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Abstract. There is growing recognition that high latitude dust (HLD), originating from local, drainage-basin flows, is the 10 

dominant source for certain important phenomena such as particle deposition on snow / ice. The analysis of such local plumes 

(including a better exploitation of remote sensing data) has been targeted as a key aerosol issue by the HLD community. The 

sub-Arctic Lhù’ààn Mân’ (Kluane Lake) region in the Canadian Yukon is subject to regular drainage, wind-induced dust 

plumes. This dust emission site is one of many current and potential proglacial dust sources in the Canadian North. In situ 

ground-based measurements are, due to constraints in accessing these types of regions, rare. Ground- and satellite-based remote 15 

sensing accordingly play an important role in helping characterize local dust sources in the Arctic and sub-Arctic.  

We compared ground-based, passive and active remote sensing springtime (May 2019) retrievals with microphysical 

surface-based measurements in the Lhù’ààn Mân’ region in order to better understand the potential for ground- and satellite-

based remote sensing of HLD plumes. This included correlation analyzes between ground-based coarse mode (CM) aerosol 

optical depth (AOD) retrievals from AERONET AOD spectra, CM AODs derived from co-located Doppler lidar profiles and 20 

OPS (Optical Particle Sizer) surface measurements of CM particle-volume concentration (𝑣𝑐(0)). An automated dust 

classification scheme was developed to objectively identify local dust events. The classification process helped distinguish 

lidar-derived CM AODs which co-varied with 𝑣𝑑𝑢𝑠𝑡(0) (during recognized dust events) and those that varied at the same 

columnar scale as AERONET-derived CM AOD (and thus could be remotely sensed). False positive cloud events for which 

dust-induced, high frequency variations in lidar-derived CM AODs in cloudless atmospheres indicated that the AERONET 25 

cloud-screening process was rejecting CM dust AODs. The persistence of a positive lidar ratio bias in comparing the 

CIMEL/lidar-derived value with a prescribed value obtained from OPS-derived particle sizes coupled with dust-speciation-

derived refractive indices led to the suggestion that the prescribed value could be increased to optically-derived values of 20 

sr by the presence of optically significant dust particles at an effective radius of 11–12 µm. Bimodal CM PSDs from full-

fledged AERONET inversions (the combination of AOD spectra and almucantar radiances) also showed CM peaks at ~ 1.3 30 

µm and 5–6.6 µm radius: this, we argued, was associated with springtime Asian dust and Lhù’ààn Mân’ dust, respectively. 
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Correlations between the CIMEL-derived fine mode (FM) AOD and FM OPS-derived particle-volume concentration suggest 

that remote sensing techniques can be employed to monitor FM dust (which is arguably a better indicator of the long-distance 

transport of HLD). 

1 Introduction 35 

Local, drainage wind-induced dust events have recently been recognized as an important source of dust at high latitudes 

(Bullard et al., 2016). Groot-Zwaaftink et al. (2016) employed FLEXPART simulations to argue that the contributions of 

Asian, African, and local dust in the Arctic are roughly evenly divided in terms of total atmospheric (columnar) dust loads 

while surface concentrations are significantly more associated with dust of local origin. Meinander et al. (2022) employed two 

global dust-transport models supported by recent verification data to confirm the predominance of high latitude dust (HLD) 40 

sources in terms of snow- and ice-deposition. This means, notably that, dust deposition on snow and ice and the attendant 

effects or early snow melt is largely attributable to local dust. Additional impacts of local dust deposition include direct addition 

of nutrients, local health impacts for humans & wildlife and indirect climate / radiative (altered cloud property) impacts 

(Meinander et al., 2022). These substantive impacts underscore the importance of understanding the dynamics of local dust 

transport and deposition. 45 

Bullard et al. (2016) pointed out that local dust events in Canada are rarely monitored compared with other high-latitude 

countries. Low population density, limited numbers of meteorological stations, and problems with the use of satellite-based 

remote sensing (RS) data in high-latitude regions (e.g., cloud contamination) have led to less frequent observations of local 

dust events in Canada (Bullard et al., 2016). The next generation of active and passive polar-orbiting sensors targeted by the 

ESA EarthCARE mission and the NASA-led Atmospheric Observation System (AOS) promise a quality of aerosol, cloud and 50 

precipitation retrievals that will make significant instrumental, algorithmic and scientific advances relative to the polar-orbiting 

A-train constellation (the workhorse remote sensing constellation that has driven atmospheric science over the past twenty two 

years). An intrinsic part of that system will be the ground-based Cal/Val sites that employ or will employ active and passive 

ground-based remote sensing sensors as well as microphysical measurements to monitor aerosols and clouds at existing and 

future sites across the Arctic. The Lhù’ààn Mân’1 (Kluane Lake) region of Yukon, Canada will very likely be such a Cal/Val 55 

site in the HLD context: it is recognized for its frequent and strong springtime dust events induced by strong katabatic winds, 

highly erodible sediments and the steep valley walls leading down to the lake (Bachelder et al., 2020).  

Published results on the remote sensing of local dust in the Arctic using active or passive, airborne- or satellite-based 

platforms are rare. Specific examples include the use of airborne (532 nm) lidar profiles to detect local dust plumes over 

riverbed, fjord and coastal regions of Svalbard (Dörnbrack et al., 2010), MODIS-based color and AOD (aerosol optical depth) 60 

                                                           
1 Lhù’ààn Mân’ is the Southern Tutchone name for Kluane Lake. Southern Tutchone is one of seven Athapaskan languages 

in the Yukon and is spoken by Kluane First Nation people. 
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imagery for dust plumes emanating from Alaskan riverbed sediments into the Gulf of Alaska (Crusius et al., 2011), the 

investigations by Dagsson-Waldhauserova et al. (2019) who employed MODIS color imagery and attempted to use satellite-

based CALIOP lidar profiles to support their airborne particle size distribution measurements of Icelandic dust plumes and 

MODIS, MISR, CloudSat / CALIOP optical depth and particle size characterization of local dust plumes over Lake Hazen in 

the high Canadian Arctic (Ranjbar et al., 2021). More recently, Kawai et al. (2023) reported on a multi-year CALIOP-derived  65 

climatology of zonally-averaged estimates of local dust optical depth in the Arctic (as well as a unique, multi-year, simulated, 

map of local-dust columnar concentration across the Arctic) 

Ground-based data retrievals using solar extinction and sky radiometry data are widely used by the AERONET (AErosol 

RObotic NETwork) to characterize the optical and microphysical properties of aerosols at local (site-focused) scales (Holben 

et al., 1998). AOD and almucantar sky radiance measurements are carried out using the CIMEL sunphotometer / sky 70 

radiometer. Spectral Deconvolution Algorithm (SDA) retrievals can be employed to investigate high frequency event-level 

studies (O’Neill et al., 2003) while the more comprehensive AERONET inversion algorithm (Dubovik & King, 2000) can be 

employed for low frequency, climatological-scale analysis (see Hesaraki et al., 2017 for a more detailed discussion). 

Publications on the use of AERONET retrievals and/or ground-based lidar data to characterize the properties of local dust 

events at high latitudes are also rare. Yang et al. (2020) employed AERONET AODs and AERONET-derived particle size 75 

distributions, surface particle concentration measurements (PM2.5 and PM10) as well as Doppler lidar profiles (including the 

use of a particle-typing depolarization-ratio channel) and ceilometer profiles to characterize the dynamics of local dust events 

over Iceland. Rozwadowska & Sobolewski (2010), while acknowledging the episodic optical importance of local dust storms 

such as those detected by Dörnbrack et al. (2010), present a long-range transport and local meteorology analysis of AERONET 

AODs at Hornsund: an analysis that implies that local dust is of secondary optical importance (at least in the context of total 80 

AOD: they did not pursue the analysis in terms of the possible impact of the local meteorology on their coarse mode2 (CM) 

AOD.3) 

Huck et al. (2023) employed meteorological measurements, along with AERONET AODs and Angstrom exponents (AOD 

spectral information), a remote camera and satellite imagery to investigate dust event detection limits in the Lhù’ààn Mân’ 

region. One notable conclusion was that the oblique camera captured many dust blowing incidents that were not being detected 85 

by their AERONET CIMEL instrument. Various explanations for this discrepancy were offered: these included 1) the notion 

that Lhù’ààn Mân’ plumes are very locally inhomogeneous and that wind direction could influence AERONET dust detection, 

that 2) the CIMEL instrument missed plumes below its minimum angular elevation, that 3) AERONET sensitivity was 

frequently too coarse to detect weaker events, that 4) AERONET cloud screening removed 97.8% of dust events and that 5) 

                                                           
2 particles whose radius is microphysically or (in an indirect fashion) optically >~ 1 µm (see, for example, O’Neill et al., 2022) 

3 The AERONET CM AOD product being, on average, significantly less than the total AOD (AboEl‐Fetouh et al., 2020) and, 

in principle, much more sensitive to local CM aerosols such as sea salt and local dust. 
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the CIMEL employed for the analysis (for which data acquisition occurred during the 2018 dust season) was incapable of 90 

making nighttime measurements. 

Ground-based (and, even more so, satellite-based) remote sensing methods suffer from and benefit from their relatively 

coarse, column-based spatial scale and their minute to hourly to daily temporal scale. Columnar methods integrate the aerosol 

effects of the whole column and rely on other dimensions of information to separate out the optical influence of low altitude 

dust plumes. This same coarseness can have the tendency to produce robust dust signals if the dust plume scale is 95 

commensurate with the remote sensing scale. Another challenge related specifically to ground-based and specifically 

AERONET retrievals is the excessively aggressive cloud screening that can screen out a dust event (Evan et al., 2021) and 

secondly, insufficiently aggressive cloud screening that leaves residual cloud OD to contaminate potential dust signals. Surface 

microphysical measurements such as PSDs and vertical profiling measurements such as lidar backscatter profiles can help to 

verify that dust events are predominantly coarse mode in nature. 100 

We seek to employ ground-based, passive and active (lidar) RS techniques to analyze the complementarity and redundancy 

of optical and microphysical retrievals relative to springtime CM measurements of local dust acquired using microphysical 

instruments at Lhù’ààn Mân’. The key ground-based instruments include a CIMEL sunphotometer / sky radiometer, a Doppler 

lidar operating in the SWIR (short-wave infrared), and an Optical Particle Sizer (OPS) for the measurement of near-surface 

particle-volume size distributions (PSDs). The coherencies and incoherencies between the passive AERONET retrievals and 105 

near-surface PSDs, between AERONET CM AODs and the lidar backscatter profiles and their derived CM AODs (largely 

generated by CM particle backscatter for the Doppler SWIR lidar) and between the lidar profiles and the CM portion of the 

near-surface PSDs will enable a better understanding of the optical and microphysical properties of local dust plumes and will 

help in improving ground-based and satellite-based remote sensing retrievals of local dust properties.  

