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Abstract. Over the past decades, studies have observed strong declines in biomass and the abundance of flying insects. How-

ever, there are many locations where no surveys of insect biomass or abundance are available. Weather radars are known to

provide quantitative estimates of flying insect biomass and abundance, and can therefore be used to fill knowledge gaps in

space and time. In this study, we go beyond previous studies by combining a machine-learning approach with ground-truth ob-

servations from an aphid trap network. In this study, radar echoes from Level-II (Base) data of three Next Generation Weather5

Radar (NEXRAD) stations in the U.S. are classified using machine learning approaches. Weekly aphid counts from suction

traps at Manhattan (Kansas), Morris (Illinois), and Rosemount (Minnesota) are used as validation data. Variability and dis-

tribution of the radar signals of four scatterer classes (insects, light rain, heavy rain, and plankton) are assessed. Probability

density functions (PDF) of reflectivities of insects and plankton were found to be distinct from those of light- and heavy rain.

Furthermore, the PDF of radar variables of the insect scatter class was also characterized by a broad distribution of spectrum10

width, cross-correlation ratio, and a broad range of differential reflectivity values. Decision trees, random forests, and support

vector machine models were generated to distinguish three combinations of scatterers. A random forest classifier is found to

be the best-performing model.

1 Introduction15

The atmosphere can be considered as a living habitat for flying insect fauna and is then specifically termed the aerosphere.

The abundance (concentration) and species richness of flying insects in the aerosphere is a key indicator of the quality of the

Earth’s biodiversity (Chilson et al., 2017). There is mounting evidence that insects, and in particular flying insects, are de-

clining in biomass and density in many parts of the world (Van Klink et al., 2020; Hallmann et al., 2017), which could have
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grave consequences for the ecosystem services insects deliver and the integrity of the ecosystems they are part of. However,20

the local differences in changes in insect abundance and biomass are large, and vary across the globe, across the terrestrial

and freshwater realm, and across vegetation strata (Van Klink et al., 2020; Pilotto et al., 2020; Crossley et al., 2020) and only

local data from a limited number of locations are available. Therefore larger-scale data is needed to assess global changes in

insect abundance and biomass. Information on high-flying insects in the aerosphere can provide such large-scale information

(Noskov et al., 2021), but is rarely available (Hu et al., 2016). As such, there is an urgency for quantitative knowledge of25

the changes in insect concentration, in its spatial extent and temporal scales. Weather radars are known to give quantitative

information about flying insects to a considerable extent of the aerosphere. Networks of weather radar are spatially extensive

and operate diurnally at all times. Insects have been assessed at such broad spatial and temporal scales in a number of studies

before (Tielens et al., 2021; Stepanian et al., 2020).

Weather radars are generally designed to observe meteorological elements, therefore the derivation of insect echoes requires30

special techniques (Drake and Reynolds, 2012). Zrnic and Ryzhkov (1998) used polarimetric radar signatures of scatterers to

differentiate insects, birds, and meteorological scatterers from an alternating polarimetric weather radar operating in the S-band

frequency using numerical analysis. Insect signals in clear air were distinguished from Bragg scatterers using statistical analy-

sis in Oklahoma from the frequency-modulated, continuous-wave (FMCW) S-band radar observation (Contreras and Frasier,

2008). Jatau and Melnikov (2019) used a fuzzy logic algorithm to separate insect echoes from precipitation and bird sig-35

nals. With the increasingly widespread use of machine learning methods, the automation of insect identification methods from

weather radars, calls for using artificial intelligence approaches (Chilson et al., 2019). Luke et al. (2008) used an automatized

neural network algorithm to mask insect clutter from the U.S. Department of Energy Atmospheric Radiation Measurement

(ARM) millimeter cloud radar echoes to distinguish them from cloud radar returns. Using a fully convolutional network classi-

fication method, Hu et al. (2019) classified weather echoes and biological scatterers. Evidently, artificial intelligence methods40

have contributed to the focus of research on the interpretation of more biologically, ecologically, and physically relevant in-

formation (phenotype of insects swarm, migration dynamics, and also number density of insects). One recent study of notice

is the identification of different biological scatterer types and rain from the network of polarimetric weather surveillance radar

