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Abstract. We report the development of an algorithm for the retrieval of Total Column Water Vapor (TCWV) from blue 12 
spectra obtained by satellite instruments such as the Ozone Monitoring Instrument (OMI). The algorithm is implemented in 13 
an automatic processing pipeline and will be used to generate a long-term data record as part of a MEaSUREs project. 14 
TCWV is calculated as the ratio between the Slant Column Density (SCD) and Air Mass Factor (AMF). Both these factors 15 
are improved upon previous work by incorporating more constraints or physical processes. For the SCD, we have 16 
optimized the retrieval window to 432 – 466 nm, performed a temperature correction, and employed a new stripe-removal 17 
post-processing routine. The use of OMI collection 4 spectra reduces the SCD fitting uncertainty by ~9% with respect to 18 
collection 3. For the AMF, we perform on-line radiative transfer using VLIDORT. Over land surfaces, we use bi-19 
directional reflectances based on MODIS products. Over the oceans, we consider surface roughness and water-leaving 20 
radiance, and we find that water-leaving radiance is important for avoiding large TCWV biases over the oceans. 21 

      Under relatively clear conditions, the MEaSUREs OMI data are well correlated with the reference datasets, having 22 
correlation coefficients of r ~0.9. Over the oceans, MEaSUREs-AMSR_E has an overall mean (median) of ~ 1 mm (0.6 23 
mm) with a standard deviation of σ ~6.5 mm, though large systematic differences in certain regions are also found. Over 24 
land surfaces, MEaSUREs-GPS has an overall mean (median) of -0.7 mm (-0.8 mm) with σ ~5.7 mm. Even a small amount 25 
of cloud can introduce large bias and scatter; thus, without further correction, strict data filtering criteria are required. 26 
However, the MEaSUREs TCWV data can be corrected through machine learning when accurate measurements are 27 
abundant. In this regard, under all-sky conditions, the mean bias of MEaSUREs over the oceans reduces from 4.5 mm 28 
(without correction) to -0.3 mm (with correction using LightGBM models), and the standard deviation decreases from 11.8 29 
mm to 3.8 mm. We also examined the representation error of the GPS stations using the dense GEONET data. The within-30 
pixel variance of TCWV varies with grid size following a power law dependence. At 0.25°×0.25° resolution, the derived 31 
representation error is about 1.4 mm. 32 

1 Introduction 33 

      As part of a NASA’s Making Earth System Data Records for Use in Research Environments (MEaSUREs) project, we 34 
are developing long-term consistent data records for formaldehyde (HCHO), glyoxal (C2H2O2) and water vapor (H2O) 35 
using spectra collected by several spaceborne instruments. These instruments include the Global Ozone Monitoring 36 
Experiment (GOME) [Burrows et al., 1999], Scanning Imaging spectrometer for Atmospheric CHartographY 37 
(SCHIAMACHY) [Bovensmann et al., 1999], Ozone Monitoring Instrument (OMI) [Levelt et al., 2006], GOME-2 [Munro 38 
et al., 2016], and Ozone Mapping and Profiler Suite (OMPS) [Goldberg et al., 2013]. With the exception of OMPS (which 39 
is UV only), all the other instruments measure the UV-blue wavelength range, which contains the characteristic absorption 40 
signatures of these molecules. Collectively, the resulting products will form long-term data records of HCHO, C2H2O2 and 41 
H2O since 1995. The OMI instrument forms the backbone of the MEaSUREs H2O project due in part to its long-term 42 
stability and overlap with other instruments. This helps us establish a baseline towards which other products can be 43 
homogenized.  44 
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      Total Column Water Vapor (TCWV), also known as Precipitable Water Vapor (PWV), is an essential climate variable, 45 
playing an important role in the weather and climate. TCWV datasets have been derived from a wide range of spectral 46 
regions (visible, NIR, IR, microwave, GPS) using a variety of methods. A comprehensive review of satellite water vapor 47 
retrievals can be found in Schröder et al. [2018]. As a member of the suite of molecules for the MEaSUREs project, our 48 
TCWV product not only makes a useful addition to existing water vapor datasets, but also provides insights for improving 49 
retrievals of HCHO and C2H2O2 which are important indicators of tropospheric pollution, and which affect ozone 50 
concentration. This is because the suite of molecules is retrieved using a common processing pipeline. The availability of 51 
extensive TCWV validation data can help test this pipeline and diagnose issues that are difficult to discern from the other 52 
molecules. In addition, as NO2 also absorbs in the visible range, we expect that lessons learned from assessing the H2O 53 
product may be useful for NO2 retrievals, and vice versa. 54 
      In the blue wavelength region, water vapor is a weak absorber whose characteristic spectral feature can be exploited to 55 
measure the column amount through spectral fitting. Such retrievals have been performed for OMI, GOME-2, and 56 
Sentinel-5 Precursor Tropospheric Monitoring Instrument (TROPOMI) [Wagner et al., 2013; Wang et al., 2014, 2016, 57 
2019; Borger et al., 2020; Chan et al., 2020, 2022]. A frequently used retrieval method is to derive the Slant Column 58 
Density (SCD) from spectral fitting and convert this SCD to the Vertical Column Density (VCD) using an Air Mass Factor 59 
(AMF).  60 
      Previous studies employed a variety of algorithm configurations for SCD retrieval and AMF calculation. This paper 61 
reports the findings during the development of the MEaSUREs water vapor product. In particular, we focus on the lessons 62 
learned from the OMI TCWV through investigations of the MEaSUREs algorithm configuration. This helps guide our 63 
development of the processing pipeline to improve the overall quality of all products. Most recently, the processing 64 
pipeline was used to generate the OMPS HCHO product [Nowlan et al., 2022].  65 
      The present paper focuses mainly on the MEaSUREs H2O algorithm applied to OMI. The long-term TCWV product 66 
will be presented in the future. Section 2 below is for the derivation of SCD, and Section 3 the calculation of AMF. Section 67 
4 presents comparisons with reference validation datasets and provides discussions. Section 5 summarizes the results. The 68 
retrieval algorithm was derived using the OMI collection 3 spectra for 2005-2006 as it was completed before the official 69 
release of the OMI collection 4 L1b data [Kleipool et al., 2022]. As will be shown, the OMI collection 4 generally leads to 70 
better spectral fitting, thus, collection 3 presents a more rigorous test of the algorithm, processing pipeline, and data 71 
quality. Unless otherwise specified, the MEaSUREs TCWV data used in this paper were derived from the OMI collection 3 72 
spectra. 73 

2 Slant Column Density (SCD) 74 

2.1 General algorithm description 75 

      The theoretical basis for our spectral fitting has been detailed elsewhere [González Abad et al., 2015, 2019; Nowlan et 76 
al., 2022]. A brief description pertinent to this paper is provided here. Observed spectral radiances within the retrieval 77 
window are directly fitted with the modeled radiances using the Levenberg-Marquart non-linear least squares minimization 78 
algorithm. The modeled spectra are based on the Beer-Lambert law for the target molecule (H2O) and contributing 79 
molecules (O3, NO2, O2-O2, liquid water, C2H2O2, and IO), as well as the baseline and scaling closure polynomials, the 80 
under-sampling correction [Chance et al., 2005], the Ring effect [Chance and Spurr, 1997] and the liquid water Ring effect. 81 
To account for changes in instrument calibration with time, we also fit a wavelength shift and an instrument slit function 82 
which is represented by a super-Gaussian profile characterized by an asymmetry parameter (assumed to be 0 for OMI, but 83 
may vary for other instruments), a half-width at 1/e (HW1e) parameter, and a shape parameter [Beirle et al., 2017; Sun et 84 
al., 2017; Bak et al., 2019]. Problematic spectral positions (i.e., wavelengths) flagged in the Level 1b spectra are masked 85 
out during the fitting. The fitting also employs outlier rejections for spectral positions beyond 3σ of the fitting residuals 86 
[Richter et al., 2011]. For HCHO and C2H2O2, radiance references are usually needed to mimic the role of solar irradiance 87 
in the fitting [Chan Miller et al., 2014; Nowlan et al., 2022]. However, for water vapor, the solar irradiance measurements 88 
are used directly, because water vapor generally has stronger signal in the spectra (Section 2.3). The details of the 89 
MEaSUREs H2O SCD algorithm are summarized in Table 1. 90 

