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Response to Reviewers:

NOTE: Reviewers comments are shown in blue text. Our responses are shown in black text.

General Response:

We sincerely appreciate the thoughtful critique and suggestions provided by the 3 reviewers. Based on

their feedback, we have made substantial structural and thematic changes to the manuscript in order to

provide a more focused presentation of our results, their implications, and the strengths and weaknesses

of our proposed approach for detecting systematic measurement bias in mobile monitors using

“in-motion” mobile to stationary collocation. Instead of an extensive line by line accounting of changes,

we provide the following high level summary of the changes made with more specifics provided in the

direct responses to reviewers individual comments below.

● Title has been changed to: Mobile air quality monitoring and comparison to fixed monitoring

sites for instrument performance assessment

● Abstract and Conclusions updated to reflect updated content in the results and discussion

sections

● Introduction has been rewritten to be more focused and aligned with the following objectives of

the paper:

○ Evaluate a scalable approach for identifying systematic measurement bias in mobile

monitors

○ Explore the operational and performance trade-offs for using an in-motion mobile to

stationary comparison in place if parked collocations

○ Quantify the magnitude of mobile measurement drift that can be quantified at different

temporal aggregations

○ Explore what the data says about spatial heterogeneity (or the lack thereof) for the

different pollutants considered and how this impacts these results

● Section 3 (Parked Collocations in Denver): We have de-emphasized the OLS linear regression

results, focusing instead on ΔX as a measure of bias in Table 1

● Section 4 (Mobile Collocations in Denver):

○ We have added a discussion of how we are interpreting ΔX and r2 and how these metrics

relate to random spatial and temporal variability, persistent spatial variability, and

systematic measurement bias.

○ We have added Figure 3 showing how ΔX and r2 vary as a function of road type and

distance from the site for each pollutant. The equivalent metrics from the parked

collocations are included on these figures at distance = 0 in order to support the

discussion of the comparison between parked and mobile collocations.

○ We have added Figure 4, which is analogous to Figure 3, but shows the impact of

aggregating the 1 minute observations to 1 hour

● Section 5 (Mobile Collocations in CA):



○ We have added Figure 7, which is analogous to Figure 3, but for the CA data set (with no

parked collocations included)

● Section 6 (New): Operationalization of mobile vs fixed site comparisons for ongoing instrument

assessment

○ Discusses a framework for how operational decisions could be made for efficiently

incorporating mobile vs fixed site comparisons into drive planning to simultaneously

meet mobile monitoring objectives

○ Discusses the quantification of what temporal aggregation is required and what

magnitude of drift (i.e. changes in systematic measurement bias over time) could be

detected for a operationally feasible and scalable collection scenario

○ Discusses the impact of using a minimum data completeness threshold for comparison

of 1 Hz mobile data with hourly-averaged fixed site measurements

○ Provides a case study of two NO2 sensors deployed in a mobile monitoring fleet and

how systematic bias detection might work in practice

● Section 7 (New): Spatial Heterogeneity and Implications for Applicability to Additional Pollutants

○ Discusses what the results in Figures 3 and 7 imply for spatial variability of the pollutants

considered in this study

○ Discusses the implications for using mobile collocations to identify systematic

measurement bias for other pollutants of interest to the mobile monitoring community

based on their expected degree of spatial heterogeneity

These substantial changes were prompted in large part by some common themes touched upon by all 3

reviewers. They each pointed out the relationship between pollutants having a high degree of spatial

homogeneity in the atmosphere and the pollutants that have generally better correlations between

mobile and stationary measurements. All 3 reviewers then go on to use this as a criticism of the study,

suggesting that the high degree of correlation between mobile and stationary for O3, for example,

suggests that hyperlocal mobile monitoring of this pollutant is not worthwhile. They also suggest that

the poor correlation for pollutants, such as NO, means that the method for detecting systematic bias is

not useful for the pollutants where mobile monitoring provides value. We realize that there are some

shortcoming in our discussion of these concepts in the manuscript, and in our revised manuscript we

have added a more in depth discussion of how spatial heterogeneity impacts the analysis and what the

implications of our analysis are for spatial heterogeneity of the measured pollutants. The following is a

direct response to this criticism from the reviewers and much of the language used here has been

included throughout the text, as well as in a new section discussing the implications of our analysis for

understanding spatial heterogeneity and the applicability for additional pollutants.

It is true that this study, in many ways, is an analysis of spatial heterogeneity of these 3 pollutants (NO2,

NO, and O3) and how spatially representative a typical stationary measurement of these pollutants is.

From this analysis, we come to what is likely not a very surprising conclusion that O3, being a secondary

pollutant produced and removed via relatively slow photochemical processes is more spatially

homogeneous, while NO, which is directly emitted and ultimately removed via relatively fast

photochemical processes, is more heterogeneous. NO2, on the other hand, is in the middle of this

spectrum, being somewhat more heterogeneous than O3 and less heterogeneous than NO, which is

consistent with direct emissions, fast production (being the product of fast NO removal), and a relatively

long lifetime to chemical removal.



Despite the important differences in spatial heterogeneity between these 3 pollutants, it is simply not

accurate to use our results as an argument to suggest that there is little value in measuring O3 or NO2 on

a mobile platform. To the contrary, our analysis does, in fact, show that all three pollutants have

measurable and quantifiable spatial heterogeneity compared to the stationary site. This is particularly

true when highway and major roads are included in the comparison, even for O3, which, of course, is

fully expected due to the fast titration of O3 by NO. Figures 3 and 7 in the revised manuscript, for

example, clearly show observable differences in the mobile measurements compared to stationary both

as a function of distance from the site and as a function of road type. Our analysis intentionally removes

highways specifically in order to reduce the spatial heterogeneity in the data set that results from

increased density of direct emissions sources on highways, but there are likely some really interesting

studies that one could undertake looking more closely at the interplay between the hyperlocal spatial

patterns of these 3 closely related pollutants and the implications for effective emissions controls at

hyperlocal scales. However, that is not the focus of this paper, nor is it our focus to justify such studies.

