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Abstract. The turbulent kinetic energy dissipation rate is one of the most important quantities characterizing turbulence.

Experimental studies of a turbulent flow in terms of the energy dissipation rate often rely on one-dimensional measurements of

the flow velocity fluctuations in time. In this work, we first use direct numerical simulation of stationary homogeneous isotropic

turbulence at Taylor-scale Reynolds numbers 74≤ Rλ ≤ 321 to evaluate different methods for inferring the energy dissipation

rate from one-dimensional velocity time records. We systematically investigate the influence of the finite turbulence intensity5

and the misalignment between the mean flow direction and the measurement probe, and derive analytical expressions for the

errors associated with these parameters. We further investigate how statistical averaging for different time windows affects

the results as a function of Rλ. The results are then combined with Max Planck Variable Density Turbulence Tunnel hot-wire

measurements at 147≤ Rλ ≤ 5864 to investigate flow conditions similar to those in the atmospheric boundary layer. Finally,

practical guidelines for estimating the energy dissipation rate from one-dimensional atmospheric velocity records are given.10

1 Introduction

Turbulence is fundamental to many natural and engineering processes, such as transport of heat and moisture in the Earth’s

atmosphere (e.g. Wyngaard, 1992; Garratt, 1994; Muschinski and Lenschow, 2001; Fairall and Larsen, 1986; Hsieh and Katul,

1997), wind energy conversion (Smalikho et al., 2013), entrainment and mixing (e.g. Warhaft, 2000; Sreenivasan, 2004; Desh-

pande et al., 2009; Gerber et al., 2008, 2013; Siebert et al., 2013; Fodor and Mellado, 2020), and warm rain initiation (e.g.15

Shaw, 2003; Devenish et al., 2012; Pumir and Wilkinson, 2016; Li et al., 2020), to name just a few. In three-dimensional tur-

bulence, the kinetic energy is typically injected into the flow at the largest scales and successively transferred to smaller eddies

by means of the direct energy cascade. At the smallest scales characterized by the Kolmogorov length scale (or the dissipation

scale) ηK , kinetic energy is dissipated by viscous effects at the energy dissipation rate (a list of all the parameters and symbols

used in this study can be found in Tables A1 and A2). The energy dissipation rate is one of the most fundamental quantities20

in turbulence and is used to estimate many relevant features of a turbulent flow, such as the Kolmogorov length scale ηK , the

Taylor microscale λ, the Taylor-scale Reynolds number Rλ and, by means of dimensional estimates, the energy injection scale.
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The instantaneous energy dissipation field ϵ0(x, t), which is a function of the fluid kinematic viscosity ν and the velocity

gradient tensor, is highly intermittent with strong small-scale fluctuations (Pope, 2000; Davidson, 2015, and references therein),

which are at the core of the intermittency problem in turbulence (Sreenivasan and Antonia, 1997; Muschinski et al., 2004;25

Buaria et al., 2019). By “instantaneous” we here want to emphasize that ϵ0 is the energy dissipation rate at one point in space and

time within the flow. It also plays an important role in turbulent mixing in reacting flows (e.g., Sreenivasan, 2004; Hamlington

et al., 2012; Sreenivasan, 2019) or turbulence-induced rain initiation in warm clouds (Devenish et al., 2012). ϵ0(x, t), however,

is extremely difficult to measure experimentally because it requires complete knowledge of the three-dimensional velocity field

with spatial/temporal resolution that can resolve scales smaller than or at least comparable to Kolmogorov scales.30

Apart from the instantaneous dissipation field ϵ0(x, t), the energy dissipation in a turbulent flow can be statistically described

by either the local or global mean energy dissipation rate, which are both important. Local volume averages of the instantaneous

dissipation field ⟨ϵ0⟩R and related surrogates, e.g., longitudinal, transverse or off-diagonal components of the velocity gradient,

can capture intermittency of turbulence (Lefeuvre et al., 2014; Almalkie and de Bruyn Kops, 2012, and references therein). The

local volume averages of the dissipation field converge to the global mean energy dissipation rate ⟨ϵ⟩ for statistically converged35

sampling. ⟨ϵ⟩ can be used to parameterize the statistics of statistically homogeneous and locally isotropic turbulence based on

the Kolmogorov’s phenomenology (K41) (Kolmogorov, 1941). Note that even if the global mean energy dissipation rate ⟨ϵ⟩
is known, it is also of high interest to know how locally averaged dissipation rates ⟨ϵ0⟩R differ from the global mean energy

dissipation rate ⟨ϵ⟩. For example, the local dissipation rate determines whether droplets in a cloud behave as tracer or inertial

particles, which in turn can affect the probability of collision/coalescence of the droplets and thus the likelihood of precipitation40

initiation (e.g., see Shaw, 2003).

For a statistically stationary homogeneous isotropic (SHI) turbulent flow, ⟨ϵ⟩ can be estimated from time-dependent single-

point one-dimensional velocity measurements through different methods, such as longitudinal or transverse velocity gradients

(Wyngaard and Clifford, 1977; Elsner and Elsner, 1996; Antonia, 2003; Siebert et al., 2006, among others), inertial-range

scaling laws comprising the famous 4/5 law (Kolmogorov, 1941, 1991; Muschinski et al., 2001), counting zero-crossings of45

the velocity fluctuation time series (Sreenivasan et al., 1983; Wacławczyk et al., 2017) or dimensional arguments (e.g. Taylor,

1935; McComb et al., 2010; Vassilicos, 2015). These methods usually invoke Taylor’s hypothesis to map temporal signals

onto spatial signals, which requires a sufficiently small turbulence intensity. The turbulence intensity is defined as the ratio

of the root mean square velocity fluctuations σu′ to the mean velocity U . When all of these criteria are met, single-point

velocity measurements with hot-wire anemometers at a high temporal resolution have been shown to be suitable for accurately50

estimating the global energy dissipation rate (see also below) (Lewis et al., 2021; Sinhuber, 2015; Elsner and Elsner, 1996;

Antonia, 2003; Frehlich et al., 2003). However, in atmospheric flows, the assumption of ideal stationary homogeneous isotropic

turbulence needs to be very carefully considered, as for example thermals, change in local weather conditions and of course

the diurnal cycle may lead to non-stationarity and inhomogeneity.

Then the global mean energy dissipation rate ⟨ϵ⟩ is not representative as the turbulence can be highly time- and space-55

dependent even at the energy injection scales. As a result, one needs to calculate a local ⟨ϵ0⟩τ and ⟨ϵ0⟩R, respectively, based on

velocity statistics for a properly chosen averaging window τ in time or R in space, which is short enough for resolving the tem-
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poral or spatial variations but also long enough to obtain statistically representative values with acceptable systematic and/or

random errors (e.g. Wyngaard, 1992; Lenschow et al., 1994). Therefore, a conflict arises with respect to the averaging time

between resolving small-scale features of a turbulent flow and statistical convergence under non-stationary and inhomogeneous60

conditions.

In the case of atmospheric flows, in situ measurements made via airborne (Malinowski et al., 2013; Siebert et al., 2006, 2013;

Muschinski et al., 2004; Frehlich et al., 2004; Nowak et al., 2021; Dodson and Small Griswold, 2021, e.g.) as well as ground-

based (Chamecki and Dias, 2004; O’Connor et al., 2010; Risius et al., 2015; Siebert et al., 2015, e.g.) platforms typically can

only resolve the coarse-grained time series of the local mean energy dissipation rate ⟨ϵ0⟩τ . However, it remains unclear how65

large the errors in estimating the coarse-grained time series of the local mean energy dissipation rate are due to individual

choices of the averaging window, since there is currently no high-resolution three-dimensional velocity measurement available

during in situ measurements to serve as the ground truth,. In the absence of a ground-truth reference, the comparison between

different methods was used as the next best benchmark for validity of a given method (Siebert et al., 2010; Wacławczyk et al.,

2020; Siebert et al., 2006; Risius et al., 2015; Wacławczyk et al., 2017), which in some cases makes the interpretation of the70

data difficult due to the large discrepancies between the estimates obtained by different methods. As an example, Wacławczyk

et al. (2020) found deviations of about 5%-50% for estimating the mean energy dissipation rate depending on the method and

averaging windows using synthetic data modeled via a von Karman spectrum. Another example is the work of Akinlabi et al.

(2019), who found that estimates of mean energy dissipation rate by one-dimensional longitudinal velocity can differ by a

factor of 2 to 3 from those calculated using direct numerical simulations (DNS), depending on the method used.75

Our literature review indicates that a systematic investigation is still needed to fully understand how the choice of av-

eraging window, analysis methods, turbulence intensity and large-scale random flow velocities can influence estimating the

mean energy dissipation rate and its deviations from the instantaneous energy dissipation rate. To this end, we systematically

benchmark different techniques available in the literature using fully resolved DNS of statistically stationary, homogeneous,

isotropic turbulence. Since the full dissipation field is available from DNS, this approach provides ground-truth reference for80

comparisons to the various estimation techniques. To bridge the gap between typical Rλ of DNS and atmospheric flows, we

use high-resolution measurements of the longitudinal velocity components of the Variable Density Turbulence Tunnel (VDTT)

(Bodenschatz et al., 2014; Sinhuber, 2015; Küchler et al., 2019) at various Taylor Reynolds number Rλ between 140 and 6000.

The impact of turbulence intensity, large-scale random sweeping velocities, size of averaging window, Reynolds number and

also possible experimental imperfections, such as anemometer misalignment are investigated in detail. Our work aims to be85

a step towards the goal of extracting the time-dependent energy dissipation rate from non-ideal naturally-occurring turbulent

flows mitigating the impact of non-ideal features of the flow, e.g., anisotropy or inhomogeneity. In Sect. 2, we first define

the central statistical quantities and the individual methods for estimating the energy dissipation rate in detail. An analysis of

the individual methods including discrepancies, errors due to finite turbulence intensity, and alignment errors are discussed in

Sect. 3 followed by a summary of our findings.90
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2 Methods

Let u(x, t) = u1(x, t)e1 +u2(x, t)e2 +u3(x, t)e3 denote the three-dimensional velocity vector of the turbulent flow, where

x= x1e1+x2e2+x3e3 are the components of the Cartesian coordinate system and t is the time. We assume that the streamwise

direction of the global-mean flow U is in the direction of e1 such that U = Ue1 is (by definition) constant in space and time.

We refer to e1 as the longitudinal direction and the components normal to that, i.e., e2 and e3, as the transverse directions95

of the flow. As mentioned earlier, many experimental setups record only a one-dimensional flow velocity at one location and

as a function of time. We consider this one-dimensional velocity time record to be in the longitudinal flow direction unless

otherwise stated, e.g., when the probe misalignment is investigated. In the following, we first introduce different averaging

principles that can be used to analyze turbulence statistics and Taylor’s frozen hypothesis, and then present the commonly

used methods for extracting the energy dissipation rate. An introduction of the basic statistical description of turbulent flows is100

provided in the appendix (Sec. A) for the sake of completeness.

2.1 On Averaging, Reynolds Decomposition and Taylor’s Hypothesis

Most methods used to retrieve the dissipation rate require spatially resolved velocity statistics although the velocity is recorded

only at a single point and as a function of time in many experiments. Therefore, prior to estimating the energy dissipation

rate, the one-dimensional velocity time-record should be first mapped onto a spatially resolved velocity field. This is achieved105

by invoking Taylor’s hypothesis (Taylor, 1938), which requires a Reynolds decomposition of the velocity time-record by

separating the velocity fluctuations from the mean velocity. To perform the Reynolds decomposition, we first have to clarify

what is meant by the mean velocity.

Generally, we have to distinguish between the global mean velocity U = ⟨u(x, t)⟩= Ue1, the volume-averaged velocity

⟨u(x, t)⟩R over a sphere of radius R, the time-averaged velocity ⟨u(x, t)⟩τ over a time interval τ , and the ensemble-averaged110

velocity ⟨u(x, t)⟩N over N realizations (Wyngaard, 2010; Pope, 2000, among others). In this work, ⟨·⟩ denotes the global mean,

i.e., for infinitely large averaging windows in time or space. Thus, U is by definition independent of time and space, which in re-

ality is valid only when u(x, t) is statistically stationary and homogeneous. Implicitly, ⟨u(x, t)⟩R = 3/(4πR3)
∫∫∫ R

0
dxu(x, t)

and ⟨u(x, t)⟩τ = 1
τ

∫ τ/2

−τ/2
dt′u(x, t′) are, respectively, local volume and time averages as both R and τ are typically finite. In

the limit of R,τ →∞, ⟨u(x, t)⟩R and ⟨u(x, t)⟩τ tend to U . For repeatable experiments where identical experimental condi-115

tions are guaranteed, ⟨u(x, t)⟩N tends to U when N →∞.

The mean of a one-dimensional velocity time-record in the longitudinal direction Uτ here is defined by

Uτ = ⟨u1(t)⟩τ =
1

τ

τ/2∫
−τ/2

dt′u1(t
′) , (1)

such that the global mean U = limτ→∞Uτ , where τ is the averaging window. It should be noted that the global mean of the

transverse velocity will be equal to zero, i.e., ⟨u2,3(t)⟩τ = 0 when τ →∞, since here it is assumed that they are orthogonal120
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to the mean flow direction. According to the Reynolds decomposition, the longitudinal velocity time record is composed of

the mean velocity U and the random velocity fluctuation component u′
1(t) = u1(t)−U so that the mean of the longitudinal

velocity fluctuations ⟨u′
1(t)⟩= 0.

In certain circumstances, it is possible to map u′
1(t) from time to space coordinates by applying the Taylor’s (frozen-eddy)

hypothesis (Taylor, 1938; Wyngaard, 2010), which relates temporal and spatial velocity statistics. Taylor argues that eddies125

can be regarded as frozen in time if they are passing the probing volume much faster than they evolve in time. This is the

case if the turbulence intensity I = σu′
1
/U is much smaller than the unity, i.e., I ≪ 1, where σu′

1
= ⟨u′2

1 ⟩1/2 is the Root-Mean-

Square (RMS) velocity fluctuation. Then, the series of time lags ∆t= t− t0 relative to the start time t0 is mapped onto a

distance vector with x= x0 +U∆te1 (Taylor, 1938), where x0 is the initial position at time t0. This approach is found to be

reliable for I ≲ 0.25 (Nobach and Tropea, 2012; Wilczek et al., 2014; Risius et al., 2015) while it has been shown to fail when130

I > 0.5 (Willis and Deardorff, 1976). The application of Taylor’s hypothesis is inaccurate in case of large-scale variations of the

velocity fluctuation field comparable to the mean velocity, which are known as “random sweeping velocity” (Kraichnan, 1964;

Tennekes, 1975). Complicating the estimation of the mean velocity, random sweeping causes the mean energy dissipation rate

to be consistently overestimated (Lumley, 1965; Wyngaard and Clifford, 1977).