2 Research site and instrumentation 110 

The Lhù’ààn Mân’ region in the Canadian Yukon is subject to regular drainage-wind dust plumes emanating from the 

Slims River basin (Nickling, 1978). The recent Kaskawulsh glacier retreat in the Slims River Valley and the river 

reorganization event (Shugar et al., 2017) prompted the fall of water levels and the season-long exposure of the river delta and 

floodplain. This caused extended periods of dust emissions induced by Aeolian erosion (Shugar et al., 2017). Typically, the 

period of the most intense dust events is the spring and summer of each year (Bachelder et al., 2020).  115 

The Kluane Lake Research Station (KLRS) is an established University of Calgary (Atmospheric Institute of North 

America) site on the southern shore of Lhù’ààn Mân’ (see Fig. 1). The AERONET CIMEL, Doppler lidar and OPS data 

employed in this paper were acquired at KLRS during the month of May 2019. The May 2019 campaign was an intense part 

of a continuous strategy to extract and analyze Lhù’ààn Mân’ dust plume properties using a suite of optical, microphysical, 
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and meteorological instruments (a major chemical and microphysical contribution to this ongoing analysis was reported in 120 

Bachelder et al., 2020). 

Details on the CIMEL sunphotometer / sky radiometer and associated processing protocols can be found in Giles et al. 

(2019). AEROCAN, the Canadian subnetwork of AERONET (maintained by Environment and Climate Change Canada) 

provides direct instrument troubleshooting and swapping out support for all Canadian AERONET sites. This instrument 

provides spectral AOD retrievals at a nominal high frequency of one (9-band) AOD spectrum per 3 minutes (9 bands from 340 125 

to 1640 nm4). It also provides a comprehensive suite of low frequency (nominally once per hour) microphysical and optical 

retrievals derived from almucantar radiance scans and 4-band AODs.  

The high frequency (11-second time bin) Doppler (HALO Photonics) lidar (Pearson et al., 2009) was averaged to the 1-

minute CIMEL time bins. The vertical resolution of the lidar is 3 m based on 30 m overlapping gates with a typical range of < 

LCH (Lidar Ceiling Height which is equal to 9.6 km; Newsom & Krishnamurthy, 2020). Its 1.5 µm wavelength (more precisely 130 

1.548 µm according to Newsom & Krishnamurthy, 2020) is largely the result of a strategical decision to minimize molecular 

contributions to the backscatter signal (see, Newsom & Krishnamurthy, 2020, for example). The FM5 AOD at the lidar 

wavelength is typically negligible (see below). 

The KLRS surface-PSD device is a TSI Optical Particle Sizer (OPS) 3330 instrument that incorporates 16 size bins with 

bin-center radii extending from 0.17 to 4.51 m (bin-center diameters from 0.34 to 9.02 m). Two supporting FAI Optical 135 

Particle Counter (OPC) instruments provided analogous PSD measurements6 at the Down Valley (DV) site about 7 km 

southwest of KLRS (see Fig. 1 for the DV position and Bachelder et al., 2020 for details on the OPC instruments). The KLRS 

OPS and the two DV OPC instruments often provided important redundancy information (as well as insightful information 

stemming from their differences) when we sought to investigate the presence and nature of a given CM event.  

 A dust event captured in a 27 May 2019 PlanetScope satellite image acquired over Lhù’ààn Mân’ is shown in Fig. 1 (the 140 

KLRS and DV site positions are indicated by red and green stars respectively). AERONET CM AOD retrievals are represented 

by the blue-colored profile in the bottom right-hand corner of the image. The time of the PlanetScope image acquisition is 

indicated by the arrow on the AERONET plot. The sun-pointing CIMEL instrument was looking southeast at the time of the 

PlanetScope image acquisition while dust plumes can be seen flowing from the whitish Slims River basin and delta. The blue-

colored AERONET CM AOD shows quite large values during the period (late morning to early afternoon) when the optically 145 

significant dust plume intercepts the CIMEL line of sight (from the roughly eastern to western directions).  

                                                           
4 Including two bands at 1020 nm that are associated with the overlap region of the two CIMEL detectors (the VIS–NIR and 

NIR–SWIR detectors). 
5 particles whose radius is microphysically or (in an indirect fashion) optically <~ 1 µm (O’Neill et al., 2022) 

6 across 22 size bins whose bin-center radii extend from 0.14 to 5.0 m (bin-center diameters from 0.28 to 10 m) 
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Figure 1: Lhù’ààn Mân’ (Kluane Lake) study area as seen in a 27 May 2019 PlanetScope satellite image (ESA/NASA). A dust plume can 

be seen emanating from the whitish Slims River basin. The KLRS and DV site positions are indicated by the red and green star respectively. 

The CM AOD and FM AOD time series in the bottom right-hand corner is a standard (SDA) AERONET Version 3, Level 1.0 (500 nm) 150 
product (the CM AOD at the lidar wavelength of 1.548 µm will only change by a moderate amount relative to the 500 nm value). The solar-

viewing azimuth direction of the CIMEL is shown yellow solar icons (clockwise from 17:00 UTC at the upper right to 20:07 UTC to 00:00 

UTC on May 28). The coordinates of the AERONET / AEROCAN station are 61.027 N, 138.41 W.  

3 Methodology 

3.1 AERONET processing 155 

We employed Version 3.0 Level 1.0 AODs and Level 1.5 AERONET inversions to extract retrieval products that could be 

compared with the lidar and the KLRS OPS data sets (see Giles et al., 2019 for an overview of Version 3.0 AERONET AOD 

products and Sinyuk et al., 2020 for an overview of Version 3 AERONET inversions). The algorithm used for comparisons 

with the Doppler lidar data was the high frequency (nominally 1 minute averaging bin, 3 minute intersample gap) SDA+ 

product extrapolated to the Doppler SWIR wavelength of 1.548 µm (see O’Neill et al., 2008 for a discussion of the SDA+ 160 

algorithm). We label this ARONET-derived CM AODs as 𝜏𝑐. 

The low frequency (nominally 1-hour intersample gap) AERONET inversion products (Dubovik & King, 2000) include 

the particle-volume PSD per unit increment in logr (𝑑𝑉/𝑑𝑙𝑛𝑟) over 22 radius bin centers (stretching from 0.05 to 15 µm) along 
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with pan-PSD refractive index, scattering phase function and associated optical products such as the asymmetry factor across 

four spectral bands (440, 675, 870, and 1020 nm). These fundamental products are accompanied by derived products of CM 165 

and FM particle-volume concentration and effective radius as well as CM and FM AODs across the same four spectral bands. 

 An important intensive (per particle) AERONET inversion product is the (column averaged) CM effective radius (see 

Hansen & Travis, 1974 for a definition of the effective radius and AboEl-Fetouh et al., 2020 for a discussion of the FM and 

CM AERONET-inversion effective radius product). In the absence of clouds and in the presence of a strong columnar dust 

activity, this parameter may provide an important and robust indicator of column-averaged effective radius. The same can be 170 

said of the refractive index product with two notable riders: the pan-PSD nature of the product can become problematic in the 

presence of an (optically) competitive FM aerosol of distinctly different refractive index and the rapidly increasing refractive 

index and single scattering albedo retrieval errors (notably for desert dust) with decreasing AOD (Sinyuk et al., 2020).  

3.2 Lidar processing 

Basic lidar definitions are given, for example, in Weitkamp (2005). The essential quantities that we require in order to 175 

transform the Doppler lidar profiles into CM extinction coefficient and lidar-derived CM optical depth (𝜏𝑐
ℓ) are the CM 

backscatter coefficient (𝛽𝑐) and the CM lidar ratio (𝑆𝑐). The actual lidar outputs are 𝛽′(𝑧) = 𝛽(𝑧) 𝑇2(𝑧) (attenuated 

backscatter coefficient) profiles where 𝑇2(𝑧) is the altitude (z) dependent return (two-way) transmission of a lidar pulse from 

the ground (z = 0). Optical depths for submicron particles at the lidar SWIR wavelength are negligible (we already know that 

to be true for molecular scattering and it is generally a good approximation if dust optical depths are >~ 0.1: see, for example, 180 

Fig. 2 of O’Neill et al., 20087).  

If we apply this CM dominance to the 𝛽′(𝑧) and 𝛽(𝑧) profiles then; 

 𝛽′(𝑧) ≅  𝛽𝑐
′(𝑧) = 𝛽𝑐(𝑧) 𝑇𝑐

2(𝑧)          (1a) 

The two-way transmission can be approximated by; 

𝑇𝑐,
2 (𝑧) ≅  𝑒𝑥𝑝[−2 𝜏𝑐(𝜏𝛽𝑐

′(0, 𝑧) 𝜏𝛽𝑐
′⁄ )]         (1b) 185 

where 𝜏𝑐 is a CIMEL-derived value at the lidar wavelength (𝜏𝑐  values interpolated to the nominal time of a given lidar 

profile) and 𝜏𝛽𝑐
′(0, 𝑧) 𝜏𝛽𝑐

′⁄  amounts to a dynamic approximation of 𝜏𝑐(0, 𝑧) 𝜏𝑐⁄  for that profile (the reader will note that, for the 

sake of nomenclature simplicity, we only employ the partial column argument “(0, 𝑧)” when it helps to underscore an explicit 

point). We can then approximate 𝛽𝑐(𝑧) by: 

𝛽𝑐,(𝑧) ≅ 𝛽𝑐
′(𝑧) 𝑇𝑐,

2 (𝑧)⁄ ≅ 𝛽𝑐(𝑧) 𝑇2(𝑧) 𝑇𝑐,
2 (𝑧)⁄         (2) 190 

                                                           
7 For FM AODs of <~ 0.4 at 500 nm (a maximum FM AOD of 0.4 is generally greater than any values that could be found, in 

the absence of the easily detectible influence of biomass burning smoke, at Lhù’ààn Mân’). During the month of May 2019 

there were FM AOD events on May 7/8 and May 24 (associated, it would appear with CM dust events) for which the 500 nm 

FM AOD for the former case was as large as ~ 0.2).  
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The division by 𝑇𝑐,
2 (𝑧) means (whether it is an approximation or not) that the derived 𝛽𝑐(𝑧) values will appear 

progressively brighter than 𝛽𝑐
′(𝑧) values as z increases with an attendant potential for error as 𝑇2(𝑧) and 𝑇𝑐,

2 (𝑧) become very 

small. However, the 𝑇𝑐,
2 (𝑧) values are increasingly pinioned (in addition to the near-surface restraint of near unity 

transmission) by the CIMEL-estimated true value (𝑒𝑥𝑝[−2 𝜏𝑐]) as z increases towards the upper extreme of the 

𝛽𝑐
′(𝑧) integration (top of a dust plume in the case of a clear-sky dust event). 195 

3.2.1 Prescribed lidar ratio for dust 

A prescribed KLRS-derived lidar ratio8 for dust (𝑆𝑐
𝑝
; results presented below) and a prescribed lidar ratio for cloud (Chiang 

et al., 2002) were employed to calculate 𝜏𝑐
ℓ for dust and cloud. If 𝜏𝛽𝑐

 is defined as ∫ 𝛽𝑐,(𝑧) 𝑑𝑧 then; 

𝜏𝑐
ℓ ≅  𝑆𝑐

𝑝
𝜏𝛽𝑐

            (3) 

𝑆𝑐
𝑝

 can be computed from a priori or measurement information on refractive index, particle size and particle shape. We 200 

discuss below (Sect. 4.3.1.2) how the prescribed KLRS-derived 𝑆𝑐
𝑝
 value for dust was arrived at and how much uncertainty 

was associated with that value. 

