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Abstract. Hail is a major threat associated with severe thunderstorms and an estimation of
::::::::
estimating

:
the hail size is im-

portant for issuing warnings to the public. Operational radar products exist that estimate the size of the expected hail. For the

verification of such products, ground based
:::
For

:::
the

::::::::
validation

::
of

:::::::
existing,

::::::::::
operational,

:::::::::::
radar-derived

::::
hail

::::::::
estimates,

:::::::::::
ground-based

observations are necessary. Automatic hail sensors, as for example within the Swiss hail network, record the kinetic energy

of hailstones and can estimate with this the hail diameters. However, due
::
to

:::::::
estimate

:::
the

::::
hail

:::::
sizes.

::::
Due

:
to the small size5

of the observational area of these sensors (0.2m2)the estimation of the
:
,
:::
the

:::
full

:
hail size distribution (HSD) can have large

uncertainties. To overcome
:::::
cannot

::
be

:::::::::
retrieved.

::
To

:::::::
address

:
this issue, we combine drone-based aerial photogrammetry with

::::
apply

:
a state-of-the-art custom trained deep-learning object detection model to identify hailstones in the images

::::::::::
drone-based

::::
aerial

:::::::::::::::
photogrammetric

:::
data

::
to

:::::::
identify

::::::::
hailstones

:
and estimate the HSDin a final step. This approach is applied to photogrammetric

image .
:::::::::::::::
Photogrammetric

:
data of hail on the ground from a supercell storm, that crossed

:::
was

::::::::
collected

:::
for

::::
one

::::::::
supercell10

:::::::::::
thunderstorm

:::::::
crossing central Switzerland from southwest to northeast in the afternoon of June 20 ,

::::
June 2021. The hail swath

of this intense right-moving supercell was intercepted a few minutes after the passage at a soccer field near Entlebuch (Canton

Lucerne, Switzerland) and aerial images of the hail on the ground were taken by a commercial DJI drone, equipped with a 50

megapixels
::
45

:::::::::
megapixel

:
full frame camera system. The average

:::::::
resulting

::::::
images

::::
have

::
a ground sampling distance (GSD) that

could be reached was
::
of 1.5mm per pixel, which is set by the mounted camera objective with a

::::::
defined

::
by

:::
the

:
focal length15

of 35mm
:
of

:::
the

:::::::
camera

:
and a flight altitude of 12m above ground. A 2D orthomosaic model of the survey area (750m2)

is created based on 116 captured images during the first drone mapping flight. Hail is then detected by using a region-based

Convolutional Neural Network (Mask R-CNN). We first characterize the hail sizes based on the individual hail segmentation

masks resulting from the model detections and investigate the performance by using manual hail annotations by experts to

generate validation and test data sets. The final HSD, composed of 18209 hailstones, is compared with nearby automatic hail20

sensor observations, the operational weather radar based hail product MESHS (Maximum Expected Severe Hail Size) and

some crowdsourced hail reports. Based on the retrieved drone hail data set, a statistical assessment of sampling errors of hail

sensors is carried out. Furthermore, five repetitions of the drone-based photogrammetry mission within about 18
::::
18.65min

give the unique opportunity to investigate
:::::::
facilitate

::::::::::::
investigations

:::
into

:
the hail melting process on the groundfor this specific

supercell hailstorm and location.25
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1 Introduction

Hail is a severe danger
:::::
hazard

:
associated with thunderstorms and its impact increases with its

::
the

:::::
threat

:::
and

::::::::
potential

:::::::
damage

:::::::
increases

::::
with

:::::::::
increasing

::::
hail size. Therefore, the estimation of the hail size is important for an appropriate warning of

:
to

:::::
issue

:::::::::
appropriate

::::::::
warnings

::
to the public and to asses

:::::
assess the damage. The hailstorms in the period between

:::::::
Between 18 June and

31 July 2021 were extremely intense
:
a
::::::
period

::
of

::::::
intense

:::
hail

::::::
storms

:::::::
occurred

:
over Switzerland (Kopp et al., 2022). According to30

la Mobilière (2021), the amount of storm-related losses in Switzerland accumulated to around 340 million (CHF)
:::::::::::
storm-related

:::::
losses

:::
are

::::::::
estimated in the month of June alone and large hail played a significant role

:::::::::::::::::
(la Mobilière, 2021). Operational weather

radar-based algorithms exist, which try to compute
::::
allow

:::
for

:::
the

:::::::::::
computation

::
of

:::
the

:
the maximum expected severe hail size

(MESHS, Treloar, 1998) and probability of hail (PoH, Waldvogel et al., 1979) within a thunderstorm. In Switzerland, those

products are derived from five C-band weather radars operating in the complex terrain of the alps
::::
Alps

:
(Germann et al., 2022)35

and have a spatial resolution of 1 km2. For
:::::::::::
Ground-based

:::::::::::
observations

:::
are

::::::
crucial

:::
for

:
the verification and improvements of

::::
such radar-based hail products, ground-based observations are needed.

Beside
::::::
Besides

:
traditional hailpads, which are cost effective and

:::
but

:
do not provide any time information, promising other

observational approaches and tools include newly developed
:::::::
temporal

:::::::::::
information,

:::
new

:
automatic hail sensors (Löffler-Mang

et al., 2011) and crowdsourced hail reports (Barras et al., 2019) . Recently,
::::::
provide

::::::::
valuable

:::::::::
additional

:::
hail

::::::::::::
observations.40

:::::
Within

::::
the

:::::::::
framework

:::
of

:::
the

:::::
Swiss

:::::
Hail

:::::::
Network

:::::::
project

:::::::::::::::::::::::::::::::::::::::
(Romppainen-Martius, 2022; Kopp et al., 2022) a network of 80

automatic hail sensors was installed in the three most
::::
three

:
hail-prone regions of

:
in

:
Switzerland (Jura, southern Ticino

and Napf) according to climatology studies (Nisi et al., 2018, 2016)in the framework of «The Swiss Hail Network» project

(Romppainen-Martius, 2022; Kopp et al., 2022)
:::
that

:::
are

::::::::
identified

::
as

:::
hail

:::
hot

:::::
spots

:::::
based

::
on

::::::::::::
climatological

::::::
studies

:::::::::::::::::::
(Nisi et al., 2018, 2016)

. These sensors record the kinetic energy of single hailstones and infer their sizes with a precise time information, but provide45

no shape (axis ratio) information and have only a small impact
::::::
provide

::
an

:::::::
estimate

:::
of

:::
the

:::
hail

::::
size

:::
and

:::
the

:::::
exact

::::
time

:::
of

:::
the

::::::
impact,

:::
but

:::
no

::::::::::
information

:::::
about

:::
the

::::::
shape.

::
In

::::::::
addition,

::::
hail

::::::
sensors

::::::
cannot

:::::::
capture

:::
the

:::::
entire

::::
hail

::::
size

::::::::::
distribution

::::::
(HSD)

:::
due

::
to

::::
their

:::::
small

:::::::::::
observational

:
area of 0.2m2 . The crowdsourced hail data usually only gives information about the largest

observed hail diameters. The quality control of crowdsourced hail observations is difficult and the data has a low accuracy due

to predefined fixed size categories (smaller than coffee bean: > 0–5
:::::::::::::::
(Kopp et al., 2023)

:
.
::::::::
Similarly,

::::::::::::
crowdsourced

::::
hail

::::::
reports50

:::
use

:::::::::
predefined

::::::::
categories

:::
(no

::::
hail,

:::::
< 10mm, coffee bean: 5–8

::
10mm, 1 CHF coin: 23

::
20mm, 5 CHF coin: 32

::
30mm, golf ball:

43
::
50mm , tennis ball: 68

:::
and

::::
> 70mm) . Another source of uncertainty arises from the size estimates submitted by the app

users
::
for

:::::::::
estimating

:::
the

:::
hail

::::
size,

::::::::::::
corresponding

::
to

::
an

::::::::
unknown

:::::::::
percentile

::
of

:::
the

:::::
actual

:::::
HSD.

::::::
Besides

::::
that,

:::::
their

::::::
quality

::::::
control

:
is
::::::::::
challenging

:
(Barras et al., 2019).

Hail sensors cannot capture the entire hail size distribution (HSD) of a hail storm due to their limited area (Kopp et al., 2023)55

::
In

::::
order

:::
to

::::::::
overcome

:::::
some

::
of

:::
the

:::::::::
limitations

::
of

:::::::::
automatic

:::
hail

:::::::
sensors and crowdsourced reports only give information about

the largest hailstone, therefore they cannot be used to infer a complete HSD. A
::
for

:::::::::
estimating

:::
the

:::::
HSD,

:
a new technique, called

HailPixel, has been introduced by Soderholm et al. (2020)for measuring the size distribution of hail
:
.
::::
They

:::::::
propose

::
to

:::
use

:::::
aerial

:::::::
imagery

:::::::
captured

:::
by

::
an

:::::::::
unmanned

:::::
aerial

:::::::
vehicle

::::::
(UAV)

::
to

::::::
survey

:::
hail

:::
on

:::
the

::::::
ground

:
over a large detection areausing aerial
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imagery captured from a small unmanned aircraft and
::::
area.

:::
The

:::::::
resulting

::::::
image

:::
data

::
is
::::::::
analyzed

::::
using

:
deep-learning

:::::::::
techniques60

combined with computer vision feature extraction . They show exemplary
::
to

:::::::
estimate

:::
the

:::::
HSD.

::::
The results from a HailPixel

survey of a hailstorm in San Rafael (Argentina) in the context of existing studies and point out potential improvements for

future hail surveys. With a sample of
::::::
clearly

:::::::::::
demonstrates

:::
the

::::::::
advantage

::
of

::::
this

::::::::
technique,

:::
as

::
an

:::::
UAV

:::
can

::::::
survey

::
an

::::::::
extended

:::
area

::::
and

:::::::
capture

:
a
:::::
large

::::::
sample

::
of
::::::::::

hailstones.
::::
They

:::::::::
identified 15983 measured hailstone sizes, they were able to precisely

define the shape and tails of the HSD .
::::::::
hailstones

::::::
which

:::::
allows

::
to

:::::
infer

:::
the

::::
HSD

::
of

:::
the

:::::
event.

:
65

A main advantage of image-based hail data sets over crowdsourced, hail sensor and hailpad data is, that the larger detection

area allows to derive a more complete HSD. Likewise with hailpads, the shape factor in the image plane can be easily

determined as well. It is known, that hailstones usually have an oblate spheroid shape with mean axis ratios close to 0.8, though

they can sometimes have large protuberances (Knight, 1986). In this study , we present detailed statistics of the observed hail

aspect ratios for a particular hail event and location.70

On
::
we

:::
use

:::::
aerial

:::::
drone

:::::::
images

:::::::
collected

:::
on 20 June 2021

::::
2021.

:::::
That

:::
day, the ingredients for long-living and well-organized

severe thunderstorms came together over
::::::
(humid

:::
air,

::::
high

:::::::::
instability

:::
and

::::::
strong

::::
wind

:::::
shear)

:::::
were

::
in

:::::
place

:::::
across

:
Switzerland.

An air mass with steep lapse rates
:::
was

::::::::
advected

:
from the southwest was advected on top of decent,

:::::
above

::
a

:::::
moist low-level

moisture. As the
::
air

::::
with

:::::
mean

::::::
mixing

:::::
ratios

::::::
around 12 sounding from the meteorological station Payerne in Fig. 1 points out,

during the course of the day SB (g kg−1.
::::::

Lapse
::::
rates

::::::
above

:::
the

:::::::
capping

::::::::
inversion

::::
were

:::::
close

::
to

:::
dry

:::::::::
adiabatic.

:::
The

:
Surface-75

Based ) CAPE (Convective Available Potential Energy ) values of more than
:::::::::
(SBCAPE)

::::
was

:::::
above

:
2000 J kg−1 developed

in conjunction with a high 0–6
:::
and

::::
high

:
wind shear of about 30m s−1 . A hail producing strong supercell was chased on that

day. The temporal track of this supercell from radar data
:
in

:::
the

:::::
layer

::::
0–6 km

::::
was

::::::
present

::
at

:::
12UTC

:::::::
(Fig. 1).

::
A

::::::::
supercell

::::::::
developed

::::
over

:::
the

::::::
French

:::::
Alps

::
in

:::
the

:::::::
morning

::::
and

::::::
moved

:::::::
through

::::::::::
Switzerland

:::::
within

::
5
:::::
hours.

::::
The

:::::
track

::
of

:::
the

::::::::
supercell is

shown in Fig. 2(a) . At 12 , when the radio sounding took place, the cell was located above the French alps (magenta circle) . It80

entered Switzerland 30 later and crossed the country in a period of 5 hours (s. storm track
:::
and

::::
was

::::::::
generated

:::::
based

:::
on

:::
the

::::
TRT

::::::::::::
(Thunderstorm

:::::
Radar

:::::::::
Tracking)

::::::::
algorithm

:::::::::::::::::::::::::::::::::::
(Feldmann et al., 2023; Hering et al., 2004)

:
.
::::
From

:::
the

:::::::::
hodograph

::::::
shown

:
in Fig. 2(a

)). A deeper analysis of the storm motion and
:
1
:
a
:::::
storm

:::::::
motion

:::::
vector

::
of

::::
234°

::
at
:::
13m s−1

::::::::
(according

::
to

::::::::::::::::::
Bunkers et al. (2000)

:
)
:::
and

:::::
mean

:
storm relative winds based on the hodograph display (s.

:::
(0–6Fig.km

:
)
::
of

::::
71°

::
at

:
9 1) , shows that the ms−1

:::
can

:::
be

::::::
derived.

::::
This

:
environment favored the development of classical right-moving supercells (Houze et al., 1993)on that day.85

Based on the MESHS products from the Swiss C-band radar network (Germann et al., 2022), we find that the hail swath

was nearly uninterrupted from the north-eastern edge of
::::
The

:::::::
supercell

::::::::
produced

::
a
:::::::::
continuous

::::
hail

:::::
swath

::::
from

:
lake Geneva to

the north-western edge of lake Zurich over a length of about 155 km . The maximal width of
:::
and

:::
the

::::::::
maximum

::::
hail

::::
size

::
is

::::::::
estimated

:::::
above

:::
60mm

:
.
::::
Both,

:::
the

:::::::::
maximum

::::
hail

:::
size

::::
and the hail swath part exceeding a MESHS value of 6was in the order

of 10
:::
are

:::::::
inferred

::::
from

:::
the

:::::::
MESHS

:::::::
products

::::::
based

::
on

:::
the

:::::
Swiss

::::::::::
operational

::::
radar

:::::::
network

:::::::::::::::::::
(Germann et al., 2022). Figure 2(b)90

illustrates the radar derived MESHS signature from the supercell when it crossed central Switzerland, just a little south of
::
in the

Napf region (predominantly rural area) , where a cluster of automatic hail sensors are installed. MESHS reached 6.3when the

hail from the supercell was intercepted at
:::::
central

:::::::::::
Switzerland)

:::::
where

:::
the

:::::
aerial

::::::
images

::::
were

::::::::
collected

::
on

:
a soccer field (magenta

::::
white

:
cross) near Entlebuch (Canton Lucerne). The same MESHS values were present at the two closest hail sensor locations
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(HS1 and HS2 on map in Fig.
:::
For

:::
this

:::::::
location

::::::::
MESHS

:::::::
indicates

::
a
:::::::::
maximum

:::::::
expected

::::::
severe

::::
hail

:::
size

:::
of

::
63 2(c) and (d)).95

At the two other sensor locations (HS3 and HS4) MESHS reached lower values of 48mm
:::
and

::::::
on-site

::::::::::
observations

::::::::
revealed

::::::::
maximum

::::::::::
dimensions

:::::::
between

:::
40mm and 58

::
50mm(Fig. .

:::
In

:::::::
addition,

::::
data

:::::
from

::::
four

:::::::::
automatic

:::
hail

:::::::
sensors

:::
are

::::::::
available

::
for

:::
the

::::
area

::::::
within

::
a
:::::::
distance

::
of

::::
less

::::
than

::
1 2(d)). Interestingly, the very km

::::
from

:::
the

::::::
survey

:::::
area.

::::::::::
Surprisingly,

::::
the closest

sensor HS1 (300m SSW from the soccer field) did not get
:::::
record

:
any impact during the passage of the hail core. Because of

the absence of any record on this closest sensor
::::
entire

::::
hail

:::::
event.

:::::::::
Therefore, we use the hail data from the other

::::::::
remaining

:
3100

sensors , which are in the vicinity of the drone hail survey area. As a note,
::
in

:::
this

::::::::
analyses.

:
HS2 and HS4 are

::::::
located

:::::
NNE

::
of

::
the

::::::
soccer

::::
field

:
at a distance of 770m , respectively

:::
and 1470m, to the NNE direction of the soccer field

:::::::::
respectively, while

HS3 is
::::::
located

::::
SSW

:
at a distance of 1150m to the SSW (Fig. 2(c)

:
3).

