and Monitoring 237 

Programme is to record the change in the station logbook (WMO, 2021), which will 238 

provide more reliable information about the quality of the data. But most stations don’t 239 

have such a record. Despite the absence of mete data, we used an established global 240 

roughness model through satellite albedo observations to monitor alterations in surface 241 

roughness. For the selected station, we employed the roughness estimation technique 242 

devised by Chappell & Webb (2016) to analyze changes in roughness across a 5 km x 243 

5 km area encompassing the station’s location. Our quantitative examination of 244 

roughness alterations aligns with the findings derived from satellite imagery analysis, 245 

affirming a pronounced increase in roughness between 2000 and 2010 (Supplementary 246 

Figure S4). This increase in roughness likely contributed to the observed decline in 247 

wind speed and ultimately compelled the relocation of the station. 248 

 249 
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 250 

Figure 3. Example of station relocation caused by rapid urbanization growth. a-b) 251 

Landsat images crop from Google Earthsatellite images near Station 52974 in 2006 and 252 

2012, respectively. c) the wind speed change with urbanization and relocation. d) 253 

Landsat imagessatellite image of the station relocation .crop from Google Earth.  254 

 255 

Though some stations were influenced by station relocation as shown in Figure 3, 256 

a larger fraction (79%) of stations show no change in wind speed after the relocation. 257 

Further checking the raw record of locations for those stations, we find that one reason 258 

is that some “relocations” result from wrong location records. For example, Station 259 

52974 is mistakenly detected with three relocations (Figure 4a). However, only the first 260 

relocation is real and the latter two are results of location encoding change from 10202 261 

(interpreted as 102°02′) to 1022 (interpreted as 10°22′) and back. Another possible 262 

reason is that the relocation did happen but the data has been corrected. According to 263 

the Provisional Regulations on Relocation, Construction and Removal of National 264 

Ground Meteorological Observation announced by China’s government in 2012, 265 

station relocations should have 1-2 years of parallel observations for data correction 266 
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(CMA, 2012). This process may fix some of those discontinuities but not all (Feng et 267 

al., 2004; Fu et al., 2011; Patzert et al., 2016; Tian et al., 2019; Yang et al., 2021). For 268 

example, Station 59287, the only national basic weather station in Guangzhou, 269 

experienced two relocations in both 1996 and 2011, which is confirmed by the metadata 270 

(CMA, 2011). After correction, the 1996 relocation doesn’t show a sharp breaking point 271 

but the 2011 one does (Supplementary Figure S54). 272 

To examine whether the relocation caused a substantial change in the wind speed 273 

record, we identified the most abrupt change in the wind speed time series and checked 274 

whether a relocation happened near the change point (see details in Methods 2.3). Out 275 

of the 432 relocated stations, 90 were deleted because the most significant shift in mean 276 

is at the time of the relocation, and hence this is the most likely cause. We then took the 277 

average of the “deleted relocation” stations and “reserved relocation” stations 278 

separately. The “deleted relocation” group shows an abnormally rapid increase in the 279 

recent two decades (Figure 4b). While the “reserved relocation” group is similar to 280 

stations without relocation (Supplementary Figure S65). To exclude the impact of 281 

different station counts in each category (fewer stations mean higher sensitivity to the 282 

individual abnormal station), we performed 300 samples using a random draw of 90 283 

stations from the “reserved relocation” group and showed them in grey lines in Figure 284 

4d. None of the grey lines shows an abnormal trend as the “deleted relocation” group. 285 

This proves that our method is efficient in identifying problematic stations. 286 

 287 
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 288 

Figure 4. Comparison of deleted relocated stations and reserved ones. a) The wind 289 

speed data breakpoint and relocations of one example of deleted relocation, Station 290 

52974. b) The station average wind speed of 90 deleted relocated stations. The inset 291 

shows the station distribution across China. c) One example of reserved relocation, 292 

Station 50136. d) The station average wind speed of 342 reserved relocated stations. 293 

The grey lines are the averages of 300 samples, each with 90 randomly drawn reserved 294 

relocated stations. Maps information are from Department of Natural Resources 295 

standard map service system of China.  296 

 297 

3.4 Average method used to calculate the national average 298 

In the station average time series, the breakpoint was detected in 2012 (P < 0.001) 299 

with a trend of -0.012 m s-1 year-1 (R2 = 0.90, P <0.001) before and +0.013 m s-1 year-1 300 

(R2 = 0.70, P <0.01) after (Figure 5b). The increasing trend decreased by 41% after 301 

deleting those relocation-affected stations, compared with the +0.022 m s-1 year-1 in 302 

Figure 2b (also reported by Liu et al., 2022a). But the trend is larger than the +0.011 m 303 

s−1 yr−1, reported by Yang et al. (2021), with all the recorded location changed stations 304 

deleted without checking whether the station is affected by the relocation. 305 
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We further used Thiessen Polygon (Thiessen, 1911) to give different weights to 306 

each station according to their representing area, i.e., large weight for stations located 307 

in sparse stations area (Figure 5a) and compare the result with the station average 308 