3.2.2 Validation of prescribed lidar ratio 

CIMEL values of 𝜏𝑐 were employed to validate the prescribed dust lidar ratio (effectively the replacement of 𝜏𝑐
ℓ by 𝜏𝑐 in 

Eq. (3) above). Details of the validation parameterization are given in Appendix A1. The process explicitly incorporates 𝑆𝑐
𝑝
 205 

and 𝜏𝑐
ℓ and CIMEL-derived 𝜏𝑐 values to compute a CIMEL-referenced lidar ratio (𝑆𝑐). It includes an accounting of the day-to-

day correlations between 𝜏𝑐
ℓ and 𝜏𝑐 (which may or may not be strong during any given period of interest) and how those 

correlation results should be weighted. 

3.3 OPS and OPC processing 

The KLRS OPS and the DV OPC PSD measurements of 𝑑𝑛/𝑑𝑙𝑜𝑔𝐷 (particle number / unit volume of air / unit increment 210 

in logarithmic diameter) were converted to 𝑑𝑣/𝑑𝑙𝑜𝑔𝐷 (particle-volume / unit volume of air / unit increment in logarithmic 

diameter) assuming spherical particles9. We integrated the OPS PSDs over the CM radius range (bin-centers of 0.78 to 4.51 

µm) to yield the CM particle-volume concentration (𝜈𝑐(0): the volume of all CM particles per unit volume of air). The near-

surface OPS and OPC particle-volume PSDs (
𝑑𝑣

𝑑𝑙𝑜𝑔𝑟
=  

4

3
 𝜋 𝑟3 𝑑𝑛

𝑑𝑙𝑜𝑔𝑟
 =  

4

3
 𝜋 𝑟3 𝑑𝑛

𝑑𝑙𝑜𝑔𝐷
) are analogous to the columnar particle-

                                                           
8 To be clear about the definition of lidar ratio, we note that its general definition is 1 [𝜔0 𝑝(𝜋)]⁄  (with a Rayleigh / molecular 

value of 8𝜋 3⁄ ) and that 𝜔0  and 𝑝(𝜋) are respectively, the single scattering albedo and scattering phase function at a scattering 

angle of 𝜋 radians and where the integration of 𝑝() [4𝜋]⁄  over 4𝜋 steradians is unity. 
9 or more precisely, the radii of spherical particles that would be optically equivalent to irregularly shaped particles 
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volume PSDs (𝑑𝑉/𝑑𝑙𝑛𝑟) products of the AERONET inversion (columnar particle-volume per unit area) while the 𝜈𝑐(0) 215 

parameter is analogous to the AERONET CM-integrated particle-volume density (“VolC-C” or 𝑉𝑐) product. Since we only 

consider events that are likely to be dust events (as evidenced by the lidar-measured presence of a dust plume) we will generally 

label 𝜈𝑐(0) as 𝜈𝑑𝑢𝑠𝑡(0). 

3.4 Correlation analysis 

Indicators of the optical significance and remote sensing detectability of a dust event can, we would argue, be represented 220 

respectively by how dust-related 𝜏𝑐
ℓ correlates with the KLRS OPS measurements of 𝜈𝑑𝑢𝑠𝑡(0) and how well 𝜏𝑐 correlates with 

dust-related 𝜏𝑐
ℓ. Our dust (and cloud) classification methodology defined below is largely based on the coefficient of correlation 

between 𝜈𝑑𝑢𝑠𝑡(0), 𝜏𝑐
ℓ and 𝜏𝑐. 

Results such as those of Hesaraki et al. (2017) empirically indicate that geometric statistics of AODs (histograms and 

statistics computed in log-AOD space) are more representative than the arithmetic statistics of linear-AOD space and that a 225 

consequence of this is that 𝑅 values should be larger (results that will, however, always be subject to the vagaries of low-

sample or “low-N” statistics). In order to better understand the degree of coherency between the three different types of data, 

we analyzed their correlations in linear-AOD and log-AOD space as a function of different time-bin amplitudes (results are 

presented below).  

3.5 Event classification 230 

The classification methodology must clearly separate the optical effects of dust and clouds: the first step in this process is 

to isolate apparent dust plumes in the vertical profiles of the lidar. The dynamic process for arriving at a variable dust layer 

height (DLH) from the 𝛽𝑐, profiles is outlined in the Supplementary material (S2). An estimate of lidar-derived dust optical 

depth (𝜏𝑑𝑢𝑠𝑡
ℓ ) can then be computed by vertical integrations of the 𝛽𝑐, profiles from the surface to the DLH. We then argue 

that 𝜏𝑐𝑙𝑜𝑢𝑑
ℓ  values (or at least the CM optical depth of anything but local dust) are obtained by vertically integrating the 𝛽𝑐, 235 

profiles from the DLH to LCH.  

We focused on two levels of correlation: the use of 𝑅𝑙𝑜𝑔 (𝜏𝑑𝑢𝑠𝑡
ℓ  vs 𝜈𝑑𝑢𝑠𝑡(0)) values as a means of identifying and 

characterizing optically significant dust events and 𝑅𝑙𝑜𝑔(𝜏𝑐  vs 𝜏𝑑𝑢𝑠𝑡
ℓ ) values to identify those events that could be remotely 

sensed by a passive ground- or satellite-based instrument10. In the latter case the high frequency 𝜏𝑑𝑢𝑠𝑡
ℓ  values must be resampled 

to match the 1 minute time bins (3 minute intersample times) of the low frequency 𝜏𝑐  values: this process is described in 240 

Appendix A3. Our justification for the use of such a dust event flagging protocol is that correlation is a necessary (if 

insufficient) indicator of the presence of a dust event and that it is largely impervious to systematic instrumental issues 

                                                           
10 The latter correlation is complicated by AERONET cloud screening protocols: potentially strong dust-induced correlations 

might, for example be inadvertently eliminated by the Level 1.0 triplet processing or the Level 1.5 cloud screening process. 
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(calibration issues for example). Verification of correlation-based dust event flagging is usually supported (contextualized) by 

other types of indicators (the recording of strong basin winds, for example). We attributed the following event-classification 

codes for different, event-level periods of interest (POIs). 245 

3.5.1 Optically significant (𝑫 class) dust  

Our fundamental classification is that of a dust (𝐷) class that appears to be optically significant at the columnar optical 

depth scale. A POI was defined as belonging to the 𝐷 class if: 

𝑅𝑙𝑜𝑔 (𝜏𝑑𝑢𝑠𝑡
ℓ  𝑣𝑠 𝑣𝑑𝑢𝑠𝑡(0)) ≥ 0.5  

This class basically requires that local KLRS OPS variations at the surface be at the same scale of variation as the columnar 250 

lidar optical depths (i.e. something that would not likely be true for dust turbulence scales ~ a few meters). 

3.5.2 Optically insignificant (𝑼 class) dust  

We labelled a POI that failed to satisfy the 𝐷 class criterion as a U (unknown) event (this includes cases for which there 

were less than 10 matched OPS-lidar matched samples): 

𝑅𝑙𝑜𝑔 (𝜏𝑑𝑢𝑠𝑡
ℓ  𝑣𝑠 𝑣𝑑𝑢𝑠𝑡(0)) < 0.5  255 

3.5.3 𝑫 and 𝑼 subclasses  

The 𝐷 classification rule leads to two subclass children: class 𝐷 events that can and cannot be remotely sensed (respectively 

𝐷𝑅𝑆 and 𝐷𝑁𝑅𝑆). In the former case we would argue that the potential for achieving the satellite-based remote sensing of a dust 

event must require that a passive ground-based measurement of a candidate dust plume (𝜏𝑐) must be significantly correlated 

with its lidar analogue. The 𝐷𝑅𝑆 subclass was accordingly defined as:  260 

𝑅𝑙𝑜𝑔(𝜏𝑐  𝑣𝑠 𝜏𝐷
ℓ ) ≥ 0.5  

This means that the correlation must be roughly impervious to spatio-temporal sampling differences between the lidar and the 

photometric measure (including the fact that the photometric measure represents a completely different line of sight relative 

to zenith looking lidar). The complementary 𝐷𝑁𝑅𝑆  subclass follows as: 

𝑅𝑙𝑜𝑔(𝜏𝑐  𝑣𝑠 𝜏𝐷
ℓ ) < 0.5  265 

It includes, by default, cases for which there were less than 𝑁(𝜏𝑐) = 10 retrievals or for which the lidar indicates the presence 

of cloud (𝜏𝑐𝑙𝑜𝑢𝑑
ℓ  ≥  0.001) 11. The 𝐷 subclasses have their 𝑈 subclass analogues: class 𝑈 events that can and cannot be remotely 

sensed (respectively 𝑈𝑅𝑆 and 𝑈𝑁𝑅𝑆): 

𝑅𝑙𝑜𝑔(𝜏𝑐  𝑣𝑠 𝜏𝑈
ℓ ) ≥ 0.5  

                                                           
11 the 0.001 minimum is an order of magnitude estimate of 𝜏𝑐 sensitivity to real physical CM changes (an estimate based on 

experiential evidence such as the seasonal variations observed by AboEl-Fetouh et al., 2020) 
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𝑅𝑙𝑜𝑔(𝜏𝑐  𝑣𝑠 𝜏𝑈
ℓ ) < 0.5  270 

The 𝑈𝑅𝑆  subclass represents cases where the correlation between 𝜏𝑐 and 𝜏𝑑𝑢𝑠𝑡
ℓ  indicates the presence of a detectable remote 

sensing event of an unknown nature (“unknown” at least in the context of a “ 𝐷” classification that is tied to threshold values 

of 𝑅𝑙𝑜𝑔 (𝜏𝑑𝑢𝑠𝑡
ℓ  𝑣𝑠 𝑣𝑑𝑢𝑠𝑡(0))). The 𝑈𝑁𝑅𝑆 subclass represents a non-event that defies both a dust and a remote sensing label. 