Soderholm et al. (2020) provided recommendations for drone-based hailsurveys in general: Ideally conduct them on
::::::
general

::::::::::::::
recommendations

::
to
::::::::

optimize
:::
the

::::::
quality

::::
and

::::::
further

:::::::
analysis

::
of

:::::
aerial

::::::
drone

::::::
images

::
of

::::
hail:

:
uniform and contrasting back-105

grounds (cut or grazed turf grasses); Increase the
:::
high

:
camera resolution for capturing smaller hailstones; Minimize

::::::::
minimize

the melting of hailstonesand
:
; avoid aerial surveys in areas with flowing water and conduct surveys as immediately as possible

::::::::::
immediately after hail fallstops to prevent further melting. Following those suggestion, we have put effort in using

::::::::::
suggestions,

::
we

:::::
used a camera equipment that allows to take pictures in a higher resolution to increase the

::
has

::
a
::::
high

:::::::::
resolution

:::::
giving

::
a

ground sampling distance (GSD) to
:
of

:
1.5mmpx−1. Therefore, we are able

:
It
::::::::
permitted

::
us

:
to classify hailstones down into the110

small
::
up

::
to

:
a
:::::::::
minimum

:::
size

::
of

:
3–6mmbin size, ,

::::::
which

:
is
::
a
:::::::::
significant

:::::::::::
improvement compared to the minimum size of 2

::
20 in

Soderholm et al. (2020). The drone-based hail survey in this study mm
::::
from

:::::::::::::::::::
Soderholm et al. (2020)

:
.
:::::
Here,

:::
the

::::::
survey

:
was

performed on a soccer field with a visually homogeneous background, and an excellent drainage of water. A main difference

to the approach of Soderholm et al. (2020) is the technical setup to estimate the size of the identified hailstones. Instead of

using an additional computer-vision-based method, we here use only
:::
only

::::
use the data from the deep-learning algorithm to115

directly estimate the hail sizes and shapes. In addition, we present an approach to address the major problem of the drone-based

method, which is the melting of hailstones on the groundbefore the aerial images are captured. The idea to tackle this drawback

is to introduce several identical, consecutive drone flight missions above the same area to capture the shrinking hailstone sizes

and derive the rate of melting. This will allow, to a certain stage, :
:::
the

:::::::
melting

::::
rate

:
is
:::::::::

estimated
::
by

::::::::
capturing

:::
the

::::::::
shrinking

:::
of

::
the

:::::::::
hailstones

::::
from

:::::::
images

::
of

:::::::::
successive

:::::
drone

::::::
flights.

::::
This

::::::
allows to approximate the expected largest hail sizes dating back120

to
:
at
:

the start of the hail fall, if the exact times of the storm passage and images are known.

In Sect. 2 the end-to-end chain
:::::::::::
methodology

:
is presented, starting from

::::
with

:
the data collection procedure, the equipment

used
:
a
::::::::::

description
::
of

::::
the

:::::::::
equipment

:
and details about the image data acquisition, followed by the post-processingand the

automated task of hail object
:
,
::
the

::::
hail detection with deep-learning algorithms and the final retrieval of the hail size distribution.

The results and performed investigations
:::::::
resulting

:::
hail

::::
size

:::::::::::
distributions,

::::::::::
performance

::
of

:::
the

::::::
model

:::
and

:::::::
melting

:::
rate

:::::::::
estimation125

are described in Sect. 3. Further discussions to set
::::
bring

:
the findings in a broader context are presented in Sect. 4. Conclusions,

ideas and suggestions for future analyses are given in Sect. 5.
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2 Data and methods

Here we first go into the challenging part of the hail image data collection process (Sect. 2.1) and then provide an overview

of the technical devices (drone, camera system and aerial mapping strategy) used (Sect. 2.2). An introduction to the
::
In

::::
this130

::::
study

:::
we

:::
use

:
a
:
deep-learning (Convolutional Neural Network) based method (Detectron2 framework, Wu et al. (2019))

::::::
method

to automatically detect hail objects in the processed image data record is presented in Sect. 2.3. The haildetection and size

estimation approach is evaluated based on a validation and a
::::::::
individual

::::::::
hailstones

::
in
::::::

aerial
::::::
images

::
of

::::
hail.

:::
A

:::::
subset

:::
of

:::
the

::::::
images

:::
was

:::::::::
annotated

::
by

:
a
::::::
human

::::::
expert

:::
and

::::::
served

::
as

:
a
::::::::
training,

::::::::
validation

::::
and test data set. Hereby we follow

:::::::::::
Furthermore,

::
the

::::
test

::::
data

:::
set

:::
was

:::::::::
annotated

::
by

::::
two

:::::::::
additional

::::::::::
independent

::::::
experts

:::
to

:::::::::
objectively

:::::::
estimate

:::
the

:::::::::::
performance

:::
of

:::
the

::::::
model.135

:::
The

:::::::
method

::::::
follows the HailPixel procedure described in Soderholm et al. (2020) with some slight adaption that are mentioned

briefly below. The HailPixel technique
:::
that

:
applies a two-stage approach, combining machine learning for finding the center

hail pixel and
::::::::
consisting

::
of

::
a
::::::::
machine

:::::::
learning

::::::::
technique

:::
to

::::::
identify

::::
the

:::::
center

:::::
pixel

::
of

:::::
each

::::::::
hailstone

::
in

:::
the

::::::
image

:::
and

::
a

computer vision (CV) for an exact hail edge detection on the image lightness in the HSL (Hue, Saturation, Lightness) color

space
::::::::
approach

::
to

::::::
detect

:::
the

:::::
edges

:::
of

:::
the

:::::::::
individual

:::::::::
hailstones

:::::
based

:::
on

:::::
pixel

::::::::
lightness

:::::
values. During a preliminary test140

phase
:
in

:::
our

:::::
study, the two-stage approach from Soderholm et al. (2020) was compared to a one-stage method using solely a

deep-learning instance segmentation model based on Mask R-CNN . It was found, that the
::
to

:::::
detect

:::::::::
individual

::::::::
hailstones

::::
and

:::::::
estimate

::::
their

:::::
sizes.

::::
The size estimation based on our

::
the

:
one-stage method led to

::::::
yielded

:
better results for this specific hail

case than
:::
our

:::
data

:::::::::
compared

::
to the two-stage approach.

::
In

::::::::
particular

:::
for

:::::
small

:::::::::
hailstones,

:::
the

:::::
pixel

::::::::
lightness

::::::
values

::::
were

:::::
much

::::::
lower.

:::::
Here

:::
we

:::::::
therefore

::::::
focus

::
on

:::
the

:::::::::
one-stage145

::::::::
approach.

2.1 Data collection and the experience from chasing hailstorms

A major challenge of drone based
::::::::::
drone-based hail photogrammetry is the collection of data. Therefore we here briefly describe

our strategy to prepare the data collection process. Hail producing thunderstorms are highly localized phenomena and falling

hail melt
::::
melts

:
quickly on the surface due to high (summer) air and soil temperature and sometimes strong rainfall following150

directly after the hail. Thus, to encounter
:::::::
intercept

:
a thunderstorm, the drone operators need to be on site before the arrival of

the storm. Therefore, the availability of good
::::::
suitable

:
nowcasting products and experienced interpretation are highly important.

Aside
::::
from

:
the meteorological challenges, the practical difficulties are even more pronounced. To obtain best possible quality

of aerial images, we focused on places where we were confident to encounter fresh cut meadows. Public soccer fields turned

out to be most promising target locations, which can be easily identified in interactive maps while being on the road, e.g. on155

https://map.geo.admin.ch/ (SwissGeoportal, 2023). In addition, major parts of the hail prone areas were scouted in advance to

determine potential locations to intersect a specific storm cell and familiarize with the local traffic routes.

For the preparation of the data collection process, different numerical weather prediction outputs have been consulted. We

aimed at situations where the NWP models showed supercell favoring conditions, i.e. high moisture content, favorable wind

shear conditions, degree of instability (CAPE) and the potential for triggering by meteorological forcing or by the terrain (s. for160
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instance ? for details about storm dynamics and the prediction of convective storms). During days with such favoring conditions

::::::::
conditions

::::::::
favorable

:::
for

:::::::::
supercells, the drone operators were on standby in central Switzerland already in the morning hours to

be ready to head towards potential regions of thunderstorm occurrence. Another valuable source
:
A

:::::::
valuable

::::::
source

::
to

:::::::
identify

::::
such

::::::::
conditions

::::
and

::::::
regions are the forecasts by ESTOFEX (European Storm Forecast Experiment, Groenemeijer et al. (2007)).

Our experience has shown, that at least a level 2 on the ESTOFEX internal scale needs to be issued to have a realistic chance165

to interfere
:::::::
intercept a hail producing cell. In general, the forecasts and evaluation of the synoptic situation across Europe

provided on their website are highly valuable for the preparation process and determining, whether meteorological conditions

are favorable on the next day.

On the day of an event, different nowcasting and observational products were used. Most importantly, the operational radar

images produced by MeteoSwiss served as a baseline to identify storms and nowcast the upcoming minutes to hours. Hereby,170

the
:::
The 3-dimensional reflectivity information is crucial to not only identify the cell itself but to further estimate the strength and

exact location of a potential hail core. Within the operational radar products, POH and MESHS was used. Our experience has

shown that for promising results, POH needs to be 100% and MESHS should reach stable values above 2
::
20mm. Furthermore,

satellite images and lightning information, e.g. lightning jumps (Schultz et al., 2009; Chronis et al., 2015; Nisi et al., 2020),

help to focus on intensifying regions within the developing storm cells. Finally, real-time hail reports from the public can give175

a hint about the size of the hail that can be expected and to fine tune the final decisions for a successful hail core punch
::::::
suitable

::::::
location.

Following this strategy and using the tools mentioned, two drone-based hail photogrammetry surveys could be performed

during five event days in 2021. In this study
:
,
:
we present an analysis of the data collected on the 2021-06-20

::
20

::::
June

:::::
2021

to demonstrate the methodology. The data from the second available event can not
:::::
cannot

:
be taken into account because of180

low quality of the data. In particular, both, the light conditions and the background (longer grass on the soccer field) were not

optimal and thus the data can unfortunately not be used for an in depth analyses.

We further want to mention as a disclaimer that for a successful hail core punch it is crucial to react fast on the basis of the

instantaneous knowledge of the meteorological situation, but at the same time quick decisions can lead to a miss of the hail

core. Therefore hail chasers should be resilient, have lot of patience and enthusiasm to catch the perfect storm and keep in185

mind that storm chasing involves potential severe risks, including injury from large hail and extreme winds. In addition, traffic

conditions can be dangerous due to heavy precipitation and strong winds. Safety should be the priority during storm chasing

experiments. Preparation of potential shelter spaces and escape routes is recommended in case of worst-case scenarios
::::::
analysis.

2.2 Drone operation and image processing

The aerial hail photogrammetry missions were performed with a DJI Matrice 300 RTK drone equipped with a Zenmuse P1190

camera system, that has a full-frame sensor (45
::::::::
megapixel) stabilized by a 3-axis gimbal and a focal length of 35mm. The

synchronization of the camera,
:::
the

:
flight controller,

:::
the RTK (Real Time Kinematic) GPS module, and gimbal takes place at

the microsecond level and
:::
the

::::::
gimbal

:
is
:::::
done

::
on

::
a

:::::::
temporal

:::::::::
resolution

::
of

:::::::::::
microseconds

::::
and

:::
thus

:
ensures a high accuracy of the

image data.
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Studies such as Guidi et al. (2020) or Fawcett et al. (2019) showed that a frontal and side image overlap between
::
In

:
a
::::
first195

::::
step,

:::
the

:::::::::
individual

::::::
images

::::::::
captured

::
by

:::
the

::::::
drone

::::
have

::
to

:::
be

:::::::::
combined

:::
into

:::
an

:::::::::::
orthomosaic.

:::
An

:::::::::::
orthomosaic

::
is

::::::
defined

:::
as

:
a
:::::::::
composite

::
of

:::::::
multiple

:::::
aerial

::::::::
(airborne

:::
or

:::::::::::
space-borne)

::::::
photos

:::
that

:::
are

:::::::::
previously

:::::::::
processed

::
to

::::::
remove

::::::::
inherent

:::::::::
distortions

:::::
caused

:::
by

:::
the

::::::::::
geometrical

:::::::::
properties

::
of

:::
the

::::::
lenses

::::::::
(airborne

::::::
photos)

::::
and

:::
the

:::::
earths

::::::::
curvature

::::::
(space

:::::
borne

:::::::
satellite

::::::::
images).

:::::
Thus,

::
the

:::::::::
processed

::::::::
individual

:::::::
pictures

::::
and

:::
the

:::::::
resulting

:::::::::
composed

::::::::::
orthomosaic

::
is

::::::::
distortion

::::
free

:::
and

:::::::
exhibits

:
a
::::
true

::::
scale

::::
that

:::::
allows

::
to

:::::::
estimate

:::
the

::::
size

::
of

::
the

:::::::
objects

:::::
within

:::
the

:::::
photo.

:::
To

:::::::
generate

::
an

:::::::::::
orthomosaic

::
an

:::::
image

:::::::
overlap

:::::::
between 70% and 80%200

is within an optimal range to produce an orthomosaic. An orthomosaic is a photogrammetrically orthorectified image product

that has been mosaicked from an image collection, correcting for geometric distortion and color matching the image data to

create a seamless mosaic data set. The large overlap and the image redundancy usually allows for an efficient elimination of

erroneous matches, which in turn improves the reliability of the 3-dimensional point cloud (3D model based on collections of

individual points plotted in 3D space). For our performed flight missions
:
is
::::::::

required
::::::::::::::::::::::::::::::::
(Guidi et al., 2020; Fawcett et al., 2019)

:
.205

::::
Here

:::
we

:::
use an image overlap of 70% for both sides (frontal and sideways)was applied.

The automated flight with the DJI Matrice 300RTK drone was planned from
:::::
flight

::::::
pattern

::::
was

::::::::::
programmed

:::::
using

:
the DJI

Pilot 2 applicationas
:
.
:::
We

::::::
defined

:
a lawnmower (boustrophedonic) flight path without cross-hatch . Due to restrictions of the

DJI control software, the minimal possible flight altitude was
::::
with

:
a
:::::

flight
:::::::
altitude

::
of

:
12m above ground . As demonstrated

by Soderholm et al. (2020) or Bemis et al. (2014), a slow horizontal flight speed reduces the motion blur. A
::::::::
(minimal

:::::::
possible210

:::::::
altitude)

:::
and

::
a flight speed of 1m s−1was programmed to keep

:
.
::
A

:::
low

:::::::::
horizontal

:::::
flight

:::::
speed

::
is

::::::::
necessary

::
to

::::::
reduce

:
the mo-

tion blur
:::::::::::::::::::::::::::::::::::
(Bemis et al., 2014; Soderholm et al., 2020),

::::::
which

::
is within one image pixel . The image processing to produce a

high resolution georeferenced orthorectified image (hereafter called simply orthophoto) from the survey area was done with

::
in

:::
our

::::
case

:::
and

:::::
leads

::
in

::::::
general

::
to

:::::
small

:::::::::::::
overestimations

::::::
(< 1.5mm)

::
of

:::
the

::::
hail

::::::::::
dimensions.

::::
The

::::::::::
orthomosaic

:::
(or

::::::::::
orthophoto)

:
is
:::::::::
generated

:::::
using the open source software OpenDroneMap (ODM, OpenDroneMap (2020)). It is able to turn simple

::::
This215

:::::::
software

:::
can

:::::::
convert

:
2-dimensional images into: classified point clouds, 3-dimensional textured models, georeferenced or-

thorectified imagery or georeferenced digital elevation models. ODM makes use of OpenSfM (mapillary, 2020), which is a

structure from motion (SfM) library written in Python on top of OpenCV (Bradski, 2000). The library serves as a processing

pipeline for reconstructing camera poses
:::
can

::
be

::::
used

:::
to

:::::::::
reconstruct

::::::
camera

::::::::
positions

:
and 3-dimensional scenes from multiple

images
:::::
based

::
on

:::::::
multiple

:::::::
images

::::::::::::::
(mapillary, 2023). Here we make use of some

:::
the basic modules for SfM: Feature detection,220

feature matching, minimal solvers.

The orthophoto construction can be broken down
:::
can

::
be

::::::
divided

:
into the following main steps:

– Identification of matching points between the images.

– Reconstruction of the camera perspective and the position of each image for quality check and subsequent computation

of the 3-dimensional coordinates of the matching points.225

– Derivation of a DEM (digital elevation model) by using a reduced point cloud in 3-dimensional space.

7



– Construction of the orthophoto of the survey area by applying the DEM to spatially project every image pixel
::
the

::::::
spatial

::::::::
projection

::
of

::::
each

::::::
image

::::
point.

The first flight mission after the passage of the hail core of the supercell started
:::::
started

::
at 14:37:28 (UTC), which is about

9.5min after the start of the hail fall. Within 3:51min a total of 116 images were takenat a constant altitude of 12 above ground230

level. Each image has
:
a
:::::::::
resolution

::
of 8192× 5460 pixelsand was captured at

:
.
::::
The

::::::
camera

:::
has

::
a

::::
fixed

:::::
focal

:::::
length

::
of
:
35mm

focal length with a manual set
:::
and

::
for

::::
this

:::::::
mission

::
we

:::::::
selected

:::
an exposure time of 1/1000 s, an aperture of f/5.6 and

:
a

::::
light

::::::::
sensitivity

:::::
value

::
of

:
ISO-25600for the applied gain by the camera sensor. The resulting GSD of 1.5mmpx−1 is good enough

to visually detect hailstones > 5
:::::
allows

::
to

:::::
detect

:::::::::
hailstones

:::::
down

::
to

:::
the

::::
3− 6mm and thus also the smallest size classification

of hail (?)
:::
bin.235

The quality report
:
A

:::::::
standard

::::::
output of the ODM processing of the 116 survey images revealed the reconstruction of

:::::::
software

:
is
::
a

::::::
quality

:::::
report.