(WSR-88D) of the United States using a random forest algorithm (Gauthreaux and Diehl, 2020). However, the study was not

based on an in-situ validation dataset of insect occurrence.45

As such, the present study seeks to i) find the distribution and variability of radar polarimetric variables for insect echoes

from ground-truth observations from aphid suction trap data and precipitation scatterers (light rain, heavy rain) and plankton

(plankton, as considered here, consists of leaves or other plant debris lifted to the atmosphere) ii) from a machine learning

perspective, distinguish the scatterers by decision tree, random forest, and support vector machine algorithms.

2 Data and Methods50

The S-band weather surveillance radar network (NEXRAD) of the United States of America (USA) is considered for this

study. The radar network consists of 151 Doppler weather radars initialized in 1957 and established in 1959. After a series of
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upgrades since 2013 is providing new insights due to its polarimetric capabilities (Stepanian et al., 2016). The radars with an

antenna diameter of 8.5 m operate at a wavelength of 10 cm, beam-width of 0.95°, and a pulse width of 1.57 µs. The radars

operate in two modes based on the atmospheric conditions i.e. the super and standard resolution. The super-resolution data55

products obtained in the lowest elevation scans have a resolution of 0.5° azimuthal by 0.25 km range resolution and the upper

scans have the standard resolution of 1° azimuthal by 0.25 km range resolution. The radar scans azimuthally in a series of

elevation angles ranging from 0.5° to 19.5°. Each elevation scan has a temporal resolution of 5 to 10 min with three legacy

products (reflectivity, mean doppler velocity, and spectrum width) and three dual polarization products (differential reflectivity,

correlation coefficient, and differential phase) (Handbook, 2005).60

In this study, the radar moments differential reflectivity, cross-correlation ratio, reflectivity, spectrum width, and the range

derivative of the differential phase which is the specific differential phase at 0.5° elevation angle were used. Reflectivity

measures the strength of the returned horizontal signal. The abundance and size of scatterers can be inferred from the variable.

Spectrum width is the standard deviation of the radial velocity of targets in the scattering volume, it provides the variability

of the velocity of all scatterers in a radar observation volume. The differential reflectivity is derived as the logarithmic ratio of65

the reflectivity in the horizontally polarized and vertically polarized. The signal shapes of scatterers in a sampled volume radar

influence this parameter. The correlation of the power and phase signals in the horizontal and vertical polarized is the cross-

correlation coefficient. The diversity of scatterers can be inferred from this parameter (Kumjian, 2013). The differential phase

is the delay in the phase of the horizontal and vertical radar signals. The specific differential phase which is derived from the

range derivative of the differential phase is proportional to the concentration of scatterers. Specific differential phase was used70

due to its high variable importance in the differentiation of meteorological and non-meteorological radar echoes (Lakshmanan

et al., 2015).

Four classes of radar scatterers were considered due to the seasonality of the in-situ validation data (described below) of aphids:

insects, light rain, heavy rain, and plankton in this study. The scans of the radar moments were used in combination with the

hydrometeor classification of the processed level III product. The fuzzy logic procedure of the hydrometeor classification is75

described in Park et al. (2009). To derive the corresponding classification of the level II radar moments scans of each scatterer

class; the mask of the hydrometeor classification scatterer class was extracted and applied to the level II radar moments scans.

