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Abstract. Vehicle chase measurements used for studying real-world emissions apply various methods for calculating emission 10 

factors. Currently available methods are typically based on the dilution of emitted carbon dioxide (CO2) and the assumption 

that other emitted pollutants dilute similarly. A problem with the current methods arises when the studied vehicle is not 

producing CO2, e.g., during engine motoring events, such as on downhills. This problem is also encountered when studying 

non-exhaust particulate emissions, e.g., from electric vehicles. In this study, we compare multiple methods previously applied 

for determining the dilution ratios. Additionally, we present a method applying Multivariate Adaptive Regression Splines and 15 

a new method called Near-Wake Dilution. We show that emission factors for particulate emissions calculated with both 

methods are in line with the current methods with vehicles producing CO2. In downhill sections, the new methods were more 

robust to low CO2 concentrations than some of the current methods. The methods introduced in this study can hence be applied 

in chase measurements with changing driving conditions and be possibly extended to estimate non-exhaust emissions in the 

future. 20 

1 Introduction 

Anthropogenically emitted gaseous compounds and particulate matter have effects on both climate and human health (Forster 

et al., 2021; Lelieveld et al., 2015). Vehicle emissions contribute to a significant proportion of those emissions, especially in 

urban environments. Vehicle emissions are regulated in legislation but the regulation for new vehicles is under constant 

development (type approval, periodical technical inspection (PTI) and real driving emissions (RDE)). The new and upcoming 25 

regulations are effective only for the vehicles produced after the regulation have become effective. Fulfilling the regulation 

requirements is controlled in PTI of vehicles but the inspection protocol is limited to a few parameters, and, for example, the 

particle number (PN) is accounted only in some forerunner countries. Additionally, regarding particle emission regulations, 

only a fraction of the total emission is regulated. The regulation limits for PN mostly considers nonvolatile particles. The 

particle mass (PM) formed from the precursor gases via nucleation and condensation as the exhaust gas dilutes and cools upon 30 
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exiting the tailpipe is not fully considered PN measurements, however the regulation for gaseous hydrocarbons limits the 

amount of precursor gases produced by the vehicle. The amount of secondary particle matter (both in terms of PN and PM) 

formed from precursor gases can be considerable (Karjalainen et al., 2014b; Keskinen and Rönkkö, 2010; Kittelson, 1998; 

Giechaskiel et al., 2007). However, the amount of secondary PM has decreased in 21st century as the fuel does not contain as 

much sulfur as before. 35 

A variety of measurement methodologies exist for studying emissions: official type-approval tests (that depend on the local 

legislation) are typically conducted by driving a predetermined driving cycle on a chassis dynamometer. In Europe, Portable 

Emission Measurement System (PEMS) protocol is also included for in-use compliance testing since 2016 (European 

Commission, 2016) including NOx, PN, and CO emissions in real drive. NOx emissions must be measured on all Euro 6 

vehicles—passenger cars and light-commercial vehicles. On-road PN emissions are to be measured on all Euro 6 vehicles 40 

which have a PN limit set (diesel and GDI). CO emissions also must be measured and recorded on all Euro 6 vehicles. RDE 

emission limits (Emission Standards: Europe: Cars and Light Trucks: RDE Testing, 2023) are defined by multiplying the 

respective emission limit by a conformity factor (CF) for a given emission. 

Remote sensing methods, such as snapshot measurements in fixed locations, or chasing vehicles with a mobile measurement 

unit sampling the diluted exhaust aerosol, are used for academic purposes (Karjalainen et al., 2014a; Simonen et al., 2019; 45 

Wang et al., 2010; Ježek et al., 2015b; Herndon et al., 2005; Shorter et al., 2005; Wang et al., 2017; Park et al., 2011; Pirjola 

et al., 2004). These methods have potential for elaborate use and could also be applied in monitoring vehicles fulfilling the 

regulation requirements. 

The chase method has the considerable advantage of subjecting the exhaust aerosol to a real atmospheric dilution. The 

advantage of chase method is that the measured aerosol corresponds to the actual emission of the vehicle and not only a fraction 50 

(e.g., primary emissions only); however, the prevailing ambient conditions can strongly affect the particle formation, which is 

simultaneously an asset but also a drawback. On one side, this is the real particle population that is formed at a given time 

causing the immediate air quality effects, but on the other side, the method is hence not very repeatable between different 

testing conditions with respect to semi-volatile particle number and size. Additionally, the chase method is fast, and the 

individual measurement of vehicle’s emission factor could be carried out in a minute time scales (Olin et al., 2023). 55 

There exist several methods for calculating an emission factor (EF) from chase measurements (Hansen and Rosen, 1990; 

Zavala et al., 2006; Wihersaari et al., 2020; Ježek et al., 2015a). These methods are based on the CO2 produced by the engine 

and on the assumption that all emitted components dilute similarly to CO2. Downhill is problematic since engines do not 

generally inject fuel there because of no need for providing mechanical power (called engine motoring), and hence do not emit 

CO2. However, previous studies (Rönkkö et al., 2014; Karjalainen et al., 2014a, 2016) suggest that engine motoring events can 60 
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emit nanoparticles, originating from the lubricating oil. The chase vehicle observes these elevated concentrations in the plume, 

but it is difficult to assess the EF of the vehicle under measurement since the dilution ratio (DR) calculated with CO2 is not 

available. In addition, most of the current methods have been used for a longer time interval, whereas short time interval EFs 

of accelerating and braking might be more interesting for studying. Also, a specific need to calculate EFs without CO2emissions 

is when studying non-exhaust emissions (e.g., particulate emissions from tires and brakes). In the future, when the fraction of 65 

electric passenger vehicles is increasing, the research interest might shift towards non-exhaust emission. The new methods 

introduced in this study could be useful for estimating non-exhaust emission factors as well. 