Figure 2 summarizes the dust classification paradigm in a more heuristic flowchart manner. For the sake of simplicity, the 

special 𝐷𝐹𝑃𝐶  and 𝐷𝐺𝐸𝑁  subclasses defined immediately below have been omitted from the flow-chart. 275 

3.5.3 Special classes  

A special false positive cloud subclass (𝐷𝐹𝑃𝐶) was defined for which the AERONET cloud screening process appeared to 

eliminate real optical depth variations induced by a dust event: class 𝐷 events for which 𝑁(𝜏𝑐) ≤ 10 and for which 𝜏𝑐𝑙𝑜𝑢𝑑
ℓ  

indicates no cloud. A special “generic” dust subclass (𝐷𝐺𝐸𝑁) was defined to include events that were identified, with a 

reasonable certainty using circumstantial evidence. The circumstantial evidence could include combinations of, for example, 280 

lidar profiles, reports from measuring teams on the ground, RGB satellite images that visually show dust plumes over Lhù’ààn 

Mân’ (the PlanetScope image of Fig. 1 for example), information from auxiliary measurements such as downslope wind 

velocity or PM10 devices, etc.  
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Figure 2: Flow-chart of the classification methodology described in the text. The different class symbols are defined directly above the flow 285 
chart. The 𝑁(𝜏𝑐) threshold is 10 samples. The 𝐷𝐹𝑃𝐶 and 𝐷𝐺𝐸𝑁 subclasses would be supplementary branches (not shown) from the “No” of 

the upper-level 𝑅𝑙𝑜𝑔 (𝜏𝑑𝑢𝑠𝑡
ℓ  𝑣𝑠 𝑣𝑑𝑢𝑠𝑡(0)) ≥ 0.5 decision diamond.  

4 Results 

4.1 Lidar measurement overview 

Figure 3 shows a 𝛽𝑐(𝑧) profile12 over a time period in May of 2019 that includes a number of interesting events. Our intent 290 

here is (i) to illustrate the profile attributes (notably the logarithmic color legend) during a diversity of events as well as the 

fact that dust plume heights were generally less than 2 km (red-dashed line) and (ii) to give the reader an event-continuity 

                                                           
12 Actually the profile is that of the 𝛽𝑐,(𝑧) parameter of Eq. (2): we dropped the “” subscript in our profile figures for the 

sake of simplicity. 



13 

 

 

perspective that is not always evident in the shorter term (POI-driven) daily profiles found in the Supplementary material (S6). 

One can observe a relatively strong-backscatter plume with a maximum height at ~ 00/08 whose height decreases in altitude 

and optical impact during the typical nightime13 shrinking of the boundary layer and then increases to a peak at ~ 20/08 UTC 295 

(followed by an apparently strong but very low-altitude plume beginning around 00/09). Cloud formation can be observed 

between about 5 and 9 km altitude during the nighttime. 

 

                                                           
13 The “white-night” period that we defined as the sun being below 10 elevation (indicated by the darker grey shading) 
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Figure 3: 𝛽𝑐(𝑧) profile, from 0.05 to 9.6 km (top panel) and a zoom from 0.05 to 2 km (bottom panel) during a selected time period in May 

2019 (the red-dashed rectangles underscore the 0.05 to 2 km range in both panels). The times are UTC (local “Pacific daylight” time is 7 300 
hours behind the UTC time). The grey background corresponds to lidar profile pixels that are set to NaN (not a number): these are the result 

of signal-to-noise ratio (SNR) threshold flags employed to eliminate excessively noisy data (Newsom & Krishnamurthy, 2020). The black 

color that is evident at the top of the plume in the upper panel shows the automated estimate of dust layer height (DLH). The region of darker 

grey shading corresponds to the nightime (see the text for details) 

4.2 Classification of dust events 305 

4.2.1 Results of the correlation analysis 

In order to investigate the influences on 𝑅𝑙𝑜𝑔 (𝜏𝑑𝑢𝑠𝑡
ℓ  𝑣𝑠 𝑣𝑑𝑢𝑠𝑡(0)) variability (and thus better understand its impact on the 

classification methodology) we computed (as discussed in Sect. 3.4) both linear and log space (arithmetic and geometric) 

correlations as well as the dependence of those correlations on time bin resolution. Sample arithmetic and geometric correlation 

coefficient values as a function of temporal bin resolution are shown in Supplementary material (S3). Geometric correlation 310 

coefficients (𝑅𝑙𝑜𝑔) were typically of the same order as or better than arithmetic coefficients (𝑅) in the presence of more than 

one decade of 𝜏𝑑𝑢𝑠𝑡
ℓ  𝑣𝑠 𝑣𝑑𝑢𝑠𝑡(0) variation : we accordingly used this as support for reporting correlation coefficients in 

geometric statistics space. This choice was supported by analyses showing that ground- and satellite-based AOD histograms 

were better described by geometric means and standard deviations (O’Neill et al., 2000 and Sayer & Knobelspiesse, 2019 and 

references cited therein). 315 

Aside from the obvious limitations of low-N (low sample number) statistics, no strong dependence on time-bin resolution 

was found. We accordingly chose to employ the highest bin-resolution14 as the basis for our classification analysis (the 

selection of the high bin-resolution case being also justified on the general principle of wishing to minimize the elimination of 

high frequency lidar data that might have physical significance). We believe that this 𝑅𝑙𝑜𝑔-dependent classification approach 

is as independent as it can be from issues such as instrument calibration or changes in the optical or microphysical strength of 320 

the dust plume: the verification of this affirmation in terms of other sites or other seasons is a step that we are actively pursuing. 

4.2.2 Subclass statistics  

The POI subclass results for the complete month of May 2019 are shown in Fig. 4 (b1 and b2) while the corresponding 

correlation coefficient values are shown in Fig. 4 (a1 and a2). As one might expect for a true dust event, the results often show 

a degree of correlation between the blue and orange bars15. Other examples of note are the two 𝐷𝑁𝑅𝑆 events of negative 325 

𝑅𝑙𝑜𝑔(𝜏𝑐  𝑣𝑠 𝜏𝐷
ℓ ) (see Sect. 4.2.3 for optical details on one of those events). Details of a May 8 𝑈𝑅𝑆 event are discussed in Sect. 

                                                           
14 where the lidar OPS measurements are resampled to CIMEL averaging bins of 1 minute and inter sample gaps of 3 minutes 

15 between the class-determining correlation coefficients of 𝑅𝑙𝑜𝑔(𝜏𝑑𝑢𝑠𝑡
ℓ  𝑣𝑠 𝜈𝑑𝑢𝑠𝑡(0)) and 𝑅𝑙𝑜𝑔(𝜏𝑐  𝑣𝑠 𝜏(𝐷 𝑜𝑟 𝑈)

ℓ ) 
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4.2.4. We also note the existence of five 𝐷𝐺𝐸𝑁 events (identified using the lidar profiles of the Supplementary material (S6) as 

well as the PlanetScope image on May 27). 

 

 330 

Figure 4: May 2019 results: 𝑅𝑙𝑜𝑔(𝜏𝑑𝑢𝑠𝑡
ℓ  𝑣𝑠 𝜈𝑑𝑢𝑠𝑡(0)) and 𝑅𝑙𝑜𝑔(𝜏𝑐 𝑣𝑠 𝜏(𝐷 𝑜𝑟 𝑈)

ℓ ) for the a1 and a2 (upper) profiles. 𝐷𝑅𝑆, 𝐷𝑁𝑅𝑆, 𝐷𝐹𝑃𝐶, 𝐷𝐺𝐸𝑁, 

𝑈𝑅𝑆, and 𝑈𝑁𝑅𝑆 subclasses for the b1 and b2 (lower) profiles (the products of the classification scheme presented in Fig. 2). The subclasses 

are represented as duty cycles (event duration as a percent of 24 h). The hatched bars of the a1 and a2 profiles represent negative 𝑅 values. 
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The light grey bars highlight the link between the subclasses and the  𝑅𝑙𝑜𝑔 values that served to define those subclasses. See Sect. 3.5 for 

details on the 𝑅𝑙𝑜𝑔 correlation coefficients as well as the 𝐷 and 𝑈 subclasses. 335 

4.2.3 Cloud and pseudo-cloud illustrations during class D events  

In many cases the CIMEL processing resulted in no or very few AODs during periods when clouds were identified in the 

lidar profile (this, in spite of there being no nominal cloud screening for the Level 1.0 SDA+ product). However, there is a 

“triplet” filter at the beginning of the data processing chain which eliminates highly variable triplet ODs during the CIMEL 1 

minute bin-averaging period (see Giles et al., 2019). These highly variable ODs are not only restricted to clouds: they also 340 

included extremely variable CM dust AODs during periods of the day that were largely cloud-free (what would amount to 

strong spatially variant dust plumes crossing the FOV of the CIMEL)16. This problem was also reported by Evan et al. (2021). 

Figure 5 illustrates two types of 𝐷 subclasses (between the black- and red-dashed vertical lines). The lidar captures cloud 

and dust intrusions between the black vertical lines (cloud layer ~ 2 km and dust layers below 2 km) during which there are 

no SDA+ retrievals. This is an example of largely legitimate cloud screening by triplet filtering of AODs prior to promotion to 345 

Level 1.0 AODs (the significant high frequency variation of the green 𝜏𝑐𝑙𝑜𝑢𝑑
ℓ  curve supports this affirmation). The triplet 

filtering between the red vertical lines (encompassing a large cloud-free event) retains, on the other hand, a significant number 

of dust-correlated 𝜏𝑐  values to yield a 𝐷𝑅𝑆 event. Note, however, that the Level 1.5 product (not shown) eliminates nearly all 

retrievals associated with the Level 1.0 𝐷𝑅𝑆 event: this amounts to an example of a 𝐷𝐹𝑃𝐶 event for Level 1.5 AODs (Fig. 4 of 

Evan et al. (2021) illustrates what is likely a 𝐷𝐹𝑃𝐶  event resulting from aggressive cloud screening being applied to Level 1.0 350 

AODs). This discrepancy between the Level 1.0 and Level 1.5 subclasses indicates an excessive sensitivity of Level 1.5 cloud 

screenings to optical variations that are most likely local dust variations. This is, in fact, a situation where it is better to minimize 

cloud-screening protocols if the ultimate goal is detection and characterization of highly variable local dust.  