Instead, our primary aim is to quantify the amount of collocated data required over time to be able to

compare the central tendency of the mobile and stationary monitor measurements in order to produce a

reliable method for detecting differences and, further, to quantify the minimum differences in central

tendency that can be reliability attributed to measurement bias and not natural spatial variability in the

pollutants.

Additionally, we believe it is not an appropriate characterization to suggest that this method for

detecting mobile measurement bias only works well for pollutants that, in the reviewers’ minds, are

more spatially homogeneous and therefore have less value in a mobile setting. While we acknowledge

the reviewers’ comments that the method works less well for pollutants that are more spatially

heterogeneous, we would like to counter the argument that it does not work at all for these pollutants

and thus has limited value. Taking NO, for example, if we were to attempt to derive a calibration

correction for NO using a linear regression, we agree that it would not work well and acknowledge that

some of our inclusion of regression statistics in the manuscript led to some confusion on this point. To

clarify, it is not our intent to suggest using a linear model of hourly mobile and stationary measurements,

in particular for NO, is a productive method to accurately identify or correct bias.

Rather, our analysis shows that by collecting enough mobile collocation data for comparison, we can

reduce random differences due to the combination of random (gaussian) measurement error and spatial

variability in order to determine the central tendency of those differences to within some uncertainty

bounds. There is an important conceptual framework around spatial variability that is key for

understanding why it is possible to use the aggregated mobile-to-stationary differences to measure

systematic measurement bias even in cases like NO where the linear regression of hourly measurements

is so poor. The time scale for spatial variability is critical here. For any given hourly snapshot, the

measured mobile value may not be a good predictor of the stationary concentration for that same hour,

as our analysis suggests for NO. However, when aggregated over a longer period of time, the mobile vs

stationary differences are likely to be much smaller as random spatial variability is averaged out as the

vehicle samples more of the existing variability in atmospheric concentrations and concentrations in the

region.

The entire field of hyperlocal air quality monitoring is predicated on the fundamental principle that

repeat samples or passes collected in the same location over time will result in an aggregated value that



will approach and converge upon a meaningful central tendency for that location. The reason why it is

important to collect repeat samples is that temporal variability is typically much larger than spatial

variability, but if enough samples are collected, the central tendency can be accurately observed for each

location and the true spatial variability across a neighborhood, city, or region can be discerned. There is

a direct analogy between this concept and the method we are describing in this manuscript.

Towards this end, we present what we think is a very useful finding, that, even for NO, the uncertainty in

that central tendency of mobile to stationary differences decreases with an increasing number of

comparison data points aggregated and converges on a relatively constant value after about 40 distinct

hours of comparisons. The important quantitative result is that with a 40 hour running median window,

we can attribute differences greater than ±8 ppb NO between mobile and stationary to measurement

bias with high confidence.

We do not consider other pollutants such as BC or UFP in this study, which, as reviewer 2 suggests

typically have a higher degree of spatial heterogeneity similar to NO; however, we presume that a similar

relationship would exist between ΔX and the median window size as that shown for NO, NO2, and O3 in

Figure 8 (in the revised manuscript). The differences would most likely manifest in the optimal window

size and the width between upper and lower percentile values at which the curves converge. If one was

interested in applying this method to other pollutants, we have provided a blueprint for doing so, and we

believe that it may be feasible for many pollutants depending on the magnitude of expected sensor drift,

the magnitude of temporal and spatial variability of that pollutant in a given study area, and the specific

monitoring objectives.



Reviewer 1 Comments and Responses

In their manuscript “Mobile Air Quality Monitoring and Comparison to Fixed Monitoring Sites for Quality

Assurance”, Whitehill and coauthors present comparison measurements of ozone, NO, NO2, and Ox (O3

+ NO2), measured on-board mobile platforms with those measured in stationary air quality network

stations. The mobile platform measurements were performed both, during parking near the network

stations and during mobile measurements in the vicinity of the network stations.

Linear regression analysis of the data from the mobile and the stationary platforms showed good

agreement, albeit with small systematic negative biases for O3 and NO2, and large coefficients of

determination for ozone, NO2 and Ox for both data sets from both platforms. NO data, however, did

show much poorer agreement and correlation, compared to the other variables.

Generally, agreement between the mobile platform data and the network station data was better when

the mobile platform data were collected closer to the network station. Nevertheless, for the above

mentioned variables reasonable agreement between the data was found for distances up to 10 km from

the network station.

These results were used to develop a method to quality assure mobile measurement data from

long-term field measurements by using data acquired within a certain distance to an air quality network

station and using median values over 40 hours of data.

The manuscript is well structured and clearly written. The results show that for some pollutants,

comparison of mobile data with data from an air quality network station in the vicinity might be used to

determine calibration drifts or malfunctions of mobile instruments under certain conditions. For this

purpose, the manuscript will be useful for applications where mobile measurements were conducted

over extended times within a certain area, which also contains a fixed monitoring site. However, the

poor comparison results for NO, which is a pollutant, which is dominated by local sources, shows that

such a quality assurance approach can only be applied for pollutants which have a very homogeneous

spatial distribution over an area of several km extension. Strong spatial variability of pollutant

concentrations will make such an approach impossible. This limitation will likely not only apply for NO

(which was measured in the study), but also for particle-related variables like BC or particle number

concentration, which also show a large spatial inhomogeneity.

It would be desirable, if the authors would more critically assess their approach with respect to such

limitations also in the general sections of their manuscript like the abstract and the conclusions section.