In this study, we will compare different calculation methods for EFs of vehicles based on chase measurements: particle number 

concentration (N) to CO2 concentration ratio -based methods (Hansen and Rosen, 1990; Zavala et al., 2006; Olin et al., 2023), 

a method that calculates the raw particle number concentration, Nraw, based on DR (Wihersaari et al., 2020), and two new 70 

methods to be introduced in this paper, based on Near-Wake Dilution and Multivariate Adaptive Regression Splines for DR 

in a remote-sensing-type chase measurement setting. Most of the methods used in this study can also be applied for snapshot-

type measurements where DR needs to be defined.  Our aim is to improve EF calculation, especially for short time intervals 

with variable DR, by achieving better understanding about the variables that affect DR. The new methods are both based on 

the DR-modelling approach: using the DR calculation of the CO2-based methods for the time periods when they work properly. 75 

We then extend the models to the whole measurement period by either using physical method (Near-Wake Dilution) or 

statistical method (Multivariate Adaptive Regression Splines) to estimate the DR for all measurement time points. We then 

compare the results from the new methods to the current methods for longer time intervals and separately for downhill sections. 

We also calculate DR and EF using only data from remote sensing measurements, without additional information on the 

measured vehicle, such as on-board diagnostics (OBD) data (i.e., from the chase measurements). Development of this kind of 80 

methods are crucial if remote sensing measurements are applied on on-road monitoring of vehicle emissions, as suggested by, 

e.g., the European H2020-project CARES (https://cares-project.eu/). 

2 Methods 

2.1 Experiments 

Particle number concentrations and CO2 concentrations in exhaust plumes of six passenger vehicles (three diesel and three 85 

gasoline) were measured with the chase method during wintertime, in February in Siilinjärvi, Finland (Figure 1). The time and 

the location were selected because the main purpose of the measurement campaign was in studying wintertime real-world 

vehicle emissions, which is in the scope of future studies, applying methods introduced in this publication. The measurement 

instruments were installed inside the mobile laboratory of Tampere University (Aerosol and Trace gas Mobile Laboratory, 

ATMo-Lab, Simonen et al. (2019); Rönkkö et al, (2017)). Data from the OBD and GPS from the test vehicles were saved at a 90 
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1 second time resolution (Figure 2). The chase route 1) was 13.8 km long including uphill and downhill driving, stops, 

accelerations and steady drive, also artificial short stops to simulate traffic lights. The route selection was based on bearing 

two major principles in mind. On one hand, there was a fuel station as a starting point with enough space for parking the test 

vehicles overnight, connection to electric grid to be used with electrical preheaters, and spaces were regularly cleared of snow. 

On the other hand, the station was located close to roads ideal for tests: they were in good condition and were maintained well 95 

during winter, and the traffic rates were very low implying that the background exhaust plumes are negligible. The route was 

also well suited for this study, because it included steep and long downhill sections. 

The test protocol included a short period of engine idling at the beginning, driving the route, two predetermined stops and 

finishing the route at the start location. The time stamps of passing vehicles and other possible external emission sources were 

recorded during the drives. 100 

Information about the vehicles, individual drives and outside temperatures are shown in Table 1. During the test period of four 

days, the outside temperature varied between -9 and -28 ◦C. The fleet included three (Euro 5-6) diesel vehicles (two passenger 

cars and one van) and three (Euro 6) gasoline vehicles (passenger cars). The number of measured drives totaled 33; in addition, 

there was a drive for every measurement day for measuring ambient background concentrations along the route. 11 drives 

were dedicated to subfreezing–cold start (cold start in subfreezing temperatures) measurements, 12 to preheated–cold start 105 

measurements (using electric preheaters or fuel-combusting auxiliary heaters), and 10 to hot start measurements (the engine 

had been heated to its normal operating temperature by driving). 
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Figure 1. Driving route consisting of low-traffic small roads in Siilinjärvi, Finland. The colored line indicates an example drive with 110 
the speed profile (color). Start and stop locations were the same position on a parking lot of a local fuel station. Two artificial short 

stops were introduced along the test route to simulate traffic lights. Downhills that are used in the results section are indicated by 

white lines on the side of the route marking. Source: Earthstar Geographics. 
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2.2 Measurement setup 

 115 

Figure 2. Schematic view of the measurement setup used in this study and example photos from the chasing route for illustration of 

the chasing measurements. In addition, other devices were installed but their data were not used in this study. 

The measurement setup, including only the devices of which data are involved in this study, is presented in Figure 2. The 

number concentration of particles larger than 23 nanometers in diameter (N) was measured with an Airmodus model A23 

condensation particle counter (CPC) and the CO2 concentration with a LI-COR LI-840A analyzer. The exhaust sample was 120 

drawn to the instruments through a sampling inlet installed on the front bumper of the vehicle. Before the CPC, the sample 

was diluted with a set of bifurcated flow diluters (DR=158±14). The drives were also recorded with a video camera installed 

on the windshield and the location of the ATMo-Lab was recorded using GPS. OBD data from the chased vehicle were 

collected using OBDLink LX Bluetooth device (OBDLink® LX - Top-Notch Scan Tool Compatible With Motoscan, 2023). 

All the devices were recording data with one second time resolution, which was averaged to the time resolution five second. 125 

Averaging makes the data more robust to small (1-2 sec) time differences between measurements from the vehicle (OBD) and 

variables measured with ATMo-Lab. 

Table 1: Information on the studied vehicles. DPF = diesel particle filter, GPF = gasoline particle filter, MHEV = mild hybrid electric 

vehicle, SCR = selective catalytic reduction 

Car Fuel Filter 
Registration 

year 

Engine 
displacement 

(l) 

Emission 
class 

Odometer 
reading 

(km) 
Number of drives 

Audi A6 Diesel DPF 2008 3.0 Euro 5 236,000 6 
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Seat Alhambra Diesel DPF + SCR 2012 2.0 Euro 5 169,000 6 

VW 
Transporter Diesel DPF + SCR 2019 2.0 Euro 6 36,000 4 

Ford Focus Gasoline  2018 1.0 Euro 6 78,000 5 

Skoda Octavia 
1.0 

Gasoline 
(MHEV) GPF 2020 1.0 Euro 6 1,000 6 

Skoda Octavia 
2.0 Gasoline GPF 2019 2.0 Euro 6 21,000 6 

 130 

2.3 Methods for calculating EF 

The methods we use are mostly modeling DR and observed differences between measured and background concentrations and 

based on those calculating the EF of a vehicle. Used methods (introduced more in detail in the following subsections) for 

calculating EF can be divided into four categories based on whether the OBD data is used in the method and whether the 

method needs some additional (hereafter learning) data from other vehicles to evaluate the effect of some variables (e.g., speed 135 

change) to the emissions. Table 2 shows all the methods used in this study. All methods are introduced in the following 

subsections 2.3.1-2.3.7. Table 3 summarizes the main differences of the methods described in subsections 2.3.1-2.3.7 and 

shows the formulas used to calculate the EF in each of the methods. 