::::
The

:::::
report

:::::
gives a total of 14.916.215

:::::::::::
reconstructed

:
dense points and a mean GPS error of 0.34m. The total

hail area coverage of the ortophoto within the soccer field as presented in
:::::::::
orthophoto

::::::
covers

::
an

::::
area

::
of

::::
750m2

:::
(see

:
Fig. 5(a)is

750 . By inspecting the computed digital terrain model of the area, a maximal change in elevation
:
)
::::
that

:::::
shows

:::
an

::::::::
elevation

::::::
change of 0.5mis found. For an independent verification of the GSD, .

:::::::
Multiple

:
reference objects (s.

:::
see Fig. 5(b)) were placed240

on the soccer field before the drone image capturing started. Those
::
are

::::
used

:::
for

:::
an

::::::::::
independent

:::::::::
verification

:::
of

::
the

:::::
GSD.

::::::
These

:::::::
reference

:
objects were laminated printouts of geometric shapes in black and white, e.g. circles of diameter

::::
with

:
a
::::::::
diameter

::
of

10mm and squares with side lengths of 75mm. Cross checking of the 10white circles yielded a diameter between
:::
The

:::::
white

:::::
circles

:::::::
consists

::
of

:
6 and

::
to 7 pixels

:::::
within

:::
the

:::::::::
orthophoto, equivalent to the metric range

:
a
::::::::
diameter

::
of

:
9–10.5mm. Due to a

slight overexposure in combination with the motion blur, the black circles on white background appeared much smallerthan245

the white ones on the black background.

2.3 Object detection and size estimation

Object detection is a technology related to computer vision and image processing that tries to detect instances of semantic

objects of a certain class
::::::::::::
computational

::::::
method

::
to

::::::::::::
automatically

::::::
identify

::::
and

:::::
locate

::::::::
different

::::::
objects

::
or

::::::::
semantic

::::::
classes (e.g.

cats, dogs, cars, buildings, etc.) in digital images and videos. Generally, the methods for object detection fall into either neural250

network-based or non-neural network-based approaches. A good overview about
::::
trees,

::::::::
bicycles,

:::::
faces)

::::::
within

::
an

::::::
image

::
or

::
a

:::::
video.

::
A

:::::::::::::
comprehensive

:::::::
overview

:::
of the techniques and developments in object detection over the last two decades is shown

in the road map of milestones in object detection by Fig. 2
:::
can

::
be

::::::
found in Zou et al. (2019). In recent years, many of the

latest available neural network detection engines (e.g. AlexNet, VGG, GoogleNet, ResNet, DenseNet) have been applied to

object detection. For example, the Mask R-CNN (He et al., 2020), as one of the state-of-the-art models for instance object255

segmentationtasks, uses the ResNet(He et al., 2016) detection engine . This residual learning framework was
:
,
::::
uses

:
a
::::::::
Residual

:::::
Neural

::::::::
Network

:::::::
(ResNet)

::::::::
detection

::::::
engine

::::::::
described

::
in

:::::::::::::
He et al. (2016)

:::
and

::
is designed to simplify the training of substantially

deep neural networks.
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We used the deep-learning toolbox Detectron2
::::
from

:
Wu et al. (2019) as a starting point to train a model for visual hail recog-

nition. Its flexible design makes it easy
:::::
allows

:
to switch between different tasks such as object detection, instance segmentation260

or panoptic segmentation. It has
:::::::
provides built-in support for popular data sets like the MS COCO (Microsoft Common Objects

in Context) described in Lin et al. (2014) and many backbone combinations of
::::::
contains

:::::::
features

:::::
from Faster/Mask R-CNN:

ResNet (Residual Neural Network) in combination with FPN (Feature Pyramid Network ), C4 (
:::::
(FPN),

:
Convolution 4

:::
(C4)

as single scale feature map, or dilated convolution. Further
:
a
::::::
dilated

::::::::::
convolution

:::::::::
technique.

::::::::::
Furthermore, Detectron2 provides

ready-to-use baselines with pre-trained model weights. One
::::
Here

:::
we

:::
use

::::
one

:::
set of those pre-trained model weights on the265

MS COCO data set is used to train a new model on a custom designed hail class. It should be mentioned, that the training on

one class always requires at least a second class, namely
::
for

::::
hail

::::::::
detection

::::
only.

:::::
Thus,

:::
we

::::
only

:::::
have

:::
two

:::::::
classes,

::::::
namely

::::
hail

:::
and the image background. Ideally for the model to be as general as possible in the detection of hail, it would be necessary to

train against various background types. Obviously, with only one captured hail event trained on a certain background (e.g.
:::
The

:::::
model

::
is

::::::
trained

:::::
using

::::
data

::::
from

::
a
:::::
single

:::::
event

::::
with

:::::
grass

::
in

:::
the

::::::::::
background

::
(soccer field).

::
In

:::::
order

::
to

:::::::::
generalise

:::
the

::::::
model270

:::
and

:::::
apply

::
it

::
to

:::::::::
additional

::::
data

::::
with

:::::::
different

:::::::::::
backgrounds

:::::
(less

:::::::::::
homogeneous

:::::
grass

:::::
field,

::::
crop

::::::
fields,

:::::::
concrete

::::::::
surface),

:::
the

:::::
model

::::::
should

::
be

::::::::
retrained

::::
with

::::::::
additional

:::::
data.

::::::::
However,

:::
not

::
all

:::::::::::
backgrounds

:::
are

:::::::
suitable,

::::
e.g.

::
on

::
a

:::::::
concrete

::::::
surface

::
(a

::::::
public

:::::::
parking) the model performance will change (likely decrease)on a different background.

:::
hail

::::::
would

::::
melt

:::::
much

:::::
faster

::::
due

::
to

::::
high

::::
solar

:::::::::
irradiation

:::
that

::
is

:::::
likely

:::::
prior

::
to

::::::::::::
thunderstorms.

:

2.3.1 Image data preparation275

The ODM software allows to directly export the originally produced GeoTIFF format of the orthophoto into an uncompressed

PNG (Portable Network Graphics) image format. For further processing only the PNG version of the orthophoto has been used.

The large file of width

2.3.1
:::::
Image

:::::
data

::::::::::
preparation

:::
The

:::::::::
orthophoto

:::::::
exhibits

::
a
::::::::
resolution

:::
of 24500 px and height

::
by

:
22000 px has a storage size

:::::::
resulting

::
in

:
a
::::
total

::
of
::::::::::
5.39× 108280

:::::
pixels

:::
and

::
a
::::
disk

:::::
space of about 2GBand a total number of 5.39× 108 pixels

:
.
:::
The

::::::
ODM

:::::::
software

::::::::
provides

:::::::
different

::::::
output

::::::
formats

:::
for

:::
the

::::::::::
orthophoto.

:::::
Here

:::
we

:::
use

:
a
:::::
PNG

::::::::
(Portable

::::::::
Network

::::::::
Graphics)

::::::
format

:::
for

:::
the

::::::::::
subsequent

:::::::
analysis. As shown

in Fig. 5(a) the orthophoto does not cover the full rectangular area in the image , thus the area that will be analyzed by the

object detection algorithm consists only of approximate
::::
entire

::::::
image

::::
size,

::::::::
reducing

:::
the

::::
total

::::::::
analyzed

:::::
image

::::::
pixels

::
to

:::::
about

5× 108 px. Given
::::
Thus,

:::::
given

:
the GSD of 1.5mmpx−1, the area size reaches

:::::
entire

:::::
image

::::::
covers

::
an

::::
area

::
of

:
750.4m2.285

The high demand of
::::::
original

:::::::::
orthophoto

:::
is

::::::
divided

::::
into

:::::::
smaller

:::::
image

::::
tiles

:::
to

::::
save

:
computational resources during the

training of the Mask R-CNN makes it unavoidable to work with smaller image tile files. Several tests have shown that an

image tile
:::::
model.

::
A

:::::::::
reasonable

:::::::::::
compromise

::
is

:
a
:
size of 500× 500 px is a reasonable compromise. Therefore the orthophoto

was divided into 2156 PNG image tiles. Later, a random selection of those image tiles was applied to assign tileimages to

train (150 images), validate (33 images) and test (33 images) the model (s. Fig. 5(c)). The idea behind is to
:::
for

::::
each

::::
tile.

:::
We290

use 10% of all available image
::::::::
randomly

:::::::
selected tiles as reference data . This yields a total of

:
(216 images and those were
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again
::::
tiles).

:::::
This

::::::::
reference

::::
data

::
is

::::::
further divided into 70% for training and the remaining bulk equally split into

::::
(150

:::::
tiles)

:::
and 15% each for the validation

::
(33

:::::
tiles) and test data . These three data sets of images are further processed with

:::
(33

:::::
tiles)

::::::::::
respectively.

:::::
These

::::
data

::::
sets

:::
are

::::::
visually

::::::::
analyzed

:::
by

::
an

:::::
expert

:::
A,

:::
and

:::
all

::::::::
hailstones

:::
are

:::::::::
annotated

:::::
using the Computer Vision

and Annotation Tool (CVAT, Sekachev et al. (2020))to manually annotate all clearly visible hailstones and to export the final295

annotation data set. CVAT supports multiple annotation formats, including the COCO format that is a good choice for the

Detectron2 framework. The .
::::
The

:::::::
resulting

:
annotation files are JSON (JavaScript Object Notation) based and store information

about each image tile.
::::
This

:::::::
includes

:::
the

:
path, width, height, annotation identifiers of the hailstones and the polygon coordinates

defining their binary
:::::::
instance

:::::::::::
segmentation

:
masks. Overalla total of 937 hailstone annotations are contained in the training

:
,

::
the

:::::::
training

::::
data

:::
set

:::::::
contains

::::
937,

:::
the

::::::::
validation

::::
data

::::
249

:::
and

:::
the

:::
test

::::
data set , 249 in the validation set and 215 in the test set.300

In these annotation data sets all hailstones were visually identified by a human expert A and the identified hailstones were used

as annotationsduring the training and validation of the neural network
:::
215

::::::::
hailstone

::::::::::
annotations. To account for differences in

the visually determined annotations, tow more
:::
two

::::
more

::::::
human

:
experts (B and C) annotated the test data set consisting of 33

tile images. Thus
:::::::::::
independently.

::::::
Thus, the test data set is created by three independent experts

::::::::
annotated

::
by

:::
the

::::::
experts

::
B
::::
and

:
C
:::
are

::::
used

:::
as

:
a
::::::::::
independent

::::
data

::::::
source

::
to

:::::
assess

:::
the

::::::
model

::::::::
prediction

:::::::::::
performance.

:
305

2.3.2
::::
Hail

::::::::
detection

::::
and

:::
size

::::::::::
estimation

:
-
::::::::
training,

:::::::::
validation

:::
and

:::::::
testing

:::
The

:::::
main

::::::
concept

::::::
behind

::::::::::::
deep-learning

::::::
models

::
is

::
to

::::
split

::
the

::::::::
reference

::::
data

:::
set

:::
into

::
a

:::::::
training,

:
a
:::::::::
validation and not used during

the training and validation process nor affects the hyper-parameter adjustments and can be used as a good benchmark against

the CNN results
:
a
::::
test

:::
data

::::
set.

:::
The

:::::::
training

::::
data

::
set

::
is
::::
used

::
to
::::::::
estimate

::
the

::::::
model

::::::::::
parameters.

::::::
Within

:::
the

::::::
training

:::::::::
procedure,

::
a

::::::::
validation

::::
data

::
set

::
is
::::
used

::
to

:::::::
prevent

::::
over

:::::
fitting

:::
and

::
to

::::::
assess

:::
the

:::::::
evolution

:::
of

::::::::::
performance

::::::::
indicators

::::::
during

:::
the

:::::
entire

:::::::
training310

:::
run

::
in

::::
steps

:::
of

:::
100

:::::::::
iterations.

:::::::::::
Furthermore,

:::
an

::::::::::
independent

:::
test

::::
data

:::
set

::
is

::::::::
necessary

::::
that

::::::
serves

::
as

:
a
:::::

truth
::::::
against

::::::
which

:::
the

:::::
model

::::::
results

:::::::
(applied

::
to

::::
data

::::
not

::::::::
contained

::
in

:::
the

::::::::
reference

::::
data

::::
set)

:::
and

::::
thus

::::
the

:::::
model

:::::::::::
performance

:::
can

:::
be

::::::::
assessed.

:::
As

::::::::
mentioned

:::::::
before,

::
we

::::
use

::::::::::
independent

:::
test

::::
data

:::
sets

::::::
where

:::
hail

::
is
:::::::
visually

:::::::
detected

:::
by

::::
three

::::::
experts

::::
(see

::::::
Fig. 9).

2.3.3 Hail detection and size estimation - training, validation and testing

A NVIDIA GeForce RTXTM 3060 Ti was used to efficiently train the Mask R-CNN model on the custom hail
::::::
training data315

set. This GPU model has 4864 CUDA (Compute Unified Device Architecture
::::::
(CUDA) cores and in total 8GB GDDR6 RAM

available. A default configuration of Detectron2 is used for a first estimate of
:
to
::::::::

estimate
:
a
::::
first

:::
set

:::
for the hyper-parameter

tuning. For the hail detection training the default backbone network (ResNet) was applied and the pre-trained model on
:::
We

:::::
started

::::
with

::
a
::::
base

:::::
model

::::
that

:
is
::::::::::
pre-trained

:::::
using the MS COCO data set used a Resnet and FPNcombination. The large

:::::
based

::
on

:::::::
ResNet

:::
and

:::::
FPN.

::::
The MS COCO data set consists of about 2× 105 annotated images with a total of 80 different object320

classes and it is thus an ideal starting point to train deep-learning models to recognize, label, and describe objects.

A set of 16 training model runs («run-0» to «run-15») going through several standard
:::::::
different

:::::::
training

:::::
runs

:
(
::::
run-0

::
to

:::::
run-15

:
)
:::::
were

:::::::::
performed

::
to

:::::
assess

:::::::
various

:
hyper-parameter combinations (s.

:::
see Table 1)were conducted on the GPU device

to find the most suitable trained model. Each run consisted of 3000 training iterations. With the use of 1 GPU loaded with
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Table 1. Overview of the performed variations of
:::::
Range

::::
tested

:::
for the 3 hyper-parameters: Learning rate (LR, 1row), γ value (2row

::
γ)) and

batch size (BS) per image(3row). The hyper-parameter combination of the model with the lowest validation loss after 3000 training iterations

are highlighted in red
::::
bold

:::
font.

LR 0.0001 0.00025 0.0005 0.001

γ 0.1 0.5

BS 128 256

:
.
::::
Here

:::
we

:::::
only

::::
vary

:::
the

:::::
three

:::::
hyper

::::::::::
parameters

:::::::
learning

::::
rate,

::::
the

::::::
gamma

:::::
value

::::
and

:::
the

:::::
batch

::::
size

:::
to

:::::
show

:
a
:::::::

concept
:::

of325

::::
proof

:::
for

:::::::::
automatic

:::
hail

::::::::
detection.

::::
For

:::::::
detailed

::::::::::
information

::::
about

:::
the

:::::::
concept

::::
and

::::::::
additional

::::::::
available

::::::::::
parameters,

::
we

:::::
refer

::
to

::::::::::::::::::::::::::::::
(Schmidhuber, 2015; Wu et al., 2023)

:
.
:::::
These

:::::::
training

::::
runs

::::
were

:::::::::
performed

:::
for

::::
each

::
of

:::
the

::::
150

:::::
image

::::
tiles

::
in

:::
the

:::::::
training

::::
data

:::
set.

:::::
Using

:
two images per batch and 150 training images in total,

::
on

::
1

:::::
GPU,

:
a
:::::
total

::
of 75 training iterations are needed for

::::::
batches

:::
are

::::::
needed

::::::
which

:::::::::
represents one epoch time. Thus 3000 iterations translate into

:
,
:::
i.e.

::
to

::::::
iterate

::::::
through

:::
all

::::::::
available

:::::
image

::::
tiles.

:::
We

::::
then

:::::::::
performed

:
40 epoch times for each of our performed runs. The number of epochs needed highly depends330

on the diversity of the data, and as ours consists only of one object class, the chosen 40 epochs are enough
:::::::
resulting

::
in

::
a

::::
total

::
of

::::
3000

::::::::
iterations.

The internal model evaluation period was set to
::::::
During

::
an

::::::::
individual

:::::::
training

::::
run,

:::
the

::::::::
validation

::
is

::::
done

:::::
every 100 iterations.