This critical assessment should also include the fact that regionally homogeneous distribution of

pollutants – which is necessary for the suggested in-field quality assurance method – also likely makes it

less necessary to map out pollutant distribution with a narrow-gridded driving pattern, which takes a lot

of effort to perform. The balance between mapping out pollutants with sufficient spatial resolution and

having the possibility of using “remote” stationary measurements for quality assurance – potentially by

applying sufficient temporal averaging – should be discussed.

See our discussion in our “General Response” above. Significant modifications were made to the

manuscript to address these issues, including additional discussion of other pollutants.

I recommend publication in AMT after these and several other minor issues have been addressed, as

detailed below.



Detailed comments:

Section 2 – Overview of Methods:

According to previous publications and the Aclima website, also black carbon and particle number

concentration was measured on Aclima vehicles. It is not clear, whether this was also the case during the

measurements used for this study. Since especially these particle-related variables probably have a very

large spatial (and temporal) variability, it would be very relevant to include such data in this assessment

of comparability of mobile and stationary measurements.

Added the following text to Section 2 to address this:

Additional measurements, including black carbon (BC), size-fractionated particle number counts (PN), and other

species were also measured during these campaigns but are not discussed in this manuscript. For this manuscript,

we focus on measurements that had equivalent mobile and fixed reference site measurements for both studies. A

critical part of this work is our comparison of parked and mobile collocations during the 2014 Denver study, for

which we had one-minute averaged reference site data for O3, NO2, and NO but not the other measured species.

Section 3.1 – Mobile platforms parked at reference site - methods:

How large was the distance between the mobile measurement platform and the stationary

measurement setup inlets? Which were the altitudes above ground level for both inlets? Further below

(caption of Figure 2) it is stated that the distance was between 80 and 145 m and between 10 and 85 m

for the two sites. Why did the distances vary so much? For both sites, the largest distances of the parking

locations to the measurement sites are larger than the distance to the closest roads. Why was the

vehicle not parked directly at the site for comparison? How large is the influence of the distance on the

comparability of the results?

We do not have information on the precise altitudes above ground level for the stationary monitors. The

mobile platform sampled from a few inches above the top of the front windshield (so ~1-2 m a.g.l.).

Given the large horizontal distances between stationary and the parked locations, the differences in

altitude are very likely insignificant. We have added the following text to Section 3.1 to explain why the

car-to-site distances were so large:

The drivers were instructed to park as close as possible to the site but were required to park in an available public

parking space on a public street. These restrictions limited how close each car could get to the reference site for

each collocation and resulted in individual parked collocation locations ranging in distance from the regulatory

stations, as shown in Figure 1.

Section 3.2 – Mobile platforms parked at reference site - Results and Discussion; Line 188-193:

Can the typical differences between the car measurements and the fixed site measurements be

explained by the sampling situation? Are these differences arbitrary differences or can they be explained

by the sampling environment (e.g. traffic), meteorological conditions (e.g. wind direction) or other

external influences? Do these differences and the variability of these differences (i.e. the r2 values)

between the car and fixed site measurements reflect the spatial inhomogeneity of the respective

pollutant concentrations? How are they related? How do they depend on the distance between both

sampling locations? As a consequence, can (mobile) measurements of spatial inhomogeneity of

pollutants be used to estimate how well such a measurement comparison (or the quality assurance

approach presented further below) will work for a certain pollutant?



We added significant discussion to the revised manuscript about the relationship between r2 and the

spatial heterogeneity of different pollutants. See Sections 4.2 and 7 of the revised manuscript.

Section 4.1 – Mobile platforms driving around a fixed reference site in Denver – Methods:

Line 198: Impact by emission plumes from mobile sources is not only a problem for parked vehicles, but

much more for driving vehicles (i.e. mobile measurements), which are often surrounded by other

vehicles, driving on the same road.

It is our view (supported by our previous publication, Whitehill et al. 2020) that the impact of emission

plumes is less for mobile than stationary comparisons unless ideal (off-road) conditions are used for the

stationary comparisons. We added the following text to Section 3.2 to address this:

Although it is possible to impose strict collocation criteria for parked collocations that would limit the influence of
local emissions, the operational constraints during large-scale mobile monitoring campaigns often necessitate the use
of publicly-accessible sites for frequent collocations. Since most scalable parked collocation solutions are likely to
be affected by traffic emissions, expanding to allow the use of additional data while driving in the vicinity of the
fixed reference station should be explored as a viable alternative. Mobile collocations have the added advantages
that spatial biases are averaged out by the motion of the mobile platform through space, effectively allowing each
mobile datapoint to sample a larger (and, by extension, more representative) amount of air in the same sampling
duration (e.g., Whitehill et al., 2020)

Line 212: Can “lower traffic” be somehow quantified? An “empty” highway affects the measurements

probably less than a congestion in front of a traffic light or at an intersection on a residential road.

In this manuscript, we used OSM road type as a general proxy for traffic. In the revised manuscript, we

added text to Section 4.1 to state that explicitly:

Based on our results from Section 3, we believe that the measurements made on Residential roads will generally

have lower traffic, and thus stronger agreement with measurements at most fixed reference sites. While traveling

on high traffic roads (such as highways), the cars are more likely to be impacted by direct emission plumes. In

effect, we are assuming that the OSM road classifications is a general proxy for on-road traffic volume.

Table 2: This is rather detailed information which could be shifted into the supplement.

This table was moved to the supplement as suggested.

Figure 3: In this figure correlations between 1-min averaged ozone concentrations measured at a fixed

site and during mobile measurements at distances up to 10 km are shown. For distances larger than may

be 100 m, it is clear that different air parcels are compared in every data point. Therefore, these

correlation plots are not a comparison of the performance of the measurement instruments in the car

and on the fixed site, but an investigation of spatial homogeneity of the ozone concentrations. Since

ozone is rather homogeneously distributed, such a comparison can be used for quality assurance of the

instrument (at the same time it is questionable, why in such a case small-meshed mobile measurements

should be made). For other pollutants like NO (but likely also BC or PNC), the correlations are (or would

likely be) much weaker and consequently the quality assurance approach would not work. All this should

be treated and critically discussed in such a paper which focuses on the possibility to use such

measurements as quality assurance approach (not only in a short sentence, which explains why NO

shows much weaker correlations – line 262/263).