The dataset used in this study was limited to considering only times when the chased vehicle was moving, i.e., its speed was 

positive. Also, the effect of chase distance, i.e., the distance between the chased vehicle and ATMo-Lab, was assumed to be 140 

constant, not affecting the dilution ratio of emission. Based on our estimation, the chasing distance was between 5 and 10 

meters when the chased vehicle was moving. Unfortunately, the GPS data from the chased vehicle and ATMo-Lab was not 

accurate enough, so that the changes in the chase distance could have been estimated from the GPS data.  
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Table 2: Division of the methods for calculating EF of a vehicle. OBD data means the data collected from the chased vehicle (see also 145 
Figure 2) and learning data means the data collected from other drives of the same vehicle and from other vehicles (including data 

from ATMo-Lab and, also from OBD if its data is used). Methods are introduced in more detail in subsections 2.3.1-2.3.7. 

  Uses learning data 

  yes no 

Uses 

OBD 

data 

yes 
MARS-OBD, 

NWD 

N/CO2 integral,  

N/CO2 linear,  

N/CO2 RRPA, 

Nraw 

  

no MARS-chase N/CO2 Traficom 

 

Methods that require data to be fitted before applying into DR estimation or EF calculation were fitted using DR calculated 

from Nraw method as a response variable. Only the data from the times with exhaust mass flow rates (Q) exceeding 0.3 𝑔 𝑠−1 150 

and fuel flow rates exceeding 0.02 𝑔 𝑠−1 were used in forming models, which were then used for the whole data also including 

the times with the flow rates below those limits. 

Other methods of modeling DR (NWD and MARS-methods, described below) are based on the observed linear or non-linear 

dependencies between DR and explanatory variable(s). These methods assume that the factors affecting DR measured in the 

situations where the measured vehicle is not in the engine motoring mode can be extrapolated also to situations with the 155 

motoring mode. Hence, for the downhill sections, the following methods do not calculate the DR based on the measured CO2; 

instead, they use other parameters not based on CO2 (some examples include vehicle speed 𝑣𝑡, exhaust flow rate 𝑄 and the 

vehicle rear shape) to estimate the DR. 

For calculating EF and its uncertainty, bootstrap sampling (Efron, 1979) has been used to estimate the uncertainty in EF 

calculations. A bootstrap sample is a random sample of observations (observation = time point) with replacement, i.e., one 160 

observation can occur multiple times in a bootstrap sample. The analysis, e.g., fitting the model and calculating the EF is 

performed for this bootstrap sample. Multiple bootstrap samples are usually taken, here 100 is the number of samples.  

Bootstrap helps to estimate the whole uncertainty, in this case the uncertainty related to e.g., differences in vehicle driving 

profile, possible uncertainties in time allocation, and uncertainty in model fitting. Bootstrap is useful when estimating complex 

estimators or their uncertainty, without (here) explicitly estimating uncertainties of single sources of uncertainty and covariance 165 

structure of uncertainties. 
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Table 3: Summary of the methods used in this study. Formulas to calculate EF, main differences to other methods, and references 

to the literature describing the method. Methods are introduced in more detail in subsections 2.3.1-2.3.7. 
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Method 
Formula to calculate EF Differences to other methods Reference 

Methods using fraction 

of N and CO2 
   

N/CO2 integral 

(subsection 2.3.1) 
∫ [𝑁𝑡

𝑚𝑒𝑎𝑠
𝑡

− 𝑁𝑏𝑔]𝑑𝑡

∫ [𝐶𝑂2,𝑡
𝑚𝑒𝑎𝑠 − 𝐶𝑂2

𝑏𝑔
]𝑑𝑡

𝑡

∗

𝑎 𝑔
𝑐𝑚3

𝑝𝑝𝑚
∗ 𝑎𝑔𝑓𝑢𝑒𝑙

𝑔𝐶𝑂2 ∗ 𝑚𝑓𝑢𝑒𝑙

𝑠𝑑𝑟𝑖𝑣𝑒

 

𝑚𝑓𝑢𝑒𝑙  is taken from OBD 

measurements of the vehicle. For 

other terms of the formula, see 

subsection 2.3.1. 

Hansen and Rosen 

(1990) 

N/CO2 Traficom (2.3.2) 
∫ [𝑁𝑡

𝑚𝑒𝑎𝑠
𝑡

− 𝑁𝑏𝑔]𝑑𝑡

∫ [𝐶𝑂2,𝑡
𝑚𝑒𝑎𝑠 − 𝐶𝑂2

𝑏𝑔
]𝑑𝑡

𝑡

∗

𝑎 𝑔
𝑐𝑚3

𝑝𝑝𝑚
∗ 𝑎𝑔𝑓𝑢𝑒𝑙

𝑔𝐶𝑂2 ∗ 𝑚𝑓𝑢𝑒𝑙

𝑠𝑑𝑟𝑖𝑣𝑒

 

𝑚𝑓𝑢𝑒𝑙  is taken from Finnish national 

database for vehicles (Traficom), 

otherwise as N/CO2 integral. 

This study 

N/CO2 linear (2.3.3) Δ𝑁

Δ𝐶𝑂2𝑙𝑖𝑛𝑒𝑎𝑟

∗

𝑎 𝑔
𝑐𝑚3

𝑝𝑝𝑚
∗ 𝑎𝑔𝑓𝑢𝑒𝑙

𝑔𝐶𝑂2 ∗ 𝑚𝑓𝑢𝑒𝑙

𝑠𝑑𝑟𝑖𝑣𝑒

 

Ratio of 𝑁 and 𝐶𝑂2 (
Δ𝑁

Δ𝐶𝑂2𝑙𝑖𝑛𝑒𝑎𝑟
) is 

estimated using the linear model to 

the background corrected values of 

𝑁 and 𝐶𝑂2 in one-minute time 

periods. Otherwise as N/CO2 

integral. 

Zavala et al. 