One way to cope with non-stationary velocity time records is to evaluate the mean velocity for a subset of this signal. If the135

averaging time τ is finite, the time average Uτ may differ from the mean velocity U causing a systematic bias in the subsequent

data analysis. The estimation variance of the time average Uτ can be analytically expressed as (Wyngaard, 2010; Pope, 2000,

among others)

⟨(Uτ −U)2⟩ ≈ 2⟨u′2
1 ⟩T
τ

, (2)

where T is the integral time scale and ⟨u′2
1 ⟩ the variance of the velocity time series. Notably, the size of the averaging window140

has to be large enough such that it fulfills ⟨u′
1(t)⟩τ ≈ 0 to apply the Reynolds decomposition.

2.2 Estimating the Energy Dissipation Rate

The energy dissipation rate can be derived from various statistical quantities. A non-exhaustive list of the most common

methods applicable to single-point measurements is shown in Table 1. Details of selected methods considered in this study are

presented in the following subsections. If not explicitly mentioned, the averages denoted with ⟨·⟩ are defined globally.145
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range Dissipation estimate (Eq.) symbol definition assumption
dissipative sub-range instantaneous (3) ϵ0 2ν (sijsij)

(local) volume average (4) ϵR(x, t)
3

4πR3

∫∫∫
V(R)

ϵ0(x+ r, t)dr SHI

(longitudinal) gradient (6) ϵG 15ν

〈(
∂u′

1(x)
∂x1

)2〉
SHI

2nd-order SF (dissipation range) ∗ ϵD2 15νDLL(r)/r
2 SHI, r ≲ ηK

zero-crossings ∗ ϵ+ 15π2ν⟨u′2
1 ⟩N2

L SHI
inertial sub-range 4/5 law ∗ ((7), n= 3) ϵI3 −5/4DLLL(r)/r SHI, K41

2nd-order SF (inertial range) ((7), n= 2) ϵI2 (DLL(r)/C2)
3/2

/r SHI, K41

spectral (9) ϵS

(
κ
5/3
1 E11(κ1)
18/55CK

)3/2

SHI, K41

cutoff filter ∗ ϵC

(
2
3

2⟨u′2
C ⟩

18/55CK

(
κ
−2/3
1,low −κ

−2/3
1,up

))3/2

SHI, K41

energy injection scale scaling argument (10) ϵL Cϵσ
3
u′
1
/L11 SHI

global mean (5) ⟨ϵ⟩ lim
R→∞

⟨ϵ0(x, t)⟩R SHI
Table 1. Various definitions of the energy dissipation rate from the dissipative and inertial sub-range to the energy injection range. Here,
the definitions for various dissipation estimates are given in the space or wavenumber domain where ν is the viscosity, sij is the velocity
fluctuation strain rate tensor, R is the radius of the averaging volume V(R) (window size for 1D data), u′

1(x) is the longitudinal velocity
fluctuation field along e1, DL...L(r) is the nth-order longitudinal Structure Function (SF) for distance r, ⟨u′2

1 ⟩ is the variance of u′
1(x), σu′

1

is the standard deviation of u′
1(x), NL is the number of zero crossings of a velocity fluctuation signal per unit length, C2 ≈ 2, E11(κ1) is

the one-dimensional energy spectrum with wavenumber κ1, CK ≈ 1.5, ⟨u′2
C⟩ is the variance of a band-pass filtered signal for wavenumbers

κ1 ∈ [κ1,low,κ1,up], Cϵ is the dissipation constant, L11 is the longitudinal integral scale, and ηK is the Kolmogorov length scale. Dissipation
estimates indicated with ∗ are not considered in detail in this work. The assumptions of stationarity (S), homogeneity (H), local isotropy (I)
and Kolmogorov’s second similarity hypothesis from 1941 (K41) are represented by their individual abbreviations. References are given in
the corresponding sections in the main text.

2.2.1 Dissipative sub-range

Proceeding from the Navier-Stokes equations for an incompressible, Newtonian fluid, the instantaneous energy dissipation rate

is given by 2ν (SijSij) (e.g., Pope, 2000; Davidson, 2015). As the velocity gradients are dominated by small-scale fluctuations,

turbulent kinetic energy is dissipated into heat at small scales. Therefore, the contribution of large-scale variations of the veloc-

ity is small compared to the contribution of the small scales (Pope, 2000; Elsner and Elsner, 1996). Hence, the instantaneous150

energy dissipation rate can be defined in terms of the velocity fluctuations only, i.e., replacing Sij by the fluctuation strain rate

tensor sij = (∂u′
i(x, t)/∂xj + ∂u′

j(x, t)/∂xi)/2 (Pope, 2000):

ϵ0(x, t) = 2ν (sijsij) . (3)
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Averaged over a sphere with radius R and volume V(R), the (local) volume average of the instantaneous energy dissipation

rate is (Pope, 2000)155

ϵR(x, t) = ⟨ϵ0(x, t)⟩R =
3

4πR3

∫∫∫
V(R)

ϵ0(x+ r, t)dr . (4)

The local volume average ϵR(x, t) converges to the global mean energy dissipation rate if R tends to infinity (Pope, 2000):

⟨ϵ⟩= lim
R→∞

⟨ϵ0(x, t)⟩R =−ν lim
|r|→0

∂2
rjRii(r, t) , (5)

where the right-hand-side follows from partial integration and Rii is the diagonal component of the velocity covariance tensor,

see Eq. (A1) and Table A1. In experiments, it is often not possible to measure ϵ0(x, t). Under the assumption of statistically160

homogeneous and isotropic turbulence, the volume/time-averaged energy dissipation rate are typically inferred from one-

dimensional surrogates (Taylor, 1935; Elsner and Elsner, 1996; Siebert et al., 2006; Almalkie and de Bruyn Kops, 2012;

Champagne, 1978; Donzis et al., 2008, among others), such as from the longitudinal velocity gradient (hence, the subscript G):

ϵG =−15ν lim
|r|→0

∂2
r1R11(r, t) = 15ν

〈(
∂u′

1(x, t)

∂x1

)2
〉

=
15ν

U2

〈(
∂u′

1(t)

∂t

)2
〉

, (6)

where the mapping between space and time domains is possible by applying Taylor’s hypothesis if σu′
1
/U ≪ 1 and R11 is the165

longitudinal component of the velocity covariance tensor defined in Eq. (A1) (Siebert et al., 2006; Muschinski et al., 2004).

The relationship shown in Eq. (6) is often called the “direct” method in the literature (Muschinski et al., 2004; Siebert et al.,

2006, e.g.) and requires a spatial resolution higher than the Kolmogorov length scale ηK to be accurate to ∼ 10% (cf. Fig. A8).

The deviation of ϵG from its global mean ⟨ϵ⟩ depends quadratically on the turbulence intensity (Lumley, 1965; Wyngaard and

Clifford, 1977; Champagne, 1978; Muschinski et al., 2004).170

2.2.2 Inertial sub-range: structure functions

Kolmogorov’s second similarity hypothesis from 1941 (Kolmogorov, 1941) provides another method for estimating the energy

dissipation rate in the inertial range. Based on the inertial range scaling of the nth-order longitudinal structure function, the

mean energy dissipation rate can be calculated by (Pope, 2000)

DL...L(r) = Cn(ϵInr)
ζn ⇔ ϵIn =

(
DL...L(r)

Cn

)1/ζn 1

r
, (7)175

where Cn is a constant, e.g., C2 ≈ 2 (Pope, 2000), and ζn = n/3 according to K41 by dimensional analysis. In practice, ϵI2

(Table 1) is retrieved either by fitting a constant to the compensated longitudinal second-order structure function DLL(r),

n= 2 in Eq. (7), or a power law (∝ r2/3) to the inertial range of DLL, defined in Eq. (A3), if the inertial range is pronounced

over at least a decade. Accounting for intermittency, the scaling exponent of the nth-order structure function is modified to
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ζn = n
3 [1−

1
6µ(n− 3)] where µ is the internal intermittency exponent (Kolmogorov, 1962; Obukhov, 1962; Pope, 2000). The180

inertial range is bounded by the energy injection scale L at large scales and by the dissipation range at small scales. That is

why the fit-range has to be chosen such that ηK ≪ r≪ L. If the inertial range is not sufficiently pronounced, the extended

self-similarity may be used to extend the inertial range (Benzi et al., 1993b, a). Otherwise, ϵI2 can also be approximated by the

maximum of Eq. (7) (for n= 2) within the same range as before. This is possible because the maximum lies on the plateau in

case of a perfect K41 inertial range scaling.185

In the inertial range, the transverse second-order structure function DNN (r) is equal to 4DLL(r)/3 in a coordinate system

where r = re1 is parallel to the longitudinal flow direction (Pope, 2000) highlighting the importance of the measurement

direction.

2.2.3 Inertial sub-range: spectral method

According to K41 (Kolmogorov, 1941), the inertial sub-range of the energy spectrum function scales as E(κ)∝ ⟨ϵ⟩2/3κ−5/3190

with the wavenumber κ by dimensional analysis. In isotropic turbulence, the energy spectrum function can be converted

into a one-dimensional energy spectrum E11(κ1), see Eq. (A7). The wavenumber space is not directly accessible from one-

dimensional velocity time-records. Relying on Taylor’s hypothesis, the one-dimensional energy spectrum E11(κ1) transforms

to the frequency domain with F11(f) = 2πE11(κ1)/U where κ1 = 2πf/U (e.g., Wyngaard and Clifford, 1977; Oncley et al.,

1996) yielding:195

F11(f) = 18/55CK

(
U

2π
ϵS

)2/3

f−5/3 , (8)

which yields

ϵS =
2π

U

(
f5/3F11(f)

18/55CK

)3/2

, (9)

with the Kolmogorov constant CK = 1.5 (Sreenivasan, 1995; Pope, 2000). Depending on the Fourier transform convention,

the prefactor of CK , i.e., in the convention used here 18/55 has to be adapted accordingly (e.g., Wyngaard, 2010). Applying200

Taylor’s hypothesis to a flow with a randomly-sweeping mean velocity causes the Kolmogorov constant to be systematically

overestimated whereas the scaling of power-law spectra remains unaffected (Wilczek and Narita, 2012; Wilczek et al., 2014).

Hence, Eq. (9) is still valid for a randomly-sweeping mean velocity although ϵS is overestimated if CK is not corrected for

random sweeping.

F11 has the units of a power spectral density m2 s−1 and ⟨u′2
1 ⟩=

∫∞
0

F11(f)df . Under the assumption of Kolmogorov205

scaling in the inertial sub-range, this identity can be adopted to estimate the mean energy dissipation rate from low and moderate

resolution velocity measurements of a finite averaging window (Fairall et al., 1980; Siebert et al., 2006; O’Connor et al., 2010;

Wacławczyk et al., 2017).
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2.2.4 Energy injection scale

In equilibrium turbulence, the rate at which turbulent kinetic energy is transported across eddies of a given size is constant210

in the inertial range assuming high enough Reynolds numbers (e.g., Lumley, 1992). By a dimensional argument, this rate is

proportional to u3(l)/l, where u(l) is the characteristic velocity scale of eddies of length l. Considering the integral scale L11

and its characteristic velocity scale u(L11), namely the RMS velocity fluctuation σu′
1
, the mean energy dissipation rate can be

calculated by (Taylor, 1935)

ϵL = Cϵ

σ3
u′
1

L11
, (10)215

where Cϵ is the dissipation constant and for time- and space-varying turbulence, it depends on both initial as well as boundary

conditions and the large-scale structure of the flow (Sreenivasan, 1998; Sreenivasan et al., 1995; Burattini et al., 2005; Vassil-

icos, 2015). Cϵ is found to be about 0.5 for shear turbulence (Sreenivasan, 1998; Pearson et al., 2002) and 1.0 (Sreenivasan,

1984; Sreenivasan et al., 1995) or 0.73 (Sreenivasan, 1998) for grid turbulence. In this work, Cϵ is assumed to be 0.5 which

holds approximately in a variety of flows (Risius et al., 2015; Sreenivasan, 1995, and references therein).220

Usually, the longitudinal integral length scale L11 is defined as (Pope, 2000)

L11 = lim
r0→∞

r0∫
0

drf(r) =
πE11(0)

2⟨u′2
1 ⟩

, (11)

where f(r) =R11(r)/R11(0) is the longitudinal autocorrelation function (see also Eq. (A1) and Table A1). However, due

to experimental limitations, r0 is often given by the first zero-crossing of f(r) in both laboratory and in situ measurements

(e.g., Risius et al., 2015), or, alternatively, by the position where f(r) = 1/e (Tritton, 1977; Bewley et al., 2012). Griffin et al.225

(2019) carried out an integration for r→∞ performing an exponential fit in the vicinity of f(r) = 1/e. Notably, E11(0) =∫∞
0

dκE(κ)/κ so that the estimation of L11 from the power spectrum is only recommended if E(κ) = 1
2κ

3 d
dκ

(
1
κ

dE11(κ)
dκ

)
(Pope, 2000) is accurately determined like in DNS. This approach not only requires a fully resolved velocity measurement but

also a well converged E11(κ1) as the conversion is highly sensitive to statistical scatter. Ultimately, the choice of L11 strongly

affects ϵL. In this work, we integrate f(r) to the first zero-crossing because it does not depend on assumptions on the decay of230

f(r) and the choice of the fit-range.

2.3 Simulations of homogeneous isotropic turbulence

In this study, the direct numerical simulations of statistically homogeneous isotropic turbulent flow with 74≤ Rλ ≤ 321 are

used as the basis for evaluating the different methods for determining the dissipation rate, see Table 2. Thereby, the performance

of the different methods to estimate the energy dissipation rate is not affected by violating fundamental assumptions, e.g.,235

anisotropy or inhomogeneity. The simulations are carried out with the parallel solver TurTLE (Lalescu et al., 2022), which
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solves the Navier-Stokes equations on a periodic domain using a pseudo-spectral method with a third-order Runge-Kutta time

stepping. Here, we use a forcing scheme with a fixed energy injection rate on large scales.