In the context of this work, we consider correlations (r2) to be more of an indicator of random

spatio-temporaltemporal and spatial heterogeneity of pollutants than a measure of real instrument /

measurement bias. See our general response for more detail. We also have added the following in the

revised manuscript (in Section 4.2):

 In general, the mean and median bias values can reflect both measurement bias as well as persistent spatial

differences. The r2 values generally reflect the random variability between the mobile and stationary measurements

that results from a combination of measurement precision as well as true spatial variability. Both the bias values

and the r2 values for the in-motion observations reflect additional sources of spatial variability that need to be

considered as compared to the parked collocations. This is due to the wider range of distances (up to 5 km), varying

road types and associated traffic patterns, and potentially different spatial distributions of non-mobile sources in

the wider areas covered. As discussed in Section 3, r2 values vary depending on the pollutant measured, and can be

quite low even for parked collocations. As a result, we conclude that r2 would not be a good indicator of instrument

performance (i.e., precision error) and that using a parametric linear model to attribute gain and offset instrument

biases separately is not possible, particularly for NO and NO2. Therefore, the inclusion of r2 in this section is

primarily as context for understanding random spatial variability in the comparisons.

In addition, I think all these correlation plots could go into the supplement and rather a plot that shows

r2 (and slope in another panel) versus distance for the various road types should be shown here. The

same is true for Figure 4.

In the revised manuscript, we have added new figures (Figures 3, 4, and 7) that show r2 as a function of

distance for various road types. We move all figures showing slopes and intercepts to the supplement

since our focus is on central tendency metrics not least squares regression statistics.

Line 268-270: I agree that it is important to exclude local emission plumes from the averages. I wonder

why the highly time-resolved data were not used to exclude such plumes before averaging, like it was

shown in this journal earlier for mobile measurements (e.g. Drewnick et al., AMT 2012).

The use of medians in our temporal aggregation essentially achieves the same effect as other more

sophisticated methods for discriminating between background and local emissions plumes (see, e.g.,

Brantley et al. 2014). While there could be some value in exploring some of these additional methods in

future refinements of the approach, it is beyond the scope of this study.

Line 372-374: To me it seems rather doubtful that a few seconds of data can reasonably represent a

one-hour average. How would the comparison (mobile/stationary) change or improve, if a minimum

data coverage would be introduced?

Added a discussion in Section 6.1 of the impact of using a “minimum data threshold” on the comparison.

Figure 8 in the revised manuscript shows the difference in the range of running median hourly ΔX values

as a function of minimum data threshold for three values (no threshold, 5 minutes, and 10 minutes).

Section 5.3 – Using driving data for ongoing performance evaluation:

If I understand this performance evaluation approach correctly, it assumes a constant drift of the

calibration of the mobile instruments over longer time intervals or a malfunction which causes a change

in the calibration or the response of these instruments, in order to be able to detect the bias. What

about temperature-related drifts in instrument calibrations, which would possibly occur repeatedly over

the course of a day? Would such biases be detected by this approach?



For the approach described, the type of bias that is most readily detectable would be long term drift

over the time it takes to compile the 40 collocation events required for the running median statistic. It

could be possible to detect diurnal changes in bias (i.e. from temperature related effects) if enough

collocation events could be compiled over time across enough different hours of the day. There may,

however, be some additional complexity with this approach as there could be cyclical systematic spatial

differences across diurnal timescales that would need to be well characterized. Long term measurement

drift in a single direction would be a much more distinctive pattern compared to any long term changes

in systematic spatial differences. While looking at diurnal, day of week, or seasonal patterns would be an

interesting analysis, it is beyond the scope of this study.

Figure 8 – caption: shouldn’t it be “running median” instead of “running mean”?

Corrected figure caption in the revised manuscript (Figure 9).

Line 450-455: How do you know that these DeltaX-values actually reflect changes in the calibrations of

the mobile instruments and consequently could be used to correct for those? Couldn’t there be other

reasons for these differences, like local sources or an issue with the stationary instruments?

New text in Section 4.2 (and elsewhere) discusses how the ΔX values are impacted by both persistent

spatial variability as well as measurement bias. We also agree and acknowledge that measurement bias

in the case of two sufficiently calibrated instruments primarily reflects inter-lab differences. We note this

now in Section 4.2, referring to the “measurement bias between mobile and stationary monitors”, as

well as Section 5.2, where we discuss possible differences in inter-lab comparability between the Denver

and CA data sets.



Reviewer 2 Comments and Responses

This review is for the above manuscript submitted for publication in Atmospheric Measurement

Techniques. The manuscript partially develops and proposes implementation of a new quality assurance

procedure to evaluate changes in instrument performance in mobile monitoring of air quality. To do that,

the authors use high-temporal resolution (O ~ 1s) mobile-monitoring data collected using

regulatory-graded instruments from two campaigns conducted in different regions for very different

lengths of time for three pollutants, O3, NO2, and NO. The authors then compare stationary referencing

of this data during collocations with the regulatory monitor to the referencing of “vehicle-inmotion”

concentrations with regulatory monitoring data (based on distance and road type from the regulatory

monitor) for one site, and find similar performance evaluations for a regionally distributed pollutant O3

(r2 > 0.9), moderate performance for NO2 (r2 > 0.5), and poor performance for a primary pollutant, NO

(r2 < 0.2) in their new approach. For the second site, the authors do not conduct stationary referencing

and only perform the latter “vehicle-in-motion” referencing to the regulatory monitor to estimate

optimal temporal “running windows” to identify instrument issues. They calculate that for a 3 km spatial

window, a temporal running window of 40 hours for data would allow detection of a systematic

measurement drift or sudden instrument or sensor malfunction over the time scale of 7-9 days. While

the authors motivate this work to identify and address systematic measurement drift or malfunction, the

same is are not demonstrated in their results nor do they show the implementation of this method on

any dataset. Additionally, in its current format, the manuscript uses linear models even when they do not

seem applicable, especially for NO and NO2. Finally, the deficient analysis of high concentration plumes

further limits the usefulness of the proposed method. I recommend that the authors significantly revise

and resubmit this manuscript for further consideration.