(2006) 

N/CO2 RRPA (2.3.4) Δ𝑁

Δ𝐶𝑂2𝑅𝑅𝑃𝐴

∗

𝑎 𝑔
𝑐𝑚3

𝑝𝑝𝑚
∗ 𝑎𝑔𝑓𝑢𝑒𝑙

𝑔𝐶𝑂2 ∗ 𝑚𝑓𝑢𝑒𝑙

𝑠𝑑𝑟𝑖𝑣𝑒

 

Ratio of 𝑁 and 𝐶𝑂2 (
Δ𝑁

Δ𝐶𝑂2𝑅𝑅𝑃𝐴
) is 

estimated using the robust linear 

model to the measured values of 𝑁 

and 𝐶𝑂2 without background 

correction in one-minute time 

periods. Otherwise as N/CO2 

integral. 

Olin et al. (2023) 

Methods using dilution 

ratio 
   

𝑁𝑟𝑎𝑤 (2.3.5) 
∫ [(𝑁𝑡

𝑚𝑒𝑎𝑠 − 𝑁𝑏𝑔) ∗ 𝐷𝑅𝑁𝑟𝑎𝑤,𝑡 ∗ 𝑄𝑡]𝑑𝑡
𝑡

𝜌𝑒𝑥ℎ ∗ ∫ 𝑣𝑡𝑡
𝑑𝑡

 

Dilution ratio (𝐷𝑅𝑁𝑟𝑎𝑤,𝑡) is 

calculated based on measured 

dilution of CO2. For other terms of 

the formula and details, see 

subsection 2.3.5. 

Wihersaari et al. 

(2020) 
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2.3.1 N/CO2 integral 

The simplest method to calculate EF is based on N/CO2 measured from the diluted exhaust. The method was introduced by 

Hansen and Rosen (1990) and has been widely used thereafter. It is based on the relation of the excess CO2 (Δ𝐶𝑂2 = 𝐶𝑂2,𝑡
𝑚𝑒𝑎𝑠 −

𝐶𝑂2
𝑏𝑔

) and particle concentration (Δ𝑁 = 𝑁𝑡
𝑚𝑒𝑎𝑠 − 𝑁𝑏𝑔). Here the superscripts meas and bg denote measured and background 

concentrations, respectively. Here t denotes that the measured concentrations have been measured specifically at time t, 175 

whereas the background concentrations have been defined as a median of the background measurement measured at the same 

route on the same day. However, the method by Hansen and Rosen, (1990) uses the following integral form (over a longer 

measurement period than, e.g., one second) to diminish possible uncertainties caused by imperfect time synchronizations of 

the devices measuring CO2 and the studied pollutant: 

Near-Wake Dilution 

(NWD, 2.3.6) 

∫ [(𝑁𝑡
𝑚𝑒𝑎𝑠 − 𝑁𝑏𝑔) ∗ 𝐷𝑅𝑁𝑊𝐷,𝑡 ∗ 𝑄𝑡]𝑑𝑡

𝑡

𝜌𝑒𝑥ℎ ∗ ∫ 𝑣𝑡𝑡
𝑑𝑡

 

Dilution ratio 𝐷𝑅𝑁𝑊𝐷,𝑡 is calculated 

based on a linear function of the 

ratio of the vehicle speed 𝑣𝑡 and the 

mass exhaust flow rate 𝑄𝑡. See 

subsection 2.3.6 and Supplement for 

more details. Otherwise as 𝑁𝑟𝑎𝑤. 

This study 

MARS-OBD (2.3.7) 
∫ [(𝑁𝑡

𝑚𝑒𝑎𝑠 − 𝑁𝑏𝑔) ∗ 𝐷𝑅𝑀𝐴𝑅𝑆−𝑂𝐵𝐷,𝑡 ∗ 𝑄𝑡]𝑑𝑡
𝑡

𝜌𝑒𝑥ℎ ∗ ∫ 𝑣𝑡𝑡
𝑑𝑡

 

Dilution ratio  𝐷𝑅𝑀𝐴𝑅𝑆−𝑂𝐵𝐷,𝑡 is 

calculated based on Multivariate 

Adaptive Regression Spline 

(MARS) model for DR. See 

subsections 2.3.7 and 3.2 for more 

details. Otherwise as 𝑁𝑟𝑎𝑤. 

This study 

MARS-chase (2.3.7) 
∫ [(𝑁𝑡

𝑚𝑒𝑎𝑠 − 𝑁𝑏𝑔) ∗ 𝐷𝑅𝑀𝐴𝑅𝑆−𝑐ℎ𝑎𝑠𝑒,𝑡 ∗ 𝑄𝑀𝐴𝑅𝑆−𝑐ℎ𝑎𝑠𝑒,𝑡]𝑑𝑡
𝑡

𝜌𝑒𝑥ℎ ∗ ∫ 𝑣𝑡𝑡
𝑑𝑡

 

Dilution ratio  𝐷𝑅𝑀𝐴𝑅𝑆−𝑐ℎ𝑎𝑠𝑒,𝑡 is 

calculated based on Multivariate 

Adaptive Regression Spline 

(MARS) model for DR. Variables 

available from ATMo-Lab (i.e., no 

OBD data) are used. Also, the 

exhaust flow rate (𝑄𝑀𝐴𝑅𝑆−𝑐ℎ𝑎𝑠𝑒,𝑡) is 

estimated using splines. See 

subsections 2.3.7 and 3.2 for more 

details. Otherwise as 𝑁𝑟𝑎𝑤. 

This study 
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𝐸𝐹Δ𝑁/Δ𝐶𝑂2
=

∫ [𝑁𝑡
𝑚𝑒𝑎𝑠

𝑡
− 𝑁𝑏𝑔]𝑑𝑡

∫ [𝐶𝑂2,𝑡
𝑚𝑒𝑎𝑠 − 𝐶𝑂2

𝑏𝑔
]𝑑𝑡

𝑡

∗

𝑎 𝑔
𝑐𝑚3

𝑝𝑝𝑚
∗ 𝑎𝑔𝑓𝑢𝑒𝑙

𝑔𝐶𝑂2 ∗ 𝑚𝑓𝑢𝑒𝑙

𝑠𝑑𝑟𝑖𝑣𝑒

(1) 180 

where CO2 concentrations are in ppm and particle concentrations (𝑁) in 1 cm-3. 𝑎
𝑔/𝑐𝑚3
𝑝𝑝𝑚

is the conversion factor for CO2 from 

ppm to g cm-3 (106/0.0018 = 5.55*108, where 106 is a number of molecules and 0.0018 is the approximate density of CO2 [g 

cm-3] at 20 °C), 𝑎𝑔𝑓𝑢𝑒𝑙 

𝑔𝐶𝑂2 is the conversion factor for 𝑔𝐶𝑂2
 to 𝑔𝑓𝑢𝑒𝑙  (2392/750 = 3.189 for gasoline and 2640/835 = 3.162 for 

diesel, where the 2392 and 2640 are the approximate masses of CO2 produced [g] per liter of fuel for gasoline and diesel 

respectively (Conversion Guidelines-Greenhouse gas emissions, 2023) and 750 and 835 are the approximate densities [g] of a  185 

fuel [𝑔 𝑙−1) for gasoline and diesel, respectively. Those densities are within the ranges of densities provided by one major fuel 

supplier in Finland (Neste Futura 95E10 Technical Data Sheet, 2023; Neste Futura Diesel -29/-38 Technical Data Sheet, 