In addition to the radar observations, weekly aphids count data from the suction trap at a height of 5.8 m above ground of the

US Midwest suction trap network were used as in situ data for the occurrence of flying insects. The traps operate from mid-May

to October and are functional during daylight hours. The suction traps are set up to capture aphids with 34 traps operating in 880

states. Aphids are small (1-5mm) long sap-sucking insects with complex life cycles (Van Emden and Harrington, 2017). Many

species are important pests to cultivated plants, as they weaken the plant directly through suction damage, and indirectly as

vectors of plant viruses. Three suction trap stations were considered in this study due to their proximity within 50 km of the

nearest NEXRAD WSR-88D radar (Fig. 1). The stations were Manhattan (Kansas) (39.21°, -96.60°), Morris (Illinois) (41.35°,

-88.38°), and Rosemount (Minnesota) (44.71°, -93.10°) and the radars are KTWX (38.99°, °-96.23), KLOT (41.60°, -88.08°),85

and KMPX (44.85°, -93.57°) respectively. Land cover types between the radar and the suction trap were mostly dominated by

croplands and natural vegetation (Fig. 1).
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Figure 1. Map of land cover types at the suction trap stations in 2020. The red and black spots indicate the position of the suction trap and

the radar respectively.
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Atmospheric conditions favorable for aphids’ flight initiation and concentration are calm weather with no precipitation

(optimally, temperature > 18 °C and wind speeds < 2 ms−1). Meteorological variables were inferred from the Local Clima-

tological Data (LCD) of the National Centers for Environmental Information’s Integrated Surface Data (ISD) data set. Taking90

into consideration the best weekly data was selected (Fig. 2).

Figure 2. Time series plot of weekly aphid counts (date of collection and counting) at Manhattan (a), Morris (b), and Rosemount (c) suction

trap station of the US Midwest suction trap network in 2020. The dates of the best weekly data are indicated.
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Aphid concentration in the aerosphere usually peaks at 1100 h and 1700 h (Johnson, 1954). Occurrences of light rain

(defined as rain rates measured at the meteorological station of R < 2.5 mmh−1), heavy rain (defined as rain rates measured at

the meteorological station of R > 7.6 mmh−1) and plankton (clear air (non-rainy) days with high surface winds (> 22 knots)

were inferred from the weather data. Due to discrepancies in the temporal resolution of aphids count data and the radar scans95

(weekly and 4 to 10 min respectively); the following procedure is followed in order to select individual radar scans which are

then used to identify the cases of insect occurence at Manhattan, Morris, and Rosemount suction traps and assess the variability

of the radar variables of the insect echoes:

1. The weeks where there are integral aphid counts are indicated in figures 1 to 4 as the selected week data.

2. As discussed above, 1100 h is identified as a time of day when aphids tend to fly preferably, so the scan at around 1100 h100

for each of the seven days is selected.

3. As discussed above, it is preferable for insect flight that temperatures are above 18◦C and wind speeds below 2 m s−1.

Using LCD data, the optimal days of the week at the peak time that meet these criteria are selected.

4. Scans were selected for light rain and heavy rain, snow, and plankton based on the times of occurrence of each meteoro-

logical phenomenon. The times of occurrence were inferred from the LCD.105

Scatterer

Class

Date and Time

Manhattan (Kansas) Morris (Illinois) Rosemount (Minnesota)

Insects 06 July 2020 (17:01 UTC) 22 August 2020 (17:05 UTC) 10 August 2020 (17:00 UTC)

Light rain 19 June 2020 (18:03 UTC) 10 July 2020 (05:23 UTC) 02 June 2020 (22:41 UTC)

Heavy rain 07 April 2019 (9:15 UTC) 18 May 2019 (14:03 UTC) 11 June 2017 (05:04 UTC)

Plankton 01 June 2020 (16:02 UTC) 09 June 2020 (17:41 UTC) 01 June 2020 (14:02 UTC)

Table 1. Dates and times of selected radar scans for each scatterer class to determine the distribution and variability of the scatterers.

The extracted radar variables of each scatterer class at the four stations were aggregated and the variability and distribution

of the radar variables of the scatterer classes were assessed by histograms.