      High-resolution reference spectra for H2O and other molecules are convolved with the on-line derived instrument slit 91 
function, in order to fit the observed spectra. The fitting employs the latest reference spectra from the literature (Table 1). In 92 
particular, we compute the H2O reference spectrum using HITRAN2020 [Gordon et al., 2022] which features a more 93 
complete spectral line list and improved quality compared with previous editions [Gordon et al, 2017]. For this purpose, the 94 
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water vapor lines are sampled every 0.0001 nm, convolved with a HW1e = 0.04 nm Gaussian function, and recorded on a 95 
0.01 nm reference spectrum grid. This ensures an accurate representation of water vapor absorption when the reference 96 
spectrum is convolved with the instrument slit function. Due to the highly structured nature of the water vapor band, 97 
sufficiently narrow spectral sampling is required in order to avoid spectral distortion. Sparser sampling will risk missing the 98 
true amplitudes of spectral peaks which will then result in an overabundance of the retrieved water vapor because absorption 99 
cross sections would appear too low. Since the publication of HITRAN2020, several updates for the H2O spectral lines have 100 
been made (https://hitran.org, last access Mar 27, 2023). These updates are not used for the retrievals presented here. 101 
However, we performed a sensitivity test using the updated H2O spectral line list. Results show that the spectral updates 102 
have negligible effect on the TCWV retrieved using the algorithm summarized in Table 1, though our future retrievals will 103 
use the updated HITRAN H2O line list. 104 

Table 1. MEaSUREs H2O SCD retrieval algorithm summary. 105 
Ingredients Details 

Window [432, 466] nm 

Closure 
polynomials 

Baseline: 3rd order 
Scaling: 3rd order 

Calibration wavelength shift 
slit function: Super-Gaussian HW1e and shape parameter k 

Reference 
spectra 

solar: [Chance and Kurucz, 2010] 
H2O: HITRAN2020 [Gordon et al., 2022] (283 K) 
NO2: [Vandale et al., 1998] (220 K & 294 K) 
O3: [Serdyuchenko et al., 2014] (223K) 
O2-O2: [Finkenzeller and Volkamer, 2022] (293 K) 
C2H2O2: [Volkamer et al., 2005] (296 K) 
IO: [Spietz and Burrows, 2005] 
liquid water (lqh2o): [Mason and Fry, 2016] 
Ring effect: [Chance and Spurr, 1997] 
water Ring (vraman): [Chance and Spurr, 1997] 

Other Under-sampling correction [Chance et al., 2005] 

2.2 Temperature correction 106 

      We derived the H2O reference spectra for a series of temperatures between 223 K and 303 K at 10 K intervals, and 107 
pressures between 0.05 atm and 1.0 atm. These reference spectra are not very sensitive to pressure for the vertical range 108 
wherein water vapor is concentrated; however, reference spectra depend significantly on temperature (Fig. A1). Using the 109 
OMI collection 3 Orbit 5108 as an example, we find that the water vapor SCDs fitted using the reference spectra at 110 
different temperatures are quite different, although they are highly correlated (Fig. 1 top row). Generally speaking, higher 111 
temperatures result in more water vapor being fitted.  112 

      We performed linear regressions between pairs of the SCDs retrieved at different H2O reference temperatures. The 113 
results are shown in Table 2. We experimented with three other OMI orbits following the same procedure and obtained 114 
very similar results. Our default fitting algorithm uses the H2O reference spectrum at 283 K (Table 1). After the fitting, we 115 
use Table 2 to correct the fitted SCD to a value corresponding to an effective temperature for each scene (i.e., Level 2 116 
pixel). Specifically, we find the two closest temperatures in Table 2, calculate the corresponding SCDs using the 117 
corresponding regression lines, and obtain the corrected SCD through a linear interpolation in temperature between them. 118 
The temperature correction affects the pixels whose effective temperatures are far from the reference temperature, but it 119 
does not significantly change the histograms of the SCDs (Fig. A2). 120 

      The effective temperature for each retrieval is a vertically weighted temperature. As the AMF for each layer reflects the 121 
light path through that layer (Section 3), these box AMFs are used as weights for the corresponding temperature profile. As 122 
an example, the bottom panels of Fig. 1 show the distributions of effective temperatures for two cloud fraction ranges (f = 123 

https://doi.org/10.5194/amt-2023-66
Preprint. Discussion started: 27 June 2023
c© Author(s) 2023. CC BY 4.0 License.



4 
 

0.0-1.0 and f = 0.0-0.1) on July 1, 2005.  The curves show local peaks near 263 K and 283 K. Both peaks are prominent 124 
under all-sky conditions, while the 283 K peak dominates relatively clear conditions. This indicates that the 263 K peak is 125 
largely due to clouds. As we are most interested in relatively clear conditions, 283 K is used as the default in Table 1.   126 

 127 

Figure 1: (Top row) Scatter plots of the fitted H2O SCDs for OMI collection 3 Orbit 5108 (on July 1, 2005) using the H2O 128 
reference spectra at different temperatures, (top left) 303 K versus 223 K and (top right) 283 K versus 263 K. The y=x line 129 
is plotted in red as a reference. (Bottom row) Histograms of the temperatures weighted by the box AMFs on July 1, 2005 130 
for cloud fraction f within 0.0-1.0 (bottom left) and 0.0- 0.1 (bottom right).   131 

Table 2. Linear regression results for OMI collection 3 Orbit 5108, where x is the fitted SCD using the algorithm 132 
summarized in Table 1 (i.e., using 283K for water vapor), y is the fitted SCD using the same algorithm but for different 133 
temperatures for the H2O reference spectrum. Both x and y have the unit of 1023 molecule/cm2. 134 

Temperature (K) Regression line 
223 y = 0.915 x + 0.012 
233 y = 0.931 x + 0.010 
243 y = 0.947 x + 0.008 
253 y = 0.961 x + 0.006 
263 y = 0.975 x + 0.004 
273 y = 0.988 x + 0.002 
283 y = 1.000 x + 0.000 
293 y = 1.012 x - 0.002 
303 y = 1.023 x - 0.003 

2.3 Retrieval window optimization 135 

      In the blue wavelength range, the strongest water vapor absorption band occurs within 442.6 – 443.2 nm [Gordon et al., 136 
2022]. This band is much weaker than the water vapor absorption in the red and longer wavelengths. However, except for 137 
very dry conditions (TCWV < 5 mm, where 1 mm = 3.34556×1021 molecules/cm2), the combination of absorption cross 138 
section and atmospheric abundance makes the contributions of water vapor in satellite spectra readily differentiable from 139 
those of interference molecules and fitting residuals (Fig. A3). Thus, retrieval windows covering this characteristic spectral 140 
feature and its spectral neighborhood can generally lead to a reasonable pattern of global water vapor distribution. 141 

      However, despite the general agreement on the spatial pattern, Wang et al. [2019] found that the amount of retrieved 142 
SCD is quite sensitive to the choice of retrieval window. Previous studies employed different windows. For example, 143 
Wagner et al. [2013] used 430-450 nm for OMI and GOME-2, Wang et al. [2016] used 427.7-465.0 nm for OMI, Chan et 144 
al. [2020] used 427.7-455.0 nm for GOME-2, and Garane et al. [2023] used 435-455 nm for TROPOMI. Different retrieval 145 
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windows include different amounts of information for the target molecule and interference species, and the absolute and 146 
relative importance of each component varies with the choice of retrieval window. Furthermore, the reference spectrum 147 
and other algorithm ingredients may influence the result in subtle ways. Consequently, it is best to optimize the retrieval 148 
window as part of the chosen algorithm configuration (Table 1), so that it works best for the target molecule. 149 

      Multiple factors were considered for the choice of retrieval window in Wang et al. [2019]; these include the fitting Root 150 
Mean Squared (RMS) error, the fitting uncertainty, the fraction of valid retrievals, and the retrieval window length. These 151 
diagnostics are used here, along with two additional factors - the common mode amplitude (i.e., the standard deviation of 152 
the averaged fitting residuals for each swath) and the correlation coefficients between the target and interference species. 153 
We streamlined the processing pipeline to sweep systematically through the starting and ending wavelength ranges of 154 
possible retrieval windows and collect the relevant diagnostic variables.   155 

      Figure 2 shows selected diagnostics and the corresponding SCDs retrieved using different retrieval windows for OMI 156 
collection 3 Orbit 5108. As reported in Wang et al. [2019], the fitted SCDs vary substantially with the retrieval window by 157 
as much as ~25%, and the pattern of variation is complex. The fitting uncertainty and fitting RMS generally oppose each 158 
other, suggesting that some sort of compromise is needed to optimize the window choice. This consideration points to the 159 
diagonal region of each panel; this region also happens to minimize the common mode amplitude which represents the 160 
magnitude of systematic residuals in the fit. Note, although the common mode is derived for each swath, it is not used in 161 
the fitting. Had the common mode been fitted, it would have lowered the fitting RMS without much effect on the fitted 162 
SCD [Wang et al., 2014]. As noted in Wang et al. [2019], the fraction of valid retrievals tends to be higher when the end-163 
limit wavelength is longer than ~462 nm (not shown), which favors longer retrieval windows.   164 