We revised the manuscript to de-emphasize the linear models and further reinforce that linear

regressions are a poor choice for performing these comparisons. In addition, we clarify in Section 4.2

that we consider r2 to be an indicator of random spatial heterogeneity rather than “performance” and

prefer alternative methods for assessing performance.

1. Deficient motivation and lacking significant findings: The authors begin by motivating this work as to

“provide an important tool for ongoing quality assurance during mobile measurement campaigns” [Line

51]. They believe that “through ongoing comparisons of fixed reference site and mobile measurements,

it may be possible to identify instrument drift over time or changes in instrument performance that

could indicate a malfunction” [Lines 47-49]. The other motivation the authors suggest is that ongoing

“mobile-versus-fixed-site comparisons are more scalable than frequent site-by-side parked collocations”,

“which is particularly important during sustained, multi-vehicle (and fleet-based) mobile monitoring

campaigns” [Lines 50, 57, 58]. However, in their findings, the authors conclude and I agree that this

method “is not an absolute method for calibration or instrument verification, as a direct collocated

comparison with reference monitors is” [Line 458]. In the two campaigns the authors conducted, they

performed daily checks with zero and span gases and in one campaign, conducted direct collocation

comparisons. These standard approaches provide lab-grade confidence in the measurements including

with regards to instrument drift and malfunction and no replacement for them has been identified in this

work. While authors do find that regional pollutants are correlated strongly in “mobile-versus-fixed-site

comparisons”, these pollutants are expected to exhibit regional homogeneity and this result is not a

significant contribution of this work. Frequently, measurements dominated by secondary pollutants are

referenced to nearest (but farlocated) reference monitors, both in stationary and mobile monitoring.



What the authors in fact demonstrate is the weakness of the “mobile-versus-fixed-site comparisons” for

pollutants with high spatial variability such as NO. While 15-16 stationary collocations only 20 mins each

conducted over 2-3 weeks in the Denver campaign to calibrate against regulatory monitors yield mean r2

of 0.4, this comparison performance drops precipitously to r2 <= 0.2 in hourly averaged

“mobileversus-fixed-site comparisons” (Table 3). This is not surprising, since “spatial coverage from

mobile monitoring reveals patterns missed by the fixed-site network”, especially for primary pollutants

(Chambliss et al., 2020).

Our opinion is that it is an inaccurate characterization to say that there is little value in monitoring O3 or

NO2 on a mobile platform. There is significant spatial heterogeneity at fine scales in all the measured

pollutants, which is even visible in the central tendency aggregations (see, e.g., Residential vs Highway

roads in Figure 3 in the revised manuscript). Also see our general response above.

Anyway, scaling their standard stationary collocations up to a year (approximately equivalent to the

length of the California campaign, also presented here) totals to about 60 hours. In this work, the

authors propose sampling in their newly developed approach within a crude spatial scale of 3 km for

about 40 rolling hours to identify instrument drift/malfunction. Clearly, there is little advantage to

switching to this new approach given the drop of ~50% in the measure of performance in the

“mobile-versus-fixed-site comparison” in the only primary pollutant monitored compared to the

standard “stationary collocation”. In short, while the authors argue that stationary collocations “ensures

comparability only at that specific location and only under the specific atmospheric conditions over

which the collocation occurred” (Lines 37-38), they have demonstrated that stationary collocations

perform significantly better than their proposed method.

In the revised draft, we have presented the results of the comparison between stationary collocations

and the in motion mobile vs stationary collocations in a way that we feel makes our point in a more

compelling way than was conveyed in Table 3 of the original manuscript. Figure 3 has now been included

showing how 3 critical metrics (mean ΔX, median ΔX, and r2) vary by road type and with distance from

one of the Denver sites (La Casa). We have also added an additional description in Section 4.2 discussing

how to interpret these metrics, noting that ΔX is an indication of both persistent spatial differences as

well as any existing measurement bias and that r2 is an indication of random spatial, temporal, and

measurement variability. The equivalent metrics from the stationary collocations are included as single

black circles on the same figure, located at distance=0 on the x-axis.

We note that while there may be a decrease in the r2 from stationary to mobile collocations, primarily for

NO (but negligible for O3 and NO2), this decrease is relatively inconsequential to the method for

assessing measurement bias, which is indicated by ΔX. Since we are not attempting to adjust instrument

gain and offset using a slope and intercept from an OLS (or any other linear regression approach), the r2

really only impacts the amount of temporal aggregation required to reduce the uncertainty on ΔX and,

ultimately, the magnitude of that uncertainty. As we show in Figure 9 in the revised manuscript (and

Figure 8 in the original manuscript) all pollutants show stable ΔX estimates with a median window size of

approximately 40 hours of collocation, despite there being widely varying r2 for each pollutant.

We argue, from Figure 3 (in the revised manuscript), that there is negligible difference in the assessment

of ΔX when using mobile to stationary collocations at close distances (~500 m) on residential roads and

that the benefit in efficiency gained of keeping the vehicle moving and not having to find appropriate

parking near the site is well worth any minor trade offs in performance. In Section 5.2 we further explore



these trade-offs of using a wide buffer distance (of 3 km) with the more extensive California data. This

represents a substantial increase in collection efficiency with a very clear added benefit over an

equivalent amount of time spent parked near a stationary site.