To mimic an ensemble of single-point measurements, we introduced 1000 virtual probes into the flow (one-way coupled,

i.e., without back-reaction on the flow), which move with a given constant speed in randomly-directed straight paths to record240

the local flow velocity. Since the trajectories of the virtual probes are randomly oriented and the probability that they are

exactly aligned with the simulation boundaries is low, the effect of periodic boundaries on the recorded velocity signal is

expected to be small. We assume that the virtual probe records idealized velocity time series neglecting the effect of transfer

functions (e.g., Horst and Oncley, 2006; Freire et al., 2019, regarding sonic anemometry) or noise (Lenschow and Kristensen,

1985; Antonia, 2003; Lewis et al., 2021). While the root-mean-square velocity fluctuation is determined by the Navier-Stokes245

simulation, we can control the mean flow speed through the speed of the virtual probe. The range of used constant speeds

corresponds to turbulence intensities of 1-50%. Along the trajectories, we then sample the local three-dimensional velocity

field (see Fig. 1) as well as the velocity gradient field, where we use spline-interpolation to determine values in between grid

points, see also (Lalescu et al., 2010, 2022). By projecting the velocity vector on the direction of the trajectory, e1, and the

orthogonal directions, e2 and e3, we split the velocity field in longitudinal and transverse components, respectively. From250

the sampled velocity gradient tensor, we compute the local instantaneous dissipation ϵ0. The time step is limited either by the

stability requirements of the flow solver or, for smaller turbulence intensities, by the required sampling frequency to capture the

underlying flow. Here, we choose the time step such that the distance traveled by the probe within one step is around a tenth of

the grid spacing, U∆t≈ 0.1∆x. The grid spacing ∆x is chosen such that the highest wavenumber kmax satisfies kmaxηK ≈ 3.

Using Taylor’s hypothesis, the longitudinal velocity time series correspond to at least 13L11 (for more details see Table 2) so255

that second- and third-order moments of both longitudinal velocity fluctuations and increments are reasonably converged (see

Fig. A3). To estimate ϵI3, ϵI2 and ϵS , the longitudinal structure functions are evaluated for scales 20ηK ≤ r ≤ 500ηK or in

frequency domain for U
500ηK

≤ f ≤ U
20ηK

. The ground-truth reference for the mean energy dissipation rate per virtual probe is

given by ⟨ϵ0(x, t)⟩VP, i.e., the average of the dissipation field along the trajectory of each virtual probe. The global mean energy

dissipation rate can be approximated by the ensemble average of all ⟨ϵ0(x, t)⟩VP from all virtual probes, i.e., ⟨⟨ϵ0(x, t)⟩VP⟩N .260

2.4 Variable Density Turbulence Tunnel (VDTT)

To evaluate the performance of different methods at Reynolds numbers applicable to atmospheric flows, we use the high-

resolution hot-wire measurements of the longitudinal velocity components in the MPIDS VDTT (VDDT, Bodenschatz et al.,

2014). The VDTT datasets used here are associated with 147≤ Rλ ≤ 5864, which enables us to bridge the gap between DNS

(74≤ Rλ ≤ 321) and atmospheric Rλ ∼O(103) Risius et al. (2015).265

The VDTT is a recirculating wind tunnel where the working gas SF6 is pressurized up to 15 bar to increase its density

and thereby enhancing the Taylor-scale Reynolds number. To achieve the same density in air, the pressure would have had to

be about 100 bar, which would have required a much thicker tunnel wall and more expensive construction. The VDTT has

a horizontal length of 11.68 m and an inner diameter of 1.52 m where the rotation frequency of the fan sets the mean flow

velocity ranging from 0.5 m/s to 5.5 m/s (Bodenschatz et al., 2014). Long-range correlations of the turbulent flow determine its270
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case id box size Rλ ηK [c.u.] I L11/ηK L/L11

DNS 1.1 512 74 0.015 0.01 41.2 161
DNS 1.2 512 74 0.015 0.05 41.4 160
DNS 1.3 512 74 0.015 0.10 41.3 160
DNS 1.4 512 74 0.015 0.24 41.3 21
DNS 1.5 512 74 0.015 0.50 41.4 16
DNS 2.0 1024 142 0.007 0.11 99.0 332.8
DNS 2.1 1024 219 0.007 0.01 147.8 15.6
DNS 2.2 1024 217 0.007 0.06 147.6 15.7
DNS 2.3 1024 216 0.007 0.11 147.9 15.6
DNS 2.4 1024 212 0.007 0.27 146.8 15.7
DNS 2.5 1024 207 0.007 0.53 145.5 15.8
DNS 3.1 2048 302 0.003 0.01 260.9 13.6
DNS 3.2 2048 299 0.003 0.05 258.2 13.8
DNS 3.3 2048 295 0.003 0.11 254.8 14.0
DNS 3.4 2048 314 0.004 0.26 275.6 20.2
DNS 3.5 2048 321 0.004 0.53 282.9 14.7

Table 2. Parameter overview for each DNS. Rλ is the Taylor scale Reynolds number, ηK the Kolmogorov length scale, I = σu′
1
/U is the

turbulence intensity, L11 the longitudinal integral length scale derived from E(κ), L is the average probe track distance and Np the number of
virtual probes. The turbulence intensity I is controlled by setting the probe mean velocity where σu′

1
≈ 1 is the root mean square longitudinal

velocity fluctuation. For all cases kmaxηK ≈ 3, with kmax being the largest resolved wavenumber. For DNS 1.x and 2.x, the energy injection
rate Ėin in code units is 0.4, while for DNS 3.x it is set to 0.5. The number of virtual probes Np for DNS 1.x is 10000, whereas for DNS 2.x
and DNS 3.x Np = 1000.

anisotropy. These long-range correlations are shaped with the help of an active grid consisting of 111 independently rotating

winglets (Küchler et al., 2019; Küchler, 2021).

Longitudinal velocity fluctuations are temporally recorded with 30 µm to 60 µm long NanoScale Thermal Anemometry

Probes (NSTAP; Bailey et al., 2010; Vallikivi et al., 2011, among others) or a 450 µm long conventional hot-wire from Dantec

(Jørgensen, 2001) corresponding to a resolution of < 3ηK and < 5ηK , respectively (Küchler et al., 2019) at variable distances275

from the active grid ranging from ≈ 6−9m. The velocity measurements have been extensively characterized in terms of

the mean flow profiles (Küchler, 2021) as well as the decay of turbulent kinetic energy (Sinhuber et al., 2015; Sinhuber,

2015) exposing velocity probability distribution functions (PDF) being flatter than Gaussian (Küchler, 2021). The inertial-

range scaling exponent ζ2 of the longitudinal second-order structure function is in agreement with Kolmogorov’s revised

phenomenology from 1962 (ζ2 = 0.693±0.003 for Rλ > 2000) for a large variety of wake generation schemes (Küchler et al.,280

2020). In the case of hot-wire measurements in the VDTT, the ground-truth energy dissipation rate for a given averaging

window R is given by the gradient method ⟨ϵG⟩R, which converges fastest as shown in Sec. 3.5.

2.5 Strategies for the evaluation of systematic and random errors

The virtual probes record one-dimensional time records of the DNS longitudinal velocity component, from which the mean

energy dissipation rate can be estimated by various methods and compared with the energy dissipation rate obtained directly285
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Figure 1. From single-point velocity time records to the energy dissipation rate. (A) Virtual probe sampling the three-dimensional velocity
field of the DNS 3.1 (see Table 2) in time and space at a mean velocity U along its e1-direction corresponding to turbulence intensity of
1%. (B) One-dimensional velocity time series u1(t) (blue solid) with corresponding time average U = ⟨u1(t)⟩ (red dashed line, i.e. Eq. (1))
of the same DNS 3.1, where u1(t) is rescaled by ⟨u1(t)⟩. (C) Visualization of the workflow from one-dimensional velocity time record
u1(t) to the energy dissipation rate via different methods. First, u1(t) is decomposed in its mean and fluctuating part according to Reynolds
decomposition (RD). Then, the velocity time series is converted into a one-dimensional velocity field invoking Taylor’s hypothesis (TH).
Subsequently, second-order statistics (2nd-ord. St.) of the longitudinal velocity fluctuations, its increments and first spatial derivative are
inferred from which the energy dissipation rate is estimated with the help of different methods.

from the DNS dissipation field. Generally, there are two different errors when estimating the mean energy dissipation rate,

namely the systematic errors and random errors. The latter is related to the estimation variance of the mean energy dissipation

rate, i.e., the statistical scatter of the ⟨ϵ⟩R-estimates around the ground truth of the local mean energy dissipation rate defined in

Eq. 4. The systematic error of the mean energy dissipation rate estimates expresses itself in a non-vanishing ensemble average

of the deviations from the ground-truth, i.e., the global volume average defined in Eq. 5.290

Systematic errors are an inherent feature of the methods used for estimating the dissipation rate, but are also affected by

experimental limitations and imperfections such as averaging windows and finite turbulence intensity parameterized by R

and I , respectively. One way to estimate these errors is to compare the estimated mean energy dissipation rate for a given

averaging window R to the ground-truth of the DNS defined by the mean energy dissipation rate per virtual-probe track, i.e.,

⟨ϵ0(x, t)⟩VP,R. Another possibility is to compare the estimates to the ensemble average of the mean energy dissipation rate from295

all virtual probes, i.e., ⟨⟨ϵ0(x, t)⟩VP,R⟩N , where N = 1000 is the total number of virtual probes. Either of these possibilities
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is valid and would be interesting to understand. However, our analysis (not presented here) yields that the second approach is

associated with a slightly higher value for the systematic error and a slightly higher standard deviation. For that reason, we

have chosen the second approach to make a conservative assessment of the systematic errors, i.e., we compare the estimates of

each method against ⟨⟨ϵ0(x, t)⟩VP,R⟩N , by300

βi =
⟨ϵi⟩R

⟨⟨ϵ0(x, t)⟩VP,R⟩N
− 1 , (12)

where i ∈ {G,I3, I2,S,L} and ⟨ϵi⟩R is the estimate of the energy dissipation rate via method i under the experimental lim-

itation and imperfection such as size of averaging window or finite turbulence intensity. To distinguish between the different

error terms in this manuscript, we refer to β as “reference-compared” systematic error.

In addition, the systematic error can be evaluated by comparing the estimates of the energy dissipation rate obtained by305

a method with imperfect data against the estimates obtained by the same method with optimal data. We denote these types

of errors with δ and refer to them as “self-compared” errors. An experimental imperfection we considered here is the sensor

misalignment, which is a non-zero angle of incidence θ between the longitudinal flow direction that sensor expect and U . To

investigate the isolated effect of sensor misalignment, we consider a specific set of DNS with constant turbulence intensity (I =

1%) and the entire track length for each virtual probe. The self-compared systematic error of each method due to misalignment310

is defined as

δi(θ) =
ϵi(θ)

ϵi(0)
− 1 , (13)

where ϵi(θ) is the estimate of the energy dissipation rate via method i ∈ {G,I3, I2,S,L} from data with misalignment θ and

ϵi(0) is the estimated dissipation rate from the same method and flow conditions but with an aligned sensor, i.e., θ = 0.

Estimates of the mean energy dissipation rate are susceptible not only to systematic errors, but also to random errors due315

to statistical uncertainty. For the averaging window, errors given by Eq. (12) would be the best indicator of systematic errors.

However, random errors due to size of averaging window can also be significant. When the spatial averaging window R (or

temporal averaging window τ ) is finite, we capture the self-compared random error for each individual method by

δi(R) =

√√√√〈( ⟨ϵi⟩R
⟨⟨ϵi⟩R⟩N

− 1

)2
〉

N

, (14)

where ⟨ϵi⟩R is the local mean energy dissipation rate based on the averaging window R normalised by its ensemble average,320

i.e., ⟨⟨ϵi⟩R⟩N . Eq. (14) indeed calculates the standard deviation of the normalized ⟨ϵi⟩R, which is used here as a proxy for the

random error. Table 3 provides an overview of the different error types and terminologies used here.
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Symbol Definition Equation
βi reference-compared systematic error, i.e., relative to ground-truth reference ⟨⟨ϵ0(x, t)⟩R⟩N (12)

δi(θ) self-compared (systematic) error of each method at a given misalignment angle θ relative to (13)
the estimates provided by the same method but at θ = 0

δi(R) self-compared (random) error at a given averaging window of R or τ relative to the average (14)
value from all virtual probes at the same averaging window of R or τ

Table 3. Different types of errors investigated in this study and their definitions. i ∈ {G,I3, I2,S,L}, where G stands for gradient method,
I3 for 4/5 law, I2 for second-order structure function in the inertial range, S for the spectral method, and L for the scaling argument. The
averaging window is denoted spatially by R and temporally by τ . The misalignment angle is represented by θ.

3 Results and Discussion

In the following, we first focus on the DNS data to calculate ϵG, ϵI3, ϵI2, ϵS , and ϵL from the entire longitudinal velocity time

records of all virtual probes and compare these estimates against the ground-truth reference. Then, we systematically investigate325

the impact of turbulence intensity, (virtual) probe orientation, and averaging window size for all methods of interest. The

influence of flow Reynolds number on the presented results are then discussed by taking into account the VDTT data together

with the DNS data. Finally, we provide a proof of concept for a time-dependent dissipation rate calculation by comparing the

dissipation time series measured by ϵG, ϵI2, and ϵL and its coarse-grained surrogate. In the following, we use the definitions of

systematic and random errors as mentioned in Sec. 2.5 and Table 3.330

3.1 Verification of the analytical methods and a first insight into their performance under ideal conditions

To verify the implementation of our methods, only data from cases with a low turbulence intensity of 0.01 and an averaging

window covering the entire size of the probe track are used in this section. Furthermore, ϵI2 and ϵI3 are obtained by a fit

according to Eq. (7) with n= 2 and n= 3, respectively, in the inertial range with r ∈ [20ηK ,500ηK ] for DNS 2.1 and 3.1.