This means, that there are
:::::
Thus,

:::
for

:::
one

:::::::
training

::::
run

::::
with

:
a
:::::

total
::
of

:::::
3000

::::::::
iterations

:::
we

::::::
obtain

:
a
::::::::
temporal

::::::::
evolution

:::
of

:::
the

:::::
scores

:::::
along

:
30 available points along the iterations where the performance of the model is automatically back-tested against335

the validation data set
:::::
points. Figure 6 compares

:::::
shows

:
the progress of total and

:::
loss

:::
and

::::
the validation loss for the

::
all

:
16

performed training runs . The thick bold lines show the run which had
:::::::
training

::::
runs

:::::::::
performed.

::::
The

::::
bold

:::::
lines

::::::
depict

:::
the

:::
run

::::::::
exhibiting

:
the lowest validation loss after 40 training epochs

:::::
epoch

:::::
times. To chose the best model, we performed a more

detailed evaluation of the model runs by means of commonly used metrics in object detection. The accuracy of an object

recognition model depends on the quality and number of training regions, the input image data, the modelparameters, and the340

accuracy requirement threshold. Usually, the IoU (Intersection over Union) ratio is used as a threshold to determine whether a

predicted result is a true positive (TP ) or a false positive (FP )

::
To

::::::
assess

:::
the

::::::::::
performance

::
of

::
a
::::::
model,

::::::
diverse

:::::::
metrics

:::
are

::::::::
available.

::
A

:::::
single

:::::
score

::::
(i.e.

::::::::::
performance

:::::::
metric)

::::
does

:::::::
provide

::
the

::::::
model

:::::::::::
performance

::::
from

::
a
::::::
certain

::::::::::
perspective

:::
and

::::
thus

:::::::
different

::::::
scores

::::::
should

:::
be

::::
taken

::::
into

::::::::
account.

::
A

::::
score

:::::::::
compares

::
the

::::::::
predicted

::::::
result

::::
with

:::
the

::::
truth

:::::
based

:::
on

:
a
:::::::::
confusion

::::::
matrix

:::::::::::
(Wilks, 2011)

:
.
::
In

::::::
image

:::::::::::
classification

:::
the

::::::::
predicted

:::::
results

:::
of345

::
an

:::::::::
individual

::::::
feature

:::
(i.e.

::::::::
hailstone

::
in
::::

our
::::
case)

:::::::
usually

::::
does

:::
not

:::::::
exactly

:::::
match

::::
with

:::
the

:::::
truth

::::
(the

::::
same

::::::::
hailstone

::
in

:::
the

::::
test

:::
data

::::
set)

:::
but

:::
the

::::
area

::
of

:::::::
overlap

:::
can

:::::
vary.

:::
We

::::::::
therefore

:::
use

:::
the

::::::::::
Intersection

::::
over

::::::
Union

:::::
(IoU)

::::
ratio. The IoU ratio is usually

the overlap between the surrounding rectangle around a predicted object and the surrounding rectangle around the same object

in the reference annotation data set. In this study,
::::::
defined

::
as

:::
the

:::::
ratio

:::::::
between

:::
the

::::::
overlap

::::
and

:::
the

:::::
union

::
of

:::
the

::::::::
bounding

::::
box

::::::
around

:::
the

::::::
features

:::
in

:::
the

::::::::
predicted

:::::
result

:::
and

:::
the

:::::
truth.

::
In

:::
our

::::
case

:
we use the IoU retrieved from the binary mask areas and350

not from the surrounding rectangles. Following the standard COCO evaluation procedure, the
::::::
instance

:::::::::::
segmentation

:::::
mask

::::
(i.e.
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::
the

::::
one

:::::::::::
segmentation

:::::
mask

:::
for

::::
each

::::::::
individual

:::::::
feature)

::::::
instead

::
of

:::
the

::::::::
bounding

::::
box

::
to

:::::::
compute

:::
the

::::
IoU

:::::
ratio.

:::
The

::::
IoU

::::::
ranges

::::
from

:
0
::
to
::
1
:::
and

::
a

::::
ratio

::
of

:::
0.5

::
is

::::
used

::
to

:::::
define

::
a

::::::
correct

::::::::
prediction

::::
and

:::
thus

::::::::::
interpreted

::
as

:
a
::::
true

::::::
positive

:::::
(TP )

::::::
result.

::::::::
Predicted

:::::
results

::::
with

::
a
:::
IoU

::::
less

::::
than

:::
0.5

:::
are

::::
thus

::::
false

:::::::
positive

:::::
(FP )

:::
and

::
if

::
no

::::::
results

::
is

::::::::
predicted

:::
for

::
an

:::::::
existing

::::::
feature

::
in

:::
the

:::::
truth,

::
it

:
is
::::::::
depicted

::
as

::::
false

:::::::
negative

::::::
(FN ).

:::::::::
Following

:::
the

:::::::
standard

::::::
COCO

:::::::::
evaluation

:::::::::
procedure,

:::
the set of IoU ratios ranges from 0.5355

to 0.95 in steps of 0.05. The minimum IoU value for a matching detection (
:::
IoU

:::::
ratios

:::
for

::
a TP result) is 0.5.

The normal procedure when training a deep-learning model is to split the reference annotation data into a train and a test

set. Because we want the test data set to be locked down until we are confident enough about our trained model, we do another

division and split a validation set out of the train set. In this scenario we end up with three data sets. Usually we want to

compare how well the model is performing on the validation set during the training, in order to know when are we at risk of360

over fitting the model to the training data. In the end, the final evaluation of the model performance should be computed on the

test data set, as the model training was totally independent from it . Further we used the test set to investigate the discrepancies

between three professional experts, who annotated the hailstones in those images (s. Fig. 9).

The model «run-3» was selected for the final hail detection and size estimation. Every single tile image was pushed through

this Mask R-CNN model version («run-3») and the binary masks of all found hail objects were saved in separate Python365

structures linked to the individual images. Regarding the full orthophoto area (Fig. 5(a )), split into the 2156 tile images, the

Mask R-CNN model classified 18209 objects as hailstones. A few large objects (e.g. leaves) were wrongly classified as hail

and manually removed to guarantee a correct representation of the largest hail size bins in the distribution
:::::
ranges

::::
from

::::
0.5

::
to

::::
0.95

::
in

::::
steps

::
of

::::
0.05.

In pattern recognition, information retrieval, object detection and classification (machine learning)
:::::::
machine

:::::::
learning, pre-370

cision and recall (Eq. (1) and Eq. (2)) are standard performance metrics (Powers, 2020)that apply to data retrieved from a

collection or sample space. Precision [0,1] is a measure of result relevancy, while recall [0,1] is a measure of how many truly

relevant results are returned. A model system with high recall but low precision returns many identified objects, but most of

these objects are incorrectly labeled (False positive ) when compared to the validation labels.On the other hand, high precision

but low recall is just the opposite, where only few objects are identified and most them are labeled correct, when compared375

to the validation labels. An ideal system with high precision and high recall will return a realistic amount of positive results.

The
::::::::
commonly

:::::
used

:::::::::::::
(Powers, 2020).

:::::::::
Precision

::::::
depicts

:::
the

:::::::
number

::
of
::::

true
:::::::

positive
::::::

results
:::::::

divided
:::
by

:::
the

::::
total

:::::::
number

:::
of

::::::
positive

:::::::
results.

:::::
Recall

:::::
refers

::
to
:::
all

::::
true

::::::
positive

::::::
results

:::::::
divided

::
by

:::
the

:::::::
number

::
of

:::
all

:::::::
samples

:::
that

::::::
should

::::
have

:::::
been

::::::::
classified

:::
(i.e.

:::
as

:::::::
visually

::::::::
identified

:::
by

:::
the

::::::
experts

:::
in

:::
the

:::
test

::::
data

:::
set

:::
in

:::
our

:::::
case).

::::::::
Precision

::::
and

:::::
recall

::::
can

::
be

:::::::::
combined

::
in

:::
the

:
F1

score in Eq. (3) combines precision and recall metrics into one unified measure and is designed to handle imbalanced data380

effectively
:::::::::::::::::::::::::::::::::::::::::
(Van Rijsbergen, 1979; Goutte and Gaussier, 2005)

:
.
::::
The

:::
F1

:::::
score

::::::
results

::
in

::::::
values

::::
from

::
0
::
to

::
1

:::::
where

::
0
::::::::
indicates

::::::::
extremely

::::
poor

:::::::::::
performance

:::
and

::
1

:::::
refers

::
to

:
a
::::::
perfect

:::::::::::
performance

::
of

:::
the

:::::
model.
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Precision=
TP

TP +FP
(1)

Recall =
TP

TP +FN
(2)

F1 = 2 · Precision ·Recall

Precision+Recall
(3)385

With regard to Fig. 7, a reasonable compromise between high precision and high recall values for «run-3» was found at

a confidence threshold of around 0.9. At higher threshold values the gradient of the recall decrease starts to increase.The

maximum of the F1 score is not reached there but is reasonably close and some compromise has to be taken. The curve

signatures are found to be similar for the validation and
::::
Here

:::
we

::::::::
prioritize

:::
the

::::::::
precision

:::
and

::::
aim

::
at

::
a

::::
large

::::::
portion

:::
of

::::::
correct

:::::::
detection

:::::
(TP )

:::
of

:::::::::
hailstones

:::
and

::::
low

::::
false

:::::::
positive

::::::
results

::::
(i.e.

::::
hail

:::::::
detected

:::
by

:::
the

::::::
model

:::
but

:::
not

:::::::
present

::
in

:::
the

:
test data390

setresults, however the latter are slightly lower either by chance or the fact that the test data set was not used to find the

optimal MASK R-CNN model run. At the model confidence level
:
).

:::::
Thus,

::
as

::
a
::::::::
trade-off

::::
some

:::::::::
hailstones

:::
are

::::::
missed

::::::
(FN )

:::
and

:::
the

:::::::
selected

::::::::
threshold

::::
does

:::
not

::::::
exactly

::::::::::
correspond

::
to

:::
the

:::::::
optimal

:::
F1

:::::
score.

::
A

:::::::::
reasonable

:::::::::::
compromise

:::::::
between

::::::::
precision

:::
and

:::::
recall

::
is

:::::
found

::
at

:
a
::::
hail

:::::::::
confidence

::::::::
threshold of 0.9

::
for

:::::
run-3

::::
(see

::::
Fig.

::
7)

:::::
where

:
F1 is close to 0.8 (0.85) when evaluating

::::::
against the test (validation) data set. The appearance of 4

:::
four groups in the two plots of Fig. 7 is due to the quadruple variation395

of the learning rate
:::
four

:::::::
different

:::::::
learning

::::
rate

:::::
values

::::::
tested (Table 1).

Looking deeper into
:::::
From

:::
the

::
16

:::::::
different

:::::::
training

::::
runs,

:::::
run-3

::
is

::::::
chosen

::
as

:::
the

:::::
model

::
to

:::::
apply

::
to

:::
the

:::::::::
orthophoto

::
for

:::::::::
automatic

:::
hail

:::::::::
detection.

:::::
Thus,

:
(
:::::
run-3)

::::
was

:::::::
applied

::
to

:::
all

::::::::
available

:::::
image

:::::
tiles

::::::
(2156)

:::
and

:::
the

::::::::
instance

:::::::::::
segmentation

::::::
masks

::
of

:::::
each

:::::::
detected

:::
hail

::::::
object

::::
was

:::::
saved

::
in
::::::::

separate
::::::
Python

:::::::::
structures

:::::
linked

:::
to

:::
the

:::::::::
individual

:::::::
images.

::
In

:::::
total,

::::::
18209

::::::
objects

:::::
were

:::::::
classified

:::
as

::::
hail.

::
A

:::::
visual

:::::::::
evaluation

:::
of

:::
the

::::::
largest

::::::
objects

:::::::
revealed

:::::
some

::::::
leaves

:::
that

:::::
were

:::::::::
incorrectly

::::::::
classified

:::
as

:::
hail

::::
and400

:::::::
therefore

::::::::
manually

::::::::
removed

::
to

::::::::
guarantee

:
a
::::::
correct

::::::::::::
representation

::
of

:::
the

::::::
largest

::::
hail

:::
size

::::
bins

::
in

:::
the

::::::::::
distribution.

:

::
In the validation data set consisting of

:::
with

:
249 annotated hailstones, we find a TP number of 237 and a FN number of

:::
are

:::
TP

:::
and

:
12 which gives a miss rate or

::
are

::::
FN

::::::::
resulting

::
in

:
a
:
false negative rate (FNR= FN/(FN +TP )) of 4.8%. For the

test data set (
::::
with 215 hailstones)

:
,
:::
198

:::
are TP reaches 198, FN count

:::
and 17 which yields to FNR= 7.9

::::
FN

:::::
which

:::::
yields

::
a

:::::
FNR

::
of

:::
7.9%. The

::
An

:::::::::
additional

::::::::::
performance

::::::
metric

::::
used

::
to

:::::::
describe

:::
the

::::::::
accuracy

::
of

:
a
::::::
model

::
is

::
the

:
mean average precision405

, that is calculated over the whole IoU range, for the
::::::
(mAP).

::
In

:::::
short,

:::::
mAP

::::::
depicts

:::
the

:::::::
average

::::::::::
relationship

:::::::
between

::::::::
precision

:::
and

:::::
recall

::::
over

::
all

::::
IoU

::::::
classes

:::::
(from

:::
0.5

::
to

:::::
0.95).

::::
The

:::::
mAP

:::
for

:::
the

::::::::
validation

:::::
(test)

:::
data

:::
set

::::::
results

::
in

::::
0.53

:::::
(0.50)

:::
for

:::
the

:
90%

hail confidence threshold reaches 0.53 (validation data set), respectively 0.50 (testdata set). Figure 8 gives an advanced view

on
:::
hail

::::::::::
confidence

::::::::
threshold.

::
In

::::::::
addition,

:::::
Figure

::
8
:::::
shows

:
the number distribution of the IoU of the

::
for

::
all

:
true positive matches

(
:::
hail confidence level Ci ≥ 0.9) , again for both

:::::
within

:
the validation (blue bars) and

::
the

:
test (green bars) data sets. A large

:::
set.410

:::
The

:
majority of the hail IoUs lie above 0.7,

:::::::::
indicating

:
a
:::::
good

:::::
match

:::::::
between

:::
the

::::::::
predicted

::::::::
hailstones

::::
and

:::
the

::::
truth. For the test

data set a bi-modal distribution shape is found with peaks around 0.76 and 0.86.

As mentioned earlier, a pre-evaluation of the performance of the model capability to produce a reliable HSD has been done

by generating two more reference data sets from the 33 test tile images. This also gives the opportunity for a certain evaluation
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of the references themselves by analyzing the differences between the independent hail annotations. From
::
in

:::
the

:::::::::
beginning,

:::
the415

:::
test

::::
data

::
set

::
is

:::::::
visually

::::::::
classified

::
by

:::::
three

::::::::::
independent

::::::
human

:::::::
experts.

::::
This

:::::
allows

::::::::
assessing

:::
the

::::::::::
uncertainty

::
of

:::
the

:::
test

::::
data

:::
set

:::::::
resulting

::::
from

:::
the

::::::
visual

:::::::
detection

:::
of

::
the

:::::::::
hailstones.

::::
The

::::
hail

:::
size

:::
(in

:::::
terms

::
of

:::::
major

::::
axis

::::::
length)

::
is

::::::
derived

:::::
from the annotated

polygons
::
in

:::
the

:::
test

::::
data

:::
set

:::
and

:
the sizes are derived and together with the model results the comparison between four hail

size distributions is shown in Fig. 9. For all shown hail size distributions later,
:::::
model

::::::
output.

::::
The

:::::::
resulting

:::::
HSD

::::
with a bin size

of 3mm is taken.The distributions from the model,
::
are

::::::::
presented

::
in

::::::
Fig. 9.

::
It

:::::
shows

::::
that expert B and expert C peak in

:::
have

::
a420

::::
peak

::::::
number

:::
of

::::::::
hailstones

::::::
within

:
the 6–9mm major axis hail size bin, where also the median (9 ) is found. Against this, the

peak
::::
bins.

::::
The

:::::::
median

:::::
value

::
of

:::::
these

::::::
experts

::::::::::
assessments

::
is
:::::
10.5.

::
In

:::::::::::
comparison,

:::
the

::::::
highest

:::::::
number

::
of

:::::::::
hailstones

:
and the

median (10.5 ) slip one bin to the right in case of the distribution based on expert A annotations
::::
value

::
of

::::::
expert

:
A
:::

are
::::::
found

::
in

::
the

::::
next

::::::
higher

:::
bin

::::
class. Overall the discrepancies are largest for the smallest hail major axis size bin (3–6mm). This probably

indicates that the orthophoto resolution limits the
::
is

:
a
:::::::
limiting

:::::
factor

:::
for reliable identification of those

::::
such

:
small hailstones by425

human vision. The clear visibility of many small hailstones suffers from a reduced lightness due to clearer ice and a translucent

background . In the main results
:::::
visual

:::::::::::
classification

::
as

::::
this

:::
size

:::::
class

::::::
suffers

::::
from

:::
low

:::::::::
brightness

:::
and

::::::::::
translucent

::::::::::
background

:::
(see

::::
also Sect. 3 and discussions (Sect. 4)we will elaborate on the lightness issue.