      To further refine the retrieval window, we investigate the correlations between H2O and interference molecules. Figure 165 
3a shows the amplitude of the leading correlation coefficient (r), while Fig. 3b indicates which interference molecules are 166 
responsible for these coefficients. When the end-limit wavelength is shorter than ~468 nm, the correlation is lower (r 167 
~0.18) and preferred. Correlation coefficients r > 0.5 can be found for longer ending wavelengths. Considering the other 168 
diagnostics above, we adopt 432 – 466 nm as the final H2O retrieval window for MEaSUREs. In this case, the largest 169 
correlation coefficient is with O2-O2, and the retrieved SCD is within the middle range. The 432 – 466 nm window is also 170 
consistent with the optimization result obtained using another OMI orbit.  171 

      As a representative example, Fig. 4 shows the fitting RMS and the SCD fitting uncertainty derived from the default 172 
retrieval algorithm (Table 1) for OMI collection 3 on July 1, 2005. All the retrievals with main data quality flag (MDQF) = 173 
0 are used in the plot. This criterion checks that the fitting has converged, the fitted SCD is < 4×1023 molecules/cm2, and 174 
the SCD is positive within twice the fitting uncertainty [Wang et al., 2016]. The top panels summarize the statistics for 175 
each 5 mm SCD bin using box-and-whisker plots wherein the 10th, 25th, 50th, 75th, and 90th percentiles are indicated. The 176 
bottom panels show the overall probability distributions. The fitting RMS is mostly < 1.2×10-3, with a median (mean) of 177 
9.5×10-4 (1.0×10-3) and a standard deviation of 4.3×10-4. For SCD > 20 mm, the median RMS values are between 8.0 ×10-4 178 
and 1.0×10-3, with a local minimum around SCD = 40 mm and a local maximum around SCD = 70 mm. Smaller SCDs 179 
(<20 mm) have larger median RMS (1.0×10-3 – 1.2×10-3), especially for SCD < 5 mm, where the diminishing H2O signals 180 
approach the level of the fitting residuals. A similar pattern is exhibited by the SCD fitting uncertainty, which has an 181 
overall median (mean) of ~6.1 mm (6.6 mm) with a standard deviation of ~2.8 mm. For SCD > 20 mm, the median fitting 182 
uncertainty is generally < ~6 mm, with a local minimum near SCD = 40 mm. For SCD between 0 and 20 mm, the median 183 
fitting uncertainty decreases from ~7.8 mm to ~6.4 mm. 184 

      We performed a test by replacing the OMI collection 3 Level 1b spectra with collection 4, keeping everything else the 185 
same. Comparisons of the results are shown in Fig. 5. The fitted SCDs are clustered around the 1:1 line with rare outliers 186 
(Fig. 5a). For Orbit 10629, the median and mean SCDs for collection 4 (32.6 mm and 35.1 mm) remain within 0.2 mm of 187 
those for collection 3 (32.8 mm and 35.3 mm), representing a change of only ~0.6%, though the standard deviation of the 188 
differences between the results is ~3.0 mm. The fitting RMS and fitting uncertainty are generally lower for collection 4 189 
(Fig. 5b-d). For July 15, 2006, the median fitting RMS decreases from 1.05×10-3 for collection 3 to 0.97x10-3 for collection 190 
4 (corresponding to a ~8% drop), and the median fitting uncertainty decreases from 6.8 mm for collection 3 to 6.2 mm for 191 
collection 4 (a ~9% drop). This result indicates a better quality of the OMI collection 4 Level1b spectra. 192 

 193 
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 194 

Figure 2: (Top left) Median fitting uncertainty (mm), (top right) median fitted SCD (mm), (bottom left) median standard 195 
deviation of common mode, and (bottom right) median fitting RMS×104 for different retrieval windows using the 196 
configuration summarized in Table 1. The retrieval windows are represented by the start wavelength on the x-axis and end 197 
wavelength on the y-axis. Results are derived from OMI collection 3 Orbit 5108.    198 

 199 

Figure 3: (Left) Leading correlation coefficients between H2O and interference molecules for MEaSUREs spectral fitting 200 
algorithm optimization and (right) the corresponding interference molecules (See Table 1 for abbreviated names). Results 201 
are derived from OMI collection 3 Orbit 5108. 202 

https://doi.org/10.5194/amt-2023-66
Preprint. Discussion started: 27 June 2023
c© Author(s) 2023. CC BY 4.0 License.



7 
 

 203 

Figure 4: (a) Fitting RMS versus fitted H2O SCD (mm); (b) SCD fitting uncertainty (mm) versus fitted SCD (mm); (c) 204 
Probability distribution of fitting RMS; (d) Probability distribution of SCD fitting uncertainty (mm). (a) and (b) are box-205 
and-whisker plots for each 5 mm SCD bin, where the boxes denote the 25th, 50th, and 75th percentiles and the dots denote 206 
the 10th and 90th percentiles. All panels are derived from OMI collection 3 Level 1b data for July 1, 2005. 207 

 208 

Figure 5: Comparison between OMI collection 3 and collection 4 spectral fitting results. Top panels show collection 3 209 
versus collection 4 scatter plots of (a) fitted SCD and (b) fitting RMS for Orbit 10629 on July 15, 2006. The 1:1 line is 210 
plotted in green for reference. Bottom panels are probability distributions of (c) fitting RMS and (d) fitting uncertainty for 211 
July 15, 2006, where collection 3 is in black and collection 4 in magenta. 212 

2.4 Stripe removal 213 

      For instruments using 2D (spectral versus spatial) detectors, such as OMI, along-track stripes in the retrieval products 214 
are common. These stripes reflect systematic differences associated with detector sensitivities. They can be smoothed by 215 
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applying a correction factor for each across-track pixel position (i.e., a correction vector) during post-processing [Wang et 216 
al., 2014, 2016]. Previously, a correction vector was derived for each month from the ratio between the monthly averaged 217 
SCDs at each across-track position and their 3rd order polynomial fit (as a function of across-track pixel number). The 218 
SCDs used for this purpose were filtered according to the main data quality flag, fitting RMS, and cloud fraction [Wang et 219 
al., 2016]. The smoothed SCDs can be calculated as the ratios between the unsmoothed SCDs and the corresponding 220 
correction factors. Since VCD=SCD/AMF, the correction vector can also be used to smooth the VCD. The MEaSUREs 221 
product uses the same general approach, but with the following updates.  222 

      First, we no longer use cloud filtering when we derive the correction vector. This is because the spectral fitting under 223 
cloudy conditions has comparable quality to that under relatively clear conditions; furthermore, including cloudy scenes 224 
significantly increases the sample size for statistics when fewer number of orbits are used to derive the correction vector. 225 
Figure 6 shows the statistics of the fitting RMS as a function of the fitted SCD for two cloudy scenarios using OMI 226 
collection 3 data on July 1, 2005. The RMS for cloud fraction f > 0.8 tends to be smaller than that for cloud fraction f < 227 
0.15 due to improved signal-to-noise ratio. 228 

      Second, instead of using a fixed correction factor for each month, we derive dynamically a correction factor for each 229 
swath using its neighboring data. Stripes can sometimes pop up, disappear, and change within a short time span. As an 230 
example, the swaths in Fig. 7a are all obtained on July 12, 2015, but the details of their stripes vary. In particular, the swath 231 
covering the central Pacific (Orbit 5268) has an obvious stripe with much lower SCDs than those for other across-track 232 
positions (Fig. A4), but the stripe is not present in the other swaths. To better represent local- and time-variable behavior, 233 
we derive three versions of correction vectors using the data within 0, 1, and 7 orbits of each swath on both sides 234 
(corresponding to a total of 1, 3, and 15 orbits), respectively. These can be considered as the local, regional, and global 235 
correction vectors (Fig. A5). The three vectors are similar, but not identical. Each correction vector is used to de-stripe 236 
variables such as the SCD, temperature corrected SCD, VCD, and temperature corrected VCD. To improve robustness, the 237 
three versions of the corrected variables are averaged to get the final de-striped variables. Figure. 7b shows the 238 
corresponding de-striped SCDs. We note that the de-striping method is non-unique [Wang et al., 2016]; nonetheless, the 239 
specific method can satisfactorily remove most stripes and mitigate others. 240 