Analogously, ϵS is inferred from the inertial range fit, Eq. (9), in the range f ∈ [U/(500ηK),U/(20ηK)]. For DNS 1.1 with335

Rλ = 74, due to the absence of an inertial range for low Taylor-scale Reynolds number (see Fig. A7), the maximum of Eq. (7)

is used to infer ϵI2 and ϵI3 instead of fitting the inertial range.

β errors mean [%] median [%] std. dev. [%] range [%]
βref 0.0 -0.7 18.6 -49.8...68.2
βG -0.5 -1.7 19.3 -48.1...75.4
βI2 8.8 3.1 41.7 -69.6...199.8
βI3 49.2 10.1 123.1 -93.1...822.2
βS 4.1 -2.0 32.1 -55.2...210.4
βL 40.0 31.5 59.6 -69.5...352.9

Table 4. Statistics (mean, median, standard deviation and range) of the reference-compared systematic errors for different methods and case
DNS 3.1 with Rλ = 302. Here βref is defined as = ⟨ϵ0(x, t)⟩VP/⟨⟨ϵ0(x, t)⟩VP⟩N − 1, which shows the actual variability in the dissipation
rate field. The last column shows the range of minimum to maximum percentage deviation from the mean.
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Figure 2. Validation of estimating the energy dissipation rate from ϵG, ϵI2, ϵI3, ϵS , and ϵL re-scaled by the energy injection rate Ėin. The
data are taken from DNS 3.1 with 1000 probes, Rλ = 302, I = 1%, θ = 0◦ and maximal available averaging window (R≈ 3550ηK ). The
ensemble mean of each method ⟨ϵi⟩N is denoted by red dots where the whiskers extend from the minimal to maximal estimate of ϵi where
i ∈ {G,I3, I2,S,L}. The reference mean energy dissipation rate for each probe is given by ϵref. The dashed line represents the re-scaled
global mean energy dissipation rate of DNS 3.1 which is approximated by the ensemble average of the true mean energy dissipation rate
along the trajectory of each virtual probe.

The distribution of the mean energy dissipation rate estimated by ϵG, ϵI2, ϵI3, ϵS , and ϵL for each probe at Rλ = 302 is shown

in Fig. 2 and Table 4. Estimations for other Rλ are shown in supplementary Fig. A1. The best performing method is the gradient

method ϵG with the range being also very close to the range of βref, where as ϵI3 is associated with the mean highest deviation.340

The superior performance of ϵG compared to others is mainly due to the fact that it relies on (dissipation-range) second-order

statistics that can be captured with fast statistical convergence within a short sampling interval. Hence, the distribution of ϵG

and ϵref are similar. ϵI3, on the other hand, relies on third-order moments of the velocity increments of inertial scales associated

with slower statistical convergence compared to ϵG. Therefore, ϵI3 requires longer velocity records than ϵG to converge under

stationary conditions. For this reason, the third-order structure function is not considered further in this study, as one of the345

main objectives of this study is to evaluate different methods suitable for extracting the time-dependent energy dissipation rate.

Figure 2 and Table 4 also shows that the estimates of the energy dissipation rate provided by DLL(r) and E11(κ1) are

close to each other, which can be explained by the fact that they are both second-order quantities (in real and Fourier space,

respectively) connected by f(r). Unlike ϵG, both ϵI2 and to a lesser extent ϵS tend to overestimate the energy dissipation

rate. However, ϵS depends much stronger on properly setting the fit-range than ϵI2 (supplementary Fig. A2). The spectral350

method ϵS can differ by a factor of 2 from ϵI2 depending on the high-frequency limit. This factor of 2 is in accordance with

a comparison of ϵI2 and ϵS by a linear fit resulting in a slope close to 0.5 (Akinlabi et al., 2019). In the DNS, the power

spectrum is subject to strong statistical uncertainty at high frequencies without ensemble-averaging the spectra of each virtual

probe or longer DNS runtimes. As the high-frequency limit of the inertial range of the spectrum is hardly distinguishable

from its dissipation range, the choice of the fit-range range for ϵS is related to the fit-range of the longitudinal second-order355

structure function by f ∈ [U/(500ηK),U/(20ηK)] as mentioned above. Wacławczyk et al. (2020) found that the estimation of
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the energy dissipation rate from the power spectral density is generally robust at small wavenumbers (i.e. larger length scales)

whereas the second-order structure function performs better at small length scales (i.e. larger wavenumbers). With our choice

of the fit-range r ∈ [20ηK ,500ηK ] for DNS 3.1 dataset shown in Fig. 2, we confirm that ϵI2 is already reliable at the lower end

of the inertial range where dissipative effects are negligible.360

At last, ϵL overestimates by 40% on average, this systematic overestimation might be due to the difficulty in determining L11

as different methods for estimating the integral length L11 can contribute to the systematic bias of ϵL. As mentioned above, we

infer the longitudinal integral length from fitting f(r) to the first zero crossing which yields, at least in the DNS of this work,

a systematic underestimation due to the scatter in both σu′
1

and L11, as illustrated in Fig. A3 and A4. However, the accuracy

of the dissipation constant Cϵ, which is a function of large-scale forcing and initial conditions (Vassilicos, 2015; Sreenivasan,365

1998; Sreenivasan et al., 1995; Burattini et al., 2005), can potentially cause larger mean deviations. Advantageously, the large-

scale estimate ϵL is applicable to low-resolution measurement. Figure A1 and Table A3 gives an overview of the systematic

errors of the different methods at different Reynolds numbers, showing that the above conclusions are also valid for lower Rλ.

3.2 Validity of Taylor’s hypothesis and impact of random sweeping effects

For a large turbulence intensity the local speed and direction of the flow is significantly varying in time and space, which370

hinders the applicability of the Taylor’s hypothesis. Here, we quantify the impact of random sweeping on the accuracy of

determining the mean energy dissipation rate. Therefore, we set the mean speed of the virtual probes in each DNS so that the

turbulence intensity, and in consequence the random sweeping, is a control parameter.

Figure 3 shows the systematic errors βi for ϵG, ϵI2, ϵS , and ϵL at different turbulence intensities for DNS 3.1-5. For each

virtual probe taken into account in Fig. 3, we used the entire time series so that the size of the averaging window is maximal.375

While each method has a different systematic error and scatter, Fig. 3 indicates that the mean relative deviation of each estimate

from the global mean ⟨⟨ϵ0(x, t)⟩VP⟩N increases with turbulence intensity. This is particularly strong for the gradient method.

For I = 1% and I = 10%, the gradient method has the lowest scatter in terms of the standard deviation σβG
(19.3% and 27.3%)

and the lowest systematic error in terms of the ⟨βG⟩N (−0.5% and 6.1%), respectively. At higher turbulence intensities, ϵI2 is

the least affected method with ⟨βI2⟩N = 6.5% and σβI2
= 37.2% for I = 25% as well as ⟨βI2⟩N = 24.5% and σβI2

= 56.9%380

for I = 50%. At the highest turbulence intensities, both ϵL and ϵS are associated with lower mean β than that of ϵG.

The fraction of track samples that can lead to a deviation of larger than 100% increases from 0% to ∼ 60% for ϵG as the

turbulence intensity increases from 1% to 50%. We hypothesize that these deviations of the mean are the result of random

sweeping effects, which limit the applicability of Taylor’s hypothesis. In frequency space, Taylor’s hypothesis (Taylor, 1938)

establishes a one-to-one mapping between the frequency and the streamwise wavenumber, i.e., ω = κ1U . As the turbulence385

intensity grows, a randomly sweeping mean velocity smears out this correspondence between frequencies and wavenumbers.

For the spectrum, this smearing out effectively moves energy from larger scales to smaller and less energetic ones (Lumley,

1965; Tennekes, 1975). Therefore, it leads to an overestimation in the inertial and dissipation range of the spectrum, thus,

affecting the inertial range and gradient method. To visualize this overestimation, we evaluate the effect of random sweeping

on the spectrum (Eq. (B2)) numerically for different turbulence intensities at the example of a model spectrum (Eq. (B4)). The390
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result is shown in Fig. 4, where the spectrum is pre-multiplied by κ2
1 to later highlight the effect on the gradient method. Here,

the overestimation is most pronounced in the dissipative range.
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Figure 3. Systematic error βi, Eq. (12), as a function of turbulence intensity I ∈ {0.01,0.05,0.1,0.25,0.5} for ϵG (•), ϵI2 (▶), ϵS (■), and
ϵL (▲). The energy dissipation rates are estimated from each longitudinal velocity time series of DNS 3.1-5 with ideal alignment (θ = 0◦)
where the maximal available window size was used. The fit-range for the inertial range of the power spectral density is chosen to be within
U/(500ηK)≤ f ≤ U/(20ηK) where ηK is the Kolmogorov length scale, and, equivalently in space domain, 20ηK ≤ r ≤ 500ηK for the
longitudinal second-order structure function. The upper limit of the y-axis is chosen to be 7.1 for improving the plot visibility (there are some
outliers of ϵG for I = 50%).

To quantify the impact of random sweeping on estimates of ⟨ϵ⟩, we first consider the influence of random sweeping on the

gradient method. For the gradient method, Lumley (1965) and Wyngaard and Clifford (1977) have shown that in isotropic

turbulence random sweeping leads to an relative deviation of the volume-averaged mean energy dissipation rate by395

ϵG
⟨ϵ⟩

− 1 = βG = 5I2 with ϵG = 15ν

∫
κ2
1E11(κ1)dκ1 = ⟨ϵ⟩[1+ 5I2] . (15)

We illustrate this result in the appendix Sec. B, where we consider a model wavenumber-frequency spectrum (Wilczek and

Narita, 2012; Wilczek et al., 2014), which is based on the same modeling assumptions used in Wyngaard and Clifford (1977).

Due to the κ2
1-weighting of the gradient method, the mean dissipation rate estimate is highly sensitive to the viscous cutoff

of the energy spectrum, which is overestimated by random sweeping effects, see Fig. 4. As a consequence, deviations of the400

estimated dissipation rate are growing rapidly with turbulence intensity. In the right panel of Fig. 4, we compare the effect

of random sweeping on the gradient method obtained with a model spectrum, the one computed by Lumley (1965), and the

observed deviations by measurements of the virtual probes in a DNS flow; here shown are the DNS 3.1-5. In fact, the estimate

from Lumley (1965) can explain the magnitude of deviations observed by the virtual probes in case of ϵG up to I = 25%.

The strong deviation of βG at I = 50% is likely due to the sensitivity of the gradients on the space-to-time conversion via405

Taylor’s hypothesis: at high turbulence intensities, the mean velocity becomes smaller compared to the fluctuations. Therefore,

the error of estimating the mean velocity due to finite averaging window, Eq. (2), increases relative to the mean velocity.

Larger relative errors in the estimated mean velocity lead - applying Taylor’s hypothesis - to both under- and overestimated
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spatial gradients for the individual averaging windows, additional to the effect of random sweeping. Similarly this results in an

additional overestimation of the dissipation rate. These deviations do not appear in evaluating random sweeping effects based410

on a model spectrum as there the mean velocity is a parameter we choose.

Now let us consider the two inertial sub-range methods. Here, as one can see in Fig. 3 and 4, the increase of the mean

relative deviation, βi, is less pronounced. In the inertial sub-range, random sweeping causes an overestimation of the spectrum

of merely several percent while the inertial range scaling is preserved as shown in Wyngaard and Clifford (1977); Wilczek et al.

(2014). As both the second-order structure function and the spectral method are based on the inertial sub-range of the energy415

spectrum, the effect of a randomly sweeping mean velocity is expected to be small on ϵI2 and ϵS . Here, the overestimation

of the spectrum can be used to express the relative systematic deviation of both ϵI2 and ϵS for different turbulence intensities

analytically:

ϵI2/S

⟨ϵ⟩
− 1 = βI2/S = (CT (I))

3/2 − 1 with CT (I) =
5

6

∞∫
0

[
erf
(
y+1√
2I

)
− erf

(
y− 1√
2I

)]
y2/3 dy , (16)

where CT (I) quantifies the spectral overestimation as function of mean wind and fluctuations defined as in (Wilczek et al.,420

2014). In Fig. 4B we compare the observed deviations from the DNS to Eq. (16). This shows that Eq. (16) underestimates

βI2 for I ∈ {0.01,0.05,0.1} (i.e. DNS 3.1, 3.2 and 3.3). The underestimation is most likely due to additional random errors

associated with finite averaging window lengths. It is obvious from Table 2 that DNS 3.3 has statistically the shortest probe

tracks ∼ 3440ηK (DNS 3.1: ∼ 3550ηK , DNS 3.2: ∼ 3560ηK). Nonetheless, βI2 matches the prediction of Eq. (16) for I ∈
{0.25,0.5} where the corresponding probe tracks statistically amount to ∼ 5570ηK and ∼ 4260ηK , respectively. The effect of425

the averaging window size on ϵI2 is explored in Sec. 3.4. We conclude that Eq. (16) can be used to estimate the error introduced

by random sweeping of ϵI2.

For the spectral method, Eq. (16) underestimates the relative error βS for all turbulence intensities. This may be due to the

strong dependence of ϵS on the U -based fitting range, i.e., f ∈ [U/(500ηK),U/(20ηK)], which can differ significantly between

virtual probes at high turbulence intensities. Further work is needed to assess the dependence of the spectral method on the430

choice of the fit-range for finite turbulence intensities.

Overall, random sweeping effects explain why the gradient method is more sensitive to turbulence intensity than inertial-

range methods. Here, random sweeping accurately captures the deviations of the second-order structure function method as a

function of turbulence intensity whereas it can only partially account for the observed deviations for the spectral method.