3 Results

In this section the most important results are presented by means of the complete time-integrated
::
we

::::
first

::::::
present

:::
the

::::::::
resulting430

hail size distribution from the 750 orthophoto area of the first of five drone-based hail survey flights after the passage of the

supercell on June
:::
first

:::::
flight

:::::::::
performed

::
on

:
20 , 2021. The derived distribution is very smooth and provides, for this specific

case, a more comprehensive picture of the HSD than with smaller devices, especially of its right tail (largest hailstones).
::::
June

:::::
2021.

:::
We

:::::::
compare

:::
the

::::
HSD

::::::::
retrieved

::::
from

:::
the

:::::::::::::::
photogrammetric

:::::::
approach

:::::::::
presented

:::::
above

::
to

:::
the

::::
HSD

::::::::
retrieved

::
by

::::
four

:::::
close

::
by

::::
hail

::::::
sensors

:::::::::
(Sect. 3.1).

::::::::::::
Subsequently,

:::
we

:::::
assess

:::
the

::::::::
sampling

:::::
error

::
of

:::
hail

:::::::
sensors

::::::
having

::
an

::::::::::::
observational

:::
area

:::
of

:::
0.2m2435

::::
with

:
a
:::::::::
sub-sample

:::
of

:::
data

::::::::
retrieved

::::
from

:::
the

:::::
drone

::::::::::
observation

::::
from

:::
an

:::
area

:::
of

:::
600m2

:::::::::
(Sect. 3.2).

::
In

::::::::
Sect. 3.3,

:::
we

:::::::
estimate

:::
the

::::::
melting

::::
rates

:::
of

:::
hail

:::
on

::
the

:::::::
ground

:::::
based

::
on

:::
the

::::::::
evolution

::
of

:::
the

:::::
HSD

::::
from

:::
all

:::
five

:::::::::
successive

::::::
flights.

3.1 Estimation of the HSD

3.1
:::::::::

Estimation
::
of

::::
the

::::
hail

:::
size

:::::::::::
distribution

The number distribution (logarithmic view) of the hailstone major-axis lengths is shown in the histogram of Fig.
::::
HSD

::::::::
estimated440

::::
from

:::
the

:::::
aerial

::::::::::::::
photogrammetric

::::
data

::
is

:::::
shown

:::
in

:::
Fig. 10

::
10.

::::
The

:::::::::
distribution

::::::::
contains

:
a
::::
total

:::::::
number

::
of

:::::
18209

:::::::::
hailstones,

::::
and

::
the

::::
size

:::::
refers

::
to
:::
the

::::::
major

:::
axis

::::::::::
determined

:::
by

:::
the

:::::::
machine

:::::::
learning

:::::::::
algorithm.

:::
45

::::::::
hailstones

:::
are

:::::
larger

::::
than

:::
30mm

::::
with

:::
the

:::::
largest

::::
size

:::::
being

:::::::
39mm.

:::
The

:::::
mode

:::
of

:::
the

:::::::::
distribution

::::
lies

::
in

:::
the

::::
6–9mm

:::
bin.

::::
Only

::
a

:::
few

:::::::::
hailstones

:::
are

:::::
larger

::::
than

:::
21mm.

The closest automatic hail sensor HS2 recorded 9 hailstone impacts with a maximal diameter
::::::
impacts

::::::
within

::
3min

:::
and

::
a

::::::::
maximum

::::
hail

:::::::::
dimension of 14mm in a time span of 3

::::::
(Fig. 4).

::::
The

:::::::
duration

::
of
::::

the
::::
event

::
at
:::
the

:::::::
location

:::
of

:::
the

:::::
drone

::::::
survey445
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:::
was

:::::
∼ 9.5min. Relatively seen, much more small hailstones were measured by

::::::::
Estimated

:::::::
duration

:::::
based

::
on

:::
the

:::::::::::
neighboring

:::
hail

:::::::
sensors

:::::
range

::::
from

::
3min

::
for

:
HS2(likewise for HS3 and

:
,
::
13min

:::
for HS4 ) then by the drone

:::
and

:::
16min

::
for

::::
HS3. The

up-scaled density
::
of

:::::::::
hailstones

:::::::
detected

::
by

:::
the

::::
HS2

::::::
sensor is 45 hailstones per m2, compared to 24 hailstones per m2 (average

) for the orthophoto hail survey area. Possible reasons include, that drone measurements are affected by complete melting of

small hailstones and the overlooking of hailstones due to too low lightness or hiding in the grass surface. The spatial variability450

of the hail size distribution can also have an influence, given that the samples were not taken at the exact same location. Our

data illustrates the presence of quite large time span differences for the impacts on the sensors. HS3 recorded a hail duration

of 52.5 (probably it was hit by another hail cell shortly after the passage of the main supercell). The hail duration at HS4 (13 )

was closest to the one estimated at the soccer field: ∼ 9.5 .

The HSD measured by drone-based aerial photogrammetry is shown on Fig. 10. It is based on 18209 hailstones, which is455

substantially larger than any sample measured by the near-by automatic hail sensors (Fig. 2(d)). Thus, it provides a much more

comprehensive picture of the shape and upper tail of the HSD. In the orthophoto area most hail objects (6663) were classified in

::
on

:::::::
average

::
as

:::::::
retrieved

::::
from

:::
the

:::::
drone

:::::
data.

:::
This

::::::
might

::
be

::::::
related

::
to the 6–9 bin. Within the large survey area of

::::::
inherent

::::::
spatial

:::
and

:::::::
temporal

:::::::::
variability

::
of

::::
hail

::
as

:::
the

::::::::
automatic

::::
hail

:::::
sensor

::
is
::::::
located

::
in
::
a
:::::::
distance

::
of about 750 , 45 hailstones are found to be

greater than 30
:::
770 and the largest hailstone size reached 39mm. These largest hail sizes are not captured by the hail sensors, as460

large hailstones are more sparsely distributed. In the subsequent Section 3.2 we try to asses the sampling error of hail sensors

by showing how many random virtual placed hail sensors would capture hailstones larger than a certain threshold and also the

probability for a no-hit event is investigated.

We note that the mean lightness value m
::::::::::
downstream

::
of

:::
the

::::
area

::::::::
observed

::
by

:::
the

::::::
drone.

::
In

::::::::
addition,

:::
the

::::::
sensor

::::::
detects

:::
the

:::
hail

:::::::
directly

::::::
during

:::
the

:::::
event,

:::::::
whereas

::::
the

:::::
drone

::::
data

::
is

::::::::
collected

::::
after

:::
the

::::
hail

:::::::
stopped

::
to

:::::
avoid

:::
the

:::::
drone

:::::
being

:::::::::
damaged.465

::::::::
Therefore,

:::
the

::::::
drone

::::
data

:
is
:::::::

affected
:::

by
:::::::
melting

::::::::
processes

::::
and

::::
thus

::::
tends

:::
to

:::::::::::
underestimate

:::
the

::::
hail

::::
size

:::
and

::
in
:::::::::

particular
:::
the

::::::
number

::
of

:::::
small

:::::::::
hailstones.

:::::::::::
Furthermore,

:::::
small

:::::::::
hailstones

:::::
might

:::
not

::
be

::::::::
detected

:::::
within

:::
the

:::::
drone

::::
data

::
as

::::
they

::::::
might

:::::::
partially

::
be

::::::::
obscured

::
by

:::
the

:::::
grass

::::
and

::
by

::::
low

:::::::::
differences

::
in

:::
the

::::::::
lightness

::::::
values

::::::::
compared

::
to

:::
the

:::::::::::
background.

::::::::
Lightness

::::::
values

:::::
come

::::
from

:::
the

::::
HSL

:::::
(Hue,

:::::::::
Saturation

::::
and

:::::::::
Lightness)

:::::
color

:::::
space

:::
and

:::::
range

:::::
from

:
0
:::

to
::::
255.

:::::
Mean

::::::::
lightness

:::::
values

:
(Fig. 10, orange

line) increases with increasing hail size. The lightness value is shown here as a digital value in the HSL color space. The470

theoretical maximum is 255 and the highest value is just below 250. For the very small hail the mean lightness shrinks
:::
for

::
the

::::
3–6mm

::::::::
hailstones

::::
drop

:
below 180 and thus becomes gradually

:::::
which

::
is similar to the lightness of the background. Edge

detection methods based on the lightness value
:::::::::
background.

::::
Size

:::::::::
estimation

:::::
based

::
on

:::::
edge

:::::::
detection

::::::::
methods

:::
that

:::
use

::::::::
lightness

:::::
values

:
alone, such as proposed in the work of Soderholm et al. (2020), will have difficulties in finding the correct hail pixel

edges
:::::::::::::::::::
Soderholm et al. (2020),

:::
can

::::
thus

:::
not

:::
be

::::::
applied.475

The same drone-based HSD as in Fig. 10 is shown again with
::
as

:
a
::::::::
function

::
of

:
the probability density in Fig 11(a). There

additionally the shape is approximated by a
::
A gamma probability distribution function (PDF) . In general, the gamma PDF

was also found to be most suited to hailstone
:
is
::::
used

::
to
:::::::::::

approximate
:::
the

::::::::
empirical

:::::
HSD.

::::
The

::::::
gamma

:::::
PDF

:
is
:::::
most

:::::::
suitable

::
to

::::::::::
characterize

::
the

::::::::::
distribution

::
of

:::
the

::::::::
hailstones

:
major-axislengths by other case studies, e.g. Ziegler et al. (1983); Fraile et al. (1992)

. In our case ,
:::

as
::::::
shown

::
by

:::::::::::::::::
Ziegler et al. (1983)

::
or

::::::::::::::::
Fraile et al. (1992).

:::::::
Overall,

:
the gamma PDF slightly underestimates the480
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probability density of the peak, but still a quite smooth fit is achieved. The median size was found to be
::::::
closely

:::::::
follows

:::
the

::::::::
empirical

:::::::::
distribution

::::::::
retrieved

:::::
from

:::
the

:::::
drone

::::
data

::::
with

:
a
:::::::
median

::
of

:
9mm (s.

:::
and

::
a

:::::
slight

:::::::::::::
underestimation

::
of

:::
the

:::::
peak

::::
(see

Fig. 11(a)). The probability density of the
:::::::
projected hail aspect ratios shows,

:::::::
indicate that the majority of hailstones show

::::
have

equal axis lengths (Fig. 11(b)) .
:::
and

:
75% of the hailstones have

::::::::
projected aspect ratios higher than 0.75.

3.2 Assessment of sampling
::::::::
Sampling

:
error of

:::::
within

::::::::::
automatic hail sensors using

:::::
sensor

::::
data

:::::
with

::::::
respect

::
to485

drone-based data

In the previous section, we showed that drone-based aerial photogrammetry can provide a more comprehensive picture of the

tail of the HSD than hail sensors, due to its larger sampling area. We note that the HSD is considered at the scale of a single

hail cell. The simulation performed in this sectionassumes that the full HSD is known and given by the drone-based hail data.

Based on this assumption, we investigate
:::
this

:::::::
section,

:::
we

:::::::
estimate

:
the probability that a randomly placed hail sensor on the490

orthophoto area is not hit at all or
:
is
:
hit by a stone larger than a given size. To do so, we randomly placed

:::::::
hailstone

::
of

::
a
::::::
certain

::::
size. 10000 virtual areas

:::
hail

:::::::
sensors

::::
with

::
a
:::
size

:::
of

:::
0.2m2

::::
were

::::::::::
distributed

:::::
across

:::
an

::::
area

::
of

::::
600m2

:::::
within

:::
the

::::::::::
orthophoto

(blue circles in the orthophoto of Fig. 5(d))of the same size as the hail sensor (0.2 ) on a 600 area from the orthophoto. For

each virtual area
:::::
sensor, the HSD was derived . The

:::
and

:::
the individual Kernel density estimates (KDE, gray lines) are plotted

:::::
shown

::
in

:
Fig. 12(a). The KDE could be

:::
was

:
obtained from 7817 virtual sensor areas. The remaining 2183 sensors had too few495

impacts and the KDEcould not be estimated
::
did

::::
not

::::
have

::::::
enough

::::::
virtual

:::::::
impacts

::
to

:::::::
estimate

::::
the

::::
KDE. The distribution from

the whole
:::::
entire

::::
600m2 area is shown by the blackline

::
in

:::::
black, and the respective quantiles (Q25, Q50 and Q75) from all the

virtual sensors as red lines
::
in

::::
blue,

:::
red

::::
and

::::
green.

The data from the large random generated virtual sensor samples reveals that
:::::
Within

:::
all

:::::
virtual

::::
hail

::::::
sensors

::::
only

::
45

:::::::::
hailstones

::::
with

:
a
:::
size

::::::
larger

:::
than

:::
30mm

:::
are

:::::::
observed

::::
and

:::
thus

:
only 0.3% (34 out of 10000virtual sensors) record hits larger than 30mm,500

:
)
::
of

:::
the

::::::
virtual

:::::::
sensors

::::::
exhibit

::
an

:::::::
impact

::
of

::::
such

:::::
large

::::
hail.

:
9.9% (988sensors) record hits

:
)
::
of

:::
the

::::::
virtual

:::::::
sensors

:::::::
observe

::::::
impacts

:::::
from

::::
hail

::::
with

::
a

:::
size

:
larger than 20mm and 65.8% (6576sensors) record hits

:
)
:::::
from

:::
hail

:::::
with

:
a
::::

size
:
larger than

10mm. Moreover, the probability of a no-hit for an individual sensor was found to be about
:::
that

:
a
::::::
sensor

::::::
records

:::
no

::::::
impact

::
at

::
all

::
is 4.7%. While we found 45 hailstones > 30 , the probability for a sensor to record such a large hailstone is only 0.3 .

In Fig.
:::::
Figure 12(b) a distribution calculated from the largest hits on

:::::
shows

:::
the

:::::::::
distribution

:::
of

:::
the

:::::
largest

::::::::
hailstone

::::::::
observed505

::
by

:
each virtual sensoris shown with markers of certain percentiles. The median value reaches 12mm and the 95th percentile

is at a major axis length of
::::
(Q95)

:::::::::::
corresponds

::
to 24mm.

Figure 12(c) shows the histogram from
:::::::::
distribution

::
of

:
the number of hits per virtual sensor areas

::::::::
hailstones

::::::::
observed

::
by

:::
all

:::::
virtual

::::
hail

::::::
sensors and compares it with the point measurements of the 4 closest

::::::
number

::
of

::::::::
observed

::::::::
hailstones

::::::
within

:::
the

::::
four

:::::::
physical hail sensors. The locations of those sensors in context with the drone observations on the soccer field is shown on the510

map in Fig. 2. All those sensors were crossed by the
::
3.

:::
All

:::::::
physical

::::
hail

::::::
sensors

::::
were

::::::
within

:::
the

:::
hail

::::
path

::
(100% POH region

(
:
at

:
1× 1 km resolution)of the hailstorm. Regarding the 600

:
.

:::
The

:::::::
highest

:::::::::
probability

:::
(22 area the probability for 3 hail impacts on a small sensor area was highest (c.%

:
,
:::
see

::::
peak

:::
of

::::::::
histogram

::
in

::::
Fig. peak of the histogram ). Zero hits

:::::
12(c))

::
is

:::::
given

::
by

::
3
:::::::
impacts

::
on

::
a
::::::
virtual

::::::
sensor.

:::
The

::::::::::
probability

:::
for

::::
zero
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::::::
impacts

:
(e.g. HS1sensor, cyan line) were more likely than

:
is
::::
4.7%

:::
and

:::
the

:::::::::
probability

:::
for

:
9 or 10 as recorded by the

::::::
impacts515

:
(HS2 sensor (blue line) and HS4sensor (red line). The HS3 sensor towards the SSW with 33 impacts seems to be an outlier

here. Very likely, the HS3 sensor was hit by a second hail cell later, because the time interval between the first and the last

impact was 52.5 , compared to 3 at HS2 and 13
:
,
::::
blue

::::
and

:::
red

::::
line,

:::::::::::
respectively)

::
is
::::
less

::::
than

::
2 at HS4. The %.

:::
32

:::::::
impacts

::::
were

::::::::
recorded

::
by

:::
the

:::::
third

:::::
sensor

::::::
(HS3),

::::::
which

::
is

::::::
higher

::::
than

:::
the maximum number of hits from the 10000 random sensor

placements is
::::::
impacts

::
(12. But one must be aware that an unknown number of small hailstones were already completely melted520

andnot available in the data set for this investigation with the consequence of a biased histogram towards fewer hail impact

numbers
:
)
:::::
within

:::
all

:::::
virtual

:::::::
sensors.

::::
This

::::::::
indicates

:::
that

:::
the

::::::
spatial

:::::::::
variability

:::::
might

::::
play

::
an

::::::::
important

::::
role

::::::
and/or

::
the

:::::::::
limitation

::
of

:::
the

:::::
drone

:::
data

:::::::::
regarding

:::
the

::::::
melting

:::::::
process

::::
prior

::
to

:::
the

:::::
flight

:::::
might

:::::
affect

:::
the

:::::::::
estimation.

3.3 Melting on the ground and the impact
:::::::::::
implications on the estimation of the HSD

:::
hail

::::
size

::::::::::
distribution

:::::::::::
estimations

The use of
:
A
::::::
major

::::::::
limitation

::
of

:::
the drone aerial photogrammetry for measuring hailstones has a drawback - the drone cannot525

be flown until the hailstorm has ended. This delay causes a time gap in measuring the hailstones, allowing them to melt on

the ground
:
is

:::
its

:::::
timing

:::::
with

::::::
respect

::
to

:::::::
impact.