2. Use of linear models: As Figures 1 and 4 demonstrate, a linear model seems insufficient to compare

measurements of NO and NO2. There is a clear baseline effect, where only a small fraction of variance in

concentrations can be explained by variations in the reference site. The extensive dependence on

presentation using linear models in the manuscript for the Denver phase further weakens this

manuscript. I suggest the authors’ reconsider the presentation approach as well as the feasibility of a

“mobile-versus-fixed-site comparison” given visible baselines that are developed primarily based on

comparison with the Denver “stationary collocations”.

The emphasis on the OLS statistics of the comparisons in the original manuscript was causing undue

confusion and has been largely removed. Scatter plots (and the associated OLS statistics) are commonly

used and often useful visualizations and descriptions of collocation data, and therefore have been

retained, but moved to the supplemental information. We use r2 throughout the text as an important

indicator of random spatial and temporal variability as well as random measurement variability (i.e.

precision error) and have included a detailed discussion of how it should be interpreted (primarily in

Section 4.2).

3. Studying outlier plume events: Hyperlocal monitoring has a lot of value given its ability to map

pollutant exposures, especially plumes of primary pollutants with high spatial variability. However, prior

work suggests that primary pollutant spatial patterns can be predicted well using land-use regressions

(Robinson et al., 2019). In contrast, regionally distributed pollutants are not well represented by such

regressions but are relatively spatially homogeneous and can be estimated using regional monitoring

(Shah et al., 2018). Given these well-established priors, the baseline effect in (2) above, the high

concentration plumes or “outliers” in primary emissions should be studied separately. Similar mobile

monitoring work has been done previously and could be referenced (Robinson et al., 2018).

This work is focused on instrument performance assessment. Studying specific outlier plume events is

beyond the scope of the present manuscript.

1. Chambliss, S. E., Preble, C. V., Caubel, J. J., Cados, T., Messier, K. P., Alvarez, R. A., LaFranchi, B., Lunden,
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mapping and source apportionment of aerosol composition in Oakland, California, using mobile aerosol



mass spectrometry, Atmospheric Chemistry and Physics, 18, 16325–16344,
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Reviewer 3 Comments and Responses

Paper summary, in my words:

This paper presents an assessment of measurements made from mobile platforms against fixed-site

regulatory measurements as a comparison benchmark. The authors describe approaching the above in

two different ways: parked collocation between mobile and fixed-site, and in-motion comparison

between mobile and fixed-site monitors across different buffer sizes, road classifications, and averaging

intervals. The stated broader vision of the paper is to provide a framework for identifying and addressing

instrumental problems (e.g. drift) in a certain type of dataset (multiple mobile monitors doing

highly-routinized driving over long durations).

When comparing stationary mobile monitoring data vs the fixed-site monitoring data in Denver, the

authors quantify the agreement between the Aclima cars and each fixed-site, concluding that the

stationary mobile-monitor does well for O3, fairly well for Ox (though not as well as hypothesized), ok for

NO2, and poorly for NO. The conclusions are based on r2 values and slopes from OLS as metrics. The

authors discuss the results in the context of regional vs. primary local pollution.

Our goal was to focus on central tendency metrics (e.g., ΔX) as an indicator of bias. We largely

de-emphasized OLS regression statistics in the revised manuscript to reduce confusion on this aspect.

The authors then use in-motion mobile monitoring data to assess by-pollutant variability across road

category and spatial aggregation buffer size in two different locations (Denver and California). The stated

difference in these analyses is that the Denver reference monitors had higher time resolution (1-minute)

compared to those in California (1-hour), but had less temporal and seasonal coverage.

The general conclusion from the Denver in-motion analysis is that mobile data works similarly to data

collected while parked when comparing against a fixed-site. Measurements collected closer to the

fixed-site monitor tended to be better than data collected further afield. The authors allude to a tradeoff

between including more measurements (which tend to make the comparisons more robust, all else

equal) and including measurements made further away (which tend to be weaker comparisons due to

spatial variability).

The authors then address the above by considering how much data is needed, temporally-speaking, as

they do this analysis at a single fixed buffer size, to make an assessment of whether or not a mobile

monitor is agreeing with a fixed-site monitor. They conclude that for all pollutants, 40 hours of data is

what is required.

Overall analysis of paper:

I think it is important for the field to continue developing best practices in mobile monitoring to ensure

data quality and distill meaning. This manuscript does work in that regard that is novel enough to

warrant publication, after significant revision. There are only likely to be more of these big-scale mobile

monitoring efforts, and moving towards transparent, algorithmic QA practices is a good thing.

Unfortunately, the analysis here does not offer much depth or applicability for the key thing that mobile

monitoring has the power to uncover—spatial variability in pollutant concentration for primary emitted



pollutant, such as NO, which performs poorly in all comparisons outlined by the authors. Presumably

things like black carbon, particle number, methane/ethane, many types of VOCs, and certain primary

organic aerosol constituents would all perform more like NO than O3. The authors do not offer much in

the way of explanation of what their results mean for (arguably) the most important pollutant that they

measured, given the “strong suit” of what mobile monitoring can address. This seems like a real hole in

the manuscript that I think needs to be (much) better addressed and discussed.

Relatedly, the results that do compare most favorably are for pollutants that are much less spatially

variable. While it isn’t a bad thing to perform this analysis on these pollutants (e.g. O3), and in fact

serves as a good ‘base case check,’ these are not the type of pollutants that one goes to the great lengths

of having a fleet of mobile monitors for. Again, I think this is a conceptual hole in the manuscript.

See our General Response above. Significant modifications have been made to the revised manuscript to

further explain and clarify our goals in these analyses and our interpretation of the results.