3.3 Probe Misalignment435

In this section, we assess the influence of probe misalignment with respect to the mean flow direction on estimating the energy

dissipation rate at the energy injection scale, the inertial range and the dissipation range. Here, we assume the angle θ between

the (virtual) anemometer and the global mean wind direction U
|U | to be constant throughout the sampling trajectory. As it can

be seen from Eq. (C5), ϵL depends on θ. Then, the analytically derived error for ϵL due to misalignment of the sensor and the
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Figure 4. The effects of random sweeping on the energy dissipation estimates. (A) Premultiplied model energy spectrum with random
sweeping effects, Eq. (B2), for turbulence intensities I ∈ {0.1,0.25,0.5} where the original energy spectrum corresponds to I = 0. In
Eq. (B4), ⟨ϵ⟩ is chosen to be equal to 1 m2s−3, the Kolmogorov length scale to ηK ≈ 0.00038 m. uK = (ν⟨ϵ⟩)1/2 is the Kolmogorov
velocity scale. (B) Systematic over-prediction illustrated by the relative error βi, Eq. (12), at different turbulence intensities. The systematic
over-prediction by (Lumley, 1965) (solid black) matches with the numerically obtained systematic error βG for the gradient method relative
to the ground-truth reference ⟨ϵ⟩ by using the model spectrum (Eq. (B3), green squares). Both reasonably estimate the data obtained from
DNS 3.1-5 (blue diamonds) up to a turbulence intensity of I = 25%. Also, we show the systematic over-prediction of inertial sub-range
methods (βS : orange triangles, and βI2: red circles, both from Eq. (12)) compared to the analytically derived error obtained by the random
sweeping model (βI2,S , Eq. (16), grey dashed).

longitudinal wind direction is given by440

δL(θ) =
ϵL(θ)

ϵL(0)
− 1 =

2

cosθ(1+ cos2 θ)
− 1 , (17)

where ϵL(θ) represents the energy dissipation that is derived given an angle of incidence θ and ϵL(0) is the reference value for

perfect alignment of the mean flow direction and the probe, i.e., when θ = 0.

Analogously, the second-order structure function tensor is affected by misalignment (cf. appendix C). Thus, it can be shown

that the analytically derived error δI2(θ) as a function of θ reads445

δI2(θ) =
ϵI2(θ)

ϵI2(0)
− 1 =

(
4− cos2 θ

3

)3/2
1

cosθ
− 1 , (18)

where ϵI2(θ) represents the energy dissipation that is derived given an angle of incidence θ and ϵI2(0) is the reference value

for perfect alignment of the mean flow direction and the probe. As outlined in Appendix C and with Eq. (5), the analytically

derived error of ϵG as a function of θ can be calculated to

δG(θ) =
ϵG(θ)

ϵG(0)
− 1 = 2

(
1

cos2 θ
− 1

)
, (19)450
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Figure 5. Influence of misalignment between probe orientation and the mean flow direction U in terms of the average error of the energy
dissipation rate δi(θ) as a function of the angle of attack θ. The energy dissipation rates are derived from DNS 3.1 with a turbulence intensity
of 1%, Rλ = 293 and maximally available window size. The error bars are given by the standard error of the mean. The analytically derived
errors δL(θ), δI2(θ) and δG(θ) are given by Eqs. (17), (18) and (19) respectively. The ordinate is limited from 0 to 2.2 to guarantee a better
visibility for δL(θ) and δI2(θ). The inset visualizes the misalignment angle θ between the probe orientation and the mean flow direction U .
The rotation axis is denoted by n̂. As mentioned above, the mean flow direction U is considered as the longitudinal direction of the flow.

where ϵG(θ) represents the energy dissipation that is derived given an angle of incidence θ and ϵG(0) is the reference value for

perfect alignment of the mean flow direction and the probe.

To compare the analytical expressions to DNS results, the sensing orientation of the virtual probes is rotated around the

e3-axis in the coordinate system of each the virtual probe by an angle θ relative to their direction of motion, i.e., the e1-axis.

Then, ϵL(θ), ϵI2(θ), and ϵG(θ) are inferred from the new longitudinal velocity component. The ensemble-averaged relative455

errors of the estimated energy dissipation rates δ(θ) due to misalignment is shown as a function of θ in Fig. 5 in the range of

±50◦ both for DNS and the analytically derived Eqs. (19), (17), and (18). In general, the ensemble-averaged systematic errors

follow the analytically derived errors reliably in terms of the limits of accuracy for all Rλ at turbulence intensity I = 1%. The

longitudinal second-order structure function is the best performing method with a systematic error ⟨δI2⟩N of lower than 20%

for θ ∈ [−25◦,25◦], which increase to 100% at θ =±50◦. ⟨δL⟩N is similarly affected by misalignment but slightly larger than460

⟨δI2⟩N . Despite its rapid statistical convergence, ϵG is the most vulnerable method by misalignment compared to the other two

methods.

In experiments where the sensor can be aligned to the mean wind direction within θ ∈ [−10◦,10◦] over the entire record

time, δi(θ) is expected to be small. Further work is needed to evaluate the impact of a time-dependent misalignment angle

θ(t). We suppose that keeping the angle of attack θ fixed over the entire averaging window, here the entire time record of each465

probe, potentially leads to overestimation of δi(θ) with θ being a function of time in practice.
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3.4 Systematic errors due to finite averaging window size R

Here, our goal is to investigate how the accuracy of estimating the global mean energy dissipation rate depends on the averaging

window size by investigating the associated systematic and random errors individually. To do this, we select an averaging

window of size R from the beginning of each track of virtual probes for case DNS 3.1. In this way, we obtain 1 subrecord for470

each virtual probe, which amounts to a total of 1000 subrecords for each averaging window R. From each of these subrecords a

mean value of ϵ0 (i.e. ⟨ϵ0(x, t)⟩VP,R), ⟨ϵG⟩R, ⟨ϵL⟩R and ⟨ϵI2⟩R is then evaluated. The smallest R considered for these analyses

is 501ηK , which is limited by the upper bound of the fitting range r ∈ [20ηK ,500ηK ] for estimating ϵI2. The largest window

size considered in this section is 3000ηK , which is limited by the total length of the virtual-probe track (Table 2).

Before comparing estimates of the energy dispersion rate using different methods, let us first compare the locally averaged475

energy dispersion rate ⟨ϵ0(x, t)⟩VP,R with the instantaneous energy dispersion rate, which is shown in Fig. 6A. All averaging

window sizes create PDFs with similar shape, but significantly different from the shape of the instantaneous field. The larger

the volume over which the dissipation field is averaged, the more the PDF(⟨ϵ0(x, t)⟩VP,R) converges to a peak at the global

mean energy dissipation rate normalised by Ėin, i.e. ⟨ϵ0(x, t)⟩/Ėin ≈ 1.0.

We can further explore the influence of averaging window R for each method by examining the distribution of systematic480

errors, i.e., βi, as shown in Fig. 6B-D. The first main point to note is the fact that all methods at small R tend to peak at a

dissipation rate lower than the global. Hence, the mean energy dissipation rate is most likely underestimated. All PDF(βi(R))

become narrower and the mean relative errors βi(R) converge to 0 as R increases. The second main point to consider is the

statistical uncertainty, causing a random error in estimating the local mean energy dissipation rate ⟨ϵ0(x, t)⟩VP,R. As it can

be seen in Fig. 6B-D, the width of the distribution is wide with asymmetric long tails, especially for βI2 and βL. This is an485

indication that high random errors are to be expected in the estimation of the mean energy distribution rate.

3.5 Random errors due to finite averaging window size R

We now focus on random errors associated with ϵG, ϵL and ϵI2 analytically. We denote ⟨ϵG⟩R, ⟨ϵL⟩R and ⟨ϵI2⟩R the energy

dissipation rates that are estimated for a longitudinal velocity time record for a window of size R. For the calculation of random

errors caused by the choice of the size of the averaging window, we consider DNS 1.3, 2.3, and 3.3, as well as wind tunnel490

experiments that all have a comparable turbulence intensity of I ≈ 10%.

Both the second-order structure function, Eq. (A3), and the scaling argument, Eq. (10), depend on the variance ⟨u′2
1 ⟩ of the

longitudinal velocity time record. ϵG is also related to ⟨u′2
1 ⟩ through Eqs. (6) and (A1). The variance ⟨u′2

1 ⟩ itself is subject

to both systematic and random errors in case of a finite averaging window R<∞. Assuming an ergodic, hence, a stationary

velocity-fluctuation time-record with a vanishing mean, the systematic error in estimating the variance over an averaging495

window of size R is given by (following Lenschow et al., 1994, while applying Taylor’s hypothesis)

∆⟨u′2
1 ⟩ =

〈
⟨u′2

1 ⟩R
⟨u′2

1 ⟩
− 1

〉
N

≈−2
L11

R
, (20)
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0.00

1.00

2.00

3.00

PD
F(

〈ε
0(x

,t
)〉 V

P,
R
/Ė
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Figure 6. The effect of the averaging window size R (A) on the distribution of ⟨ϵ0(x, t)⟩VP,R/Ėin; and on the accuracy of estimates obtained
via (B) ⟨ϵG⟩R, (C) ⟨ϵI2⟩R, and (D) ⟨ϵL⟩R in terms of the systematic errors βG, βI2, and βL, respectively, from the ground-truth reference
⟨ϵ0(x, t)⟩VP,R as given by Eq. (12). The velocity time records of the longitudinal component are taken from DNS 3.1 (Rλ = 302, I = 1%,
θ = 0◦). In (A), the distribution of the instantaneous dissipation rate ϵ0(x, t)/Ėin sampled by all virtual probes is shown by the dashed line,
and the global average energy dissipation rate normalized by Ėin is shown by the dotted vertical line. The other PDFs in A are from the local
average of the energy dissipation rate obtained from a window of size R at the beginning of each virtual probe, i.e., 1000 averaged values for
a given R. In (B), (C) and (D) the vertical dotted lines correspond to ensemble averages of the systematic errors βi. The ensemble average
of βG slightly decreases from 0.4% for R= 501ηK to −0.7% for R= 2815ηK where the standard deviation of βG decreases from 50% to
22%. The ensemble average of βI2 decreases from 41% to 10% and the standard deviation from 185% to 5%. βL exhibits stronger deviations
(mean βL of ∼ 44% and standard deviation ∼ 67% for R= 2816ηK ).
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where ⟨u′2
1 ⟩R is the estimated variance based on the (finite) averaging window R, ⟨u′2

1 ⟩ is the true variance and it is assumed

R≫ L11. The always negative error predicted by Eq. (20) indicates that, for finite averaging window sizes, the variance ⟨u′2
1 ⟩

is always statistically underestimated, which agrees with Fig. A3A. Eq. (20) furthermore indicates that the systematic error of500

the variance estimates can be neglected for sufficiently long averaging windows R≫ L11.

The variance estimates are also subject to statistical uncertainty, which is also known as the random error of variance

estimation (Lenschow et al., 1994). Assuming that u′
1(t), which has a zero mean, can be modeled by a stationary Gaussian

process and that its autocorrelation function is sufficiently well represented by an exponential, the random error of estimating

the variance can be expressed as (following Lenschow et al., 1994, while applying Taylor’s hypothesis)505

erand =

√√√√〈( ⟨u′2
1 ⟩R −⟨⟨u′2

1 ⟩R⟩N
⟨u′2

1 ⟩

)2
〉

N

≈

√√√√〈( ⟨u′2
1 ⟩R

⟨⟨u′2
1 ⟩R⟩N

− 1

)2
〉

N

≈
√

2L11

R
, (21)

where it is assumed R≫ L11 such that the systematic error can be neglected and, hence,
〈
⟨u′2

1 ⟩R
〉
N
≈ ⟨u′2

1 ⟩. Here,
〈
⟨u′2

1 ⟩R
〉
N

is the ensemble average of the variance estimates ⟨u′2
1 ⟩R for an averaging window R. It can be seen that erand is larger than the

systematic error, (20), when R> L11.

Consequently, the estimation of the mean energy dissipation rate by the scaling argument, Eq. (10), is affected by the510

(absolute) random error of the variance estimation given by the product of erand and
〈
⟨u′2

1 ⟩R
〉
N

. Invoking the Gaussian error

propagation, the analytically derived error reads

δL(R) =
1

⟨ϵL⟩R
∂⟨ϵL⟩R
∂⟨u′2

1 ⟩R
erand︸︷︷︸

relative random error of ⟨u′2
1 ⟩R

〈
⟨u′2

1 ⟩R
〉
N

︸ ︷︷ ︸
absolute random error of ⟨u′2

1 ⟩R

=
3

2

√
2L11

R
, (22)

where erand is the relative random error of the variance estimate of the velocity fluctuations ⟨u′2
1 ⟩R defined in Eq. (21), and

⟨u′2
1 ⟩R is the variance estimate of u′

1 based on the averaging window R. Then, the absolute random error of the variance515

estimate of the velocity fluctuations ⟨u′2
1 ⟩R is given by erand⟨u′2

1 ⟩R. δL(R) is a relative error itself, hence the prefactor 1/⟨ϵL⟩R.

Notably, δL(R) scales as R−1/2.