2023)). Variable 𝑚𝑓𝑢𝑒𝑙  is the mass of the used fuel (in g, from OBD data) and 𝑠𝑑𝑟𝑖𝑣𝑒  is the length of the drive (in km). In this 

study, EF is calculated over the whole measurement period and EF is expressed in 1 km-1. This method (and all other N/CO2 

method versions) is based on the assumptions that CO2 and the pollutant dilute equally in an exhaust plume and that the amount 190 

of emitted CO2 is directly related to the fuel consumption. Whereas the N/CO2 integral method is robust to imperfect time 

synchronizations and to the engine motoring events (because the integral in the denominator never becomes very small, unlike 

in cases with, e.g., one-second resolution), the method, however, assumes also that EF is constant during the integration time 

period in chase measurements (Olin et al., 2023). 

2.3.2 N/CO2 Traficom 195 

The N/CO2 Traficom method is calculated similarly to N/CO2 integral method, over the whole measurement period, but the 

fuel consumption 𝑚𝑓𝑢𝑒𝑙  is estimated from the national vehicle database (Traficom) instead of using actual consumption from 

OBD. Traficom consumption values are based on the values provided by the manufacturer of the vehicles. The values in the 

database are the average consumptions (in unit of 𝑙/100 𝑘𝑚), and hence the actual consumption at certain time might be over 

or under the consumption value in the database. Using the fuel consumption estimation from the register makes the method 200 

independent from OBD-data, i.e., the method can be calculated directly based on the measurement data from ATMo-Lab. This 

kind of a method, that is not using OBD-data, is suitable, e.g., for real-world emission monitoring approaches for private 

vehicles driving on public roads. We have used constant fuel consumptions reported for combined driving (combining urban 

and extra-urban driving) that are between 4.6 (Ford) and 7.6 (VW) liters of fuel per 100 km.  

2.3.3 N/CO2 linear 205 

The N/CO2 linear method used, e.g., by Zavala et al. (2006) was also tested in this study. The method estimates N/CO2 by 

fitting a line for Δ𝑁 and Δ𝐶𝑂2. The slope of that line is used to replace the first fraction term in Eq. (1) when calculating EF. 
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The used linear model has an assumption that the line passes the origin, i.e., with no emitted CO2, no particles are emitted. 

Therefore, non-exhaust particles are not counted. This method also assumes that EF is constant during the time period used 

for fitting. However, as the drives cannot be assumed to have constant EF due to multiple different sections of driving, the 210 

linear model is fitted separately to one-minute time periods, in which the vehicle can be assumed to have more constant EF 

throughout the period. For the periods when the slope is estimated to be negative, the EF is set to zero. 

2.3.4 N/CO2 RRPA 

The RRPA (Robust Regression Plume Analysis) method presented in (Olin et al., 2023) is based on the N/CO2 linear method 

but without a need to determine the background concentrations of N and CO2 Similarly to N/CO2 linear method, the slope is 215 

used to replace the first fraction term in Eq. (1) when calculating EF. 

Contrary to the N/CO2 linear method, this method uses robust linear model (in this study using rlm-function in R environment 

(R Core Team, 2022)) for fitting the line. We used robust linear regression instead of ordinary least squares approach because 

the data contains varying number of datapoints which can be considered as outliers, in statistical point of view, and those could 

bias the fit for the slope in ordinary least squares estimation (Mikkonen et al., 2019). The robust regression automatically 220 

downweighs the possible outliers by giving less weight to the data points that are not close to the estimated line. Hence, 

momentary disturbances (such as from other pollutant sources near the measurement location) should not disturb the estimation 

of the slope. As for the N/CO2 linear method, the N/CO2 RRPA method assumes constant EF for the fitted period and is also 

fitted to a one-minute time periods. For the periods when the slope is estimated to be negative, the EF is set to zero. 

2.3.5 𝑵𝒓𝒂𝒘 225 

A bit more advanced method (based on the method by Wihersaari et al. (2020)) to calculate DR and EF is using the measured 

and raw concentrations of CO2 and using the exhaust mass flow rate (Q): 

𝐷𝑅𝑁𝑟𝑎𝑤,𝑡 =
𝐶𝑂2,𝑡

𝑟𝑎𝑤 − 𝐶𝑂2
𝑏𝑔

𝐶𝑂2,𝑡
𝑚𝑒𝑎𝑠 − 𝐶𝑂2

𝑏𝑔  (2) 

𝐸𝐹𝑁𝑟𝑎𝑤
=

∫ [(𝑁𝑡
𝑚𝑒𝑎𝑠−𝑁𝑏𝑔)∗𝐷𝑅𝑁𝑟𝑎𝑤,𝑡∗𝑄𝑡]𝑑𝑡𝑡

𝜌𝑒𝑥ℎ∗∫ 𝑣𝑡𝑡 𝑑𝑡
 (3) 

where 𝑁𝑡
𝑚𝑒𝑎𝑠is the measured particle number concentration, 𝑁𝑏𝑔 is the estimated background particle number concentration, 230 