 241 

Figure 6: Fitting RMS as a function of fitted H2O SCD (mm) for cloud fraction f ≥ 0.80 (red) and f ≤ 0.15 (black). Box-242 
and-whiskers are plotted for each 5 mm SCD bin, where the boxes denote the 25th, 50th and 75th percentiles of the fitting 243 
RMS and the dots represent the 10th and 90th percentiles. Results are derived using OMI collection 3 data for July 1, 2005. 244 

      The correction vectors are derived using the following procedure. For each across-track position, we find the median 245 
SCD from the fittings that satisfy the main data quality check (MDQF=0) and possess fitting RMSs less than an empirical 246 
threshold. Note that using the median of the temperature corrected SCDs also works, as the temperature correction does not 247 
significantly affect the overall histogram distribution (Fig. A2). The RMS threshold is intended to filter out outliers. It is set 248 
to the smaller of the median + 1.5 median absolute deviation of the RMSs and an absolute maximum RMS (e.g., 5×10-3 for 249 
OMI). During data collection, any obviously anomalous stripes, such as the one in Orbit 5268 described above, were 250 
proactively discarded, as pixels in these stripes tend to escape the filtering criteria mentioned before. These anomalous 251 
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stripes typically have median SCDs that are far less (<50%) than those for other across-track positions with a significant 252 
portion of negative values, but with seemingly normal fitting RMSs (Fig. A4). The median SCD is thus used to 253 
automatically identify the anomalous stripes. Occasionally, when reliable spectral information is missing at one or more 254 
wavelengths that can significantly influence the fitted H2O SCD, spectral fitting still fortuitously proceeds using the 255 
remaining unmasked wavelengths and ends up with a normal fitting RMS. Although these situations are rare, they can 256 
invalidate the de-striping correction if left untreated.  257 

 258 

Figure 7: (a) Fitted SCD and (b) de-striped SCD for every 3rd swath (for clarity) on July 12, 2015. Results are derived 259 
from OMI collection 3 spectra. Orbit 5268 is the one covering the central Pacific and has an obviously anomalous stripe in 260 
(a) which is voided in (b). Other stripes in the swaths are removed or mitigated. 261 

      The use of the median instead of the mean of the SCDs improves the robustness of the result. The SCD median vector 262 
thus obtained is fitted with a 5th order polynomial. A reflection extension of 3 data points (5% of the 60 OMI across-track 263 
positions) on both ends of the vector is used for the fitting. We also perform a couple of iterations to reject outliers that are 264 
beyond ±20% of the fitted curve. The correction vector is obtained from the ratio between the SCD median vector and the 265 
final polynomial fit. By construction, the mean of the correction vector is very close to 1. However, the variation can be 266 
substantial. For example, the regional correction vector for OMI Orbit 5268 has a mean of 1.001, a standard deviation of 267 
0.068, with the smallest and largest value of 0.82 and 1.19, respectively (Fig. A5). The overall level of across-track 268 
variations is comparable to that in Wang et al. [2016], though the details differ.  269 

3 Air Mass Factor (AMF) 270 

      The AMF quantifies the light path through the atmosphere for the molecule of interest. Under the optically thin 271 
assumption, it can be calculated as the vertically integrated product of the scattering weight W(z) and shape factor S(z) 272 
[Palmer et al., 2001]. The shape factor is obtained from the normalized a priori vertical profile of water vapor partial 273 
columns. Previous studies have employed monthly climatology or statistical analyses of vertical profiles [e.g., Wang et al., 274 
2019; Chan et al., 2020]. For practical reasons, MEaSUREs retrievals use the monthly mean climatology at the local time 275 
sampled by the satellite from a 0.5⁰×0.5⁰ full-physics GEOS-Chem simulation [Bey et al., 2001] for 2018. For water vapor, 276 
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the profiles essentially come from the Modern Era Retrospective Research and Applications Version 2 (MERRA-2, 277 
0.5°×0.67°) data [Gelaro et al., 2017], which drives the GEOS-Chem simulation. The simulation also provides vertical 278 
profiles for temperature and other molecules that are needed for the MEaSUREs project. The MEaSUREs products provide 279 
W(z) for each scene so that users can switch to other S(z) to recalculate the corresponding AMF if desired.  280 

      The scattering weight W(z) describes the sensitivity of the Top of Atmosphere (TOA) backscattered radiance to the 281 
trace gas optical depth for atmospheric layers at different heights [Palmer et al., 2001]. It depends on the illumination and 282 
viewing geometry, surface reflectance, and atmospheric absorption and scattering associated with molecules, aerosols, 283 
and clouds. For partly cloudy scenes, the Independent Pixel Approximation (IPA) is used where the AMF is composed of 284 
a clear-sky part and an overcast-sky part weighted by the cloud radiance fraction [Martin et al., 2002]. The cloud radiance 285 
fraction (w) is related to the cloud fraction (f) through the Top of Atmosphere (TOA) radiances for clear-sky (Iclear) and 286 
overcast-sky (Icloud) conditions (𝑤𝑤 = 𝑓𝑓𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [𝑓𝑓𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + (1 − 𝑓𝑓)𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐]⁄ ) [Nowlan et al., 2022]. Most studies use pre-287 
calculated Look-Up-Tables (LUTs) to interpolate for each scene [e.g., Wang et al., 2019; Chan et al., 2020]. In this paper, 288 
we perform on-line AMF calculations for each scene using the Vector Linearized Discrete Ordinate Radiative Transfer 289 
(VLIDORT) model v2.8 [Spurr et al., 2006, 2008; Spurr and Christi, 2019] through a user-friendly interface. On-line 290 
AMF calculation avoids interpolation errors associated with the use of LUTs (which can be a few percent or more for 291 
individual scenes [Lorente et al., 2017]); more importantly, it provides the freedom to account dynamically for a wide 292 
variety of surface BRDFs, surface pressures, and other factors (e.g., aerosols). The AMF for H2O is calculated at 442.0 293 
nm. 294 

      The following setup was used in VLIDORT to calculate W(z), Iclear and Icloud. The model uses 4 streams (discrete 295 
ordinates) in the polar half-space and 47 vertical layers from the surface to 0.01 hPa. Surface pressure is taken from 296 
MERRA-2 at the time of observation, with an adjustment according to the Global One-kilometer Base Elevation 297 
(GLOBE) database from NOAA. Besides Rayleigh scattering, the radiative transfer calculation considers atmospheric 298 
absorption by O3, NO2 and H2O using vertical profiles from the GEOS-Chem simulation mentioned before. Clouds are 299 
assumed to be Lambertian reflectors with an albedo of 0.8. This assumption also underlies the OMCLDO2 product’s 300 
cloud fraction and cloud pressure [Veefkind et al., 2016] which are inputs to the AMF calculation. Some aerosol effects 301 
are implicit in the cloud information [Boersma et al., 2004, 2011]; however, the lack of an explicit treatment of aerosols in 302 
the current pipeline may result in large biases for areas with high aerosol loading. The effects of aerosols on the AMF 303 
depend on the aerosol types and vertical profiles. Although aerosol corrections have been performed using LUTs [Kwon 304 
et al., 2017; Jung et al., 2019; Vasilkov et al., 2021], on-line radiative transfer with aerosols remains challenging, as it not 305 
only requires a large amount of a priori information for aerosol optical properties, horizontal and vertical distributions, but 306 
also comes with a high computational cost.  307 

      While the Lambertian-equivalent reflectance product OMLER [Kleipool et al., 2008] was used in previous retrievals 308 
[Wang et al., 2014, 2016, 2019], a more sophisticated surface reflectance treatment described below is implemented in the 309 
MEaSUREs pipeline. This allows us to account for the variation of surface reflectance in a more physically consistent 310 
manner. We note that OMLER was used to derive OMCLDO2; thus, the cloud information used has an inconsistency with 311 
the new surface treatment, which could result in error for cloudy scenes.   312 

      Over land surfaces, we use VLIDORT’s Bidirectional Reflectance Distribution Function (BRDF) supplement. This 313 
package calculates the bi-directional reflectance using a MODIS-style combination of Ross-Thick, Li-Sparse, and 314 
Reciprocal (RTLSR) kernels. The implementation is similar to that in Qin et al. [2019] except that the kernel amplitudes 315 
are taken from the daily collection V006 MODIS BRDF product (MCD43C1) [Schaff and Wang, 2015]. The V006 product 316 
captures rapid land surface changes related to vegetation, snow, and disturbances [Wang et al., 2018]. Since 442 nm is 317 
outside the wavelengths covered by MCD43C1, we use the Zoogman et al. [2016] surface spectral model to extend the 318 
MODIS kernel amplitudes to this wavelength. 319 