Similarly, the longitudinal second-order structure function is also affected by the estimation variance of the variance,

eDLL
=

√√√√〈( DLL(r;R)

⟨DLL(r;R)⟩N
− 1

)2
〉

N

=

√√√√〈( 2⟨u′2
1 ⟩R (1− f(r))

2⟨⟨u′2
1 ⟩R⟩N (1− f(r))

− 1

)2
〉

N

≈
√

2L11

R
, (23)

where DLL(r;R) is the longitudinal second-order structure function evaluated over an averaging window of size R and under520

the assumption that the longitudinal auto-correlation function f(r) is sufficiently converged over the range of the averaging

window. This is a simplistic assumption that may be questionable in some cases, but a more robust evaluation of the validity

of the assumption is complex and beyond the scope of this study.
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Thus, the uncertainty of estimating the variance propagates to ⟨ϵI2⟩R relying on DLL(r;R) (Eq. (7) for n= 2). The random

error δI2(R) can be analytically inferred from the random error of the second-order structure function σDLL
by Gaussian error525

propagation yielding

δI2(R) =
1

⟨ϵI2⟩R
∂⟨ϵI2⟩R
∂DLL

eDLL
⟨DLL(r;R)⟩N =

3

2

√
2L11

R
, (24)

which shows that δI2(R) scales as R−1/2 similar to δL(R). Considering Eqs. (6) and (A1), the gradient method can also be

expressed as a function of the variance ⟨u′2
1 ⟩. Hence, Gaussian error propagation yields:

δG(R) =
1

⟨ϵG⟩R
∂⟨ϵG⟩R
∂⟨u′2

1 ⟩R
erand

〈
⟨u′2

1 ⟩R
〉
N
=−15ν

1

⟨ϵG⟩R
lim

|r|→0
∂2
rf(r)erand

〈
⟨u′2

1 ⟩R
〉
N
=

√
2L11

R
, (25)530

assuming R≫ L11 such that the systematic error is negligible such that
〈
⟨u′2

1 ⟩R
〉
N
≈ ⟨u′2

1 ⟩.
Equations (22), (24), and (25) are expressed as a function of R and L11, which do not reveal the dependency of random errors

on the Reynolds number. In addition, this expression relies on large scales that depend on the scale of the energy injection,

which makes it difficult to fairly compare the errors between different flows as it is not a universal feature. Therefore, we want

to link the averaging window to the Kolmogorov length scale ηK , which only depends on the viscosity and the mean energy535

dissipation rate. We can rewrite these equations in terms of ηK , R and Rλ as follows:

δI2(R) = δL(R) =
3

2

√
2L11

R
=

3

2

√
2
ηK
R

L11

L

(
3

20
R2
λ

)3/4

≈ 3

2

√
ηK
R

(
3

20
R2
λ

)3/4

(26)

δG(R) =

√
2L11

R
≈

√
ηK
R

(
3

20
R2
λ

)3/4

(27)

where we have invoked L11/L∼ 1/2, which is valid at sufficiently high Rλ and used the relationship L/ηK =
(

3
20R2

λ

)3/4
(Pope, 2000). Following the intuition, the longer the averaging window, the smaller the random error of each method.540

Furthermore, Eqs. (26) and (27) provide a mean to choose a suitable averaging window size to achieve a given random error

threshold a. Let Ra be the averaging window of size R such that δi(R)< a. Then, the required averaging window Ra for ϵI2

and ϵL is

Ra/ηK =
9

4

(
3

20
R2
λ

)3/4
1

a2
, (28)

where the required averaging window size Ra scales with R3/2
λ . Similarly, the required averaging window for ϵG is545

Ra/ηK =

(
3

20
R2
λ

)3/4
1

a2
. (29)
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Figure 7. Random errors δG(R) (A) and δI2(R) (B) as a function of re-scaled averaging window size R/L11 obtained from VDTT data
at various Rλ shown by the colorbar. The analytical results for δG(R) (A, Eq. (25)) and δI2(R) (B, Eq. (24)) are shown by the dashed
black lines. The dotted black line annotated with “50%” in each subplot corresponds to 50% error-threshold. The insets show the sizes
of the averaging windows in terms of ηK when δG,I2(R)≤ 0.5 as a function of Taylor microscale Reynolds number Rλ. The inset plots
include data from both DNS (red triangles) and the VDTT (grey circles). DNS data used for the inset plots are from cases 1.3, 2.3 and 3.3 with
I = 10% and θ = 0◦. The solid, blue lines show the prediction of the required averaging window according to Eq. (29) (A-inset) and Eq. (28)
(B-inset). The black dash-dotted line in inset plots is a fit to the data: logR/ηK = 3

4
log 3

20
− 2logafit +α logRλ yielding α= 1.70± 0.18

and afit = 1.67± 0.64 (A-inset); logR/ηK = log 9
4

3
20

3/4 − 2logafit +α logRλ yielding α= 1.57± 0.09 and afit = 0.95± 0.32 (B-inset).

For example, for the random errors of ϵI2 and ϵL to be less than 10% at Rλ = 1000, the averaging window should be

R∼ 2× 106ηK ∼ 2× 104L11, while for ϵG the required averaging window is R∼ 8× 105ηK ∼ 104L11.

Figure 7 shows the empirical random errors δG(R) (Fig. 7A) and δI2(R) (Fig. 7B) as a function of the averaging window

size for various Rλ based on VDTT data (for ϵL see supplementary Fig. A5). To do this, we select an averaging window of size550

R, where 1000ηK <R<O(106ηK), from the beginning of each 30 s time-segment from the VDTT longitudinal velocities are

recorded (a total of 47 to 597 time-segments depending on Rλ).

The scaling of δG(R) and δI2(R) is well predicted for R≳ 10L11 as expected from Eqs. (25) and (24) and the assumptions

we made to derive them. However, for smaller R a statistical convergence of ϵG, ϵI2 or ϵL against the mean energy dissipation

rate cannot be expected, in particular when R/L11 < 1.555

Furthermore, it is evident from Fig. 7 that the random errors do not fully collapse on each other for different Reynolds

numbers and at a given R/L11. Moving horizontally on a line of constant random error, e.g., the dashed line of 50% error, the

required window size increases with Rλ, as shown in the insets of Figs. 7A and B. Predictions of Eqs. (28) and (29) are also

shown in these plots via solid/blue lines.

For both ϵG and ϵI2, the theoretical expectation for Ra tends to overestimate the actual averaging window size at which a560

random error of 50% is achieved. This overestimation is expected as the theoretical expectation for Ra, Eqs. (28) and (29), are

derived assuming that large-scale quantities such as f(r) and L11 are fully converged. However, ϵG is technically relying on

small scales. ϵG depends on velocity fluctuation gradients, which are numerically obtained by central differences. Hence, each
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increment in the velocity record contributes to the average in the gradient method, Eq. (6). In the case of ϵI2, the number of

possible increments reduces for larger separations for a finite averaging window. By definition, the exact computation of L11565

requires even a fully converged f(r) for all r.

However, VDTT experiments with Rλ > 3000 underestimate the prediction of Eq. (20) by about a factor of 2. This is

particularly clear for ϵL shown in Fig. A5. This deviation at high Rλ can be explained, at least in part, by the strong assumptions

made for the derivation of the random errors, i.e., the equations (24), (22), and (25). In particular, for experiments with high Re

in VDTT, the assumption of Gaussian velocity fluctuations with zero skewness is questionable, as shown in Fig. A6. Lenschow570

et al. (1994) has already established that the size of the averaging window for a skewed Gaussian process (see Eq. (19) in

Lenschow et al., 1994) must be twice as large as for a Gaussian process with vanishing skewness. However, further work is

needed to investigate these deviations and improve the theoretical prediction.

3.6 Estimating the transient energy dissipation rate

As it has been shown in previous Figs. 6 and 7, both systematic and random error decrease with the size of the averaging575

window. For a correct estimate of the magnitude, it is therefore advantageous to choose the averaging window as large as

possible, but this has the price that the transient trend smaller than the selected window size cannot be reproduced. In addition,

it is also important to know to what extent the estimated trend correlates with the actual trend. Given a certain averaging window

size R, here, we empirically evaluate if trends in the coarse-grained time-series are physical or rather statistical. In other words,

we ask the question if local estimates of the mean energy dissipation rate follow the ground-truth reference ⟨ϵ0(x, t)⟩VP,R or580

not. Respecting the intermittent nature of turbulence and energy dissipation, the standard deviation of ⟨ϵ0(x, t)⟩VP,R is a first

proxy for the variability of the trend in ⟨ϵ0(x, t)⟩VP,R. Hence, detecting the true trend requires that βi and δi(R) are smaller

than the standard deviation of ⟨ϵ0(x, t)⟩VP,R.

It can be already concluded from Figs. 2, 7, A1 and A5 that ϵG is the most promising candidate to capture the true trend.

However, to fully answer the above questions, we need to conduct a more in-depth analysis. The upper plot in Fig. 8 shows585

the re-scaled and coarse-grained dissipation field ⟨ϵ0(x, t)⟩VP,R for a sliding window of size R≈ 5500ηK and a turbulence

intensity I = 10% obtained from the time series of one virtual probe for case DNS 2.0 (“probe 0”). Consistent with results

shown earlier, ⟨ϵG⟩R follows ⟨ϵ0(x, t)⟩VP,R best in comparison with ⟨ϵI2⟩R and ⟨ϵL⟩R. Both ⟨ϵI2⟩R and ⟨ϵL⟩R are associated

with substantial scatter, although ⟨ϵI2⟩R has smaller deviations from the ground-truth overall. Other probe tracks sample dif-

ferent portions of the flow which is why a quantitative conclusion is not possible from one single probe. A more comprehensive590

evaluation of which method is able to capture the true trend is conducted below.

The lower plot in Fig. 8 shows ⟨ϵI2⟩R together with the random error of ϵI2 as defined by Eq. (24). Despite the strong

scatter, the ground-truth reference is nearly always within the errorbar of ϵI2 with some exceptions, e.g. r/ηK < 5000 or

r/ηK ≈ 44000. It can also be seen that ⟨ϵI2⟩R is, if at all, only weakly correlated with the ground-truth reference ⟨ϵ0(x, t)⟩VP,R

for a window size of R/ηK ≈ 5500. This shows that it is extremely difficult, if at all possible, to track the true trend with low-595

resolution time records, which prevents the use of the gradient method.

26



0.0

0.5

1.0

1.5

2.0

ε/
Ė
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Figure 8. (Upper plot) Proof of concept for estimating the coarse-grained energy dissipation rate ⟨ϵ0(x, t)⟩VP,R re-scaled by the energy
injection rate Ėin via the one-dimensional surrogates ⟨ϵG⟩R, ⟨ϵI2⟩R, and ⟨ϵL⟩R for Rλ = 142, R/ηK ≈ 5500, θ = 0◦ and a turbulence
intensity I = 10% (DNS 2.0). All estimates are re-scaled by the energy injection rate Ėin, too. We narrowed the fit-range to 20ηK ≤ r ≤
200ηK ensuring optimal fit results. (Lower plot) Comparison between ⟨ϵI2⟩R/Ėin with estimated random error according to Eq. (24) for the
averaging window R and ⟨ϵ0(x, t)⟩VP,R.

To assess this correlation more quantitatively, we evaluate Pearson correlation coefficient between the ground-truth reference

⟨ϵ0(x, t)⟩VP,R and ϵG, ϵI2 as well as ϵL, respectively, as a function of the re-scaled averaging window size R/ηK for all virtual

probes of case DNS 2.0. As an example, Pearson correlation coefficient between ϵ0(x, t)⟩R and ϵI2 is 0.33 in Fig. 8 (upper

plot). Figure 9A shows the ensemble averages of Pearson correlation coefficient together with the standard error (shaded area).600

While ⟨ϵG⟩R has a pronounced correlation with the ground-truth reference ⟨ϵ0(x, t)⟩VP,R, both ⟨ϵI2⟩R and ⟨ϵL⟩R are only very

weakly correlated with ⟨ϵG⟩R.

The effect of Rλ on Pearson correlation coefficient is shown in Fig. 9B also for the VDTT experiments at various Rλ. Here,

we compare ϵI2 and ϵL to ϵG in the absence of a ground-truth reference. To ensure a negligible systematic error, we chose a

fixed averaging window of R= 30L11 for each Rλ. Figure 9B shows that the correlation for ϵI2 is always higher than that of605

ϵL except for very low Rλ. There is a non-monotonic behavior in the correlation coefficients in Fig. 9B that seems to be related

to the skewness values shown in Fig. A6. Nonetheless, there is a clear increase in correlation coefficients with Rλ. Firstly, the

random error of δI2(R) ranges from 20% to 40% at R= 30L11. Secondly, the kurtosis of the instantaneous energy dissipation

field scales with R3/2
λ (Pope, 2000) which is why the variability in the instantaneous energy dissipation field increases with Rλ.

Hence, at small R3/2
λ and R= 30L11, ⟨ϵI2⟩30L11

scatters only randomly around the global mean energy dissipation rate (with610

a 3% standard deviation of ⟨ϵG⟩30L11
), which is why the correlation coefficient is low. In contrast, at large Rλ and R= 30L11,
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the locally averaged mean energy dissipation rate ⟨ϵG⟩30L11
fluctuates stronger (≈ 30% standard deviation of ⟨ϵG⟩30L11

) where

δI2(R) is already comparable.
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Figure 9. A: Dependence of the Pearson correlation coefficient between ⟨ϵi⟩R and ⟨ϵ0(x, t)⟩VP,R as a function of the re-scaled averaging
window R/ηK where i ∈ {G,I2,L}. Time records of the longitudinal velocity by all virtual probes and ⟨ϵ0(x, t)⟩VP,R are taken from DNS
2.0 with Rλ = 142, turbulence intensity I = 10% and perfect alignment (θ = 0◦). The shaded region is given by the standard error. B:
Dependence of the Pearson correlation coefficient between ⟨ϵI2,L⟩R and ⟨ϵG⟩R as a function Rλ for a fixed re-scaled averaging window
R= 30L11. The error bars of the ensemble-averaged coefficients are given by the standard error.

4 Practical guidelines

Up to this point, we have presented the results largely as is, so that one can interpret them with minimal bias. However, the615

amount of data given and details may make the use of the results in practice difficult. Therefore, we propose here practical

guidelines for measuring the energy dissipation rate from one-dimensional velocity records in atmospheric flows.

The gradient method should be preferred over other methods for conditions where the turbulence intensity is low and the

probe could be perfectly aligned in the direction of the mean wind. In particular, the gradient method is more sensitive to

turbulence intensity than inertial-range methods due to random sweeping effects. Low values of turbulence intensity and ideal620

alignment of probes can be best controlled in ground-based measurements. Measurements aboard research aircraft traveling at

true speed of 100ms−1 can satisfy these conditions also, but the spatial/temporal resolution required to measure the velocity

gradients (see Fig. A8) is challenging to achieve, i.e., a robust probe with a wire length ideally smaller than 1mm (or in the

same order as ηK) and a true response frequency of 105 Hz is needed. Other airborne platforms, such as helicopters, balloons

and kites, would encounter higher turbulence intensities making Taylor’s frozen flow assumption more difficult to satisfy. Most625

importantly, however, they all suffer from probe alignment into the local wind at the scale of the measurement platform.