Another cloud impact example is associated with the two negative 𝑅𝑙𝑜𝑔(𝜏𝑐  𝑣𝑠 𝜏𝐷
ℓ ) cases referred to above: it is instructive 

to understand the optical dynamics of one of these cases (both of which were plagued by the presence of multi-altitude cloud). 355 

The POI 16-1 event at the beginning of May 16 (cf. the upper profile on page 8 of the Supplementary material, S6) showed 

strong 𝜏𝑐𝑙𝑜𝑢𝑑
ℓ  variation associated with17 vertically thin but optically thick clouds at <~ 2 km altitude whose triplet impact 

appeared to create large gaps in the temporal variation of 𝜏𝑐. In contrast, more homogeneous clouds at ~ 4 km (whose 𝜏𝑐𝑙𝑜𝑢𝑑
ℓ  

values appear between gaps of the 2 km clouds but which themselves were interspersed with gaps induced by the strong 

attenuation of the 2 km clouds) sometimes evaded the triplet filtering. The coupling of these two different types of cloud 360 

interference did much to eliminate any possible covariation between the remaining 𝜏𝑐 points and 𝜏𝐷
ℓ . 

                                                           
16 At the other cloud screening extreme are false negative clouds associated with homogeneous clouds such as cirrus that go 

undetected. V3 processing incorporated some significant changes in an attempt to deal with this problem (Giles et al., 2019). 
17 ~ 100 m in vertical thickness and optical depths >~ 1. The 𝛽𝑐𝑙𝑜𝑢𝑑  values associated with those clouds are removed in the 

lower profile of slide 8 (as part of the DLH process). 
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Figure 5: 𝐷 subclass events of May 18, and the beginning of May 19, 2019. The top profile above shows the entire lidar altitude range while 

the bottom profile is restricted to the 0–3 km range in order to better appreciate the details of the dust plume (below ~ 2 km) and the thin 

cloud layer hovering around 2 km. The black and red-dashed vertical lines encompass two 𝐷 subclass events (POI 18-3 and POI 19-1). The 365 
former event shows that no 𝜏𝑐  value survived the triplet filtering while the latter 𝐷𝑅𝑆  case indicates substantial 𝜏𝑐 𝑣𝑠 𝜏𝐷

ℓ  correlation 

(𝑅𝑙𝑜𝑔(𝜏𝑐 𝑣𝑠 𝜏𝐷
ℓ ) = 0.58). 

4.2.4 Remote sensing threshold for the detection of local dust 

Figure 6 shows a plot of 𝜏𝑑𝑢𝑠𝑡
ℓ  vs 𝑣𝑑𝑢𝑠𝑡(0) for all class 𝐷 and 𝑈 events during May of 2019. The graph suggests, for a 

certain fraction of the events, an apparent 𝜏𝑑𝑢𝑠𝑡
ℓ  insensitivity (“bottoming out”) to 𝑣𝑑𝑢𝑠𝑡(0) variations below an apparent  370 

𝑣𝑑𝑢𝑠𝑡(0) threshold of ~ 10-11 µm3µm-3. However the subclass scattergrams of the Supplementary material (S4) suggest a more 

nuanced threshold: the 𝑈𝑅𝑆  and 𝑈𝑁𝑅𝑆  scattergrams, in particular, show “bottoming out” 𝑣𝑑𝑢𝑠𝑡(0) thresholds that can be 

anywhere in the 10-11–10-10 µm3µm-3 range with a respective 𝜏𝑈
ℓ  range of 0.001–0.1. AboEl-Fetouh et al. (2020) showed pan-
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Arctic 𝜏𝑐 values (regional-scale, multi-year geometric means) whose 𝜏𝑐  variation18 was as small as ~ 0.001. That the 

𝜏𝑈
ℓ  bottoming out values of the 𝑈𝑅𝑆  and 𝑈𝑁𝑅𝑆 scattergrams are generally well above this value suggests that the apparent lack 375 

of 𝜏𝑈
ℓ  variability is attributable to very local, near-surface dust dynamics that are at the margins of column-scale detectability. 

This suggestion is consistent with the observation of Huck et al. (2023) on the importance of local scale variability during 

Lhù’ààn Mân’ dust storms.  

The POI 8-3 event of Fig. S1 underscores the relevance of the 𝑈𝑅𝑆  subclass assignment (of 𝑅𝑙𝑜𝑔(𝜏𝑐  𝑣𝑠 𝜏𝑈
ℓ ) being large): 

the apparent 𝜏𝑈
ℓ  bottoming out of all the point clusters in the 𝑈𝑅𝑆 scattergram of Fig. S4 is more about an apparently narrow 380 

spread driven by the densely packed 𝜏𝑈
ℓ  log scale. The appearance of the POI 8-3 lidar profile and the temporal covariation of 

𝜏𝑐  and 𝜏𝑈
ℓ  (associated with the orange points of Fig. S4) is strongly suggestive of an optically weak dust plume for which the 

covariation of 𝜏𝑐  and 𝜏𝑈
ℓ  is not some statistical artefact. This does not detract from the argument of local scale 

𝑣𝑑𝑢𝑠𝑡(0) variability being uncoupled from the columnar variability: it simply says that the physical significance of the 

columnar variability can occur within the (apparently narrow) 𝜏𝑈
ℓ  spread of the point clusters in the 𝑈𝑅𝑆  scattergram. 385 

                                                           
18 Variations that appeared to be robustly sensitive to certain natural Asian dust events 
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Figure 6: Plot of 𝜏𝑑𝑢𝑠𝑡
ℓ  vs 𝑣𝑑𝑢𝑠𝑡(0) for all class 𝐷 and 𝑈 events during May of 2019. Note that this ensemble of data excludes points belonging 

to the special 𝐷𝐹𝑃𝐶  and 𝐷𝐺𝐸𝑁 subclasses. The blue dashed horizontal line represents the apparent 𝜏𝑑𝑢𝑠𝑡
ℓ  “bottoming out” effect while the 

vertical dotted line represents the 𝑣𝑑𝑢𝑠𝑡(0) threshold (see text for details) 

4.3 Parameterization of dust plume properties 390 

4.3.1 Lidar ratio 

4.3.1.1 Prescribed lidar ratio 

The CM 𝑟𝑒𝑓𝑓  values for the whole month of May 2019 were calculated for all individual KLRS OPS PSDs that were part 

of class 𝐷 POI events. A temporal plot of those individual 𝑟𝑒𝑓𝑓,𝑐 (𝑟𝑒𝑓𝑓,𝐷) values can be seen in Fig. 7. The averaged class 𝐷 

results for the month of May were (as per the Fig. 7 legend) found to be: 〈𝑟𝑒𝑓𝑓,𝐷〉  ± 𝜎𝐷(𝑟𝑒𝑓𝑓,𝐷) = 2.26 ± 0.23 µ𝑚. 395 
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Figure 7: Variation of OPS-derived, class-𝐷, 𝑟𝑒𝑓𝑓 values during the month of May 2019.  

Clay, feldspar, and then quartz minerals are the major constituents of the PM10 dust particles from the emissions in the 

Kluane Lake region (Bachelder et al., 2020; King, 2023). To derive the mean refractive index and the uncertainty for those 

values, we followed the method of Baldo et al. (2020) using the volumetric-average refractive index based on the relative 400 

volume fraction weighted refractive indices of the minerals found within the dust sampled at the site, through X-ray diffraction, 

assuming an internally mixed sample (Formenti et al., 2014). The result, which we took to be representative of the Lhù’ààn 

Mân’region, was a mean refractive index of 𝑚 =  1.5371(±0.0028) − 0.00075(±0.00072) 𝑖 at the 1.548 µm lidar 

wavelength.  

Figure 8 shows the range of lidar ratio curves given the mean and uncertainties of the down valley estimates of refractive 405 

index and a 0–12 m range of 𝑟𝑒𝑓𝑓,𝐷 values (the OPS-derived 𝑟𝑒𝑓𝑓,𝐷 values and their uncertainties appear as orange circles). 

All lidar ratios were computed using a (spherical particle) Mie code (Evans, 1994) integrated over a lognormal PSD (see 

Sokolik & Toon, 1999 for a typical formulation and values of that analytical PSD). We employed Sokolik & Toon’s geometric 



21 

 

 

standard deviation for dust ("𝜎𝑗" = 2) and forced the lognormal geometric mean (“𝑟0𝑗”) to yield a computed lognormal-PSD 

effective radius that matched the OPS-derived 〈𝑟𝑒𝑓𝑓,𝐷〉 values. The colored curves of Fig. 8 nicely demonstrate the impact of 410 

the real and imaginary parts of the refractive index on the lidar ratio computations (a somewhat balanced impact at small 

𝑟𝑒𝑓𝑓,𝐷 in the neighbourhood of the OPS derived values of 𝑟𝑒𝑓𝑓,𝐷 with a much stronger impact of the complex part of the 

refractive index at larger radii). This yielded a prescribed lidar ratio estimate of 𝑆𝐷
𝑝

= 10.7  0.9 sr (where the uncertainties 

were derived by combining the 𝑟𝑒𝑓𝑓,𝐷 and refractive index uncertainties). 

 415 

Figure 8: Mie (spherical-particle) computations of lidar ratio based on the refractive index (𝑛) value from above. The orange circles represent 

𝑟𝑒𝑓𝑓,𝐷  changes from 〈𝑟𝑒𝑓𝑓,𝐷〉 − 2𝜎(𝑟𝑒𝑓𝑓,𝐷) to 〈𝑟𝑒𝑓𝑓,𝐷〉 + 2𝜎(𝑟𝑒𝑓𝑓,𝐷) in increments of 𝜎(𝑟𝑒𝑓𝑓,𝐷). The refractive index parameters of the figure 

are 𝑛0 =  1.5371, ∆𝑛0 =  0.0028, 𝑘0 =  0.00075, and ∆𝑘0 =  0.00072. 𝜎𝐿𝑁 𝑃𝑆𝐷 refers the standard deviation of the lognormal PSD that 

was employed in the Mie computations.  