Lastly, I have a lot of more detailed criticisms about figures, tables, etc. that make this paper not

publishable in its current form. I suggest both a systematic re-assessment of the results in this paper in

the context of primary pollutant spatial variability and addressing the detailed “minor” issues below,

followed by a re-review, before publication.

Big(ger) picture stuff

-There are a lot of pollutants, including ones of interest to many (PN, BC) that are mentioned as being

measured, but are nowhere in the results. Why? Please address/discuss.

Added the following text to Section 2 to address this:

Additional measurements, including black carbon (BC), size-fractionated particle number counts (PN), and other

species were also measured during these campaigns but are not discussed in this manuscript. For this manuscript,

we focus on measurements that had equivalent mobile and fixed reference site measurements for both studies. A

critical part of this work is our comparison of parked and mobile collocations during the 2014 Denver study, for

which we had one-minute averaged reference site data for O3, NO2, and NO but not the other measured species.

-Section 3 - the lack of agreement between NO from the car and the fixed-site must (assuming both

instruments work/were calibrated, as they are stated to) be due to spatial variability between the

parking spot and the monitor. The parking location is mentioned as a range of distances, and clearly

where the car is parked (and/or which way winds were coming, etc.) should explain the disagreement.

This should be addressed in some detail.

Added the following text to Section 3.2 to address the source of the NO discrepancies:

From the combined time series of all collocations (Figures S1 and S2), short-term peaks in NO and NO2 are present

in the mobile platform measurements but not the fixed reference site measurements. This reflects the impact of

emission plumes from local traffic. The traffic influences are particularly noticeable at the CAMP site, reflecting its

location at a major intersection.

Additionally, given the reliance on the difference measurements in Section 5, I would expect more of a

discussion of the difference measurements in the last part of Section 3. It appears that we are looking at

an ozone monitor that has a systematic offset from the fixed-site?



In Section 3.2 of the revised manuscript, we acknowledge the possibility for a real systematic offset:

Both the 25th and 75th percentiles for ΔO3 were negative as well, suggesting a real differences in the ozone
measurements between the mobile platform and the fixed reference site.

-Section 4: Suggestions for improving the scatterplots are presented below. But more generally, I think

that a figure that synthesizes the findings beyond the many scatterplots should be present, e.g. R2 vs.

buffer size, for all pollutants. As mentioned above, I think much more emphasis needs to be spent on

what these results mean for pollutants that are expected to be spatially heterogenous. Are we really

looking at quality-checking the analyzer in a mobile lab compared to the ground-truth fixed-site, or are

we simply comparing different air masses with different concentrations? This paper is presented as a

means of quality-checking baseline instrument performance. But a lot of the pollutant comparisons are

really assessments of their spatial variability, which need not have anything to do with instrument

performance. Throughout the manuscript these ideas seem conflated.

Figures 3, 4, and 7 now show r2 vs buffer size for different road classes. All scatterplots (except for Figure

2) were moved to the supplement. We significantly increased our discussion of the implications of our

results for spatial heterogeneity, including the added Section 7.

Section 5: a lot of the value of Section 5 compared to Section 4 seems to be: how does the above

approach work with the more-common, longer-duration (hourly) fixed-site measurements? And the

difference in the temporal coverage between the two datasets (Denver and California) is what allows the

authors to pursue this question. However, the authors then average all of their measurements to hourly,

but say that even very brief intervals (1s) can be used for these hourly averages. To me, this does not

seem justified, especially for pollutants with spatial and/or temporal variability (which again are largely

the kind of interest to the mobile monitoring community). Moreover, I would think that shorter-duration

mobile monitoring averages would be more scattered than longer-duration averages, all else equal. Is

this so? How does this vary by pollutant? The authors should justify this choice, I think.

Added discussion in Section 6 (of the revised manuscript) about the impact of setting “minimum data

thresholds” on the one-hour aggregations. We also revised Figure 8 to show the impact of using three

different minimum data cutoff values when performing our analyses.

Also (from Section 5), Figure 8 seems to be a major distilled result that the authors are driving towards

with all of the previous analyses. However, some of the fundamental aspects of this Figure were hard for

me to understand. Why is the “range of median differences” the important quantity here? And should

this quantity be normalized in some way, as Figure 8 makes it seem like NO agrees more than O3 for a

window see of 20 hours or less?

We significantly modified Figure 8 to show the actual range (minimum and maximum) for each pollutant,

and separated each pollutant into a different frame for ease of visualization. We hope that the revised

figure is easier to understand than the initial figure. We also added the following text (in Section 6.1) to

make sure the reader understands why the range of median differences is an important quantity:

The range between the upper and lower traces in Figure 8 provides an estimate of the uncertainty in median ΔX

due to random spatial variability, and thus a measure of the magnitude of change in systematic measurement bias

that we can expect to be observable by this approach.



Things to change/reconsider in tables and figures:

-Table S1 (and S2): I don’t think anyone will particularly care about Start Time and End Time. However, it

would be useful for the reader to be able to see how many minute-avg. points each stationary sampling

period yielded—please add this.

Change to Start Time (useful to determine the time of day) and Duration. Also added supplemental

figures showing time series of each stationary collocation.

-Figure S1: What values are the whiskers signifying? This should be stated somewhere. What do the

points (outliers? Defined how?) signify? This should also be stated. It seems a bit hard to believe, looking

at the NO plots from figure 1 that there would only be one outlier point at each site in the deltaNO

quantity—is something off here? Also, this should be in the main text and not the SI, in my opinion. Also,

I am surprised that the results in this figure are not connected to the analysis at the end, or discussed in

that context—clearly there is a systematic offset between the mobile monitor and each fixed-site

measurement of ozone, which warrants some discussion.

This figure was removed and the relevant statistics are included in the main text in Table 1 instead.