Other estimates based on inertial sub-range methods (cf. Table 1) are less sensitive to a high turbulence intensity and probe

alignment. Regarding the impact of a high turbulence intensity, we find the the most reliable method for most field applications

to be the second-order structure function. However the accuracy is least 10% even in most ideal conditions considered here

(Table 4). Considering experimental imperfections, the actual deviation is expected to be of the order of 100% (Figs. 3 and 5).630
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Given atmospheric turbulence with ηK ∼ 1mm and L11 ∼ 100m, the inertial range of the second-order structure function

extends from about 60ηK (Pope, 2000) to at most the integral scale, if at all. However, for applying the 2nd-order SF (inertial

range), at least one to two decades of the inertial range are needed. Assuming that the fitting range is chosen from 0.1m to

10m, a measurement platform with a true air speed of 10-100ms−1 requires an anemometer with a sampling frequency of

100-1000Hz in order to provide about two decades of data within the inertial range.635

Our analysis further shows that estimating the transient energy dissipation in atmospheric clouds (L11 ∼ 100m, O(Rλ)∼
103 − 104) via the 2nd-order structure function (inertial range) with an averaging window of R= 100m is prone to random

errors of the order 100% (Fig. 7B). Shorter averaging windows involve even higher random errors. It is therefore recommended

to choose the averaging window as large as possible but still smaller than length and time scales on which the atmosphere

remains homogeneous and stationary, respectively. This recommendation is not simple to be realized in a atmosphere. for640

example, measurements in the marine boundary layer with intermittent shallow cumulus clouds stationary conditions needed

to be carefully considered Then, two approaches can be recommended. On the one hand, one can choose a very long averaging

window to average over many individual clouds associated with a small random error but potentially violating the stationary

and homogeneity condition. On the other hand, one could investigate the transient mean energy dissipation rate (as a proxy for

the local mean energy dissipation rate per cloud) while accepting a large random error.645

The large random errors also preclude the possibility of interpreting trends in the measured energy dissipation rate via the

second-order structure function when we consider the results shown in Figs. 8 and 9A. Even if we consider the promising

correlations shown in Fig. 9B at high Reynolds numbers, interpreting trends and patterns in atmospheric data from one-

dimensional time records remains a challenge, especially in an atmosphere with intermittent cloudiness. As an example, in a

cloud with a horizontal extent of 1 km, one can obtain 10 non-overlapping data blocks with a window length of 100m, which650

corresponds to a random error of about 100% to be combined with a systematic error of the same order of magnitude. With 10

data points combined with such large uncertainties, it would be extremely difficult to interpret the change in dissipation rate

in this cloud. Interpretations of trends in the energy dissipation rate would be particularly flawed if the size of the averaging

window is < 10L11. At best, an average value can be determined for such small clouds, which would still deviate from the

global mean by at least 50-100% if (and this is a big if. However, the limitations imposed by the validity of the Taylor hypothesis655

can be mitigated by using an array of high-resolution anemometers. The array should be oriented so that the anemometers point

in the mean local wind direction. The calculation of transverse velocity gradients or second-order structure functions would

no longer depend on the applicability of the Taylor hypothesis, since the distances between the sensors are predefined by the

design.

5 Summary660

We have presented an extensive review on the analysis procedure for estimating the energy dissipation rate from single-point

one-dimensional velocity time records along with an overview of the advantages and disadvantages (see Table 1). To conclude,

this paper provides means to estimate errors of the global and local mean energy dissipation rates due to experimental imper-
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fections and limitations. These error estimated can be used to assess the quality and accuracy of the measurement. Furthermore,

error estimates of the global and local mean energy dissipation rates can be used to assess the error of other turbulence and665

cloud droplet parameters, e.g., various turbulence length scales and the cloud droplet Stokes number, with the help of Gaussian

error propagation. A set of practical guidelines for measurement/analysis strategies are provided in the previous section, the

following presents a technical summary of the main results.

The main methods considered in this study are the gradient method ϵG, the 2nd-order SF (inertial range) method ϵI2, the

spectral method ϵS , and the scaling argument ϵL. We have provided a systematic assessment of the accuracy of inferring the670

energy dissipation rate from such one-dimensional velocity time series as a function of turbulence intensity, probe orientation

with respect to the longitudinal direction, and the effect of a finite averaging window size. We used DNS data with Reynolds

numbers in the range 74≤ Rλ ≤ 321 as well as experimental data from high-resolution one-dimensional wind tunnel measure-

ments with Reynolds numbers in the range 147≤ Rλ ≤ 5864 to evaluate the performance of different methods against robust

benchmark values. The results presented in this study help to assess the accuracy of the energy dissipation rate estimates as a675

function of several parameters, such as finite turbulence intensity, misalignment between sensor and longitudinal flow direction,

and finite size of the averaging window. The main results are:

– Each method could reproduce the ground-truth reference ⟨ϵ(x, t)⟩ to within less than 10 % for well converged statistics

and at low turbulence intensity. The most accurate method is the gradient method (ϵG) and the least accurate method is

the one based on the 4/5 law (ϵI3) (see Fig. 2). The “reference-compared” systematic error tend to be overestimated due680

to the global choice of the fit-range, e.g., lower systematic errors for ϵI2 can be obtained by choosing a fit-range for each

DNS dataset that is in a range where the scaling of the structure function is closest to the expected scaling.

– In the case of finite turbulence intensities, ϵG, ϵS and ϵI2 systematically overestimate the ground-truth energy dissipation

rate. The gradient method (ϵG) is most affected by a finite turbulence intensity I whereas ϵI2 is the least affected (see

Figs. 3 and 4B). The overestimation can be captured by a random advection model (Fig. 4). Regarding the small-scale685

estimate ϵG, the error formula provided by Lumley (1965) (βG ∝ 5I2) captures the effect of random advection.

– Considering the probe orientation, the gradient method (ϵG) is most affected by misalignment between the probe orien-

tation and the longitudinal flow direction whereas ϵI2 is the least affected (Fig. 5) (compare Eqs. (19), (17), and (18)).

– We provide scaling arguments δi(R) to estimate the required averaging window size optimized for a desired random

error threshold for ϵG, Eq. (29), ϵI2, Eq. (28), and ϵL, Eq. (28). With this, we can estimate a coarse-grained energy690

dissipation rate to within a predicted uncertainty as shown in Fig. 8. Systematic errors βi are smaller than random errors

δi(R) for R> 2L11.

– The random error of the gradient method δG(R) converges at least 4-5 times faster than ϵI2 (compare Eqs. (28) and (29)).

– Only ϵG reliably estimates the transient energy dissipation rate ⟨ϵ0⟩R although it is most vulnerable to experimental

imperfections/limitations.695
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Appendix A: Preliminaries on Second-Order Statistics

As discussed in detail below, the mean energy dissipation rate can be related to second-order statistics of the velocity field,

either in terms of velocity gradients or in terms of velocity increments. In any case, the two-point velocity covariance tensor710

turns out to be the central quantity of interest, from which the second-order structure function tensor, the spectral energy tensor

and the velocity gradient covariance tensor can be obtained.

In the following, we assume zero-mean SHI turbulence so that two-point quantities depend only on the separation vector r,

all averages are invariant under rotations of the coordinate system, and the mean squared velocity fluctuation is identical for all

velocity components, i.e., ⟨u′2⟩= ⟨u′2
1 ⟩= ⟨u′2

2 ⟩= ⟨u′2
3 ⟩. We provide an overview of the most relevant definitions, their notation715

and conventions. This section does not explicitly discuss the effect of the averaging window, but the definitions presented can

be applied to windowed inputs with no or straightforward modifications.

Under the given assumptions, the two-point velocity covariance tensor takes the form (e.g. Pope, 2000; Robertson, 1940;

Batchelor, 1953)

Rij(r) = ⟨u′
i(x+ r, t)u′

j(x, t)⟩= ⟨u′2⟩
(
g(r)δij + [f(r)− g(r)]

rirj
r2

)
, (A1)720
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Symbol Definition Equation Dimensions
A large-scale anisotropy parameter 3⟨u′2

1 ⟩/(2k)
CK Kolmogorov constant related to E(κ) 1.5
Cϵ dissipation constant 0.5

Dij(r) second-order velocity structure function tensor (A2) L2T−2

E(κ) energy spectrum function
∫∫∫∞

−∞
1
2Φii(κ)δ(|κ| −κ)dκ L3T−2

E11(κ1) one-dimensional energy spectrum (A7) L3T−2

Ėin energy injection rate of the DNS L2/T−3

F11(f) power spectral density of longitudinal velocity ∆t
N F(u1(t))F∗(u1(t)) L2T−1

F(x) (discrete) Fourier transform
∑N−1

j=0 x(tj)exp(−2πitj/∆t)

I turbulence intensity σu′
1
/U

L length scale characteristic of large eddies, e.g. energy injection scale k3/2/ϵ L
L11 longitudinal integral length scale of the turbulent flow (11) L

Rij(r) velocity (two-point, one-time velocity auto-) covariance tensor (A1) L2T−2

Rijkl(r) velocity gradient covariance tensor (A4) T−2

Re Reynolds number UL
ν

Rλ Taylor-scale Reynolds number
√

15σ4
u1

ν⟨ϵ⟩

ReL turbulence Reynolds number k1/2L
ν

Sij strain rate tensor (∂ui(x,t)
∂xj

+
∂uj(x,t)

∂xi
)/2 T−1

T longitudinal integral time scale of the turbulent flow
∫∞
0

f(τ)dτ T
U , Uτ global-mean velocity vector of the flow and the local-mean of the longitudinal velocity component (1) LT−1

for averaging window of duration τ relative to the virtual probe
afit fit parameter related to Eq. (28)
f frequency T−1

f(r) longitudinal velocity auto-correlation [coefficient] function R11(r)/R11(0)
g(r) transverse velocity auto-correlation [coefficient] function f(r)+ r∂rf(r)/2

k turbulent kinetic energy (u′2
1 +u′2

2 +u′2
3 )/2 L2T−2

r, r distance vector (or rather radial coordinate) and its absolute value L

sij [velocity] fluctuation strain rate tensor (
∂u′

i(x,t)
∂xj

+
∂u′

j(x,t)

∂xi
)/2 T−1

t time T
u (Eulerian) velocity vector of the flow u1e1 +u2e2 +u3e3 LT−1

u′ velocity fluctuation vector of the flow u−U LT−1

⟨u′2
1 ⟩ variance of longitudinal velocity fluctuations

∫∞
0

E11(κ1)dκ1 L2T−2

x position vector x1e1 +x2e2 +x3e3 L
Φij(κ) energy tensor (velocity spectrum tensor) (A5) L5T−2

α fit parameter related to Eq. (28)
δij Kronecker delta
∆t time increment min{tj+1 − tj} T
ϵ energy dissipation rate L2T−3

ϵ0(x, t) instantaneous energy dissipation rate (3) L2T−3

ϵR locally volume averaged energy dissipation rate (4) L2T−3

⟨ϵ⟩ global-mean energy dissipation rate (rate of dissipation of turbulent kinetic energy) (5) L2T−3

ϵijk Levi-Cevita tensor
ζn nth-order structure function exponent d logDL...(r)

d logr
ηK Kolmogorov length scale (ν3/⟨ϵ⟩)1/4 L
θ angle of incidence between probe orientation and longitudinal flow direction ◦

κ wave vector L

λ longitudinal Taylor (micro-)scale
√

30νu′2
1

⟨ϵ⟩ L

ν kinematic viscosity L2T−1

σx standard deviation of quantity x
σu′

1
root mean square of longitudinal velocity fluctuations LT−1

ω angular frequency 2πf T
⟨. . .⟩N ensemble average over trajectories of N virtual probes or N realizations
⟨. . .⟩R volume average [line average for 1D signal]
⟨. . .⟩VP average over trajectory of a virtual probe

Table A1. Nomenclature for the turbulent flow. If our naming convention differs from the terminology in (Pope, 2000), we add the convention
of Pope in parentheses. Equations are either directly given or referenced from definitions below.
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Symbol Definition
1, 2, 3 indices of vectors and tensors

C cutoff
D dissipation range
G gradient
I2 inertial range of second-order structure function
I3 inertial range of third-order structure function
L longitudinal
N number of virtual probes used in the DNS simulations, number of realizations

N .. . transverse (e.g. NN for transverse second-order structure function)
R averaging window size in space
S inertial range of the power spectral density
p probe

ref (ground-truth) reference
VP virtual probe
τ averaging window size in time

Table A2. Nomenclature for the subscripts.

DNS ⟨βG⟩N ⟨βI3⟩N ⟨βI2⟩N ⟨βS⟩N ⟨βL⟩N
1.1 −0.003± 0.001 0.132± 0.005 −0.047± 0.002 0.011± 0.002 −0.044± 0.003
2.1 −0.002± 0.006 0.506± 0.038 −0.011± 0.014 0.074± 0.010 0.313± 0.017
3.1 −0.005± 0.006 0.492± 0.039 0.088± 0.013 0.041± 0.010 0.400± 0.020

Table A3. The systematic error of each method βi relative to the global mean energy dissipation rate, Eq. (12), of each DNS where i ∈
{G,I3, I2,S,L}. The error is given by the standard error, which is defined as the standard deviation divided by the square root of the
number of samples. In both DNS 2.1 and 3.1, ϵI2 and ϵI3 were obtained by fitting Eq. (7) for n= 2 and n= 3, respectively, in the range
r ∈ [20ηK ,500ηK ]. This fit-range is also used for calculating ϵS and it was converted into frequency domain by f = U/r, where U is the
mean velocity. In the case of DNS 1.1, the maximum of Eq. (7) was used to infer ϵI2 due to the absence of a pronounced inertial range. We
used the maximum available window size R in all cases, fixed turbulence intensity I = 1% and considered perfect alignment, i.e., θ = 0◦.

where f(r) =R11(r)/R11(0) and g(r) = f(r)+ r∂rf(r)/2 are the longitudinal and transverse autocorrelation functions, re-

spectively, with f(0) = g(0) = 1. Notably, if one chooses r = re1, R11(r) = ⟨u′2⟩f(r), R22(r) =R33(r) = ⟨u′2⟩g(r), and all

other components vanish (e.g., Pope, 2000). As a remarkable consequence, Rij(r) is uniquely defined by f(r) in isotropic

turbulence. As mentioned below, the integral length scale as well as the Taylor microscale are determined by f(r) (Pope,

2000).725

Analogously, a covariance tensor can be defined for velocity increments, i.e. the second-order velocity structure function

tensor (Pope, 2000; Davidson, 2015)

Dij(r) = ⟨[u′
i(x+ r, t)−u′

i(x, t)]
[
u′
j(x+ r, t)−u′

j(x, t)
]
⟩=DNN (r)δij + [DLL(r)−DNN (r)]

rirj
r2

. (A2)
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The longitudinal second-order structure function D11(r) is related to f(r) by (e.g., Pope, 2000; Davidson, 2015)

D11(r = re1) =DLL(r) = ⟨(u′
1(x+ re1, t)−u′

1(x, t))
2⟩= 2⟨u′2⟩(1− f(r)) . (A3)730

As explained below, measuring the longitudinal second-order structure function DLL(r), the mean energy dissipation rate can

be inferred from the inertial-range scaling of the longitudinal structure function (cf. Eq. (7)).

