Preprints
https://doi.org/10.5194/amt-2023-76
https://doi.org/10.5194/amt-2023-76
12 Jun 2023
 | 12 Jun 2023
Status: a revised version of this preprint was accepted for the journal AMT and is expected to appear here in due course.

Combined sun-photometer/lidar inversion: lessons learned during the EARLINET/ACTRIS COVID-19 Campaign

Alexandra Tsekeri, Anna Gialitaki, Marco Di Paolantonio, Davide Dionisi, Gian Luigi Liberti, Alnilam Fernandes, Artur Szkop, Aleksander Pietruczuk, Daniel Pérez-Ramírez, Maria J. Granados Muñoz, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Diego Bermejo-Pantaleón, Juan Antonio Bravo-Aranda, Anna Kampouri, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Adolfo Comerón, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Salvatore Romano, Maria Rita Perrone, Xiaoxia Shang, Mika Komppula, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Diofantos Hadjimitsis, Francisco Navas-Guzmán, Alexander Haefele, Dominika Szczepanik, Artur Tomczak, Iwona Stachlewska, Livio Belegante, Doina Nicolae, Kalliopi Artemis Voudouri, Dimitris Balis, Athina A. Floutsi, Holger Baars, Linda Miladi, Nicolas Pascal, Oleg Dubovik, and Anton Lopatin

Abstract. The European Aerosol Research Lidar Network (EARLINET), part of the Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS), organized an intensive observational campaign in May 2020, with the objective of monitoring the atmospheric state over Europe during the COVID-19 lockdown and relaxation period. Besides the standard operational processing of the lidar data in EARLINET, for seven EARLINET sites having co-located sun-photometric observations in AERONET, a network exercise was held in order to derive profiles of the concentration and effective-column size distributions of the aerosols in the atmosphere, by applying the GRASP/GARRLiC inversion algorithm. The objective of this network exercise was to explore the possibility to identify the anthropogenic component and to monitor its spatial and temporal characteristics in the COVID-19 lockdown and relaxation period. While the number of cases are far from being statistically significant so as to provide a conclusive description of the atmospheric aerosols over Europe during this period, this network exercise was fundamental to derive a common methodology for applying GRASP/GARRLiC on a network of instruments with different characteristics. The limits of the approach are discussed, in particular the missing information close to the ground in the lidar measurements due to the instrument geometry, and the sensitivity of the GRASP/GARRLiC retrieval to the settings used, especially for cases with low AOD as the ones we show here. We found that this sensitivity is well-characterized in the GRASP/GARRLiC products, since it is included in their retrieval uncertainties.

Alexandra Tsekeri et al.

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on amt-2023-76', Anonymous Referee #1, 30 Jun 2023
  • RC2: 'Comment on amt-2023-76', Anonymous Referee #2, 21 Aug 2023

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on amt-2023-76', Anonymous Referee #1, 30 Jun 2023
  • RC2: 'Comment on amt-2023-76', Anonymous Referee #2, 21 Aug 2023

Alexandra Tsekeri et al.

Alexandra Tsekeri et al.

Viewed

Total article views: 786 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
592 168 26 786 63 15 15
  • HTML: 592
  • PDF: 168
  • XML: 26
  • Total: 786
  • Supplement: 63
  • BibTeX: 15
  • EndNote: 15
Views and downloads (calculated since 12 Jun 2023)
Cumulative views and downloads (calculated since 12 Jun 2023)

Viewed (geographical distribution)

Total article views: 775 (including HTML, PDF, and XML) Thereof 775 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 30 Oct 2023
Download
Short summary
EARLINET/ACTRIS organized an intensive observational campaign in May 2020, with the objective of monitoring the atmospheric state over Europe during the COVID-19 lockdown and relaxation period. The work presented herein focuses on deriving a common methodology for applying a synergistic retrieval that utilizes the network's ground-based passive and active remote sensing measurements, and derive the aerosols from antrhopogenic activities over Europe.