::::
Hail

::::
from

:::
the

:::::::::
beginning

::
of

:::
the

:::::
event

::
is
::::
thus

:::::::
already

:::::::
affected

::
by

:::::::
melting

::::
and

:::::::
decrease

::
in

::::
size

::::
until

:::
the

:::::
drone

::::::::::
observation

:::
can

::::
take

:::::
place. In this section, we try to estimate

:::::::
quantify the impact of melting

by comparing the data from five successive drone flight missions, where
:::::
flights.

::::
This

::::::
allows

::
to

:::::::
estimate

:
the temporal evolution

of the HSDcould be monitored. As equally sized areas are important for this investigation, we decided to crop the area of530

the orthophotos to the marked soccer center circle. This procedure was a compromise because a one to one assignment of all

individual hailstones between the orthophotos was not feasible in a reliable way due to small misalignments and changes in
:
.

:::::
Figure

:::
13

::::::::
illustrates

:::
the

:::::
shape

::::::::
evolution

::
of

:::
two

:::::::::
prominent

::::::::
hailstones

::::::
during

:::
the

:::::::
melting

::::::
process.

::::
Due

::
to

:::::
slight

:::::::::
deviations

::
in

:::
the

::::::
derived

::::::::::
orthophotos

:::
and

:::
the

:::::::
melting

:::::::
process

:::::
itself, the location of the

::
the

:
center hail pixel due to the melting and differences

in the orthophotos. To illustrate this, we show the shape evolution for the five time stamps (s. Table 2) of two large, prominent535

hailstones in Fig. 13. Those hailstones shrink from initially 33 to 21 , respectively 25.5 , during the course of 1119
:::::::
changes

:::
and

:::::
leads

::
to

::::::::::::
misalignments

:::
for

:::
an

:::::::::
individual

:::::::
hailstone

::::::
across

:::
the

:::::::::
successive

::::::
flights.

:::::::::
Therefore,

:::
we

:::::
only

:::
use

::
a

:::::
subset

:::
of

:::
the

::::::::::
orthophotos

:::
and

:::::
select

:::
the

::::
area

:::::
within

:::
the

::::::
soccer

:::::
center

:::::
circle

::::::
which

:::
can

::
be

:::::::::::::
unambiguously

::::::::
identified.

With a radius of 10 yards (9.15 ), the
::::
The area of the soccer center circle

::::
(263m2)

:
is well defined and reaches 263

::::
with

:
a
:::::
radius

:::
of

::::
9.15 . The fact that this area was covered in all 5 drone flights makes it an ideal start point to deeper investigate540

the melting process. With this we are able to get a first idea how much the upper tail of the distribution degraded and thus

approximate better the ground truth of maximal hail sizes. A first observation tells us, that m.
::::::
Within

:::::
18.65

::::::::
minutes,

:::
the

::::
time

:::::::
between

:::
the

:::
first

::::
and

:::
the

:::
last

:::::
drone

:::::
flight,

:
the number of hailstones is roughly reduced

::::::::
decreased

:
by 64,% in the soccer center

circle (s.
:::
(see

:
Table 2)from the first to the fifth hail survey. The evolution of the Kernel density estimation for all five orthophoto

soccer center circle cut outs is once shown with normal and logarithmic y-axis
::::
KDE

::::::::
retrieved

::::
from

:::
all

::::::::
individual

:::::
drone

::::::
flights545

:
is
::::::
shown

:
in Fig. 14. From the black to the red curve we see how the peaks and tails degrade over the distinct time frames. The

peak density decreases from more than 0.038 to 0.017, while moving slightly leftward towards smaller hail size bins. Tracing

certain plateaus in the different colored distributions,
:
A
:::::
clear

::::
shift

::
of

:::
the

::::
peak

::::
and

:::
the

:::::
upper

:::
tail

::
to

::::::
smaller

::::::
major

:::
axis

:::::::
lengths
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Table 2. Time slots in UTC, when the aerial pictures of the soccer center circle (263m2) were captured for the five drone mapping flights.

The drone image capture intervals with the camera last between 198 and 200 . The time differences between the sequence of orthophotos are:

307 , 273 , 268 and 271 . From the first to the last orthophoto 1119 s (18min, 39 s) passed. The last column gives the number of hailstones

detected within the soccer center circle for each of the five orthophotos
:::::
elapsed.

Capture series Start [UTC] Stop [UTC] Capture interval [s] No. hail
::::::
Number

::
of

:::::::
hailstones

1 14:37:59 14:41:19 200 3925

2 14:43:06 14:46:25 199 3077

3 14:47:39 14:50:59 200 2511

4 14:52:07 14:55:27 200 1962

5 14:56:38 14:59:56 198 1411

:::
can

::
be

:::::::::
observed.

::::
The

::::
shift

::
of

:::
the

::::::::
plateaus

::
on

::::
the

:::::
upper

:::
tail

:::::::
indicate

:
melting rates in the order of magnitude of 0.5 can be

deduced. This is supported by the more accurate results from an individual tracking of 48 hailstones of different initial sizes.550

The melting rate range, that was observed for the different hail size bins, lied in average between 0.3–0.5mmmin−1. The

sample size of 48 hailstones however is much too small to make assumptions on melting speed in relation to the initial hail

size.

By assuming a melting rate of 0.5 and a temporal delay of 9.5 (
:::::
Using

::::
this

::::::
melting

::::
rate

::::::::
estimate

:::::::
together

::::
with

:::
the

:
time

difference between start of hail and drone image capturing) for i.e. the largest
::
the

::::
start

:::
of

:::
the

::::::::
hailstorm

::::
and

:::
the

:::
first

::::::
drone555

:::::
flight,

:::
we

::::
infer

::::
that

:::
the

:::::
initial

::::
size

::
of

:::
the

::::::
largest

:::::::
captured

:
hailstone (39mm) , an initial size of rounded

::::
was 44mmcould be

expected, which is closer to the result of MESHS (63 ). Most crowdsourced reports in the vicinity of the soccer field indicated

sizes of a 5
::::
from

::
30 coin (∼ 3mm

::
to

::
50 ). Golf-ball sizes (∼ 5cm) were also reported a few kilometers to the NE of the soccer

field (s.mm
:::
and

:::
the

:::::::
MESHS

:::::::
estimate

::::
was

:::
63mm

:::
(see

:
Fig. 2(b)). Immediate on site measurements

:::
On

:::
site

::::::::::::
measurements

:::
by

::
the

::::::
storm

::::::
chasers

:
during the hail event revealed maximal hail diameters between 4 and 5

::::::::
maximum

::::
hail

:::::::::
dimensions

::::::::
between560

::
40

:::
and

:::
50mm as well.

4 Discussion

Hail forms through
:
A
::::::
major

::::::::
challenge

:::
for

::::::::::
drone-based

::::::::::::::
photogrammetry

::
of

::::
hail

::
is

::::::
related

::
to

:::
the

:::::::::
appearance

:::
of

:::
the

:::
hail

::::::
within

::
an

::::::::::
orthophoto.

::::
The

::::::::
hailstones

:::::
need

::
to

:::::
show

::::::
distinct

::::::::::
differences

::::
from

:::
the

:::::::::::
background.

::::
This

::
is
:::
not

:::::::
always

:::
the

::::
case

::
as

::::
hail

::
is

::::::
formed

::
by

:
a combination of dry and wet growth processes, which can lead to varying densities and appearances in the ice.565

Dry growth results in bubbles and irregularities in the ice
:::::::
produces

:::::
high

:::::::
densities

::
of

::::::::::
microscopic

:::
air

:::::::
bubbles that scatter light,

while wet growth causes liquid to soak into gaps and form a clearer and higher-density
:::::::
accretes

::
on

:::
top

::
of

:::::::
existing

:::::
outer

:::
ice

::
to

::::
form

::::::
clearer ice. Hailstones can alternate between these growth

::::
grow

::
in

::::
both

:
regimes, leading to alternating layers of cloudy

and clear ice (Allen et al., 2020; Kumjian and Lombardo, 2020; Brook et al., 2021). For the detection and size estimation of
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hail stones in image data, these facts are of relevance
:::::
Thus,

:::
for

::::::::
hailstones

::::
with

::::
high

:::::::::::
transparency

:::
the

:::::::
approach

:::::
used

::::
here

:::::
might570

:::
not

::::
work.

In a first step, a pure
::::
First,

:
a
::::::

simple
:
computer vision approach without the use of neural networks

:::::::
(without

:::::
neural

:::::::::
networks)

was tested to extract the binary
::::::::::
segmentation

:
hail masks. The approach was based on lightness thresholds, morphological

transformations and watershed algorithms (Najman and Schmitt, 1994) for image segmentation within OpenCV (Bradski,

2000). The success and reliability of this approach highly depended on the visual appearance of the hailstones. For larger sizes575

it worked well, but with the decreasing lightness of the small hailstones
:::
hail

:::::::::
exhibiting

::::::
distinct

::::::::
lightness

::::::::
difference

:::::::::
compared

::
to

:::
the

::::::::::
background,

::::
this

:::::::
approach

::
is
:::::::::
promising.

::::
But

:::
for

:::::
small

::::::::
hailstones

:::::::::
exhibiting

:::::
lower

::::::::
lightness

:::::
values

:
(Fig. 10)the method

produced very poor results like
:
, the CV-based edge detection (s.

:::
see Sect. 1 and 5) . It could be different with the appearance of

hail
:::::
failed.

:::
For

:::
hail

::::::
events

::::
with

:::::::
different

:::::::::::::
characteristics,

:::
e.g.

::::
with

::
a
::::
high

:::::::
number

::
of

:::::
small

::::::::
hailstones

::::
that

::::::::
aggregate

::
in

:
clusters

on the ground, where algorithms based on watershed
:::::::::
watershed

:::::::::
algorithms could retrieve more reliable information, but this580

needs to be tested.

In a second step
::::::
Second,

:
a deep-learning model (Mask R-CNN) was tested. By now, the training of this model consisted

of only
:::
We

::::
used

:
one single hail class . Performance wise, it might be worth to check if an inclusion of different

:
to
:::::

train
:::
the

::::::
model.

::::::::::
Additional hail size classes can

:::::
might improve the hail predictions and mask shapes. For a simple check we propose

to simply start with two classes: small and large hail . The exact size threshold for separation needs to be defined, but could585

lie for instance at
::
In

::::::::
particular,

::
a
:::::::::
distinction

:::::::
between

:::::::::
damaging

::::
and

::::::::::::
non-damaging

:::
hail

:::::
with

:
a
::::::::
threshold

:::
of 20mm , where

the potential for damage starts to rise. A thorough investigation of hundreds of
:::::
could

::
be

:::::
worth

::
to
::::
test.

:::::::::::
Furthermore,

:::::::::
additional

:::::
testing

::
of
:::
the

:
hyper-parameters can lead to better results

::::
might

:::::::
increase

:::
the

:::::::::::
performance, but this is

:::
was

:
out of the scope of this

study. If the future direction is to build a more generalized Mask R-CNN model for hail detection and size estimation, it is a

good idea to invest more into the tuning of the training and validation configuration.590

Splitting
:::::::
Another

:::::::
technical

::::::::
challenge

:::::
arises

:::::
from

:::::::
splitting the orthophoto into many smaller image tiles can produce artificially

cropped hailstones. To avoid this issue,
:::::
which

:::
can

:::::
result

::
in

::::::::
truncated

:::::::::
hailstones.

::::
This

::::
can

::
be

::::::::
overcome

:::
by producing overlap-

ping tiles by the maximal
::::::::
maximum length of the largest observed hailstoneare one possibility, as implemented by Soderholm

et al. (2020). However , for sporadic large hail coverage (no clustering of many hailstones on the ground), as observed for the

2021-06-20 supercell storm, the expected corrections due to the few cropped hailstones are marginal in comparison to other595

errors like negative and positive false detections. Also a cropped hailstone binary mask can still lead to
:
in
::::
our

::::
case

::::
large

::::
hail

:::
was

::::::
sparse

::::
and,

::
as the correct major axis length.

::::
image

::::
tiles

:::::
cover

:::::
large

::::
areas

::::::::::
(500× 500

::::::
pixels),

::
it
::
is

::::
safe

::
to

::::::
assume

::::
that

:::
the

::::::
number

::
of

::::::::
truncated

:::::::::
hailstones

:
is
:::::
very

:::
low.

:::::
Other

:::::::
sources

::
of

:::::
errors

::::
such

::
as

:::::
false

::::::
positive

:::::::::
detections

::
or

::::::
missed

:::::::::
hailstones

:::::
likely

:::
play

::
a
::::
more

:::::::::
important

::::
role.

The acquired hail images from the drone show large differences in their transparency, making it difficult to apply simpler600

computer vision techniques for detection and size estimation. Beside the effect of melting after hail has reached the ground

that can change the color and transparency in the visible wavelength range, the microphysical growth processes in the storm

determine the inner and outer structures of a hailstone. Often, analyzed hailstone slices (?) show layered patterns with alternating

transparencies (clear versus cloudy ice) . During dry growth, where super-cooled liquid water freezes immediately onto the
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surface of the ice particle, the probability for trapped air bubbles is high (Rasmussen and Heymsfield, 1987; ?)
:::::::::
Hailstones605

::::::
usually

::::
have

::
an

::::::
oblate

:::::::
spheroid

:::::
shape

::::
with

:::::
mean

::::
axis

:::::
ratios

::::
close

::
to
::::
0.8,

::::::
though

::::
they

:::
can

:::::::::
sometimes

:::::
have

::::
large

::::::::::::
protuberances

::::::::::::
(Knight, 1986)

:::
and

:::
the

:::::::::
probability

:::
for

:::::::::::
nonspherical

:::::
shapes

::::
rises

::::
with

:::::::::
increasing

::::::::
maximum

:::::::::
dimension

::::::::::::::::
(Shedd et al., 2021)

:
.
::
As

::
a

::::::::::
consequence

:::
the

:::
hail

::::::
aspect

::::
ratio

::::::::
decreases

:::
for

:::::
larger

::::
sizes

::
as

:::::
shown

::
in
:::
the

::::::
various

:::::::
studied

:::
data

::::
sets

:::::::::::::::::::::::::::::::::::::::::::::::
(Knight, 1986; Soderholm et al., 2020; Shedd et al., 2021)

:
.
:::::
Figure

::
6
::
in

::::::::::::::::
Shedd et al. (2021)

::::::::
compares

::::
their

:::::
recent

::::::
results

:::
on

:::
the

::::::::
evolution

::
of

::::::
aspect

:::::
ratios

::::
with

::::::::
maximum

::::
hail

::::
sizes

:::::
from

:::::::
manually

:::::::::
measured

:::::::::
hailstones

::
to

:::
the

::::::
results

:::
of

::::::::::::
Knight (1986).

::::
The

::::::
slopes

::
of

::::
the

:::::::::
decreasing

::::::
aspect

:::::
ratios

:::
are

:::::::::::
comparable,610

:::
but

:::
the

:::::::
absolute

::::::
values

::::
tend

:::
to

::
be

::::::
lower

::
in

:::
the

::::
hail

::::
data

:::
set

:::
of

::::::::::::::::
Shedd et al. (2021),

:::::::::
reflecting

:::::::
possible

::::::
effects

:::
by

:::::::
melting

:::::
before

:::
the

::::::::::::
measurements

:::::
were

::::::
taken.

::::::::
Likewise

::::
with

::::::::
hailpads,

:::
the

:::::
shape

::::::
factor

::
in

:::
the

::::::
image

:::::
plane

:::
can

:::
be

:::::::::
determined

:::::
with

::
the

:::::
aerial

:::::::::::
drone-based

:::
hail

::::::::::::::
photogrammetry,

:::
but

:::
the

:::::::::
estimated

:::::
aspect

:::::
ratios

::::::::::
(Fig. 11(b))

::::
may

:::::
differ

::::
from

::::::
in-situ

::::::::::::
measurements

::
as

::::::::
published

::
in

:::::::::::::::::::::::::::::::
e.g. Knight (1986); Shedd et al. (2021)

:
.
:::
The

::::
hail

::::::
images

::::
show

::::
only

:::
the

::::::::
projected

:::::::::
maximum

:::
and

::::::::
minimum

:::::
axes,

:::::
which

::::
may

:::::
differ

::
to

:::
the

:::
true

:::::
stone

::::
axis

:::::
ratios.615

A few studies exist, that explore the
::::::
Another

::::::::
limitation

::
of

:::
the

::::::::::
drone-based

::::::::::::::
photogrammetry

::
is

:::
that

:::::::
melting

::::::
already

::::::
affects

:::
the

:::
hail

::::::
before

:::
the

::::
data

:::
can

::
be

:::::::::
collected.

:::
The

:
effect of melting hail in the air from

:::
was

::::::
studied

:::
by

:::::::::::::::::::::::::
Kumjian and Ryzhkov (2008)

::::
using

:
polarimetric radar measurements (?Kumjian and Ryzhkov, 2008) or models (Fraile et al., 2003).