(Figure 5b). The Thiessen Polygon method, also known as the Voronoi Diagram, is a 309 

spatial analysis technique often employed in hydrology and climatology. It involves 310 

tessellating a region into polygons based on point data, such that each polygon 311 

encompasses only one data point, and every location within a polygon is closer to its 312 

associated point than any other. This method is particularly useful for interpolating 313 

values across a region when the exact nature of change between points is unknown or 314 

when changes are abrupt. By drawing perpendicular bisectors between adjacent data 315 

points, the entire area is divided, with each polygon assuming the value of its associated 316 

data point. While straightforward and clear in its delineation, the Thiessen Polygon 317 

method assumes uniform variation within each polygon Thiessen Polygon is essentially 318 

the finest divided subregion, which splits the region into the smallest representative 319 

area and ensure there is a station in each subregion; .Moreover, because the Thiessen 320 

Polygon employs perpendicular bisectors to partition the space, every location is 321 

assigned to its closest station as shown in Figure 5a. The Thiessen polygon weighted 322 

average is overall higher than the station average. This can be explained by the 323 

increasing weight of stations in North West China with higher wind speeds (Liu et al., 324 

2019). While in the Thiessen polygon weighted average time series, there are two 325 

breakpoints in 2000 (P < 0.001) and 2013 (P < 0.01). The trend changes from quick 326 

decrease (-0.020 m s-1 year-1, R2 = 0.94, P < 0.001) to unstable moderate decrease (-327 

0.004 m s-1 year-1, R2 = 0.17, P = 0.14) and quickly increase (+0.017 m s-1 year-1, R2 = 328 

0.64, P < 0.05). The increasing trend in the recent decade increased by 31% (from 329 

+0.013 m s-1 year-1 to +0.017 m s-1 year-1) after using the Thiessen polygon approach. 330 

This is because the weights of stations in North West and South West are increased 331 

when calculating the average and those area has strong increasing wind speed trend 332 

(Figure S7).  Despite the Thiessen polygon approach already utilizing the nearest station 333 

observation to represent wind speed in locations lacking direct observations, it remains 334 
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unsatisfactory due to the intricate spatial variability of wind speed attributed to complex 335 

terrains. To enhance the accuracy of wind speed interpolation, a more comprehensive 336 

model necessitates additional observations within areas characterized by complex 337 

terrain. 338 

 339 

 340 

 341 

Figure 5. Thiessen polygons and the comparison between Thiessen polygon 342 

weighted average and station average. a) The Thiessen polygon map of the 511 343 

qualified stations. b) The comparison of station average wind speed (orange line) and 344 

Thiessen polygon weighted average (blue line) across China for 1980-2019. The linear 345 

fitting models are shown in translucent thick lines accordingly. Maps information are 346 

from Department of Natural Resources standard map service system of China. 347 

 348 

4. Conclusions 349 

Continuity is crucial for meteorological observation data. However, either the 350 

updates in the anemograph, the relocation caused by urbanization or the methods of 351 

data logging will affect wind speed data continuity. In this study, we comprehensively 352 

examined the discontinuity in wind speed data using a Chinese dataset. We found that 353 

updates to the automatic anemometer improved the observation frequency and 354 

instrument sensitivity, decreasing the zero-value daily wind speed data and increasing 355 

data accuracy. We also propose comparing the discontinuity in time series with recorded 356 

station relocation to check whether a relocation caused a breakpoint. We found that 90 357 
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stations were affected by the relocation and show a quickly increasing wind speed in 358 

the recent two decades. After excluding those problematic stations, the wind speed 359 

reversal trend is reduced by 41% but still strong (P < 0.001, with an increasing trend of 360 

+0.013 m s-1 year-1). The increasing trend reaches +0.017 m s-1 year-1 (R2 = 0.64, P < 361 

0.05) after using Thiessen Polygon, which gives the stations in North West China a 362 

larger weight because their small number but located in a large area, . 363 

Though lots of methods (Masters et al., 2010; Wan et al., 2010; Cao & Yan, 2012; 364 

Hong et al., 2014; He et al., 2014; Azorin-Molina et al., 2018; Camuffo et al., 2020) 365 

were proposed to handle those problems, a comprehensive summary of them is 366 

lackedmissing. This study fills this research niche. However,Also,  it is hard for external 367 

researchers to provide a better solution without a collaboration with National Weather 368 

Services and the access to station data records and/or metadata. Therefore, we hope 369 

National Weather Services could improve the data quality based on these feedbacks and 370 

World Climate Data and Monitoring Programme’s guides , and complete the process 371 

by introducing an R package with open-source code on GitHub and publishing the 372 

metadata. This way, not only the data is easier to get and process, but also researchers 373 

can contribute to improve the dataset. One such example is the “rnpn” package to access 374 

and process USA National Phenology Network data (https://github.com/usa-npn/rnpn). 375 

Anyway, all  raw data processing has limitations and adds additional uncertainty. As we 376 

keep reporting problems in datasets and improving our processing method, we should 377 

also pay more attention to increasing the quality and homogeneity of the wind data. 378 

This requires raising awareness of the importance of protecting the environment around 379 

the observation station and avoiding relocations.  380 

  381 
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