𝐶𝑂2,𝑡
𝑟𝑎𝑤  is the concentration of CO2 in the raw exhaust (calculated from the OBD data), 𝜌𝑒𝑥ℎ is the exhaust density (air density 

at the standard temperature of 20 °C used here), and 𝑣𝑡 is the vehicle speed. We denote the method as Nraw method from here 

onwards. This method can be thought of as the best performing model in a real-world chasing situation with varying EF and 
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DR. However, this method requires well-synchronized data. Five second time resolution was used, as it is not so prone to 

errors caused, e.g., by engine motoring events. 235 

2.3.6 Near-Wake Dilution (NWD) 

In the NWD method, we are building a robust linear model for DR as a linear function of the ratio of the vehicle speed 𝑣𝑡 and 

the mass exhaust flow rate 𝑄 , taking also into account the shape of the vehicle’s rear and the fuel used. The method is based 

on the assumption that the outdoor air passing by the vehicle’s rear while driving dilutes the exhaust plume and that the dilution 

is proportional to the ratio of the mass flows passing the rear and exhausted from the tailpipe (Chang et al., 2012) . The method 240 

minimizes the weighted linear model (iterated reweighted least squares robust regression): 

𝐷𝑅𝑁𝑊𝐷,𝑡 = 𝛾 + 𝜅
𝑣𝑡

𝑄𝑡
 (4) 

where dilution ratio at time t (𝐷𝑅𝑡) used to fit the model is calculated from the OBD chase measurement data as in the 𝑁𝑟𝑎𝑤 

method (Eq. (2)). Parameters 𝛾 and 𝜅 are coefficients fitted for every vehicle measured in this study. More detailed derivation 

of the formula and detailed discussion about the possible variables that are related to the parameters 𝛾 and 𝜅 are presented in 245 

the Supplement. The NWD model is fitted separately for each vehicle, except when the data from the studied vehicle is not 

used to fit a model (Fig. 6). In that case, the rear shape has been used as a categorical variable for the five-vehicle data to fit 

the NWD model. Categorical variables 𝑏1  and 𝑏2  estimate the effect of different rear types on DR: 𝐷𝑅𝑁𝑊𝐷,𝑡 = 𝛾 + 𝑏1 +

(𝜅 + 𝑏2)
𝑣𝑡

𝑄𝑡
. 

As the model is only dependent on the speed and exhaust flow, the model assumes that the distance from the vehicle remains 250 

constant and is independent of the speed (the effect of the distance is incorporated into the kappa and gamma parameters). 

Constant driving distances were tried to maintain during these chase measurements. DR is calculated for all datapoints using 

the modeled dependency (presented later in Fig. 3).  

EFs with the NWD method were then calculated similarly to the 𝑁𝑟𝑎𝑤 method in formula (3), with different method to calculate 

the dilution ratio being the only difference between methods. The NWD method is robust to engine motoring events because 255 

the CO2 concentration is not involved in the equation used to calculate EF (after fitting the kappa and gamma parameters). In 

addition, the method can possibly be used to determine non-exhaust emissions as well.  

2.3.7 Multivariate Adaptive Regression Splines (MARS) 

We used Multivariate Adaptive Regression Splines (MARS: Friedman, 1991; Hastie et al., 2009) to model the dependency of 

DR on certain variables that could affect the dilution of exhaust, I.e. vehicle exhaust flow rate, speed, speed change 260 
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(acceleration), altitude change, and direction of wind.. Besides variables that are fitted with splines, two categorial variables 

describing the rear shape and fuel type used in the vehicle were used. Those categorical variables affect only the level, not the 

shape of the spline (see Fig. 4). 

To avoid overfitting, i.e., that the model fits well to the learning data but is not generalizable to any new dataset, we used 5-

fold cross-validation (Hastie et al., 2009). In 5-fold cross validation, the dataset is divided into five distinct subsets of the same 265 

size. Then four of those subsets are used to train the model (training dataset) and one is used to test the fit of the model to new 

dataset (testing dataset). This is repeated five times, so that each subset is once used as a testing dataset. 

We built two methods based on MARS: one is based on all variables (OBD-data and the data from chase measurement; a 

method called MARS-OBD), and the other one is based on the measured data consisting only variables that are available with 

remote sensing methods (a method called MARS-chase). 270 

EFs from the MARS methods were calculated similarly to the 𝑁𝑟𝑎𝑤 method (formula (3)), with the only difference to 𝑁𝑟𝑎𝑤 in 

how the DR is calculated. As for NWD, DR is calculated for all datapoints using the modeled dependency (presented later in 

Fig. 4). MARS models are also robust for engine motoring events or even for non-exhaust emissions, like the NWD model, 

because the CO2 concentration is not used (after the model construction). In addition, the MARS-chase model can be used in 

real-world emission monitoring approaches. 275 

3 Results and discussion 

3.1 Fitting the NWD model parameters 

Our results indicate that DR can be approximated with linear function of the ratio of 𝑣𝑡 and Q; hence, it was used as one 

method to estimate DR. Figure 3 shows the robust linear regression fits between DR and 
𝑣𝑡

𝑄
.  

According to the results, in addition to 
𝑣𝑡

𝑄
, we suppose that modelled DR is mostly affected by the rear shape of the vehicle 280 

(included in the parameter 𝜅). Generally, the values of 
𝑣𝑡

𝑄
 are higher for the gasoline vehicles compared to the diesel vehicles, 

due to lean burn combustion used in diesel engines. This results also in higher values of DR (determined with Eq.  (2)) for the 

gasoline vehicles. 
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Figure 3. Robust linear regression fits for DR for each vehicle used in NWD method. The color represents the weight of the 285 
observation in the final robust linear fit. The equations of the linear fits are shown in the titles of each subplot. Volumetric exhaust 

flow rate 𝑸𝒗𝒐𝒍 =
𝑸

𝟑.𝟔⋅𝝆𝒇𝒖𝒆𝒍
 has been used in this figure instead of the mass flow rate used elsewhere, because the NWD model is based 

on the volumetric flows. 

3.2 Constructing the MARS models 

Figure 4 shows the behaviour of the splines in the measured data between DR and the predictor variables used in the MARS 290 

models. The shape of the splines is the same for all vehicles, as it is defined from the full dataset, but the level varies due to 

different properties of the vehicles, such as fuel and presumably the rear shapes.  