4.3.1.2 Evaluation / validation of the prescribed lidar ratio 420 

Individual 𝑆𝐷𝑅𝑆
 values for each 𝐷𝑅𝑆 event were computed as per Appendix A1 (i.e., weighted best estimates of separate 

𝑆𝐷𝑅𝑆
 computations for each event where weights are defined by the inverse square of 𝑆𝐷𝑅𝑆

 regression residuals). The overall 

weighted result for the entire month of May 2019 was 〈𝑆𝐷𝑅𝑆
〉𝜔  ±  𝜎𝑤(𝑆𝐷𝑅𝑆

) = 28.0 ± 3.3 sr. The weighted mean, 〈𝑆𝐷𝑅𝑆
〉𝜔, is 
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roughly three times the 𝑆𝐷
𝑝
 value of 10.7  0.9 sr reported above (i.e. shows a positive bias). While the overall apparent effect 

of the weighting scheme, as seen in Fig. S5, was to reduce the variation as a function of increasing weight it did not objectively 425 

achieve satisfactory agreement with 𝑆𝐷
𝑝
. A measure of closer agreement with the 𝑆𝐷

𝑝
 value (a lesser positive bias) was obtained 

by setting a higher standard on theregressions or the amplitude of the slant path lidar optical depth19: these two constraints 

yielded 〈𝑆𝐷𝑅𝑆
〉𝜔 values of 19.1 ± 2.3 sr and 20.3 ± 2.6 sr for 𝑅𝑙𝑜𝑔 > 0.9 or slant path optical depth > 0.05 respectively. 

We note that the comment by Huck et al. (2023) concerning the frequent missing of plumes by the CIMEL (or presumably 

only capturing a portion of the plume in the CIMEL FOV) is actually a counter dynamic to the positive bias: a problem of 430 

partially missing the plume would actually help to reduce the bias. 

Given the persistence of this positive bias we sought to determine whether 𝑆𝐷
𝑝
 could, in fact, be underestimated. A 

significant increase in its computed value can be obtained by assuming the general presence of larger, optically-significant 

dust particles in the plumes. Figure 8 indicates that an 𝑟𝑒𝑓𝑓,𝐷 value ~ 11–12 m and the higher value of the imaginary index of 

refraction determined from the dust speciation result would push the 𝑆𝐷
𝑝
 to values ~ 20 sr (a value commensurate with the 435 

“higher standard” argument in the previous paragraph). The OPS instrument with its upper limit of 5 m radius (see Sect. 

4.3.2.1 below) is incapable of measuring such a PSD contribution while the few AERONET inversions that were available 

showed a dust mode of increasing radius (up to 7 m) with increasing (but weak) values of dust optical depth (see the following 

section). Ranjbar et al. (2021) reported on the presence of dust particles >~ 15 m radius20 for CloudSat / CALIOP (DARDAR) 

retrievals over Lake Hazen dust plumes in the Canadian high Arctic (a drainage-basin environment analogous to that of 440 

Lhù’ààn Mân’). At southern latitudes, optically-significant lidar profiles whose volume-median radius was >~ 8 m have been 

observed for near-source Saharan dust plumes (the Fig. 13, May 20–28 results of Weinzierl et al., 2009 and, as evidence of 

optical significance, the corresponding column averaged lidar ratios of Esselborn et al., 2009). 

4.3.2 AERONET inversions 

Table 1 lists key AERONET CM inversion products acquired during D class events for the month of May 2019 (optically 445 

based inversion products that were spectrally extrapolated to the 1.548 µm lidar wavelength from values at the shorter inversion 

wavelengths). The relatively few retrievals underscore the sometimes-frustrating disparity of dealing with the information rich 

AERONET-inversion product when it is associated with few inversions during an event of interest (coupled with the fact that 

the CM AOD were generally weak: 𝜏𝑐,𝑖𝑛𝑣  < 0.15). This speaks to the difficulty in extracting significant numbers of AERONET 

retrievals even on the Table 1 days with the largest 𝜏𝑐,𝑖𝑛𝑣 values. However, if the information we want is of an intensive-450 

                                                           
19 〈𝑚〉〈 𝜏𝑐

ℓ〉 where 〈𝑚〉 is the POI-averaged airmass of the sun: the hypothetical case where the lidar is probing a plane parallel 

plume at the same zenith angle as the sun. 
20 the lower limit of 15 m being determined by CloudSat radar detection limitations 
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parameter nature (effective radius, PSD radius attributes like PSD-peak positions, etc.) then we can aspire to extract 

representative values that vary little across a month (that don’t need to be monitored at a high sampling rate). 

Table 1: AERONET May 2019 CM inversion products for all retrievals classified as 𝐷𝑅𝑆 events (ordered according to decreasing 𝜏𝑐,𝑖𝑛𝑣). 

With respect to the single 𝑈𝑅𝑆 (POI 8-3) case: the rather dominant 𝜏𝑐,𝑖𝑛𝑣 value and the appearance of its lidar profile in the Supplementary 

material (S6) suggest that it is most likely a dust event (it could, for example, be attributed a 𝐷𝐺𝐸𝑁 subclassification). The 𝜏𝑐,𝑖𝑛𝑣 values were 455 
derived from a spectral extrapolation (using log-log regressions) from the four AERONET inversion wavelengths to the 1.548 µm lidar 

wavelength. The colors associated with the different dates represent retrievals for the 6 largest 𝜏𝑐,𝑖𝑛𝑣  values (the same colors are used to 

identify the associated PSDs of Fig. 9).  

 

4.3.2.1 Intensive parameters from AERONET inversions 460 

Figure 9 shows the set of PSDs corresponding to the retrievals of Table 1. One can observe bimodal CM peak positions 

near 1.3 and 5.0 / 6.6 µm (bin centers of respectively bins 13 and 18 / 19 of the AERONET inversion). In general, there appears 

to be a trade-off between the 1.3 and 5.0 / 6.6 µm peaks depending on the strength of the relative contributions to each peak. 

AboEl-Fetouh et al. (2020) ascribed the presence of a 1.3 µm component to the springtime incursion of Asian dust over six 

AERONET stations spread across the North American and European Arctic (springtime being largely represented by April 465 

and May in their monthly averaged PSDs). The 6 largest 𝜏𝑐,𝑖𝑛𝑣 cases of Table 1 arguably represent the strongest local dust 

contributions. Four of these values are more dominated by the 5.0–6.6 µm peak while the other two are sufficiently weak to 

be dominated by a stronger 1.3 µm peak. The 𝑟𝑒𝑓𝑓,𝑐 values of Table 1 represent a compromise driven by the 1.3 and 5.0–6.6 

µm peak positions (where the importance of the latter peak tends to increase with increasing 𝜏𝑐,𝑖𝑛𝑣). These 𝑟𝑒𝑓𝑓,𝑐  values (with 

an average of 1.87 µm) are somewhat less than the OPS-derived mean of 2.26 µm.  470 

The suggestion that the AERONET 1.3 µm PSD peak is due to Asian dust needs to be contextualized by a relatively 

consistent, neighbouring peak at the 1.75 µm OPC bin (radius) center that was often recorded by the two DV units (see the 
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Supplementary material (S7) to observe the daily ensemble of OPS PSDs at KLRS and the OPC PSDs at the DV site on the 

six days corresponding to the 6 largest 𝜏𝑐,𝑖𝑛𝑣 events of Table 1). That peak was not observed by the OPS: the KLRS ensemble 

of PSDs on the six days in question could be best described as a broad modal feature whose form was quite stable but whose 475 

amplitude was highly variable. The broad nature of that modal feature inhibits any simple characterization (one cannot readily 

select a significantly robust modal peak that stands above the other PSD values in neighbouring bins). In fact, it appears to be 

common to the KLRS and DV sites if one views the 1.75 µm DV peak as a perturbation atop of that feature. Given the lack of 

even a 1.75 µm peak at the KLRS site and the ubiquitous nature of the 1.3 µm peak over the North American and European 

Arctic (AboEl-Fetouh et al., 2020) it is likely that the 1.3 µm AERONET peak is associated with springtime Asian dust. 480 

Finally, we would note that the broad CM feature might well be dynamically associated with the 5.0–6.6 µm AERONET 

inversion peak (with the OPS effective radius arguably being smaller than the AERONET inversion effective radius due to its 

4.5 µm, bin-center, cutoff radius). 

The significance of this result (in spite of our intensive parameter arguments at the beginning of this section) is necessarily 

brought into question by having only a handful of PSD retrievals over the whole month of May (and only one single retrieval 485 

with a dominant 6.6 µm component). In addition to this constraint on the number of retrieved PSDs, the 𝜏𝑐,𝑖𝑛𝑣 contribution of 

a 6.6 µm peak will generally be dominated by the 𝜏𝑐,𝑖𝑛𝑣  contribution of the 1.3 µm peak21. The few retrievals and their low 

𝜏𝑐,𝑖𝑛𝑣 values are likely attributable to the cloud screening process of the AERONET inversions (whose constraints are 

commonly known to be more stringent than the cloud-screening protocol for AODs; this arguably amounts to the assignment 

of a 𝐷𝐹𝑃𝐶  subclass in the case of the inversion processing stream). 490 

The values of the real part of the refractive index in Table 1 are clearly susceptible to retrieval saturation issues (most 

notably the evident flatlining at a value of 1.6). The values of the imaginary part of the refractive index are highly variable. In 

general, one cannot ascribe much confidence to the May 2019 refractive index values: the AERONET U27 inversion-error 

product described by Sinyuk et al. (2020) shows no values (corresponding to a code of “-999”) for the real and imaginary parts 

of the refractive index (and the derived single scattering albedo). The authors indicate that no U27 values are reported “for any 495 

of the retrieved parameters” subject to a “boundary hit” (lower and upper limits of 1.33 to 1.6 represent such boundaries for  

the real part of the refractive index). Finally, we would note that, the comments made above concerning the behavior of the 

Fig. 9 PSDs are virtually unchanged if we restrict the retrieved PSDs to those that are not subject to “boundary hits” of the real 

part of the refractive index. 

                                                           
21 It is easy to approximately show, using Mie calculations and a refractive index ~ 1.6 (employing the approximate AERONET 

retrieval value for optical consistency) that the extinction efficiency associated with the AERONET particle-volume 

distribution (whose product, integrated over radius, would yield 𝜏𝑐,𝑖𝑛𝑣) is significantly larger at 1.3 µm radius  (see for example, 

Hansen & Travis, 1974 for a definition of “efficiency factor”, the parameter analogous to what we call extinction efficiency). 
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 500 

Figure 9: AERONET-inversion PSDs (𝑑𝑉/𝑑𝑙𝑛𝑟) corresponding to the retrievals listed in Table 1 (the colored PSD curves correspond to the 

colors of Table 1). The grey-colored curves include the non-colored entries of Table 1 as well as all other May 2019 retrievals that were not 

assigned to the 𝐷𝑅𝑆 subclass. 

4.3.3 The remote sensing detectability of fine mode dust 

The FM part of the KLRS and DV PSDs clearly covary with their CM analogue (see the PSDs in the Supplementary 505 

material, S7). This suggests a weak but robust presence of FM dust. While FM dust is likely a relatively minor optical 

component (especially at the lidar wavelength), its transport dynamics would likely differ from CM dust, and it could add to 

the long-distance spread of local dust in the Arctic. Figure 10 is a temporal plot of the 500 nm 𝜏𝑓 and 𝜏𝑐 AERONET product, 

as well the FM-integrated OPS particle-volume concentration (𝜈𝑓(0)) on the 𝐷𝑅𝑆 (POI 7-1 and POI 7-2) day of May 7, 201922. 