Machine learning deduces patterns from a given dataset, the learning is based on statistical, mathematical, and computational

approaches (Zewdie et al., 2019). Supervised learning as used in this study finds a functional relation that maps the input

dataset to the classification label. To obtain the dataset for machine learning procedure these steps are followed at each station.110

1. 50 scans of each scatterer were obtained within the selected aphid peak times. The preceding hours (1000 UTC and

1600 UTC ) and following hours (1200 UTC and 1800 UTC) in addition to the peak hours of aphids (1100 UTC and

1700 UTC) at the selected times of insect occurence (Table 1).
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2. 50 scans were selected for light rain and heavy rain, snow, and plankton based on the times of occurrence of each

meteorological phenomenon. The times of occurrence were inferred from the LCD.115

3. As stated the radar variables of each resolution volume were retrieved. The data was filtered to pixel points that echoed

the five radar variables.

4. In combination, 160000 data points were retrieved for the four scatterers. The total radar data set was 480000 and was

divided into a training (70%) and a testing dataset (30%).

Three supervised machine learning techniques are used in this study (Decision tree, random forest, and support vector ma-120

chine) as they are suitable for pixel-level classification (Jatau et al., 2021). Decision tree classifier models are non-parametric

and classify data by learning logical rules or threshold values (Kotsiantis, 2013). The module used in the study (Scikit-learn

(Pedregosa et al., 2011)) distinguishes between classes based on threshold values and features at nodes with the highest in-

formation gain. A supervised classification algorithm consisting of an ensemble of decision trees is known as random forest

(Pal, 2005). These trees are built from a subset of the training vectors at each tree node with equal distribution. Generally, each125

tree votes for a classification label as the forest selects the label with the highest votes (Breiman, 2001). However, the mean

probabilistic prediction of the classification is used to determine the best label in the random forest as applied in this study

(Pedregosa et al., 2011). The support vector machine classifies data by finding the best hyperplane that separates the classes

at a decision boundary. The best hyperplane is obtained from a set of given functions evaluated by statistical learning theory

(Shmilovici, 2009). The multi-class strategy used in this study was the one vs the rest to classify the scatterers. Decision tree,130

random forest, and support vector machine models were generated to classify and distinguish the scatterer classes. Optimally,

the algorithm should be able to unambiguously identify each of these four classes insect, light rain, heavy rain, and plankton.

The performance of the models was evaluated from the metrics: balanced accuracy, geometric mean score, and precision score.

Balanced accuracy measures the mean of the ratio of positive classes determined by the model which is the recall defined as

recall =
TP

TP +FN
(1)135

where TP is the number of predicted true positives samples, and FN is the number of predicted false negatives samples.

The ability of the models to correctly label positive and negative samples (true positives and true negatives) was measured by

the precision score.

precision =
TP

TP +FP
(2)

where TP is the number of predicted true positive samples, and FP is the number of predicted false positive samples.140

The geometric mean score metric is selected as in addition to measuring the accuracy also determines the specificity (precision)

and sensitivity score (recall) which are the ratio of the positive recall and negative recall of the data classes respectively. The

geometric mean is given by the square root of the product of the specificity and the sensitivity.

geometricmean =
√

precision ∗ recall (3)
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The performance of each scatterer class was assessed by the confusion matrix which gives values of the true positives and false145

negatives of each scatterer for the combinations.

2.1 Results

Figure 3. Normalized histograms of radar variables for insects as well as light rain, heavy rain, and plankton. Reflectivity, spectrum width,

differential reflectivity, cross-correlation ratio (top left to right), differential reflectivity, and specific differential phase (bottom left to right).

(bottom left to right). All scans for the dates listed in Table 1 are combined in the histograms

To assess the variability and distribution of the classes of scatterers, the extracted variables for the selected times of each

scatterer are presented as histograms (Fig. 3). Compared to the other radar variables, reflectivity differentiated the distribution

of the precipitation scatterers well with distinctive peaks. Plankton shows lower values and variability than insects. Insect’s150

value of spectrum width is the highest at 2.5 ms−1 as the peak of the three other scatterers was near 0 ms−1. Plankton is shown

to have higher values than heavy and light rain.