The variables used in the models shown in Fig. 4 are organized so that the variables in the upper row are for the method using 

also the OBD-data from the chased vehicle (MARS-OBD) and the variables in the lower row are for the method using only 

variables from ATMo-Lab (MARS-chase). With the MARS-OBD method, changes in Q explain most of the changes observed 295 

in DR, and the dependency of Q on DR is as expected from the concept behind the NWD model. In addition to Q, wind 

component calculated abeam of the vehicle was seen to affect the DR, but the effect is very minor. Unlike in the MARS-chase 

method, variables such as speed change and altitude change were not needed (based on their effect on the model fit, measured 
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with R² values) in the MARS-OBD method, which indicates that the changes in Q (and slightly in the lateral wind speed) 

sufficiently explain most of the changes in DR. 300 

For the MARS-chase method, the effect of Q was replaced by using several variables that could explain the power generated 

by an engine – and thus Q. The result seems to be in line with theory, the most evident changes to DR being caused by changes 

in driving speed (e.g., when accelerating) and altitude (e.g., when driving uphill), and the absolute speed of a vehicle (due to 

air drag). Observed dependencies of those variables with DR were described with piecewise linear splines with one or two 

threshold values (knots). The effect of changes in speed and altitude were close to linear. The effect of 𝑣𝑡 was not linear, as 305 

the DR had its minimum after threshold speed slightly higher than 10 m/s.  

Figure 4. Multiple adaptive regression spline fits for logarithm (natural) of DR shown for each variable used in MARS-OBD (upper 

row) and in MARS-chase (lower row). Different colored lines show the regression splines for each vehicle (see also categorical 

variables in the method description section 2.3.7), with some splines (Ford and Skoda1, and Skoda2 and Audi) overlapping with 310 
each other. 
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3.3 Comparison of the EF calculation methods for the whole drive 

When the calculated DR estimates were applied on the EF calculation for the whole drive, it was seen that the results are 

mostly similar with all methods. Figure 5 illustrates how the calculated EF varies with different methods when applied on two 

different vehicles, one with gasoline and one with diesel engine, on two different drives with varying outside temperature. 315 

The results in Figure 5 give confidence on EF calculation with varying information in use, as the methods with different 

background information end up mostly to within an order of magnitude. This is specifically good news for monitoring-type 

measurements, to be performed on-road, having limited information on the monitored vehicle. However, there can still be 

some notable differences between the methods, for example the difference of a factor of 2-3 between the Nraw and other 

methods for Skoda2 –24 °C. The clearest anomalies from the consensus of EF are N/CO2 RRPA for the Skoda2 –26 °C drive 320 

being 25 to 45 % of the EFs given by other methods than Nraw and N/CO2 linear, and Nraw method for both Skoda2 drives 

showing 2 to 4.2 times higher EFs than most of the methods (other than N/CO2 linear and N/CO2 RRPA). For RRPA some of 

the one-minute interval EFs were estimated to be zero, which probably explains the lower EFs calculated for that method. For 

Nraw method, the difference comes from the time points where dilution ratio is estimated to be larger, e.g., in NWD and MARS-

models, i.e., points clearly above modeled lines in Figs 3 and 4. If measured concentration of particles above background 325 

𝑁𝑡
𝑚𝑒𝑎𝑠 − 𝑁𝑏𝑔 is high enough for those points, it results also high EF for that point. 
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Figure 5. Emission factor examples of > 23 nm particles for Seat and Skoda 2, hot starts, except Seat –11 °C that is with the 

subfreezing–cold start, and Skoda –26 °C that is with the preheated–cold start. Results are calculated from 100 bootstrap samples 330 
(see Sect. 2.3 for the description of bootstrap sampling). Whiskers are representing the distribution of EFs in different bootstrap 

samples. 

The methods that use learning data (the MARS methods and the NWD method, see Table 2) were validated with leave-one-

out type cross-validation by omitting one of the vehicles from the model fitting and then by applying the fitted coefficients to 

predict the EFs for the omitted vehicle. The results are shown in Fig. 6, which confirms the findings in Fig. 5, that the 335 

constructed methods can calculate the EFs also for the vehicle omitted from the model construction. For the methods that don’t 

use learning data (all N/CO2 methods and the Nraw method), i.e., data from the other drives to form a model, the results are 

almost the same (bootstrap sampling can change the calculated EFs slightly) as in Fig. 5. For Skoda2, the MARS-chase method 

shows higher EF values than the other methods in Fig. 6. This is probably because the data measured with Audi (being the 

only vehicle having a similar rear shape to Skoda2) has been used in the MARS-chase model to estimate the effect of the rear 340 

shape on the DR (see Sect. 2.3.7 for categorical variables and Fig. 3 for the fits). However, using the data from a diesel vehicle 
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in modelling DR for a gasoline vehicle may not work properly due to different dilution mechanics (as is also observed from 

the different fitting parameters obtained with using the NWD model)) even though the fuel type parameter for Skoda2 is 

different than for Audi. In addition, Audi is the only vehicle in this study having two exhaust pipes on both sides of the vehicle 

rear; therefore, the dilution mechanics may differ notably from the other vehicles. Thus, the rear shape parameter (constant 345 

categorial variable used to estimate the effect of the rear shape on DR) might have increased the estimated DR for Skoda2, and 

hence also the estimated EF. One solution for this issue would be to increase the sample size of the vehicles, probably leading 

to a better estimate for the rear shape of Skoda2 in the MARS-chase method. For Seat, the MARS-chase method gives similar 

results to the other methods; however, the NWD method gives slightly higher EFs than the other methods. This is due to 

imperfect modeling of dilution ratio of Seat based on the model from other five vehicles. This indicates that EFs could be 350 

calculated in-situ based on the measurements from ATMo-Lab and OBD, if the OBD data is required in the method. The 

increase in the number of vehicles in the learning data would probably increase the accuracy of the methods that require 

learning data, including the MARS-chase method as well. 
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Figure 6. Emission factors for the drives of which data are omitted (details in Sect. 3.3) from the model construction (MARS-chase, 355 
NWD, MARS-OBD) for Seat and Skoda2, hot starts, except Seat –11 °C that is with the subfreezing–cold start, and Skoda –26 °C 

that is with the preheated–cold start. Results are calculated from 100 bootstrap samples (see Sect. 2.3 for the description of bootstrap 

sampling). Whiskers are representing the distribution of EFs in different bootstrap samples. 