      Over water, we use VLIDORT’s VSLEAVE supplement for ocean optics [Spurr and Christi, 2019]. This is based on a 320 
number of sources for pure water and pigment scattering and absorption, plus semi-empirical models of marine backscatter 321 
[Morel and Maritorena, 2001; Fasnacht et al. [2019]. It considers two processes - (a) the surface roughness and glint 322 
associated with wind-driven waves and (b) water-leaving radiances due to interaction with organics in the ocean. For ocean 323 
surface roughness, we use the Cox-Munk slope distribution [Cox and Munk, 1954] driven by MERRA-2 winds at 2 m 324 
height and the monthly ocean salinity from the World Ocean Atlas 2009 [Antonov et al., 2010]. For water-leaving 325 
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radiances, we estimate the effect of ocean organics using the monthly climatology of chlorophyll concentrations derived 326 
from MODIS observations [Hu et al. 2012]. 327 

      Figure 8 shows histogram comparisons between the AMFs calculated using OMLER and those using the new 328 
BRDF/VSLEAVE combination, for July 1, 2005. When cloud fraction is high (f > 0.85), the two sets produce very similar 329 
results, as cloud scattering predominates. The histograms peak at small AMFs (<0.1) corresponding to high cloud tops (i.e., 330 
low cloud top pressures). However, when cloud fraction is low (f < 0.15), the BRDF/VSLEAVE AMFs are apparently 331 
larger than the OMLER AMFs for both land and ocean surfaces. This implies that the new surface reflectance treatment 332 
will tend to lower the VCD for the same SCD. The BRDF land AMFs also have a wider spread in histogram distribution 333 
which probably reflects larger heterogeneities associated with geometries.   334 

 335 

Figure 8: Histograms of AMFs on July 1, 2005, derived for (left) land surfaces and (right) ocean using (black) OMLER 336 
and (red) BRDF/VSLEAVE surface reflectance for cloud fraction (top) f = [0.0, 0.15] and (bottom) f = [0.85, 1.0]. 337 

      Errors in AMFs mainly come from the uncertainties in the inputs to radiative transfer model, such as trace gas profile, 338 
surface albedo, cloud information, and aerosol correction [Lorente et al., 2017]. Wang et al. [2019] tested the influence of 339 
water vapor vertical profiles using the daily versus monthly MERRA-2 profiles for July 2006. They found that the resulting 340 
TCWV differs by 0.3 ± 5.0 mm. Wang et al. [2014] found a strong AMF sensitivity to surface albedo within the typical 341 
albedo range (0.05 – 0.15) for blue wavelengths. Specifically, a 0.02 increase in surface albedo corresponds to a ~9% 342 
increase in AMF. The MODIS BRDF has an RMS error < 0.0318, and a bias within ±0.0076, with needle-leaf and broad-343 
leaf forests having negative biases and other surface types (mixed forest, savanna/shrubland, grass/cropland/tundra, and 344 
desert) having positive biases [Wang et al., 2018]. Clouds are a major source of error for trace gas retrievals. Even for 345 
relatively small cloud fractions between 0.1 and 0.2, Lorente et al. [2017] found that the AMFs for NO2 can change by 20 – 346 
40%, which also applies to H2O. Wang et al. [2014] found that as the cloud pressure increases from 850 hPa to 900 hPa, 347 
the AMF for H2O increases from 1.6 to 2.0 (a 25% change) for a typical observation scenario. For the OMCLDO2 product, 348 
the precision of cloud fraction f is generally better than 0.01, the precision of cloud pressure is ~25 hPa for f < 0.10 and ~10 349 
hPa for f > 0.50 [Veefkind et al., 2016]. For the TCWV discussed here, the overall AMF uncertainty is estimated to be 10 – 350 
20% for relatively clear (f < 0.10) conditions and much larger for cloudier conditions. While error propagation provides a 351 
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uncertainty estimate, it usually does not include all error sources. Comparison with well-established highly accurate data 352 
provides a more concrete error estimate which will be presented next.  353 

4. Comparisons and Discussions 354 

      To evaluate the MEaSUREs TCWV, we compare with high fidelity reference datasets. Over the oceans, we use the 355 
daily 0.25°×0.25° Advanced Microwave Scanning Radiometer AMSR_E data derived by the Remote Sensing Systems 356 
(RSS) using their Version 7 algorithm [Wentz et al., 2014]. AMSR_E on the Aqua platform observes at approximately the 357 
same local time (1:30 PM) as OMI on the Aura satellite. The data are available from 2002 to 2011. Microwave 358 
observations can penetrate through clouds and are considered to be among the best over the ice-free ocean under non-359 
precipitating conditions. The accuracy of AMSR_E TCWV is about 1 mm [Wentz et al., 2005; Mears et al., 2015].  360 

      Over land surfaces, we compare with the GPS TCWV data [Wang et al., 2007] downloaded from the University 361 
Corporation for Atmospheric Research (UCAR) website. The dataset has an accuracy of better than ~1.5 mm and is 362 
available 2-hourly for all weather conditions [Wang et al., 2007]. The data comprise measurements from the International 363 
GNSS Service (IGS) network (1995-2012) and the GEONET network (1997-2005). The IGS stations are scattered around 364 
the globe and are most abundant in North America and Europe (Fig. A6a). In this paper, the IGS data are used for the 365 
overall evaluation of the MEaSUREs retrievals over land. GEONET is the nationwide GPS array of Japan; consisting of 366 
~1200 GPS stations with an average spacing of ~20 km (Fig. A6b), it is the largest national GPS network in the world. In 367 
this paper, the GEONET data are used to assess the representation error of station observations to gain a better 368 
understanding of the satellite validation results.  369 

4.1 Comparison for the Ocean 370 

      To make a direct comparison with the AMSR_E data which are available only over the oceans [Wentz et al., 2005], we 371 
generate the daily Level 3 MEaSUREs TCWV product at the same spatial resolution (0.25°×0.25°). This grid size is about 372 
twice the OMI Level 2 pixel size (13 km × 24 km). The Level 3 gridding program performs tessellation for the variables of 373 
interest based on the pixel areas and SCD fitting uncertainties of the Level 2 data. Before gridding, we filter the 374 
MEaSUREs Level 2 de-striped and temperature corrected VCDs using the standard criteria (i.e., MDQF = 0, cloud fraction 375 
f < 0.05, cloud pressure > 500 hPa, AMF within 0.25 – 4.0, and fitting RMS < 0.0012). These criteria are the default for all 376 
the Level 3 data discussed in this paper unless specified otherwise. After gridding, we compare the daily coincident 377 
AMSR_E and MEaSUREs data for the pixels without precipitation, snow, or ice.     378 

      Figure 9 shows the results for July 2005 and January 2006, with the MEaSUREs TCWV data derived from the OMI 379 
collection 3 spectra. There are over 2 million data points used for each panel. The datasets cluster around the 1:1 line in the 380 
2D joint histogram distributions, suggesting an overall good agreement. For July 2005, the linear correlation coefficient is r 381 
= 0.89 and the TCWV difference (∆=MEaSUREs - AMSR_E) has a mean of 1.1 mm, a median of 0.65 mm, and a standard 382 
deviation of σ = 6.6 mm; For January 2006, the corresponding values are r = 0.90, mean ∆ = 1.0 mm, median ∆ = 0.5 mm, 383 
and σ = 6.3 mm. When using the MEaSUREs TCWV data derived from the OMI collection 4 spectra for July 2005, we 384 
find r = 0.90, mean ∆ = 1.28 mm, median ∆ = 0.75 mm, and σ = 6.4 mm. These statistics are similar to those when the OMI 385 
collection 3 spectra were used, despite that the spectral fitting for OMI collection 4 is better (Fig. 5). This suggests that the 386 
AMF is a significant source of error for the MEaSUREs OMI TCWV.  387 

      Previously, Wang et al. [2019]’s OMI versus SSMIS comparison for f < 0.05 in July 2006 showed a mean bias ∆ = 0 388 
mm, but a slightly larger σ = 7.1 mm and lower correlation coefficient r = 0.82. It is worth noting that although the level of 389 
difference with respect to the reference datasets is comparable between this paper and other studies [Wang et al., 2019; 390 
Chan et al., 2020; Garane et al., 2023], the retrieval configurations are different. The SCDs and AMFs for MEaSUREs 391 
result from more optimization constraints and physical processes. As the MEaSUREs AMFs are generally larger than those 392 
calculated with OMLER under relatively clear conditions (Fig. 8ab), the Wang et al. [2019] algorithm probably has low 393 
biases in both the AMFs and SCDs that compensate each other.   394 