The distribution of the precipitation scatterers shows differential reflectivity with peaks centered around 0 dB. The peak of

heavy rain is almost two magnitudes higher than light rain with lower variability. The distribution of the insect’s differential

reflectivity has a broad peak that is maximum at 2 dB. Apart from a distinct peak at 7 dB, plankton has a high variability with155
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a peak at about -1 dB for differential reflectivity. Most of the cross-correlation ratio values of the precipitation scatterers are

greater than 0.9 with the same peaks and cross-correlation ratios of plankton very highly variable and ranged between 0.2-1.0.

As observed with differential reflectivity, the peak of heavy rain is two magnitudes higher than light rain. The majority of the

insect scatterers have cross-correlation ratios between 0.70 to 0.85 and a slight peak at 0.85. Plankton has the highest peak

of cross correlation ratio but with much more variability than the precipitation scatterers as the insect scatterers showed the160

highest variability for the variable. The specific differential phase distribution of the scatterer classes has minute differences.

Precipitation scatterers showed less variability than insects and plankton. The peaks of the precipitation approach zero with the

distribution skewed to the left.

Figure 4. Metrics (balanced accuracy score, precision score, and geometric mean score) of the decision tree, random forest, and support

vector machines models.
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Each combination of the machine learning models was trained on a size of 70% of the dataset with a test size of 30%. The

performance and evaluation of the three machine learning methods on the combination of scatterers are presented in Figure165

4. In this study, the echoes of interest ie. insects, and the three other scatterers (I, HR, LR, P) precipitation scatterers were

classified best by the random forest model. The prediction balanced accuracy and geometric mean score were 0.80 and 0.87

respectively as the precision score was 0.80. The two models for the decision tree and support vector machine classified this

group of scatterers with a balanced accuracy score of 0.64 and 0.59 respectively. The values for the two other metrics were also

higher for the decision tree model.170

The random forest model classified best when omitting the plankton class and using only the insects’ and precipitation scat-

terers (I, HR, LR) across the three metrics; balanced accuracy score (0.88), precision score (0.88), and geometric score (0.91).

The decision tree was seen to perform slightly better than the support vector machine. As stated, plankton in this study are

scatterers observed during conditions with high surface winds ie. >22 knots (11.32 ms−1) which uplifts leaves and other de-

bris in the atmosphere. This is distinguished from the insects’ scatterer classes. Across the three machine learning models the175

classification metrics score was greater for the random forest model. The model had a prediction accuracy of 0.88, a precision

score of 0.87, and a geometric mean of 0.87. The decision tree classifier was distinguished with a balanced accuracy score of

0.74 and the support vector machine with a score of 0.70.
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Figure 5. Normalized Confusion matrix in the percentage of insect, heavy rain, light rain, and plankton (upper panel); insect, heavy rain, and

light rain (center panel); and insect and light rain (lower panel). Decision tree, random forest, and support vector machine (right to left).

The confusion matrix delved into the performance of each scatterer class for the combinations of the classification models180

(figure 5). Heavy rain was distinguished best from the other classes for the machine learning models. However, the insect

scatterer was the most distinct apart from heavy rain with random forest performing best. The insect scatterer was misclassified

most as plankton, the same was observed for the precipitation scatterer although the classification rate was lowest for light

rain. This trend was observed for the other two models. In figure 5 (I, HR, LR), the insect scatterer was classified best with the

random forest model, and the highest misclassification was light rain as light rain was also misclassified as insects the most.185
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This misclassification rate was observed for the decision tree and support vector machine models with heavy rain having higher

true positives for the support vector machines and being equivalent with insects for the decision tree models. The highest true

positive of the combination of insects and plankton was observed for the random forest model with the highest false-negative

observed for the support vector machine model.