3.4 Comparison of the EF calculation methods for the downhill section 

When examining how the different methods perform in different driving conditions, such as the change in the altitude, Fig. 7 360 

shows that, overall, the methods agree quite well for Seat, but there are a lot of discrepancies for Skoda2. It is obvious why the 

N/CO2 Traficom method overestimates the EFs during the downhill section: because the used fuel consumption refers to the 

combined driving fuel consumption data, i.e., to a much higher consumption than really occurs in downhills. In addition, the 

Nraw method gives relatively high estimates for EFs, especially for Skoda2. This is due to relatively low CO2 values observed 

at the times with high particle emissions, resulting in higher DRs with the Nraw method compared to the other methods. N/CO2 365 

linear shows clearly lower EF values for Skoda2, similarly to, but less pronounced, in Figs. 5 and 6. For RRPA method, many 

of the EF estimates for bootstrap samples (89 out of 100 for Skoda2, -24 °C and 39 for Skoda2, -26 °C) are zero, i.e. for every 

minute interval (2 or 3 intervals in each bootstrap sample), the estimated linear dependency between N and CO2 concentrations 
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is negative, and hence the EF is estimated to be zero. The assumption of constant EF is not valid in downhill sections, and the 

concentrations of N and CO2, and exhaust flow rate are mostly lower than average of the whole round, whereas the DR, that 370 

is used in many other methods, is mostly higher than average of the whole round. We believe that those are the reasons why 

RRPA is giving EFs so different than other methods for downhill sections. 

Other methods (MARS-chase, N/CO2 integral, NWD, and MARS-OBD) give similar values for EF. This is kind of expected 

as the methods are fitted using data from the full drives (as in the case in Figs. 5 and 7). Therefore, the N/CO2 is estimated 

mostly from the data with above-zero fuel consumption; hence, the number of particles emitted per extra CO2 emitted should 375 

be estimated well. The other methods are also based on data with above-zero fuel consumption; thus, the dilution ratio for the 

downhills can also be estimated. 

 

Figure 7. Emission factors of > 23 nm particles for downhill sections and for Seat and Skoda 2, hot starts, except Seat –11 °C that is 

with the subfreezing–cold start, and Skoda –26 °C that is with the preheated–cold start. Results are calculated from 100 bootstrap 380 
samples (see Sect. 2.3 for the description of bootstrap sampling). For Skoda2, some EFs (89 for Skoda2, -24 °C and 39 for Skoda2, -

26 °C) are zero. Only EFs above zero are shown in this figure. 
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4 Conclusions 

There are methods to define DRs and EFs that do require OBD data from the vehicle under tests and methods that do not 

require. We conclude that most of the N/CO2-methods are not suitable for transient driving, where EF is constantly changing 385 

during the drive, which is indicated by results that differ from the ones obtained with the other methods.  

For those time points where the measured CO2 is close to its background value, the new methods (the NWD and the MARS 

methods) work better than the old ones. Among these, the NWD method is physically more realistic and hence easier to 

interpret. We believe both the NWD and the MARS method introduced are extendable also to non-exhaust emissions For 

NWD, the method is based on the estimated slope κ of the vehicle. For example, for tire emissions, if the emission from the 390 

tires is 𝐶𝑟𝑎𝑤 and mass exhaust flow rate of the emission is 𝑄, then 𝐸𝐹 = 𝐶𝑟𝑎𝑤 ∗ 𝑄. On the other hand, it was assumed that 

𝐷𝑅 = 𝜅 ∗ 𝑣/𝑄. Then 𝐶𝑟𝑎𝑤 = 𝐶𝑚𝑒𝑎𝑠 ∗ 𝐷𝑅 = 𝐶𝑚𝑒𝑎𝑠 ∗ 𝜅 ∗ 𝑣/𝑄. For EF, we get that 𝐸𝐹 = 𝐶𝑟𝑎𝑤 ∗ 𝑄 = 𝐶𝑚𝑒𝑎𝑠 ∗ 𝜅 ∗ 𝑣. Hence, an 

explicit value of mass exhaust flow rate 𝑄 is not needed to calculate EF of non-exhaust emission. The 𝜅 value can be estimated 

from the other vehicle with similar estimated dilution of emissions, or in case of hybrid vehicle, the κ can be determined during 

the time when the combustion engine is running. For MARS the basic idea is that from the test dataset of measurements, the 395 

dilution ratio of emissions could be estimated in different driving situations. Then in the new dataset, the DR is estimated based 

on splines estimated from the test dataset.  

In both methods, the emission factor of the non-exhaust emission can be determined during the times when the vehicle is 

running with electric engine only. For the non-exhaust emissions, some correcting coefficient for the dilution ratio might be 

needed. Both methods would require some prescribed database to characterize the effect of vehicle’s shape on DR. The number 400 

of required vehicles for the database can be from one (if the interest is only emissions of a specific vehicle) to some hundreds 

of vehicles (monitoring of emissions from random vehicles from the fleet).  

The MARS methods are based on the dependencies of the measured variables on DR from the Nraw method. It fixes the 

problems of the Nraw method at the time points where DR is estimated to be very high with the Nraw method. On the other hand, 

the MARS methods do not have as clear physical interpretation as the NWD method. The MARS methods are; however, very 405 

adaptive methods and DR could be modeled using variables other than the ones used in this paper, which might increase the 

physical interpretability of the methods. 

If the MARS-methods were used with other variables, for their generalizability, it would be beneficial to use such variables 

that are generally measured in the chase measurements. Positive sides of the MARS methods also include that in the MARS-

chase method, no variables measured directly from the vehicle diagnostics are not needed. This enables the observation in the 410 

middle of traffic, also in driving situations where EF and DR cannot be assumed constant. 
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The weakness of these methods is that the time points with the vehicle speed of zero, have been omitted in this study. This 

limits the usability of the method in e.g., urban conditions where the vehicle is stationary a significant part of the time. In this 

study we wanted to focus especially on times when the vehicle is moving, including downhills, and the fuel flow rate is zero 

or close to zero. The times when the vehicle is stationary could be added to the methods (MARS and NWD) by separately 415 

considering the speeds of zero. In the first place, it could be implemented by using e.g., the Nraw-method for those times. 

Vehicle chase studies in the future are not only limited to determination of the exhaust originated species, since the NWD 

method could be used to define the non-exhaust particle emission originating, e.g., from the brakes and tires of the vehicle 

under the test. In addition to being an important tool in emission research especially in real-world emission factor determination 

including the semi-volatile particles, the chase method has potential to be a monitoring tool for vehicle fleets in official 420 

purposes: high emitting vehicles could be identified while driving with simultaneous particle and CO2 sensor signals and 

processed for further detailed measurements according to e.g., the new PTI protocol where particle number concentrations are 

measured on low idle. 
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