      One physical process important for the MEaSUREs TCWV product is the water leaving radiance handled in 395 
VLIDORT’s VSLEAVE package (Section 3). Figure 10 shows the histograms of the MEaSUREs - AMSR_E differences 396 
for July 2005, where the OMI collection 3 spectra were used for MEaSUREs. The red line corresponds to the result for the 397 
MEaSUREs retrieval with nominal AMF calculation, illustrating a satisfactory agreement with the reference dataset. The 398 
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black line is derived from a sensitivity test where the MEaSUREs TCWV uses the AMF calculated over the oceans with 399 
the Cox-Munk function only. In this sensitivity test, the radiation has no water-leaving component, resulting in larger 400 
AMFs, and consequently the VCDs in the sensitivity test are too low (by more than 5 mm) compared with those from 401 
AMSR_E. As organics in the water are even more important for the UV reflectance [Fewell et al., 2019], the water leaving 402 
radiance is also expected to influence molecules retrieved from the UV wavelength range, such as HCHO and O3. 403 
However, Rayleigh scattering is stronger in the UV, and the net effect for UV molecules awaits further investigation.   404 

 405 

Figure 9: TCWV (mm) comparisons between MEaSUREs and AMSR_E using daily coincident data for (top) July 2005 406 
and (bottom) January 2006. MEaSUREs TCWV data were derived from the OMI collection 3 spectra. Left panels are 2D 407 
probability distributions. The y=x line is plotted for reference. Right panels are histograms of the MEaSUREs - AMSR_E 408 
difference (mm). 409 

 410 

Figure 10: Histograms of MEaSUREs - AMSR_E for July 2005. The MEaSUREs data were retrieved from the OMI 411 
collection 3 spectra and the standard data filtering criteria were employed during Level 3 gridding. The black line is for the 412 
TCWV differences when the AMF is calculated using the Cox-Munk function only in a MEaSUREs sensitivity test, 413 
whereas the red line is for the differences when the nominal AMF calculation is used for MEaSUREs.  414 
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      The left panels of Figure 11 show the statistics of the MEaSUREs - AMSR_E differences for each 5 mm TCWV bin 415 
for July 2005. The same data as those for Fig. 9ab are used here. The absolute values of the median and mean differences 416 
are mostly below 1 mm. The largest deviation of ~1.5 mm occurs for the 35 – 40 mm TCWV bin. The inter-quartile ranges 417 
vary roughly within ±5 mm. The relative median and mean differences are small (< ~4%) for TCWV>15 mm.  418 

 419 

Figure 11: (Top) Absolute and (bottom) relative differences between MEaSUREs data and reference data for each 5 mm 420 
TCWV bin. Each box in the top row indicates the 25th and 75th percentiles for the bin. The line and triangle within each box 421 
represent the 50th percentile and mean, respectively. Each dot (triangle) in the bottom panels indicates the median (mean) 422 
difference divided by the TCWV of the bin. Left panels are derived using MEaSUREs (OMI collection 3) and AMSR-E 423 
data for July 2005. Right panels are derived using MEaSUREs (OMI collection 3) and GPS data for July 2005, Jan 2006, 424 
and July 2006. Dashed and dotted lines are guidelines for ease of visualization. 425 

      However, the comparison results are highly dependent upon clouds. As shown in Fig. A7, a slight increase in cloud 426 
fraction from f < 0.05 to f < 0.15 results in MEaSUREs overestimation beyond +1.5 mm for TCWV between 35 and 65 427 
mm. Relaxing the cloud pressure criterion to include all clouds has a similar effect. As a consequence, compounding the 428 
effects of cloud fraction and cloud pressure lead to significant positive bias and large scatter. For example, with f < 0.15 429 
and all cloud pressures, the MEaSUREs TCWV is larger than that for AMSR_E by ~4 mm for the 55 – 60 mm bin. The 430 
high sensitivity to cloudy scenes highlights the necessity to use strict cloud filtering for validation, which is why we 431 
employed the default standard filtering criteria described before. It also suggests that, when cloud fractions f > ~0.1 are 432 
used, the overall mean or median of the difference may be misleading, since positive bias due to clouds can disguise 433 
negative bias associated with other parts of the retrieval. Thus, data with significant cloud contamination are not 434 
recommended for use without further correction. 435 

      To evaluate whether the MEaSUREs - AMSR_E TCWV has any regional dependence, we examine the time mean of 436 
the daily differences for summer and winter months in Fig. 12cd. The panels are generated by averaging the daily 437 
MEaSUREs - AMSR_E maps for each 2-month period, with the requirement that at least 14 days of data are available for 438 
each grid square. The daily differences are produced in the same manner as those in Fig. 9. The result remain essentially 439 
the same when the OMI collection 4 spectra are used instead of collection 3. Figure 12 shows non-uniform spatial 440 
distribution for the differences. In northern summer, the region near the maritime continent in the Indian ocean has a 441 
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positive bias of up to ~8 mm for MEaSUREs. In northern winter, significant positive bias for MEaSUREs is seen in the 442 
south Pacific at low latitudes and negative bias further south, positive bias is also seen in the Atlantic slightly north of the 443 
equator. The monthly chlorophyll climatology used in the AMF calculation may have large errors in certain regions 444 
[Fasnacht et al., 2019], and its influence on TCWV requires further investigation. As the large absolute differences occur in 445 
regions where water vapor is relatively abundant (see Fig. 12ab for context), the relative mean differences are still confined 446 
within ~5% (Fig. 11b). 447 

 448 

Figure 12: (Top) Monthly mean TCWV (mm) for (a) July 2005 and (b) Jan 2006 generated from the daily Level 3 449 
MEaSUREs (OMI collection 3) data. The standard data filtering criteria are used for Level 3 gridding. (Bottom) Mean 450 
difference of MEaSUREs (OMI collection 3) - AMSR_E TCWV (mm) for (c) Jul 2005 and Jul 2006 and (d) Dec 2005 and 451 
Jan 2006. 452 

4.1.1 Correction for all-sky TCWV over the oceans 453 

      As discussed above, although MEaSUREs and AMSR_E generally agree well under clear conditions, even a small 454 
amount of cloud can lead to large scatter and significant positive bias for the MEaSUREs data. This is despite the fact that 455 
the SCD fitting for cloudy scenes has comparable or even better fitting RMS. To expand the usability range for the 456 
MEaSUREs retrievals, we experimented with a few machine learning models to perform bias correction. These models are 457 
trained using LightGBM regression with different feature sets and architectures, where LightGBM is a gradient-boosting 458 
algorithm based on the decision tree framework and grows trees leaf-wise [Ke et al., 2017].  459 

      To demonstrate feasibility, we use 5 days in July 2005 (1st, 7th, 14th, 21st, 28th) for model training and validation. We 460 
find the locations with both MEaSUREs(OMI collection 3) and AMSR_E data, with the latter being the target for learning. 461 
To save computer memory, we randomly select ~850,000 data points from the data and split them into the training and 462 
validation set using a 4:1 ratio. For each data point, we employ two sets of features selected from the variables used in 463 
MEaSUREs retrievals. Feature set 1 includes the VCD, AMF, latitude, longitude, cos(solar zenith angle), cos(viewing 464 
zenith angle), relative azimuth angle, surface pressure, surface albedo, cloud fraction, cloud pressure, temperature and 465 
water vapor mixing ratio at 27 vertical levels. Feature set 2 replaces the VCD with the SCD and replaces the temperature 466 
profile with the scattering weights. We vary the model architecture by changing the number of leaves and maximum depth 467 
of the trees for LightGBM.  468 
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      The training curves and feature rankings for three models are shown in Fig. A8. Model 1 and Model 2 employ feature 469 
set 1, while Model 3 employs feature set 2. Model 1 and Model 3 use 50 leaves with a maximum depth of 150, while 470 
Model 2 uses 150 leaves with a maximum depth of 50. For all three models, the training and validation RMSE track each 471 
other well, and both drop significantly after initial oscillations. However, the feature rankings are different. The top four 472 
features in order of importance for Model 1 are VCD, cloud fraction, AMF, and longitude; those for Model 2 are cloud 473 
fraction, VCD, longitude, and surface pressure; and those for Model 3 are SCD, AMF, longitude, and water vapor mixing 474 
ratio at the surface. The variables within each feature sets are not independent, and the models use different strategies to 475 
come up with their predictions. There appears to be a tendency for models with larger maximum depth to have a sharper 476 
drop in feature importance. Conceptually, these models rely heavily on a few features to make their predictions. In 477 
comparison, the model with more leaves and shallower depth (Model 2) bases its predictions on more features whose 478 
importance declines more slowly. 479 

Table 3. Statistics for all-sky comparisons between various TCWV data and the AMSR_E data for July 2 – 6, 2005, where 480 
∆ denotes the difference with respect to AMSR_E. 481 

All-sky Feature 
Set 

Leaves/Depth Mean(∆) 
(mm) 