2.1.1 Discussion190

Even though the size range of raindrops and insects is similar, the number concentration of raindrops can be much higher than

that of insects in a radar measurement volume leading to higher reflecitivities.(Kumjian, 2013). Plankton conditions are almost

clear air with minute interaction with radar signals. The reflectivity observed shows that the power of the scatterers returned

signals ascended from plankton, insects, light rain, and heavy rain. The spectrum width showed large variability in the velocity

of the insects’ flight pattern as precipitation showed much more uniform velocity in their drop velocity.195

Precipitation signals tend to have differential reflectivity values close to 0 dB due to their relatively spherical shape in polari-

metric measurements and variates around this median value (Kumjian, 2013) (Gauthreaux and Diehl, 2020). In this study, this

is clearly observed without exceptional deviations. Differential reflectivity is sensitive to the shape of echo signals of objects

encountered. The disproportionate shape of insects returns high values of differential reflectivity (Melnikov et al., 2015). How-

ever, the value of the insect signal is relatively lower. This can be expected due to the small size and plump shape of aphids200

used as a proxy for insect occurrence. Insects’ signals are characteristically inhomogeneous and usually yield low correlation

coefficient values and vice versa for precipitation scatterers (Kumjian, 2013). This is evidenced in the distribution obtained.

The high peak of plankton scatterer can be attested to its low diversity due to the clear air nature of this atmospheric condition.

Although the specific differential phase showed differences in their distributional variability and peaks for all the scatterers;

the high concentration of heavy rain showed much higher peaks than the other scatterer classes.205

Distinguishing and classifying echoes of weather scans is ideal to evaluate insect echoes. Machine learning methods are effec-

tive in the classification of radar echoes (Jatau et al., 2021). The results of the three combinations of scatterers showed that the

random forest algorithm distinguished the scatterers best ahead of the decision tree and support vector machine. Throughout,

insects and the precipitation scatterer classes was seen to be distinguished best by the classifiers. As seen from the confusion

matrices, the most distinguishable scatterer was heavy rain from the other scatterers. This might be due to its strong echo210

signals as observed in the distribution of the radar moments. As seen also, insect signals were the most distinguishable class

amongst the other scatterer class.

3 Conclusions

Insect decline has been noticeable with limited evidence for aphids of the Hemiptera order (Sánchez-Bayo and Wyckhuys,

2019). The dynamics of aphid flight initiation and migration intensity are dependent on weather conditions. Weather radars are215

spatially extensive, operate at all times, and are able to observe insects’ activity. However, insects as targets of weather radar are

secondary to meteorologists and mainly interesting because they bias weather phenomena echoes. Weekly aphid counts from
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suction traps obtained from Kanawha, Manhattan, Morris, and Rosemount are used as validation data for insect occurrence.

Weather conditions optimal for aphids and peak times were used to obtain radar scans for the insect’s signals. Light rain,

heavy rain, and plankton radar scans are obtained from climatological data times of occurrence. Radar measurements from220

four S-band WSR-88D NEXRAD radars nearest to the suction traps are analyzed (KDMX, KTWX, KLOT, and KMPX). The

distribution and variability of the radar variables of the scatterers were assessed. Generally, the insect situations are different

from the three other scatterer classes in particular in the following:

– Differential reflectivity is larger for the insects.

– Cross-correlation ratio is lower for insects.225

– Spectrum width values of insects were high and distinct.

– Reflectivity tends to be in between the ranges of -3 and 5.25 dBZ.

Machine learning classifiers have been applied to weather radar echoes to distinguish insects’ signals from other scatterers.

Random forest classifiers are seen to perform reasonably better in distinguishing the combination of scatterers compared to the

other algorithms.230

Data availability. Next generation weather radar level-II data, level-III hydrometeor classification, and the Local Climatological Data (LCD)

of the National Centers for Environmental Information’s Integrated Surface Data (ISD) data set of US were obtained and openly available at

(https://www.ncdc.noaa.gov/). Aphids count data was obtained and openly available at (https://suctiontrapnetwork.org/data/). MODIS Land

cover type data was obtained and openly available at (https://www.earthdata.nasa.gov/)
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