                                                           
22 The limitation of 𝜏𝑐 to 500 nm applies only to this specific case: otherwise 𝜏𝑐 is computed at the lidar wavelength of 1.548 

µm in the rest of the paper 
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Significant correlation of low and high frequency can be observed between 𝜏𝑓 and 𝜏𝑐 and between 𝜏𝑓 and 𝜈𝑓(0)). It should be 510 

noted that one expects a significant 𝜏𝑓 background (bottoming out) in the Arctic (see AboEl-Fetouh et al., 2020 for example) 

and this would tend to disrupt the dust-based correlation with 𝜏𝑐 and with 𝜈𝑓(0) prior to the beginning of the dust event (around 

19:20 UTC). This suggests that a satellite-based, AOD remote sensing technique at a few visible and near IR wavelengths (the 

equivalent of what is employed by AERONET to extract 𝜏𝑓 and 𝜏𝑐 at 500 nm) would have a reasonable chance of extracting a 

𝜏𝑓 dust component and thus contribute to the type of spatial information that one could aspire to extract from satellite-based 515 

remote sensing (one can, specifically aspire to extract the MODIS fine mode fraction product of 𝜏𝑓 (𝜏𝑓 +  𝜏𝑐⁄ ) that can then 

be converted to a 𝜏𝑓 estimate) 

 

Figure 10: Temporal plot of 𝜏𝑓  and 𝜏𝑐  (500 nm) retrievals along with KLRS OPS surface particle-volume FM concentration 𝜈𝑓(0) on May 

7, 2019. The 𝜈𝑓(0) data has been resampled to the 1 minute (“1𝑚”) AERONET bins (with intersample times of 3 minutes). 520 

5 Conclusions 

We reported on an automated dust classification scheme for which the first steps were the derivation of the dust plume 

height followed by the definition of a class of optically significant (class "𝐷") dust events. This higher-level classification 

scheme employed short-wave infrared (1.548 µm) lidar profiles (that were predominantly sensitive to coarse mode (CM) 
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particles) coupled with surface-based microphysical measurements of CM particle-volume concentration. We defined two 525 

class-𝐷 subclasses (𝐷𝑅𝑆 and 𝐷𝑁𝑅𝑆) as well as two complementary subclasses (𝐷𝐺𝐸𝑁 and 𝐷𝐹𝑃𝐶): these represented, respectively, 

events that could be remotely sensed from a passive ground-based (AERONET-type) spectral AOD sensor (and thus, for 

example, could likely be remotely sensed by a passive satellite sensor), dust events that could likely not be remotely sensed 

(NRS), dust events that were identified using data other than OPS data (and/or qualitative evidence such as RGB satellite 

images) and events that could not be remotely sensed because they were classified as clouds and thus eliminated from analytical 530 

consideration by the AERONET cloud screening protocol. We also defined an unclassified (𝑈) class: a 𝑈𝑅𝑆 sub-class 

represented events whose surface-based CM particle-volume concentration measurements were speculated to be excessively 

influenced by local dust dynamics (i.e. not in the same dynamics scale as the remotely sensed (columnar) dust optical depths). 

The associated lack of dust sensitivity was estimated to have an upper limit threshold to be roughly in the  

10-11–10-10 µm3µm-3 range corresponding respectively to a CM optical depth of 0.001 to 0.1. 535 

The average OPS effective radius of class-𝐷 events as measured at the KLRS site (near the CIMEL and lidar instruments) 

during the month of May 2019 was estimated to be 2.26 ± 0.23 µ𝑚. A value of dust refractive index at the lidar wavelength 

was estimated as 1.5371(±0.0028) − 0.00075(±0.00072) 𝑖 from an analysis Lhù’ààn Mân’ dust speciation classes. A 

prescribed lidar ratio of 10.7  0.9 sr was derived from Mie computations employing the OPS-derived effective radius average 

and the computed refractive index information as input. The CIMEL-derived lidar ratio showed a positive bias that was 540 

anywhere from two to three times the prescribed ratio depending on QA constraints placed upon the statistical data employed 

for its derivation. The persistence of this positive bias led to a hypothesis that the prescribed value could be increased to the 

CIMEL-derived values of 20 sr by hypothesizing the presence of optically significant dust particles at an effective radius of ~ 

11–12 µm. This large-particle hypothesis is not incoherent with OPS measurements (such a particle size is greater than its 4.5 

µm upper limit) and is coherent with the fact that the AERONET PSD retrievals showed a CM whose peak radius increased 545 

with increasing dust optical depth. 

AERONET inversions were few and far between (and generally weak in terms of 𝜏𝑐 amplitude during the whole month of 

May 2019). The available inversions showed bimodal CM PSDs with (AERONET bin-center) peaks at radii ~ 1.3 µm and 

5.0–6.6 µm and a tendency to be progressively more dominated by the latter peak as 𝜏𝑐,𝑖𝑛𝑣  increased. Those larger 𝜏𝑐,𝑖𝑛𝑣 values 

generally occurred during 𝐷𝑅𝑆 events. The smaller 1.3 µm radius peak was, we argued, likely to be the ubiquitous CM peak 550 

that AboEl-Fetouh et al. (2020) ascribed to springtime Asian dust. The latter 5.0–6.6 µm peak is arguably associated with local 

Lhù’ààn Mân’ dust peak represented by a broad 2.0–4.5 µm peak in the KLRS OPS data (but, arguably, of lesser effective 

radius because of the 4.5 µm (bin-center) cutoff of the OPS PSDs).  

Finally, we discussed the possibility of extracting a FM dust component using satellite-based remote sensing. This could 

yield a unique spatial perspective on the opto-physical dynamics of FM dust: a component that is not well understood (see, for 555 

example, Cottle et al., 2013) but that might well play an important role in the spread of dust around the Arctic. Moving beyond 
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the relatively coarse spatial resolution of the workhorse MODIS sensor, both the CM and FM AOD dust products could be 

derived for high spatial resolution satellites such as those of the PlanetScope constellation. 

6 Appendices 

Appendix A1. Theoretical background for 𝑺𝒄
𝒑
 validation  560 

Let 𝑆𝑐
𝑝
 be the current prescribed (constant) value of the dust lidar ratio that was employed to compute 𝜏𝑐

ℓ (𝜏𝑐
ℓ =  𝑆𝑐

𝑝
 𝜏𝛽𝑐

)23. 

The AERONET derived value (𝑆𝑐) for the 𝐷𝑅𝑆 class would then be: 

𝑆𝑐 =  
𝜏𝑐

𝜏𝛽𝑐

 =  
𝜏𝑐

𝜏𝑐
ℓ

𝜏𝑐
ℓ

𝜏𝛽𝑐

 =  
𝜏𝑐

𝜏𝑐
ℓ 𝑆𝑐

𝑝
          (A1) 

If we are employing log 𝜏𝑐
ℓ vs log 𝜏𝑐  regressions over the POI then24; 

log 𝜏𝑐,𝑟𝑒𝑔
ℓ  =  𝑎 log 𝜏𝑐  +  𝑏 where a and b are the regression slope and intercept. Accordingly;   (A2a) 565 

𝜏𝑐,𝑟𝑒𝑔
ℓ

𝜏𝑐
 =  10𝑏  𝜏𝑐

𝑎−1           (A2b) 

Employing equation (A2b) in the “reg” version of equation (A1) yields; 

𝑆𝑐,𝑟𝑒𝑔 =
𝜏𝑐

𝜏𝑐,𝑟𝑒𝑔
ℓ 𝑆𝑐

𝑝
= 𝑆𝑐

𝑝
 10−𝑏  𝜏𝑐

1−𝑎         (A2c) 

This corresponds to a situation where a given data pair, (𝜏𝑐 , 𝜏𝑐
ℓ) is forced to lie on the regression line (i.e. equation (𝐴2𝑎) 

is employed to compute the point (𝜏𝑐, 𝜏𝑐,𝑟𝑒𝑔
ℓ )). An objective and pragmatic quality indicator of the lidar ratio would be the 570 

lidar ratio residuals (“subscript “r”) given by; 

∆𝑆𝑐,𝑟 =  𝑆𝑐  −  𝑆𝑐,𝑟𝑒𝑔  =  
𝜏𝑐

𝜏𝑐
ℓ 𝑆𝑐

𝑝
 −  

𝜏𝑐

𝜏𝑐,𝑟𝑒𝑔
ℓ 𝑆𝑐

𝑝
 =  𝜏𝑐𝑆𝑐

𝑝
(

1

𝜏𝑐
ℓ  −  

1

𝜏𝑐,𝑟𝑒𝑔
ℓ )      (A3) 

where 𝑆𝑐  is the 𝑆𝑐  of Eq. (𝐴1) and where one would compute the average ( 〈∆𝑆𝑐,𝑟〉 ) and standard deviation ( 𝜎(∆𝑆𝑐,𝑟) ) over 

each POI. In practice, there are large variations in ∆𝑆𝑐,𝑟 and attendant large variations of 𝑆𝑐 . Weights defined as 𝜔 =

100 ×  1 (∆𝑆𝑐,𝑟)
2

⁄  are an indicator of confidence in a given 𝑆𝑐  value which places considerably more confidence on (𝜏𝑐 , 𝜏𝑐
ℓ) 575 

points that are close to the regression line (the weighting factor is inspired by the classical standard deviation weighting factors; 

                                                           
23 Note that we have deliberately avoided using the 𝐷𝑅𝑆 classification symbol to minimize the complexity of the equations. 
24 In the absence of instrumental or environmental artifacts 𝜏𝑐  and 𝜏𝑐

ℓ should be governed by Eq. (𝐴1) for a given POI (i.e. 

assuming 𝑆𝑐 doesn’t change during that POI). Accordingly; 

log 𝜏𝑐
ℓ  = log 𝜏𝑐  +  log

𝑆𝑐
𝑝

𝑆𝑐
 =  log 𝜏𝑐  +  𝑏0  

which is the analogue of Eq. (𝐴2𝑎) with a = 1. Inserting this expression into equation (A1) yields 𝑆𝑐  =  𝑆𝑐
𝑝

10−𝑏0 . Accordingly, 

in the absence of instrumental or environmental artifacts, an (Eq. (A2a)) regression slope of, 𝑎 → 1 and 𝑅𝑙𝑜𝑔 → 1 should yield 

better estimates of 𝑆𝑐.  
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see, for example, Taylor, 1997). The weighted means and standard deviation over a given 𝐷𝑅𝑆 event would be then computed 

as; 

〈𝑆𝑐〉𝜔  =  
∑ 𝜔𝑆𝑐

∑ 𝜔
           (A4a) 

𝜎𝜔(𝑆𝑐) =  √
∑ 𝜔∆𝑆𝑐,𝜔

2

∑ 𝜔
           (A4b) 580 

where we define ∆𝑺𝒄,𝝎 =  𝑺𝒄 −  〈𝑺𝒄〉𝝎. The 𝟏 (∆𝑺𝒄,𝒓)
𝟐

⁄  weighting can produce excessively non-linear weights for single 

measurements very near the (𝝉𝒄, 𝝉𝒄
𝓵) regression line. However, their impact is considerably dampened out because we average 

over the POIs and then average those averages over the month.       