-Figure 1: This comment will apply to all of the scatterplots: For figure 1 you are showing the one:one

line, but not showing the OLS results. For many of the other similar plots you show OLS results but not

the one:one line. Given the variety of scales used (between pollutants, spatial aggregations, etc.), I

strongly recommend adding both of these (in different colors) to each plot, as quick visual reference

points for the reader.

We moved all OLS regression plots to the supplement to de-emphasize this analysis in the main text. We

added both 1:1 and OLS regression lines to scatterplots in the supplement.

-Figure 2: This figure is meant to establish the spatial context of the two sites, including the length scale

and position of parking relative to the stationary monitor. I don’t think this figure accomplishes these

goals. There should be distance scale bars. Given the emphasis on distance-from metrics in later

sections, it would also be helpful to see how these sites fit into any larger land-use context. Also, given

the large range of car-to-site distances, some kind of areal shading makes more sense than a single point

marking parking. Also, this should come before Figure 1. Other things would be useful to show here too

(which were not discussed in the text at all, and possibly should be): wind-rose insets (Seems like it

would be quite important potentially for the La Casa site, though again the reader has no way of

knowing what is west of the monitoring location (assuming that these maps are oriented with north

being “up”)), and north arrows.

We revised and improved all the maps in the manuscript, including adding shading to indicate parking

areas and adding wind roses and scale bars.

-Table 2: While this information is important, this seems less relevant for the main text than pretty much

everything currently in the supplement. I suggest moving this to the SI.

This table was moved to the SI as suggested.

-Figure 2 (and 3): again, please add one:one lines, and again this is too low of resolution to be useful. I

would also suggest some kind of different plotting style given that it is too difficult for the reader to see



the data for e.g. 100m-Major. A bigger picture comment mentioned above, but I will re-emphasize it

here: that ozone (a regional pollutant not expected to have much spatial variability) behaves well is not

surprising. I’m not saying it isnt worth presenting this result, but it makes no sense to me to present O3

in the main text and NO in the SI, given that NO is spatially variable, and hence of interest to this whole

endeavor in a way that O3 really isnt.

We moved all of these figures to the supplement and added one:one lines to all of these figures.

-Table 3: Why would you omit 100m, 3000m, etc. here? You make a point to display the plots in the

previous figure, but then only show a subset of the regression results. Whatever goes in Figure 2 should

go in Table 3 (or vice versa).

We removed this table and instead show the relevant information (stationary versus mobile

comparisons) in Figure 3.

-Figure 4: shouldn’t N for the individual non-highway categories (e.g. major, residential) sum to the N

shown in the bottom row “Non-Highway” category? I am noticing that for the 100m column they do not,

on this figure.

Added text to the caption to explain why the N for non-highway should be less than the sum of N for the

individual categories.

-Figure 5: This map also does not effectively communicate what the authors presumably intend, and it

needs significant work. I am guessing (though it is not explicit) that the colored roads are where the

Aclima cars drive? Or are these a subset of the roads drive, but the sections of which that are within the

largest buffer size? Its unclear. There should be scale bars and a north arrow here. At this level of zoom

it’s impossible to tell residential from major roads. I would consider substantially re-working this figure

to best communicate the relevant ideas—where the reference monitors are (and probably label them on

the map), how the buffers around each compare to the spatial extent of the domains (so perhaps just

draw some rings). I would let the inset maps ”do the talking” as far as the road categorization goes,

because it’s very difficult to get a sense for that at this level of zoom. There are other minor, but still

important aspects that need work here, such as the marker size for the reference monitors—one of the

most important pieces of info you are trying to convey—is a very small fraction of the font size of the

legend.

We revised and modified all of the maps in the main text following these suggestions.

-Figure 6: I don’t understand what the authors are trying to convey with this figure, exactly. And why just

show Livermore, but not the other monitoring sites that are mentioned? I suggest showing each

monitoring station I think some text is needed to very clearly outline the message of the figure (“As you

can see from Figure 6, the driving routes are concentrated around the fixed site. Also, you can see how

each of the three monitors (West Oakland, Livermore, San Francisco) compare to each other in terms of

vehicle-related land use in the vicinity of the monitor as well as where we drove). These maps also

should have scale bars, north arrows, and buffers indicating the relevant buffer sizes used in the analysis.

All of that would make this figure convey much more spatial context than it currently does.

We show all three of the main sites in the revised figure (Figure 6), as well as showing scale bars, north

arrows, etc.



-Figure 8: The figure caption says mean, while the y-axis says median. I also suggest adding as horizontal

lines the bias from the zero/span checks, for comparison (as is done in the text).

Fixed caption in revised manuscript. We did not find adding the horizontal bias lines to be helpful so we

chose not to add them. However, for our “case study” in Section 6.2 (Figure 10) we added lines showing

our estimated uncertainty bounds.

Other minor issues:

-self-sampling for the parked periods is not addressed, but should be

We attempted to minimize self-sampling by instructing the drivers to park into the wind, and have added

a statement to Section 3.1 stating this. We recognize that we cannot rule the influence of self-sampling

on our results, however, the degree of agreement between the two sites seems to be more influenced

by the local traffic emissions, indicating that the effect of self sampling is minimal. We added text to

Section 3.2 stating this.

-did they authors apply the sum of their framework to any of their individual monitors/cars, in order to

see if there was any drift/QA issues? This seems like the obvious thing to have done. It at least should be

addressed as to why not?

Added a section (Section 6.2) where we show a “real-world” application of this method, including an NO2

sensor with drift versus one without drift, to demonstrate how it could be applied.

-“2. Overview of Methods” should probably be a bit more precise given the multiple following

“Methods” sections, and the fact that some of the text contained in the multiple Results sections is also

“Methods.” I suggest a change that makee data analysis methods, experimental design, etc.

Renamed Section 2 to “Instrumentation used in this study”