Median(∆) 
(mm) 

σ(∆) (mm) Correlation 
coefficient r 

MEaSUREs - - 4.9 2.1 11.8 0.828 
Model 1 1 50 / 150 -0.42 -0.31 3.75 0.965 
Model 2 1 150 / 50 -0.42 -0.32 3.85 0.963 
Model 3 2 50 / 150 -0.39 -0.26 3.73 0.966 

      Despite the differences among the LightGBM models, they lead to similar results, as shown by the 2D joint density 482 
plots (Fig. A9). These plots are generated using the data for all cloud fractions between July 2 and July 6, 2005. Note, these 483 
dates were not used during the LightGBM training. The linear correlation coefficient between MEaSUREs and AMSR_E is 484 
r = 0.828, and the difference ∆ = MEaSUREs - AMSR_E has a mean (median) of 4.9 mm (2.1 mm) with a standard 485 
deviation σ = 11.8 mm, reflecting the adverse effect of clouds. In comparison, all the LightGBM predictions agree much 486 
better with the AMSR_E data, with r ~ 0.96, mean (median) ∆ < 0.5 mm, and σ ~ 3.8 mm (Table 3). Thus, with abundant 487 
reliable reference data over the oceans, there are multiple ways to improve the MEaSUREs cloudy data through bias 488 
corrections. Figure A10 shows the TCWV maps for July 4, 2005 as an example. The locations where the MEaSUREs data 489 
have large overestimates are associated with the clouds in the ITCZ and extra-tropical weather systems. The LightGBM 490 
predictions in these regions match the AMSR_E data better. 491 

4.2. Comparison for Land Surfaces 492 

      We use the same MEaSUREs daily Level 3 product as described at the beginning of Section 4.1 (i.e., using the standard 493 
filtering criteria and OMI collection 3 spectra) for validation over land surfaces. To compare with the GPS data of the IGS 494 
network [Wang et al., 2007], we use the stations whose elevations are within 250 meters of the MEaSUREs (0.25°×0.25°) 495 
gridded terrain height. For each station, we average the GPS data between 1 PM and 2 PM local time on each day. The 496 
GPS data are paired with the daily MEaSUREs Level 3 TCWV at the grid box where the station is located. To increase the 497 
sample size, we combine the data for July 2005, Jan 2006, and July 2006, resulting in more than 4,300 data pairs at over 498 
240 IGS stations. 499 

      Figure 13 shows that the MEaSUREs data compare well with the GPS data under relatively clear conditions, with a 500 
linear correlation coefficient r = 0.89. Overall, the MEaSUREs - GPS data have a mean of -0.7 mm, a median of -0.8 mm, 501 
and a standard deviation σ of 5.7 mm. For MEaSUREs (OMI collection 4), the corresponding statistics are r = 0.90, mean 502 
(median) bias = -0.5 (-0.6), and σ = 5.8 mm. The right panels of Fig. 11 show the details of the absolute and relative 503 
differences using the statistics for each 5 mm TCWV bin. The MEaSUREs data tend to overestimate when TCWV < 10 504 
mm and underestimate when TCWV is between 15 mm and 50 mm. The median discrepancies vary between +2.9 mm and 505 
-2.3 mm among the TCWV bins, and the inter-quartile ranges vary between 3.9 mm and 10.1 mm (Fig. 11c). The relative 506 
differences (Fig.  11d) are larger than those over the ocean, approaching -9% for the 25 – 30 mm bin, though smaller 507 
differences can be found for other bins. The larger discrepancies over land shown in Fig. 11 are concealed in the overall 508 
statistics (Fig. 13) due to positive and negative bias cancellation.  509 
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      Systematic AMF uncertainty is one possible reason for the negative bias over land for moderate amount of TCWV. 510 
Indeed, most IGS sites are located over surface types for which the MODIS BRDF has a positive bias (compare Fig. A6a 511 
with Fig. 4 of Wang et al. [2018]). Higher surface albedo tends to increase AMF and decrease VCD. The effects of 512 
aerosols are more difficult to ascertain, as they can either increase or decrease AMF [Jung et al., 2019].  513 

 514 

Figure 13: Comparison between MEaSUREs (OMI collection 3) and IGS TCWV (mm) for collocated data for July 2005, 515 
Jan 2006, and Jul 2006. The left panel shows the scatter plot with superimposed box-and-whisker type plots (indicating the 516 
10th, 25th, 50th, 75th, and 90th percentiles). The 1:1 line is plotted for reference. The right panel shows the overall histogram 517 
of the (MEaSUREs - GPS) TCWV (mm). 518 

4.2.1. GPS station representation error 519 

      Unlike the AMSR-E gridded data, GPS measurements are at individual sites. Since the Level 2 and Level 3 satellite 520 
data are associated with certain pixel areas, some differences between the GPS and satellite observations are attributable to 521 
the representation error of the station sites. Representation error is distinct from measurement error and depends on spatial 522 
resolution. The dense GEONET network (Fig. A6b) provides an opportunity to quantify the representation error of TCWV. 523 
The GEONET sites are distributed among inland, coastal, and island areas, representing diverse surface, optical, 524 
topographic, and meteorological conditions. The heterogeneity is intrinsic in the sub-pixel variations of satellite data. We 525 
estimate the spatial representation error of the GPS TCWV data by examining the variations of multi-site observations 526 
within grid squares of different sizes, following the procedure outlined below. 527 

      We divide the GEONET stations into different latitude – longitude grids of varying sizes ranging from 0.25° to 2.25° 528 
with an increment of 0.25°. At each grid square on each day, when observations from multiple stations are present within 529 
the relevant local time range, we first find the local time average for each station, then for all stations, we calculate the 530 
mean and the deviations from this mean. We assemble the deviations from all available grid squares from 2003 to 2005 and 531 
analyze their statistics. Results are shown in Fig. 14. For consistency with the criteria used in Fig. 13, we have excluded 532 
those grid squares within which the maximum inter-station altitude difference max(dz) is larger than 500 meters; however, 533 
we have included all hours of day in order to increase the sample size. Including all stations and/or constraining to a 534 
narrower local time range slightly alters the details of the plot but does not change the main conclusion. The probability 535 
distributions of within-pixel deviations roughly follow Gaussian shapes centered at zero, with sharper peaks (i.e., larger 536 
amplitude and smaller spread) for smaller grid sizes (Fig. 14a). The width of each probability curve provides a statistical 537 
measure of the TCWV variability for the corresponding grid resolution and is quantified using the standard deviation (σ) of 538 
the samples. The within-pixel TCWV standard deviation σ increases from ~1.4 mm at 0.25° to ~3.2 mm at 2.25° (Fig. 539 
14b).  540 

      The variance 𝑦𝑦 = 𝜎𝜎2 can be approximated using a power law relationship 𝑦𝑦 = 𝑎𝑎 ∙ 𝑥𝑥𝑏𝑏, where 𝑥𝑥 is the grid size in 541 
angular degree, and a and b are parameters to be fitted. For the data shown in Fig. 14, a=6.228 and b=0.66. The square root 542 
of the fitted curve is overplotted in Fig. 14b. Including the grid squares with max(dz) > 500 meters leads to values of a = 543 
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6.640 and b = 0.58. It is noted that the value of b = 0.66 is close to the power of the water vapor structure function found in 544 
some aircraft observations and high-resolution modeling studies under convective conditions [Fischer et al., 2013; 545 
Thompson et al., 2021]. At 0.25°×0.25° resolution, the sub-grid scale TCWV standard deviation is σ~1.4 mm. In 546 
comparison, the overall median (MEaSUREs-GPS) is -0.8 mm (Fig. 13). However, a few TCWV bins (e.g., 0 – 5 mm, 25 – 547 
30 mm, and 30 – 35 mm, Fig. 11c) have mean (MEaSUREs – GPS) beyond this value. As the MEaSUREs project will 548 
retrieve TCWV from instruments with different ground pixel sizes, characterization of the GPS stations’ representation 549 
errors helps guide our understanding of the validation results. 550 

 551 

Figure 14: Within-pixel variations for different grid sizes derived from GEONET TCWV data from 2003 to 2005. Data for 552 
all local times are included. Grid squares with station elevation differences > 500 meters are filtered out. (a) Probability 553 
distributions of the within pixel TCWV deviations from the corresponding mean values. The color scheme indicates 554 
different grid sizes. (b) Standard deviations (mm) of the within-pixel deviations as a function of pixel size (degrees) are 555 
plotted as circles. The curve shows the square root of the fitted power law for the corresponding variances.   556 