Appendix A2. Processing-related notes of AERONET AODs 

A2.1 SDA and SDA+ retrievals: 585 

The SDA and SDA+ retrievals are defined in O’Neill et al. (2003) and O’Neill et al. (2008), respectively. The SDA+ input 

wavelengths are 380 nm, 440 nm, 500 nm, 675 nm, 870 nm, 1020 nm, and 1640 nm. For the purposes of comparing AERONET 

data with the KLRS Doppler lidar, the SDA+ output wavelength was taken as 1548 nm. 

A2.2 Backscatter Coefficient (βc) profiles: 

 The lidar profiles begin at a nominal altitude of 13 m. The minimum reliable measured range is <100 m (typically 75 m) 590 

(Newsom & Krishnamurthy, 2020). Our investigation into the KLRS lidar measurements shows that column measurements 

<51 m often appear to be artifactual (abnormally large and discontinuous 𝛽𝑐𝑇2 values as in the case of May 1). Hence, we 

chose to assign NaN to 𝛽𝑐𝑇2 values in this altitude range (notably to eliminate their contribution to 𝜏𝑑𝑢𝑠𝑡
ℓ ). 

Appendix A3. Measurements bins and intersample times: (i) native and (ii) common-bin configuration 

To match the measurement times of all the ground-based CIMEL, lidar and OPS instruments at the KLRS site, we employed 595 

the nominal CIMEL times (i.e. the centers of the 1m CIMEL triplet bins) to generate a linear interpolation of lidar optical 

depths at their nominal times (the center of their 11 second time bins) and of OPS CM volume densities at their nominal times 

(center of their 1 minute time bins) to the nominal CIMEL times.  

A3.1 CIMEL timing protocols 

The CIMEL timing protocols, which are the basis for the 𝜏𝑐 time bins (actually any AERONET AOD time bin to be precise) 600 

can be found in Giles et al. (2019). Accordingly, a triplet AERONET measurement is performed every 3 minutes to separate 

homogeneously dispersed aerosols from highly temporally variable clouds. This is effected through a filtering process that 

measures triplet variability. As stated by Giles et al. (2019), a triplet is a “series of measurements of all filters starting at 0 s 
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of the minute for a duration of about 8 s, and then repeating this measurement sequence at 30 s and 60 s from the initial 

measurement time. The resulting 1 min averaged measurement [1 min average of the digital number for each filter of the 3 605 

sets of the 8 s measurements] sequence is defined as a triplet measurement and the maximum to minimum range of these 

measurements [between individual filter measurements of the 8 s sets] is termed the triplet variability… . The triplet 

measurements are performed …. every 3 min for newer …. CE318-T instruments …. .”  
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10 Acronym and symbol glossary 625 

In this glossary we employ, for the sake of simplicity, an argument of “(𝑧)” to represent “(0, 𝑧)” for transmission (𝑇) 

expressions and no argument for optical depth parameters when their columnar extent is made evident by their subscript 

AEROCAN  Canadian subnetwork of AERONET 

AERONET  Aerosol Robotic Network of CIMEL sunphotometer / sky radiometers 
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𝛽′(𝑧) Attenuated backscatter coefficient (𝛽(𝑧) 𝑇𝑐
2(𝑧) with units of km-1 sr-1) 

AOD  Aerosol Optical Depth (unitless) 

𝛽′(𝑧) Attenuated backscatter coefficient (𝛽(𝑧) 𝑇𝑐
2(𝑧) with units of km-1 sr-1) 

𝛽𝑐(𝑧) Coarse mode backscatter coefficient (units of km-1 sr-1) 

𝛽𝑐
′(𝑧)  Coarse mode attenuated backscatter coefficient (𝛽𝑐(𝑧) 𝑇𝑐

2(𝑧) with units of km-1 sr-1) 

  

𝛽𝑐,(𝑧)  𝛽𝑐 approximation given by equation (2) 

CM  Coarse Mode (generally super-micron radius; see O’Neill et al., 2023 for a general discussion of 

microphysical and optical considerations) 

𝐷 Classification symbol for optically significant dust event 

𝐷𝐹𝑃𝐶  “𝐷” subclass symbol for an FPC event 

𝐷𝐺𝐸𝑁  “𝐷” subclass symbol for dust than has been identified using alternate (“generic”) information 

𝐷𝑁𝑅𝑆 “𝐷” subclass symbol  for optically significant dust that cannot be remotely sensed 

𝐷𝑅𝑆 “𝐷” subclass symbol for optically significant dust that can be remotely sensed 

DLH  Dust layer height (units of km) 

DV  Down valley 

𝑑𝑣/𝑑𝑙𝑜𝑔𝐷  Particle-volume distribution (µm3µm-3 per unit increment in log diameter). This PSD is derived 

from the particle number PSD output of the OPS instruments (𝑑𝑛/𝑑𝑙𝑜𝑔𝐷 where 𝑑𝑛 is the 

particle number in a given size bin). Note that 
𝑑𝑣

𝑑𝑙𝑜𝑔𝑟
=  

𝑑𝑣

𝑑𝑙𝑜𝑔𝐷
 

𝑑𝑣/𝑑𝑙𝑛𝑟  Particle-volume distribution (µm3µm-3 per unit increment in 𝑙𝑛𝑟).Note that 𝑑𝑣/𝑑𝑙𝑛𝑟 = 
𝑑𝑣

𝑑𝑙𝑜𝑔𝑟

1

𝑙𝑛10
 

𝑑𝑉/𝑑𝑙𝑛𝑟  Columnar particle-volume per unit area in the differential bin 𝑑𝑙𝑛𝑟 (this is an AERONET 

inversion product (units of µm3µm-2) 

FPC  Subclass subscript acronym for a dust-induced false positive cloud event 

FM  Fine Mode (generally submicron radius; see O’Neill et al., 2023 for a general discussion of 

microphysical and optical considerations) 

HLD High Latitude Dust 

KLRS  Kluane Lake (Lhù’ààn Mân’) Research Site 

LCH Lidar Ceiling Height (9.6 km) 

MCA  Minimum cloud altitude (units of km) 

NaN  Not a number 

OPC  Optical Particle Counter (from which 𝜈𝑑𝑢𝑠𝑡(0) is determined) 

OPS Optical Particle Sizer (from which 𝜈𝑑𝑢𝑠𝑡(0) is determined) 

POI Period of Interest 

PSD  Particle Size Distribution 

𝑟  Radius (µm) 
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𝑅𝑙𝑜𝑔  Correlation coefficient in log-log space (log 𝜏𝑐
ℓ vs log 𝜏𝑐  for example) 

SDA  Spectral Deconvolution Algorithm 

𝑆𝑐 AERONET derived lidar ratio 

𝑆𝑐
𝑝
 Prescribed lidar ratio computed from Mie calculation using surface measured estimates of dust-

particle effective radius and refractive index 

𝑆𝑐,𝑟𝑒𝑔 AERONET derived lidar ratio where we force a given data pair, (𝜏𝑐 , 𝜏𝑑𝑢𝑠𝑡
ℓ ) to lie on the 

regression line (subclass 𝐷𝑅𝑆 data pairs: the “c” subscript is used to simplify the nomenclature) 

𝜎(𝑥)  Arithmetic standard deviation of the parameter x 

𝑇𝑐(z) Altitude dependent (one-way) transmission of a lidar pulse 

𝑇𝑐,(z) 𝑇𝑐(𝑧) approximation obtained by employing the ratio 𝜏𝛽𝑐
′(0, 𝑧) 𝜏𝛽𝑐

′⁄  as the altitude defining 

profile of 𝜏𝑐(0, 𝑧) 

𝜏𝛽𝑐
  Column-integrated CM backscatter coefficient (coarse mode backscatter optical depth) 

𝜏𝛽𝑐
′   Column-integrated CM attenuated backscatter coefficient (CM attenuated backscatter optical 

depth)  

𝜏𝑐 CM AOD at 1548 nm (AERONET SDA+ product) 

𝜏𝑐,𝑖𝑛𝑣 CM AOD at 1548 nm (extrapolation of the 4-band AERONET-inversion product) 

𝜏𝑐
ℓ CM lidar AOD at 1548 nm with integrating range of 0 − LCH 

𝜏𝐷,𝑟𝑒𝑔
ℓ  CM lidar AOD at 1548 nm where we force a given data pair, (𝜏𝑐 , 𝜏𝐷

ℓ ) to lie on the regression line 

𝜏𝑑𝑢𝑠𝑡
ℓ  CM lidar AOD at 1548 nm with integrating range of 0−DLH ( 𝜏𝑐

ℓ(0, 𝐷𝐿𝐻) ) 

𝜏𝐷
ℓ  Sequence of 𝜏𝑑𝑢𝑠𝑡

ℓ  values that are promoted to a class D POI 

𝜏𝑐𝑙𝑜𝑢𝑑
ℓ  CM lidar AOD at 1548 nm with integrating range of DLH−LCH (cloud region) 

𝑈  Classification acronym for events that failed to achieve a 𝐷 classification 

𝜈𝑑𝑢𝑠𝑡(0) Surface (z = 0) CM OPS particle-volume concentration at KLRS (units of µm3µm-3) . The CM 

OPS integration was computed over 9 bins whose bin-center radii ranged from 0.78 to 4.51 µm 

𝑉𝑐 AERONET-derived, CM columnar particle-volume concentration (units of µm3µm-2). The CM 

integration of the 𝑑𝑉/𝑑𝑙𝑛𝑟 retrieval is computed from the bin containing the 𝑑𝑉/𝑑𝑙𝑛𝑟 minimum 

(that dynamic minimum being constrained to a bin-center radius range from 0.439 to 0.992 µm) 

to the largest retrieval bin (15 µm bin-center radius) 

〈𝑥〉  Arithmetic mean of the parameter x 

𝑧  Altitude above ground level (units of km) 
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