Furthermore, the velocity gradient covariance tensor can also be defined in terms of the velocity covariance tensor

Rijkl(r) =

〈
∂u′

i(x, t)

∂xk

∂u′
j(x, t)

∂xl

〉
=− lim

r→0
∂rk∂rlRij(r) . (A4)

Since the local and instantaneous energy dissipation rate (cf. Eq. (3)) is defined in terms of the strain rate tensor Sik =735

(∂u′
i(x, t)/∂xk + ∂u′

k(x, t)/∂xi)/2, the mean energy dissipation rate can be directly related to contractions of the velocity

gradient covariance tensor. Note that in a turbulent flow with zero-mean velocity, the strain rate tensor Sik equals the fluctua-

tion strain rate tensor sik.

The two-point velocity covariance tensor can be expressed in Fourier space through the spectral energy tensor (Pope, 2000)

Φij(κ) =
1

(2π)3

+∞∫∫∫
−∞

Rij(r)e
−iκ·rdr , (A5)740

where κ is the wave vector. For SHI turbulence, Φij(κ) takes the form

Φij(κ) =
E(κ)

4πκ2

(
δij −

κiκj

κ2

)
(A6)

where E(κ) is the energy spectrum function.

Since access to the full energy spectrum function is not always available, one-dimensional spectra are of interest, too. The

mean energy dissipation rate can be estimated from the inertial range scaling of the longitudinal one-dimensional spectrum (as745

shown in Eq. (9)), which can be calculated by both the energy spectrum function and the velocity covariance tensor (Pope,

2000)

E11(κ1) =

∞∫
κ1

E(κ)

κ

(
1− κ2

1

κ2

)
dκ=

1

π

∞∫
−∞

R11(e1r1)e
−iκ1r1dr1 , (A7)

with the wavenumber κ1 corresponding to the e1-direction and R11(0) = ⟨u′2⟩=
∫∞
0

E11(κ1)dκ1.

This concludes the second-order statistics in terms of the velocity that we consider in the following to determine the mean750

energy dissipation rate.
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Appendix B: Impact of random sweeping effects on gradient method

In the following, we illustrate how one obtains an expression for the impact of random sweeping effects on the dissipation

rate estimate in terms of the turbulence intensity using the gradient method ϵG = ⟨ϵ⟩[1+ 5I2] Lumley (1965); Wyngaard and

Clifford (1977). We consider a model wavenumber-frequency spectrum (Wilczek and Narita, 2012; Wilczek et al., 2014),755

which is based on the same modeling assumptions used in Wyngaard and Clifford (1977). It enables us to conduct a systematic

assessment of the interplay between Taylor’s hypothesis and the random sweeping effects. The model wavenumber-frequency

spectrum tensor Φij(κ,ω) can be derived from an elementary linear random advection model (Kraichnan, 1964; Wilczek and

Narita, 2012; Wilczek et al., 2014), which in case of SHI turbulence can be expressed in terms of the energy spectrum tensor

Φij(κ):760

Φij(κ,ω) =
Φij(κ)√
2πκ2I2U2

exp

(
− (ω/U −κ1)

2

2κ2I2

)
. (B1)

Within the model, the wavenumber-frequency spectrum Φij(κ,ω) consists of the energy spectrum tensor in wavenumber space

Φij(κ) multiplied by a Gaussian frequency distribution. Φij(κ,ω) has a mean value determined by ω = κ1U , i.e., Taylor’s hy-

pothesis expressed in Fourier space, and a variance proportional to the turbulence intensity. When the turbulence intensity tends

to zero at fixed mean velocity, the frequency distribution tends to a delta function, re-establishing the one-to-one correspon-765

dence between the frequency and the wavenumber in the direction of the mean flow. To establish the connection to the different

methods using longitudinal components and Taylor’s hypothesis, we consider the i= j = 1 component of Eq. (B1). One ob-

tains the estimate for the longitudinal wavenumber spectrum based on Taylor’s hypothesis, which includes the effect of random

sweeping, by first integrating over the wavevector space. This leads to the frequency spectrum F̃11(ω), which corresponds to

the one obtained from temporal single-point measurements of the longitudinal velocity component. Then, one applies Taylor’s770

hypothesis, corresponding to the substitution ω = κ1U which leads to

E11(κ1)dκ1
ω=κ1U=

1

U
F̃11(ω)dω =

2

U

[∫
Φ11(κ

′,ω)dκ′
]
dω . (B2)

Finally, this enables us to evaluate the influence of random sweeping on the gradient method since it is closely related to

the wavenumber spectrum. Expressed in wavenumber space, the relation, Eq. (6), takes the following form, where we insert

Eqs. (B1)-(B2) and solve the corresponding Gaussian integral over ω in the second step:775

ϵG = 15ν

∫
κ2
1E11(κ1)dκ1 = ⟨ϵ⟩[1+ 5I2] . (B3)

Hence, we recover, as expected, the result by Lumley (1965) and Wyngaard and Clifford (1977).
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To numerically assess how random sweeping smears out the spectrum at finite turbulence intensities (see Fig. 4), we assumed

a model wavenumber spectrum, (Pope, 2000, Eq. 6.246 ff.):

E(κ) = CK⟨ϵ⟩2/3κ−5/3

(
κL

[(κL)2 + cL]1/2

)5/3+p0

exp(−βκηK) , (B4)780

where L is the energy injection scale and cL = 6.78, p0 = 2 and β = 2.094 are positive constants. Based on this model

wavenumber spectrum we first obtain E11(κ) through Eq. (A7). One can then evaluate Eq. (B2) resulting in the spectrum

being smeared out by random sweeping.

Appendix C: Effect of Probe Misalignment

Here, we derive estimates for the systematic error due to misalignment between the (virtual) anemometer and the global785

mean wind direction U
|U | . This misalignment is captured by an angle θ, which is assumed to be constant in time and space.

In general, the rotation matrix around an arbitrary rotation axis n̂ with nini = 1 is given by Rn̂
ij(θ) = (1− cosθ)ninj +

cosθδij +sinθϵijknk (e.g., Cole, 2015; Hanson, 2011), where ϵijk is the Levi-Cevita tensor and δij the Kronecker delta. At

first, we consider the covariance tensor Rij(r
′) since the integral length scale, the second-order structure function tensor as

well as the velocity gradient covariance tensor depend on Rij(r
′) (Eqs. (A1), (A2) and (A4), respectively). In the sensor frame790

of reference, the covariance tensor is given by

Rij(r
′) = ⟨u′2⟩

(
g(r′)δij + [f(r′)− g(r′)]

r′ir
′
j

r′2

)
, (C1)

where r′i =Rn̂
ij(θ)rj and r′ = r. As only the longitudinal component in the sensor frame of reference is measured, Eq. (C1)

reads for i= j = 1 and r = re1

R11(r
′) = ⟨u′2⟩

(
g(r)+ [f(r)− g(r)]

Rn̂
1l(θ)rlR

n̂
1k(θ)rk

r2

)
(C2)795

= ⟨u′2⟩
(
g(r)+ [f(r)− g(r)] (cos2 θ+n4

1(1− cosθ)2 +2n2
1(1− cosθ)cosθ)

)
. (C3)

For further simplification, we assume without loss of generality that the mean wind changes direction only in the horizontal

plane. With this we can set n̂= e3, which yields for r′ = r′e′1

R11(r
′e′1)/⟨u′2⟩= f(r′) = ⟨u′2⟩

(
g(r)+ [f(r)− g(r)]cos2 θ

)
, (C4)
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which we interpret as the measured autocorrelation function. Then, the measured longitudinal integral length scale, Eq. (11),800

amounts to

L′
11(θ) =

∞∫
0

dr′f(r′) =

∞∫
0

drcosθ(cos2 θf(r)+ (1− cos2 θ)g(r)) =
1

2
L11 cosθ

(
1+ cos2 θ

)
, (C5)

where the integration of f(r) and g(r) is carried out in the last step, see Eq. (11), while considering the fact that L22 = L11/2

for isotropic turbulence (Pope, 2000).

An analogous argument also holds for the second-order structure function tensor, Eq. (A2):805

D11(r
′) =DNN (r)+ [DLL(r)−DNN (r)]cos2 θ =DLL(r)

(
4− cos2 θ

3

)
, (C6)

where the transverse second-order structure function DNN (r) =D22(r) =D33(r) is expressed as DNN (r) = 4DLL(r)/3 =

4C2(rϵ)
2/3/3 in SHI turbulence (Pope, 2000).

The misalignment error for the gradient method can be estimated analytically starting from the longitudinal component of

the velocity gradient covariance tensor R1111 — it can be also expressed in terms of the velocity covariance tensor Eq. (A4).810

Following similar arguments as above and starting from Eq. (A4), assuming r = re1 and applying the rotation about an axis n̂

with nini = 1, we obtain

R1111(0) =− lim
r′→0

∂r′∂r′R11(r
′e′1) =− u′2

cos2 θ
lim
r→0

∂2
r

[
g(r)+ [f(r)− g(r)]

r2 cos2 θ

r2

]
, (C7)

where ∂r′ = ∂r/cosθ due to the rotation. Using ∂2
rg(r) = 2∂2

rf(r)+
r
2∂

3
rf(r) (Pope, 2000), the velocity gradient covariance

tensor reduces to815

R1111(0) =− u′2

cos2 θ
lim
r→0

[
(2− cos2 θ)∂2

rf(r)+ (1− cos2 θ)
r

2
∂3
rf(r)

]
(C8)

=

〈(
∂u

∂x1

)2
〉

2− cos2 θ

cos2 θ
, (C9)

where −u′2 limr→0 ∂
2
rf(r) = ⟨(∂u/∂x1)

2⟩ (Pope, 2000) is used for the last step.
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Figure A1. Validation of estimating the energy dissipation rate from ϵG, ϵI2, ϵI3, ϵS , and ϵL. All estimates are re-scaled by the energy
injection rate Ėin. The data is taken from DNS 1.1 (A) and 2.1 (B), turbulence intensity I = 1%. The ensemble mean of each method ⟨ϵi⟩N
is denoted by red dots where the whiskers extend from the minimal to maximal estimate of ϵi where i ∈ {G,I3, I2,S,L}. As the inertial
range of DNS 1.1 (I = 1%, θ = 0◦ and maximal available averaging window) is not well pronounced due to the low Rλ ∼ 74, we used
the maximum of Eq. (7) in order to retrieve ϵI2,3. The dashed line represents the global mean energy dissipation rate of DNS 1.1 and 2.1
(Rλ = 219, I = 1%, θ = 0◦ and maximal available averaging window), respectively, which is approximated by the ensemble average of the
true mean energy dissipation rate along the trajectory of each virtual probe. ϵref is the reference distribution of ground-truth global mean
energy dissipation field originating from the dissipation field along the trajectory of each virtual probe.
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Figure A2. Estimates of the mean energy dissipation rate as a function of the fit-range for ϵI2 and ϵS for DNS 3.1 (1000 probes, Rλ = 302,
I = 1%, θ = 0◦ and maximal available averaging window) re-scaled by the energy injection rate Ėin. The solid line represents the ensemble
average whereas the shaded region is given by the standard deviation. r0 ∈ [10ηK ,100ηK ] is the lower boundary of the fit-range for ϵI2
where the upper boundary is fixed at r1 = 500ηK . For ϵS , the fit-range is given by f ∈ [U/r1,U/r0]. The dashed line denotes the global
mean energy dissipation rate.
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Figure A3. Convergence of higher-order statistical quantities and longitudinal integral length scale as well as small and large-scale anisotropy
obtained from all virtual probes of DNS 1.1 (Rλ = 74, I = 1%, θ = 0◦). (A) The variance of the longitudinal velocity fluctuations ⟨u′2

1 ⟩ and
the longitudinal integral length scale LR

11 as a function of averaging window size R normalized by the Kolmogorov length scale ηK . ⟨u′2
1 ⟩

re-scaled by the ensemble-averaged variance of the longitudinal velocity fluctuations. For large R, ⟨⟨u′2
1 ⟩R⟩N converges to ⟨u′2

1 ⟩ ≈ ⟨⟨u′2
1 ⟩⟩N

(blue-dotted line) and the systematic error of the variance (solid-black line), Eq. (20), decays to 0. LR
11 is the longitudinal integral length

scale obtained from averaging windows of size R. For large R, LR
11 should converge to L11 (red-dotted line) which is not fully achieved in

this range of R. (B) Premultiplied PDFs of second and third-order velocity increments over distances r = 50ηK and r = 150ηK . The tails
of the pre-multiplied PDFs have decayed to zero for large (and re-scaled) increments ∆ru

′
1/σu′

1
so that they can globally considered to be

converged. (C) Small-scale anisotropy based on the ratio of longitudinal gradients to the instantaneous energy dissipation B = ϵG/⟨ϵ0(x, t)⟩.
In isotropic turbulence, B = 1 on average. (D) Large-scale anistropy parameter A= 3⟨u′2

1 ⟩/(2k) as a function of averaging window R where
k is the turbulent kinetic energy and ⟨u′2

1 ⟩ the variance of the longitudinal velocity fluctuations. In isotropic turbulence, A= 1 on average.
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Figure A5. Convergence of energy dissipation rate estimates for ϵL. The empirical random error δL(R) is plotted as a function of re-scaled
averaging window size R/L11 from VDTT experiments at various Rλ. The analytical result for the random error (Eq. (22)) is shown by the
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3
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for the scaling argument resulting in α= 1.87± 0.06 and afit = 1.75± 0.22 (black dash-dotted line) .
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Figure A6. Skewness and kurtosis of all VDTT experiments as a function of Rλ. The skewness vanishes for normally distributed velocity
time records. Similarly, the kurtosis equals zero for normally distributed velocity time records, according to Fisher’s convention, which is a
measure for the excess kurtosis.
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Figure A7. Compensated longitudinal second-order structure functions for DNS 1.1 (A), DNS 2.1 (B), and DNS 3.1 (C). The gray shaded
region represents the fit-range (Eq. (7)) for each DNS. The individual longitudinal second-order structure functions are calculated from the
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