5 Summary 557 

      The TCWV retrieval algorithm for the MEaSUREs project is described in this paper. The retrieval follows the usual 558 
two-step approach to derive VCD from the ratio of SCD and AMF. As the biases and errors in SCD and AMF can 559 
sometimes compensate each other, the MEaSUREs algorithm strives to achieve satisfactory results through improvements 560 
in both these components. Hence, instead of directly transferring previous algorithms to this project, we have undertaken 561 
new optimizations and developments. The retrieval algorithm and processing pipeline developed for the MEaSUREs 562 
project will be used to generate a long-term blue band TCWV dataset.  563 

      For SCD, we have incorporated the latest reference spectra and made sure that we have sufficient spectral sampling 564 
before instrument slit function convolution. Coarse sampling will misrepresent the spectral peaks and lead to over-565 
abundant water vapor estimates. As the fitted SCDs can vary by as much as ~25% depending on the bounds of the fitting 566 
window, we have considered additional constraints. Specifically, besides the fitting RMS, fitting uncertainty, and 567 
convergence rate, we have also considered systematic structures in the fitting residual and correlations with interference 568 
molecules. The resulting optimized retrieval window for H2O is 432 – 466 nm. We have derived the relationships between 569 
the SCDs fitted using the H2O reference spectrum at 283 K and those fitted at other temperatures and used these results to 570 
perform temperature corrections. We have also improved the de-striping program to better account for the variations on 571 
short time scales. For collection 3 OMI Level 1b data on July 1, 2005, the median fitting RMS is ~9.5×10-4 and the median 572 
fitting uncertainty is ~6.1 mm. The collection 4 OMI spectra lead to an ~9% improvement in the SCD fitting uncertainty. 573 

      We perform on-line radiative transfer (using VLIDORT v2.8) to calculate the AMF for each scene. In place of the 574 
OMLER, over land, we employ the MODIS BRDF, and over the oceans, we use the Cox-Munk roughness and calculate 575 
the water-leaving radiance. The latter is important for avoiding large under-estimates of TCWV. Cloud information from 576 
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the OMCLDO2 product is used to calculate the AMFs. Aerosols are currently not treated explicitly in the on-line radiative 577 
transfer calculation. 578 

      Overall, the MEaSUREs TCWV data compare well with the reference datasets under relatively clear conditions. For 579 
July 2005, with the standard filtering criteria, we found that MEaSUREs (OMI collection 3) - AMSR_E has a mean 580 
(median) of 1.1 mm (0.6 mm) with a standard deviation of σ = 6.6 mm and a linear correlation coefficient of r = 0.89. 581 
Similar results are obtained when OMI collection 4 spectra were used for MEaSUREs TCWV. The r and σ values are 582 
better than those in Wang et al. [2019], though the bias is slightly larger. The relative mean difference between MEaSUREs 583 
and AMSR_E is < 5% for TCWV > 10 mm. Despite the overall good agreement, biases exceeding 6 mm are found in 584 
certain regions over the oceans.  585 

      Even a small amount of cloud can introduce large bias and scatter. We thus recommend using the strict data filtering 586 
criteria (Section 4.1) for MEaSUREs TCWV. To extend the usability range of the MEaSUREs data to all sky conditions 587 
over the oceans, machine learning models are employed to significantly reduce the bias to a few tenths of a mm with a σ of 588 
~3.8 mm. 589 

      Over land surfaces, MEaSUREs - GPS has an overall mean (median) of -0.7 mm (-0.8 mm) with a σ = 5.7 mm (r = 590 
0.89) under relatively clear conditions. However, for different TCWV bins, mean positive biases of 1 – 3 mm are seen for 591 
TCWV < 10 mm and mean negative biases of 0 – 2 mm for TCWV > 10 mm.  592 

      Representation errors for GPS stations were investigated using the dense GEONET observations. The within-pixel 593 
inter-station TCWV variance increases with grid size and can be described using a power law. At 0.25° × 0.25° resolution, 594 
the representation error (in terms of the standard deviation) is about 1.4 mm.  595 

Appendix A. 596 

 597 
Fig. A1. Water vapor reference spectra (using the HITRAN2020 line list, see Section 2.1) near the strongest H2O 598 
absorption feature within the blue wavelength region, plotted for different temperatures (223 K and 303 K) and pressure 599 
levels (0.05 atm and 1.0 atm). Spectral shapes are noticeably different between 223 K and 303 K. Within each temperature 600 
group, the change with pressure is relatively minor. 601 
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 602 

Fig. A2. Histogram of (black) fitted SCD and (red) temperature corrected SCD derived from OMI collection 3 swaths for 603 
July 1, 2005. 604 

 605 

Fig. A3. Typical optical depths of absorbing molecules (colored solid lines) in the 400 – 500 nm wavelength range; the 606 
typical OMI collection 3 fitting residual level is indicated by the dashed horizontal line. Results are convolved using a 607 
Gaussian kernel with a half width at half maximum of 0.5 nm and plotted in log scale. The plot is generated using 300 608 
Dobson Units (DU, where 1 DU = 2.6867×1016 molecules/cm2) of O3, 1.34×1016 molecules/cm2 of NO2, 1.0×1023 609 
molecule/cm2 of H2O, 3.3×1043 molecule2/cm5 of O4, and 1.0×1015 molecule/cm2 of CHOCHO. 610 
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 611 
Fig. A4. (a) Median SCD for each across-track position for OMI collection 3 Orbit 5268. All data used have main data 612 
quality flag MDQF = 0 and fitting RMS < 5×10-3. The magenta dot highlights the obviously anomalous across-track pixel 613 
(position number 47) for the swath. (b) Probability distributions of fitting RMSs for (black) all pixels and (magenta) pixels 614 
along across-track position number 47 of Orbit 5268. (c) Probability distributions of fitted SCDs (1023 molecules/cm2) for 615 
(black) all pixels and (magenta) pixels along across-track position number 47 of Orbit 5268. 616 
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 617 

Fig. A5. The global (black), regional (magenta), and local (green) de-striping correction vectors for OMI collection 3 Orbit 618 
5268. 619 
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 620 

Fig. A6. GPS station locations in 2005 for the TCWV dataset [Wang et al., 2007] for the (a) IGS and (b) GEONET 621 
network. Longitudes and latitudes are indicated along the horizontal and vertical axis of each map. 622 
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 623 

Fig. A7. Statistical distributions of 25th, 50th, and 75th percentiles of ∆ = MEaSUREs (OMI collection 3) - AMSRE for each 624 
5 mm TCWV bin in July 2005. The MEaSUREs Level 3 daily products for all panels use the usual MDQF=0 and RMS < 625 
0.0012 criteria except for cloud fraction (f) and cloud pressure (pcloud) – (a) f < 0.05, pcloud > 500 hPa; (b) f < 0.15, 626 
pcloud > 500hPa; (c) f < 0.05, pcloud > 0; (d) f < 0.15, pcloud > 0. 627 
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 628 

Fig. A8. (Left) Training and validation curves and (right) feature rankings for LightGBM (top) Model 1, (middle) Model 2 629 
and (bottom) Model 3. Model 1 and Model 3 use 50 leaves with a maximum depth of 150. Model 2 uses 150 leaves with a 630 
maximum depth of 50. Model 1 and Model 2 use feature set 1. Model 3 uses feature set 2. The feature name abbreviations 631 
in the right panels are listed in Table A1.  632 

  633 
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Table A1. Feature name abbreviations for the right panels of Fig. A8. 634 

Feature name abbreviation Meaning 
h2ovcd MEaSUREs de-striped and temperature corrected vertical column density 
h2oscd MEaSUREs de-striped and temperature corrected slant column density 
amf Air Mass Factor (AMF) 
cldfrac cloud fraction used in AMF calculation 
cldpress cloud pressure used in AMF calculation 
raa relative azimuth angle 
cossza Cosine of solar zenith angle 
cosvza Cosine of viewing zenith angle 
gasXX water vapor mixing ratio at vertical model Level XX 
ttXX temperature at vertical model Level XX 
swXX scatting weight at vertical model Level XX 
psfc surface pressure 

 635 

 636 

Figure A9. Joint density plot between AMSR_E TCWV and (a) MEaSUREs (OMI collection 3), (b) Model 1, (c) Model 2, 637 
(d) Model 3 for the time period from July 2 to July 6 of 2005. The color bars represent the number of data points are 638 
individually stretched. 639 

  640 
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 641 

Fig. A10. TCWV (mm) map for July 4, 2005 derived from (top) LightGBM Model 1, (middle) AMSR_E, and (bottom) 642 
MEaSUREs (OMI collection 3). The background color filling for land and ocean follows the default behavior of python 643 
cartopy package with stock_img enabled [Cartopy].  644 
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