::
and

:::::::::
numerical

::::::
model

:::::::::::
investigations

::::
were

:::::::::
performed

::
by

::::::::::::::::
Fraile et al. (2003).

:::::
Other

::::::
studies

::
by

:::::::::::::::::::::::::::::
Rasmussen and Pruppacher (1982)

:::
and

:::::::::::::::::::::::::::::
Rasmussen and Heymsfield (1987)

::::
have

:::::::
explored

:::
the

:::::::
melting

::
of

:::::::
spherical

:::
ice

:::::::
particles

::::::
falling

::
at

:::::::
terminal

:::::::
velocity.

:::::
They

:::::
found

:::
that

:::
the

:::::::
melting

:::
rate

:::::::
depends

:::
on

:::
the620

:::::
initial

:::
size

:::
of

:::
the

::::::
spheres

::::
size

:::
and

:::
the

::::::::::::
surroundings,

::::::::
including

:::::::::::
temperature,

::::::::
humidity,

:::::::::
turbulence,

::::
and

::::
how

::::::::
meltwater

::
is

:::::
shed.

:::
The

:::::::::
hailstones

::
in

:::
our

::::
case

:::
are

::::::
already

:::
on

::
the

:::::::
ground,

::
so

::::
they

:::::::::
experience

::::::::
different

::::::::::::
environmental

::::::::
conditions

:::::::::
compared

::
to

:::::
when

:::
they

:::
are

::::::
falling

:::::::
through

:::
the

::::::::::
atmosphere.

:::
We

::::
have

:::
not

::::::::
measured

:::::
these

::::::
specific

:::::::::
conditions

:::
for

::::
each

::::::::
hailstone,

::
so

:::
we

::::::
cannot

:::::
make

:::
any

::::::::::
conclusions

:::::
about

::::
how

:::
the

::::::
melting

::::
rate

:::::
relates

::
to
:::::
their

:::::
initial

::::
size.

To our knowledge there are no studies , that analyze the melting of a large sample size of real hail on the groundafter the625

passage of a hailstorm. Here we provided a potential method to cover this gap and potentially allow to retrieve the original

HSD. However,
:
.
:::
We

:::
here

:::::::
provide

:
a
::::
first

:::::::
estimate

:::::
about

:::
the

::::::
melting

:::::::
process

::
of

:::
hail

:::
on

:::
the

::::::
ground.

:::::
More

:::::::
in-depth

::::::::::::
investigations

:::::
would

:::
be

::::::
needed

::
to

:::::::
retrieve

:::::
more

:::::::
accurate

::::::
results,

::::::
maybe

::::
also

::
in
:::::::

relation
::
to
::::::

initial
:::
hail

:::::
sizes

::::
and environmental conditions

like ground temperature and occurrence of rain before, during and after the hail eventcan strongly impact the melting rate and

therefore would pose some uncertainty to a reconstructed initial HSD.630

Because the melting rate will be dependent on
::
In

::::::
Table 3

:
temperature and relative humidity , some measurements of those

parameters in the relevant time period are shown in Table 3 for two SMN (SwissMetNet
::
for

:::
two

::::::::::::
SwissMetNet

:::::
(SMN) weather

stations (Schüpfheim and Langnau i.E.) . Although the distances to the soccer field are
::
are

:::::::
shown.

:::
The

:::::::
stations

:::
are

:::::::
located

::
in

:
a
:::::::
distance

:::
of 5.7 km (Schüpfheim) and 20 km (Langnau i.E.) the geographic locations in the same valley are somewhat

comparable. In particular, Langnau i.E. is included here because it is the closest station with measurements of temperature at635

5 above grass and at the ground. Unfortunatelyno in situ meteorological measurements at the hail survey area of the 2021-6-20

event are present. Precipitation measurements
::
to

:::
the

::::::
soccer

:::::
field.

::::::::::::
Unfortunately,

:::
no

:::::
in-situ

:::::::::::::
measurements

:::
are

::::::::
available

:::
for

:::
this

:::::
event.

:::::::
Closest

:::::::::::
precipitation

::::::::::::
measurements

::::
from

:::
an

::::::::
automatic

::::
rain

:::::
gauge

::::::::
(Station:

:::::::::
Entlebuch)

:
are available at a distance

of 670m to the east. There, an automatic rain gauge (Station: Entlebuch) recorded 9.1mm
:::
were

::::::::
recorded

:
between 14:30 and
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Table 3. Measurements of temperature at 2m (T2m), 5 cm (T5cm), ground-level (T0cm) and relative humidity at 2m (RH2m) from the

SwissMetNet (SMN) weather station in Langnau i.E. (744ma.s.l.) and measurements T2m and RH2m from the SMN weather station in

Schüpfheim (744ma.s.l.) . The temporal period is between 14:00 and 15:30 on 2021-06-20 with a resolution of 10 .
:
20

::::
June

:::::
2021.

Time 14:00 14:10 14:20 14:30 14:40 14:50 15:00 15:10 15:20 15:30

T2m (Schüpfheim) 23.5 23.4 23.1 21.0 19.3 20.3 19.4 18.4 18.4 18.6

RH2m (Schüpfheim) 66.9 67.5 69.2 77.9 86.0 82.1 87.7 89.2 90.4 90.5

T2m (Langnau i.E.) 23.4 22.9 18.9 18.4 18.1 18.4 18.4 18.4 18.7 19.1

T5cm (Langnau i.E.) 22.0 21.5 17.9 17.4 17.4 17.2 16.9 18.0 19.8 21.6

T0cm (Langnau i.E.) 21.8 21.3 18.1 17.4 17.5 17.3 17.1 18.1 20.2 21.9

RH2m (Langnau i.E.) 71.1 75.7 93.9 96.5 99.2 93.7 90.8 94.9 96.9 92.7

14:40UTC and 0.2mm in the subsequent 10 minutes. The very light precipitation continues also in the still relevant 10 minutes640

time slot from 14:50 until 15:00 (compare times in Table 2) with an accumulation of 0.3 . Thus, the time-integrated HSD from

the first hail survey mission with the drone was most exposed to rain. Temperatures close the ground have fallen
:::
hail

:::
on

:::
the

::::::
ground

:::
was

::::::::
exposed

::
to

::::::
strong

::::
rain,

:::::
what

:::::
might

:::::
effect

:::
the

:::::::
melting

::::
rate.

:::
At

:::
the

:::::
same

::::
time

:::::::::::
temperatures

:::::
close

::
to

:::
the

:::::::
ground

::::::::
decreased by about 4.5 ◦C between 14:00UTC and 14:30UTC, after the supercell passed the

::::
SMN

::::::
station

:
Langnau i.E. SMN

weather station. For
:::::
which

::
is
::::::::
assumed

::
to

::
be

::
in

::
a

::::::
similar

:::::
range

:::
for

:::
the

:::::
soccer

:::::
field.

::
To

:::::
better

::::::
assess

:::
the

::::::
melting

:::::::
process,

:
future645

drone-based hail surveys that try to retrieve information about melting, it could be a good idea to place
:::::
should

::::::
include

:
a mobile

weather station or some ground temperature sensors at the hail measurement location to record more accurate data
::::::::::
observation

:::
site.

5 Conclusions and outlook

Reliable ground truth data from hail observations are rare and of high value to the hail research community. This paper describes650

the
::::::
assesses

:::
an application of aerial drone-based photogrammetry combined with a state-of-the-art deep-learning object detec-

tion model to retrieve the time-integrated hail size distribution over a large survey area. The ability to analyze
::::
HSD

::::::::
retrieved

::::
from a large survey area allows to capture a much more representative sample of the distribution than with other

:::::::::::
representative

:::::::::
distribution

::::
and

:::
can

::::
thus

:::::
serve

::
as

::
a

:::::::::::::
complementary

::::::
source

::
to

:::::::
existing ground-based measurement techniques, especially for

the upper tail of the size distribution
:::::::::
observation

::::::::
networks

::::
such

::
as

:::::::::
automatic

:::
hail

:::::::
sensors

:::
and

::::::::::::
crowdsourced

::::::
reports.655

During a period in June 2021, when exceptionally strong convective supercell storms occurred , a successful data collection

with the drone took place. On 2021-06-20
::::::
storms

:::::::
occurred

::
in
:::::::::::

Switzerland.
:::
On

:::
20

::::
June

:::::
2021

:
drone-based photogrammetric

data from a sporadic large hail fall (no clustering) from
:
of

::
a
:::
hail

:::::
event

::::::
related

::
to
:
a right-moving classical supercell could be

:::::::
supercell

::::
was

:
collected near Entlebuch (Canton Lucerne, Switzerland). Aerial drone imagery of the hail survey area (750 on

:::
Five

:::::::::
successive

::::::::::
drone-based

::::::::::::::
photogrammetry

::::::
flights

::::
were

:::::::::
performed

:::::
above a soccer field ) could be captured in five subsequent660

photogrammetry flight missions between 14:38 and 15:00UTC. We presented our approach to retrieve the hail size distribution
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using a
::
A deep-learning instance segmentation model (Mask R-CNN) under the Detectron2 framework . A broader part of the

paper dealt with the validation and testing of the model predictions
:::
was

::::::
trained

::
to

::::::::::::
automatically

::::::
retrieve

:::
the

:::
hail

::::
size

:::::::::
distribution.

A short summary of the
::::
The key results and conclusions of the presented work is

:::
are listed below:

– A robust retrieval of a HSD based on a population size of 18209 hail stones
::::::::
hailstones

:
on an area of 750m2 from a665

single hail event with a duration of about 9.5 minutes on 2021-06-20 was carried out
:
is
::::::::
presented. The median

:::::::
hailstone

size was 9mm and hailstones with equal axis length (minor/major) dominated.
::
the

::::::::
majority

::
of

::::::::
hailstones

::::
had

::::::::
projected

:::::
aspect

:::::
ratios

:::::
close

::
to

::
1.

– The largest hail stone reached
::::::::
hailstone

:::
was

:
39mm and is substantially larger than impacts on the closest hail sensorsat

distances between 300 and 1470 from the soccer field
:::::::
estimates

::::::::
retrieved

::::
from

:::::::
close-by

:::::::::
automatic

:::
hail

::::::
sensors.670

– A combination of hail data from different applications
::::::
sources (drone, sensor and crowdsourced ) that observe the same

hail fall
::::::::
automatic

:::
hail

:::::::
sensors

:::
and

::::::::::::
crowdsourced

::::::
reports)

:::
to

::::::
observe

::::
hail

::
on

:::
the

:::::::
ground improves the reconstruction of

the complete HSD of such an event and also helps to frame the individual limitations . This will help to better compare

the data also to
:::
and

::::::
allows

::
to

::::::
assess

:::
the

:::::::::
limitations

::
of

:::::
each

:::::::
method.

:::::::::::
Furthermore,

::::
such

:::::::
ground

::::
truth

::::
data

:::
can

:::::
help

::
to

:::::
verify

:::
and

::::::
further

:::::::
develop radar-based hail products

:::::::::
estimations.675

– Investigations with virtual sensors can provide relevant statistical information for various applications, e.g. probability

of miss rates and impacts of certain size on a small sensor measurement area
:::
The

:::::::
analysis

::
of

::::::
virtual

::::
hail

::::::
sensors

::::::
placed

::
in

:::
the

::::::::::::::
photogrammetric

::::
data

::::::::
highlights

:::
the

::::::::
challenge

::
to

:::::::
observe

:
a
::::::::::::
representative

::::::
sample

::
of

:::
the

:::::
HSD

:::::
using

:
a
::::::
device

::::
with

::
an

::::
area

::::
(0.2m2

:
)
:::::
much

::::::
smaller

::::
than

::
a

::::::
typical

:::
hail

:::::
swath.

– The decay
::::::::
evolution

:
of the HSD caused by melting could be monitored during 18.5

:::
for

:
a
::::::

period
:::

of
:::::
18.65min by680

performing additional drone photogrammetry flights. Melting rates in the range 0.3–
:::::::
analysing

::::
data

::::
from

::::::::
multiple

:::::
drone

::::::
flights.

:
A
:::::::
melting

::::
rate

::
in

:::
the

::::
order

::
of

:
0.5mmmin−1 were

::::
could

:::
be estimated.

The aerial drone footage of a larger field with hail is not an instantaneous picture of hailfall, but prone to different ages of

hailstones after they fell on the ground. Although the time differences are just within minutes, the hailstones are in different

melting stages and appear differently regarding their outer ice transparency. If the aim is to capture all of those different685

looking hailstones for the best possible estimation of the distribution, we find that
::::::::::
Radar-based

:::
hail

::::::::::
algorithms

:::::::::
estimating

::
the

::::
size

::
of

::::
hail,

:::::
such

::
as

:::::::
MESHS,

:::::
need

:::::::::::
ground-based

::::::::::::
measurements

:::
for

::::::::::
verification

:::
and

::::::::
potential

::::::::::::
improvements.

:::::::::::
Drone-based

:::::::::::::
photogrammetry

::::
can

:::::
cover

::::
areas

:::::
closer

::
to
:::
the

:::::
radar

::::::
spatial

:::::::::
resolution,

:::::
which

::::::
makes

:::
this

::::::::
approach

::::::::::
particularly

:::::::
valuable

:::
for

:::
the

:::::::::
verification

::
of

:::::
radar

::::::::
products.

:::
The

::::::::::
comparison

:::
of

::::::::::
drone-based

:::::::::::::::
photogrammetry

::::
with

:::::::::
automatic

::::
hail

::::::
sensors

::::::::
allowed

::
to

::::::::
highlight

:::
the

::::::::::
advantages

::::
and690

:::::::::
limitations

::
of

::::
both

::::::::::
approaches

::
in

:::::::::
measuring

::::
hail

::::
(see

:
a
::::::::
summary

::
in
::::::

Table
::
4).

::::
We

::::
here

::::
want

::
to
::::::::

highlight
::::

that
:::
the

:::::::::
clustering

:::::::
problem

:::::
refers

::
to

::::
many

:::::::::
hailstones

:::
that

::::::::
aggregate

:::
on

:::
the

::::::
ground

::::
next

::
to

::::
each

:::::
other.

::::
This

::::::::::::
predominantly

:::::
occurs

::::::
during

:::
hail

::::::
events

::::
with

:::::::::
dominating

:::::
small

:::
hail

::::
and

::::::
intense

:::::::::::
precipitation.

:::
The

::::::::
resulting

:::
hail

:::::::
clusters

::::
pose

:
a
:::::::
problem

::
to
:::
the

:::::::::
algorithm

::
to

::::::::::
differentiate
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:::::::
between

::::::::
individual

::::::::::
hailstones.

:::
An

::::::::
equivalent

::::::::
problem

::::::
within

:::
the

::::::::
automatic

::::
hail

::::::
sensor

:::
data

::
is
:::::::

related
::
to

:::
the

::::
dead

::::
time

:::::
after

::::
each

:::
hail

:::::::
impact.

:::
The

::::
dead

:::::
time

:
is
:::::::::
necessary

::
to

:::::
avoid

:::
any

::::::::::
interference

::::
with

:::::::::
subsequent

:::::::
impacts

::::
and

::
to

:::::::
perform

::
the

::::::::
retrieval

::
of695

the two-stage approach from Soderholm et al. (2020) combining machine learning for detection and computer vision for size

retrieval, gives not an optimal result. The edge detection algorithm on the pixel lightness fails in our case for hailstoneswhere

the edge regions show a clear ice structure and the lightness becomes similar to the background. The same problem will be

present for even simpler CV approaches without the use of neural networks, e.g. blob detection (?). If the background and

objects would be homogeneous enough, identifying the correct blobs and shapes is straight forward
::::
data

:::::::::::::::
(Kopp et al., 2023)

:
.700

::::::::::
Furthermore,

:::
by

:::::::::
combining

::::
data

:::::
from

::::
both

:::::::::
approaches

:::::::
strongly

::::::::
improves

:::
the

::::::::::::
reconstruction

:::
of

:::
the

::::::::
complete

::::
HSD

::::
and

:::::
could

:::::
further

::::::
extend

:::
our

::::::::::::
understanding

::
of

:::::::::
hailstorms.

Drone imagery acquisition
::::::
Future

::::::::::
drone-based

:::::
aerial

::::::::::::::
photogrammetry

:::
for

::::
hail

:
could be improved , considering that low

light levels can be a main issue whenever the thunderstorm occurrence drags on into the night or the available light is greatly

reduced by the presence of the thunderstorm itself . The amount of light present in a scene governs the required exposure705

time given all other camera settings are constant. The resulting exposure time essentially
::
by

::::::
having

:::
an

:::::::
artificial

::::
light

:::::::
source.

::::
Poor

::::
light

:::::::::
conditions

:::
are

:
a
:::::
main

::::::::
challenge

::::::
caused

::
by

:::
the

::::::::::::
thunderstorm

::::
itself

::
or

::
if
:::
the

::::
hail

:::::
occurs

::::::
during

:::::::
twilight

::
or

:::::
night.

::::
The

::::
light

:::::::::
conditions

::::::::
determine

:::
the

::::::::
exposure

::::
time

:::::
which

:
limits the maximum flight velocity given a sub-pixel motion blurcriterion.

Adding more light in the form of a drone-mounted flash could allow
:
to

:::::
avoid

::::
any

::::::
motion

:::::
blur.

::
A

::::
flash

:::
or

::::::::
additional

:::::
light

:::::
source

::::::
allows

:
for an increased flight velocitywhile conserving the sub-pixel motion blur condition, allowing for more area710

to be coveredin the same time. More light would also improve image quality , as ,
::::
and

:::
thus

::
a
:::::
larger

::::
area

::::
can

::
be

:::::::
covered.

:::
In

:::::::
addition,

:::
the

:::::
image

::::::
quality

::::
can

::
be

::::::::
improved

:::
by

:::::::
reducing

:
the sensor gain (ISO) and the aperture sizecould be reduced.

Nowadays, with the high availability and coverage of radar observations and sophisticated hail products, like MESHS,

the demand for objective ground truth observations of the hail size is rising to allow verification studies of the radar-based

algorithms. Beside crowdsourced observations, traditional hailpads and new automatic sensors, field observations with drones715

can be a very useful additional information source of hail size data. The possibility to spatially collect hail size data with

drone-image photogrammetry over quite large areas gives new insights into the HSD of hailstorms. Here we presented the

large discrepancies between MESHS and the hail sensor data and explain that for specific hail events the drone-based hail data

can provide additional information and thus complement automatic hail sensor measurements. Both measurement applications

have their advantages and drawbacks (s. Table 4). The sensor provides exact time information and is not affected by any melting720

on the ground, but the limited area covered leads to truncated distributions. The drone-based approach with the large area

allows for a more representative sample of the hail size distribution, but is impacted by melting and image quality. Using those

measurement sources in combination to observe the same hail fall could improve the reconstruction of the complete HSD of

such an event and also help to frame the limitations of both applications. In this sense, it could be a good idea to carry along

a few traditional hailpads during storm chasing, which could be deployed right before a hail fall so that those measurements725

could be compared as well with the drone-based hail data.

To further assess the hail size distribution of different storms, more observational data is crucial. However, as described in

the introduction (Sect. 1), the collection of drone-based areal photography is a time consuming and difficult
::::
aerial

:::::::::::
photography
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Table 4. Schematic list of some advantages
::::::::
Advantages

:
(green

::::
bold

:::
font) and disadvantages (red

:::::
normal

::::
font) of the two hail observation

methods: Drone-based photogrammetry and automatic hail sensor.With the «clustering problem» we refer to the issue, when too many hail

stones are close to each other and the separation of the individual hailstones is getting difficult in the image data. On the sensor side, an

equivalent problem is a dead time after each hail impact. In a worst case of fast, subsequent or simultaneous hits a separation of those is not

possible.

Drone-based photogrammetry Automatic hail sensor

Sampling error low
:::
low high

:::
high

Melting problems yes
::
yes

:
no

::
no

Exact time information no
::
no yes

::
yes

Probability to capture largest hailstones high
:::
high low

::
low

:

Daylight dependence yes
::
yes

:
no

::
no

Operational application difficult
:::::::::
challenging easy

:::::::::
reasonable

Clustering problems high
:::
high

:
existing, but low

::::::
existing,

:::
but

:::
low

Size estimation direct
::::
direct indirect

:::::
indirect

:

::
of

:::
hail

::
is
::

a
::::::::::::::
time-consuming

:::
and

::::::::::
challenging

:
task. Therefore

:
,
:
it could be beneficial to set up a database of

:::::
public

::::::::
database

::
of

:::::::::
performed drone-based maps for hail surveying to further adapt and test the existing algorithms . In addition

:::
hail

:::::::
surveys730

::
to

:::::::
enhance

::::::::::::
collaborations

:::::::
between

:::::::
different

::::::::
research

::::::
groups

::
on

:::::::::
adaptation

::::
and

:::::
testing

:::
of

:::::::
existing

:::::::::
algorithms

:::
for

::::::
various

::::
hail

::::::
events.

::::::::
Moreover, with the increasing usage

:::
use

:
of personal drones equipped with cameras, there could be a public community

that has
:::::
brings the basic requirements for such observations. It might

:::
thus be useful to provide the requirements

::::::::::
information

about how to collect adequate image data and use it
:::::
collect

:::::
such

::::
data

:
in a crowdsourced approach similar to the existing

crowdsourced information retrieval
::::::::
reporting

:::::::
systems at weather services (e.g. German Weather Service DWD and Federal735

Office for Meteorology and Climatology MeteoSwiss ).

::
or

:::::::
German

:::::::
Weather

::::::
Service

:::::::
DWD). Another point to stimulate in future could be

::::::
address

:::
are tests with artificial hail objects

of defined size on real backgroundssuch as short mowed meadows
::::::
classes

::
on

::::::::
different

::::::::::
backgrounds. In this way several setups

can
:::::
could be trained, tested and optimized: Save and smooth drone operation in various conditions, flight missions and camera

settings and precise comparison of the retrieved HSD to the known ground truth.740

Data availability. The drone-based hail size data set of the 2021-06-20 event are available on request.
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Figure 1. Skew-T plot with hodograph analysis from the atmospheric radio sounding at the Payerne station (ID: 06610, 87 km WSW from

the soccer field) on 2021-06-20 12UTC
:
,
:::::::
produced

::::
with

::
the

::::::
MetPy

::::::
software

::::::::::::::
(May et al., 2023). The temperature and dew point profiles are

drawn in red and green. The shaded areas in red and blue mark the CAPE (Convective Available Potential Energy) and CIN (Convective

Inhibition). The sounding is characterized by a moist
::::::::
hodograph

:::::
display

:::::
shows

::::
four

:::::
layers:

::::
0–1 km

::::
(cyan), fairly well-mixed layer

:::
1–3 km

::::
(light

::::
blue), separated from a dry layer above by a capping inversion. Lapse rates above the cap are close to dry adiabatic. In meteorology

this kind of sounding is also known as a «loaded gun» sounding
:::
3–5 km

:::::
(blue),

::::
5–10 km

::::
(dark

::::
blue).
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Figure 2. Storm track (a) of the 2021-06-20 supercell with colored time information (5min resolution of the scatter points) and the location

of the atmospheric radio sounding (magenta open circle with black cross inside) shown in Fig. 1. The storm location at the sounding time

(12UTC) is marked with the same edge color (magenta). The black rectangle in (a) marks the zoom area for plot (b), where information

on radar derived MESHS (Maximum Expected Severe Hail Size) and crowdsourced hail size reports (black and different sized circles for 6

size categories with bin centers at 2.5, 6.5, 23, 32, 43 and 68mmcorresponding to the MeteoSwiss app categories: smaller than coffee bean,

coffee bean, 1CHF coin, 5CHF coin and tennis ball), are given. The location of the soccer field, where the drone-based hail survey took

place, is marked with a magenta cross. The white rectangle around the magenta cross in (b) marks the zoom area for the
:::::

detailed
:
map view

in
::::
Fig. 3.
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Figure 3.
::
The

:::::
zoom

::::
area

:::
and

::::::
detailed

::::
view

:::
for

:::
the

::::::
marked

:::::::
rectangle

::::::
around

:::
the

::::
white

:::::
cross

::
in

::::
Fig. 2(c

:
b), where

:
.
:
It
::::::

shows the detailed

locations of the soccer field (roughly centered to the map view, magenta
::::
black cross), the 4 nearest automatic hail sensors (HS1, HS2, HS3

and HS4) and the crowdsourced hail size data (black and different sized circles)for this area are shown. The histograms in (d) present the

recorded HSDs from the automatic hail sensors together with the daily maximum MESHS value at the sensor locations. The recorded hail

duration for the sensors are 3 (HS2), 52.5 (HS3) and 13min (HS4). The HS1 sensor (cyan color) did not record any hailstones, and is thus

omitted in plot (d).
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Figure 4.
:::::::::
Histograms

::
of

::
the

:::::::
recorded

:::
hail

:::
size

::::::::::
distributions

::::
from

::
the

::::::::
automatic

:::
hail

::::::
sensors

::::::
together

::::
with

::
the

::::
daily

::::::::
maximum

::::::
MESHS

:::::
value

:
at
:::
the

:::::
sensor

:::::::
locations

:::
(see

::::::
Fig. 3).

:::
The

:::::::
recorded

:::
hail

:::::::
duration

::
for

:::
the

::::::
sensors

::
are

:::::
about

:
3min

:::::
(HS2),

::
16min

::::
(HS3)

::::
and

:::::
13min

:::::
(HS4).

::::
The

::::
color

::::::
scheme

:::::
follows

:::
the

:::
one

::::
from

:::::
Fig. 3.

:::
The

::::
HS1

:::::
sensor

:::
did

::
not

:::::
record

:::
any

:::::::::
hailstones,

:::
and

:
is
::::
thus

::::::
omitted

::::
here.
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In (a), the final orthophoto of the 2021-06-20 hail event is shown in HSL (Hue, Saturation, Lightness) color space. It is produced from 116

individual aerial drone images with the OpenDroneMap (ODM) software package. The radius of the soccer middle circle is 9.15m. In (b)

an image zoom from the orthophoto with actual scale of 1 (width) and 0.9 (height) illustrates the hail appearance on the soccer field in

conjunction with one of the reference objects (black and white circles: 10 diameters; black and white squares: 75 side lengths) to verify the

ground sampling distance (GSD). In (c), the random selected distribution of training (whitish), validation (greenish) and test (reddish)

image tiles (75 edge length) are displayed within the orthophoto. In (d), the same orthophoto in RGB (Red, Green and Blue) color space is

shown and over-plotted by a 600m2 area (red rectangle), where 10000 circles of 0.2m2 (virtual hail sensors, blue shaded) are randomly

placed for statistical assessments.

Figure 5.
::
In

:::
(a),

:::
the

:::
final

:::::::::
orthophoto

::
of

::
the

:::::::::
2021-06-20

:::
hail

:::::
event

:
is
:::::
shown

::
in
::::
HSL

:::::
(Hue,

::::::::
Saturation,

::::::::
Lightness)

::::
color

:::::
space.

::
It

::
is

:::::::
produced

:::
from

::::
116

:::::::
individual

:::::
aerial

::::
drone

::::::
images

:::
with

:::
the

::::::::::::
OpenDroneMap

::::::
(ODM)

::::::
software

:::::::
package.

:::
The

:::::
radius

::
of

::
the

:::::
soccer

::::::
middle

::::
circle

::
is

::::::
9.15m.

:
In
:::

(b)
::
an

:::::
image

:::::
zoom

::::
from

::
the

:::::::::
orthophoto

::::
with

::::
actual

::::
scale

::
of
::
1m

::::::
(width)

:::
and

:::
0.9m

::::::
(height)

:::::::
illustrates

:::
the

:::
hail

:::::::::
appearance

::
on

:::
the

:::::
soccer

:::
field

::
in
:::::::::
conjunction

::::
with

:::
one

:::
of

::
the

::::::::
reference

::::::
objects

:::::
(black

:::
and

:::::
white

:::::
circles:

:::
10mm

:::::::
diameters;

:::::
black

:::
and

:::::
white

::::::
squares:

:::
75mm

:::
side

::::::
lengths)

::
to

:::::
verify

::
the

::::::
ground

:::::::
sampling

:::::::
distance

::::::
(GSD).

::
In

:::
(c),

::
the

::::::
random

:::::::
selected

:::::::::
distribution

::
of

::::::
training

::::
(light

:::::
grey),

::::::::
validation

::::::
(green)

:::
and

:::
test

::::
(dark

:::
red)

:::::
image

::::
tiles

:::
(75 cm

::::
edge

:::::
length)

:::
are

::::::::
displayed

:::::
within

::
the

:::::::::
orthophoto.

::
In
::::

(d),
::
the

:::::
same

::::::::
orthophoto

::
in

::::
RGB

:::::
(Red,

:::::
Green

:::
and

::::
Blue)

::::
color

:::::
space

:
is
::::::
shown

:::
and

:::::::::
over-plotted

::
by

:
a
::::::
600m2

::::
area

:::
(red

::::::::
rectangle),

:::::
where

:::::
10000

:::::
circles

::
of
::::::
0.2m2

::::::
(virtual

:::
hail

::::::
sensors,

::::
blue

::::::
shaded)

::
are

::::::::
randomly

:::::
placed

::
for

::::::::
statistical

:::::::::
assessments.
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Figure 6. Spaghetti
:::
Line

:
plots of the evolution of validation loss and total loss along the training iteration steps for the 16 deep-learning

model runs with different combinations of hyper-parameters shown in Table 1. The thick lines depict the training «run-3»
::::
run-3, used for

prediction of hail pixels.
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Figure 7. Spaghetti plots of precision (blue), recall (red) and F1 scores (black) against the hail confidence level for all 16 deep-learning

model runs applied to the validation data (a) and test data (b). The thick lines depict the training «run-3»
::::
run-3, used for prediction of hail

pixels. The green vertical line marks the 90%
:::
hail

:
confidence value, that has been chosen as the lower limit for the object classification.
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Figure 8. Histograms of IoU (Intersection over Union) ratios between model «run-3»
::::
run-3 prediction masks (

:::
hail confidence Ci ≥ 0.9) and

the validation data set (blue), respectively the test data set (green). The histogram area of the overlap between green and blue bars appears in

dark green color. Only true positive (TP ) matches, defined as IoU > 0.5, are shown. In the validation (test) data set 237 (198) hailstones are

classified as TP .
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Figure 9. Comparison of four hail size distributions (HSDs) from the test data set derived from manual annotations by three experts (A: blue,

B: red, C: yellow) and the prediction of the Mask R-CNN model (black). The total number of identified hailstones by the experts are 215

(A), 263 (B) and 269 (C). The CNN (Convolutional Neural Network) predicted 275 hail segmentation masks.
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Figure 10. Logarithmic view of the time integrated hail size distribution of the 2021-06-20 event captured by the drone between 14:37:28

and 14:41:19UTC. The total number of detected hailstones per each bin is shown with the number above each bar. All together 18209

hailstones were identified. The orange line represents the mean lightness value as digital number (DN) of all derived center hail pixels in the

HSL (Hue, Saturation, Lightness) color space for each hail size bin.
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Figure 11. Probability density distributions of the hail major axis (a) and the
::::::
projected

:
aspect ratio (b) between minor and major axis length

:
in
:::

the
:::::
image

:::::
plane. The vertical blue and orange dashed lines indicate the position of the particular percentiles regarding

:::::::
quantiles

::::
with

:::::
respect

::
to

:
the two X axes

::::
major

:::
axis

::::
(Q5,

::::
Q25,

:::::
Q50,

::::
Q75,

::::
Q95)

:::
and

::::::::
projected

:::::
aspect

::::
ratio

:::
(Q5,

::::
Q25,

:::::
Q50,

::::
Q60). The HSD in plot (a) is

additionally fitted against a gamma distribution (black dotted line).
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Figure 12. Kernel density estimation (KDE) of HSDs (Hail Size Distributions) from virtually and random placed
:::::::
simulated hail sensors

::
at

:::::
random

::::::::
locations (a) on an area of 600m2 (red rectangle in Fig. 5(d)). From the 10000 virtual HSDs 7817 can be represented by a KDE

(gray curves), whereas the others do not have enough impacts. The quantiles of the sorted HSDs are shown as dashed
:::
blue (Q25

:
),

:::::
dashed

::::
green

:
(Q75) and solid

::
red

:
(Q50) red curves. For comparison, the KDE as derived from the whole 600m2 area is overplotted in black. In

the center (b), the KDE distribution for the aggregation of the largest hailstone impact on each virtual sensor is shown. Additionally, various

percentile
::::::
Quantile markers

:::
(Q5,

::::
Q25,

::::
Q50,

::::
Q75,

::::
Q95)

:
are drawn on top of the

::
plot

:
(b) plot in dashed red vertical lines. On the right side

(c),
:

the probability density for the total hits
:::::
impacts

:
on each virtual sensor is shown as gray histogram, together with the registered number

of impacts of the four closest automatic hail sensors HS1 (cyan line), HS2 (blue line), HS3 (green line) and HS4 (red line).
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Figure 13. Two examples of hailstone size and mask shape development during the captured melting process on the ground. From left to

right the sequential lightness images of two hailstones (row 1 and 2) extracted from the five orthophotos (soccer center circle) are shown.

In the images the Mask R-CNN segmentation masks are emphasized together with with the major and minor axis lengths indicated by the

minimal bounding boxes. The actual sizes (widthand
:
, heightin mm) are given in the titles

::
as

:::
well

::
as

:::
the

::
the

::::
time

::
tc ::::

since
:::
first

::::::
capture. During

the 1119 s these hailstone
:::::::
hailstones

:
shrink about 12mm

::::
(upper

::::
row)

:
and 7.5mm

:::::
(lower

:::
row)

:
in their major axis length.
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Figure 14. Kernel density estimation (KDE) with linear (a) and logarithmic (b) y-axis of the degrading hail size distributions due to melt-

ing processes on the ground. The
::::
initial

::::
hail

:::::
sample

::::
size

::
is

::::
3925.

::::
The orthophoto area for the melting analysis is restricted to the soccer

center circle to ensure a correct comparison between the different
:::::::
generated orthophotos (Map

::::
Flight

:
1–5). In total, five drone-based hail

photogrammetry surveys were carried out to secure
::::::
capture the temporal data analysis. All the relevant time frames are listed in Table 2.
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