We thank Ward van Roy for the highly valuable and thoughtful review. We think, his comments do improve the paper noticeably.

We refer to the individual comments as follows:

General comments:

The manuscript is well written and includes valuable information. The research questions are well defined and the methods are well worked and properly referenced. The results are clearly presented and will enhance the scientific knowledge in the field. Some references to the international regulations (IMO, MEPC) could be added and legal wording can be improved. Make sure to use always the latest regulations or consolidated versions in the references to international regulations and conventions. When using legal references avoid mentioning the pages and avoid duplicating the year (at the end) as this has no added value (e.g. 11.5.1999, p. 13–18 (EN), 1999. this can better be mentioned as: adopted on 11 May 1999.).

Reference and comparison to previous studies and literature is somehow lacking. The number of references is relatively short. In the discussion some considerations could have been made on NOx regulations. As all remote monitoring groups measured NOx as well, it would be interesting to see the intercomparison of the NOx measurement results.

The importance of the results for operational compliance monitoring/enforcement could be more elaborated. How did the research contribute to the enforcement practices in the field? What are the lessons learned for the compliance monitoring organizations. Will reporting thresholds be lowered ... ?

The evaluation is now limited to the analysis of the absolute differences between the measurements and the BDN/Fuel samples. As this will work fine for the range 0-0.1% FSC. This is less useful for high measurements e.g. non-compliant vessels or measurements outside the ECA. An elaboration of the proportional bias beside the absolute bias would therefore be interesting. If the authors consider that this is outside the scope of this research, the authors should mention this.

AC: The suggested references are now included and suggestions regarding legal referencing are now adapted. There is a practical limitation regarding writing exact dates without doubling the year due to the required reference style by the publisher.

Indeed, emissions of NOx and particulate matter were also measured during the same measurement campaign. The results are foreseen to be published in separate papers but cannot yet be referenced.

The focus of this paper is on state-of-the-art monitoring. The focus of the results is on the intercomparison performance to accurately determine the FSC from plume emission measurements between the currently used instruments within the SECA region. The aim is to assess the capability of the current instrumentation to differ between compliant and non-compliant measurements in this region.

The results of this study were taken at the currently applied sulphur limit for seagoing vessels. For low FSCs, the capability of state-of-the-art instruments that measure VMRs at trace level to quantify the correspondingly low VMRs is typically at its limits. In this case, the relative uncertainties are high
compared to cases that can be expected when ships that go with fuel with sulphur contents closer to 0.5 %Sm/m are measured - assuming comparable measurement conditions.

The limitation has now clearly been mentioned in the introduction (l. 77f).

Detailed comments:

15. I would suggest to use “seagoing” (without “-”) vessels or use “ocean going vessels”

 AC: This is adapted according to suggestion.

18. suggest rephrasing “observe the same emission sources under similar conditions” as measurements were conducted to measure the emission factors, so I would suggest to mention that.

 AC: This is adapted according to suggestion.

21. Would suggest to stick to the official term “North Sea Sulphur Emission Control Area”

 AC: This is adapted according to suggestion.

24. “reference” without “s”

 AC: This is adapted according to suggestion.

24. Specify “most”

 AC: This is adapted to: “Seven out of the eight”.

26. Would suggest to split up “the lowest systematic deviation was observed for the airborne system... having a deviation of ... %”. “...The lowest the total uncertainty was observed for the laser...”

 AC: This text passage is now restructured.

30. Maybe make a reference to the formerly established thresholds at 95% CI (e.g. 0.2%FSC with 95% CI) to demonstrate the advancement.

 AC: The aim of this study was not to improve the individual uncertainty estimations but to assess the reliability of the individually reported FSC estimations including their uncertainties to make them comparable between the groups.

32. The correct reference to MARPOL is: “International Convention for the Prevention of Pollution from Ships”

 Add reference:

International Convention for the Prevention of Pollution from Ships 1973, as modified by the
Protocol of 1978 relating thereto (adopted 17 February 1978 (MARPOL), in force 2 October 1983) 1340 UNTS 61, as amended

AC: This is adapted according to suggestion.

35. Suggestion to add Regulation nrs (Reg. 13 and Reg. 14) here.

AC: This is adapted according to suggestion.

39. Suggestion to add guidelines on scrubbers:

2021 Guidelines for Exhaust Gas Cleaning Systems, Resolution MEPC.340(77), Adopted on 26 November 2021

AC: This is adapted according to suggestion.

41. replace “implemented” by “entered into force” as this are 2 different things. Add a reference:

AC: This is adapted according to suggestion.

43. Make reference to the revised Sulphur Directive of 2016:

AC: This is adapted according to suggestion.

45. Use the correct legal wording “..North Sea SECA came in effect on 22 November 2007 ..” “..Baltic Sea SECA came in effect on 19 May 2006 ..” + add reference

List of Special Areas, Emission Control Areas and Particularly Sensitive Sea Areas, Circular MEPC.1/Circ.778/Rev.3 of 2 July 2008

AC: This is adapted according to suggestion.

52. Or quick sampling methods (e.g. XRF)

AC: This is adapted according to suggestion.

70. Specify “near shore” as airplanes can also operate near shore as proven by the BE measurements inside the Westerschelde and as close to the ports as 200m. Suggestion to skip this sentence as it implies that airplanes cannot operate near shore.

AC: This is rephrased now: “Measurements by aircraft and UAV systems can be conducted for monitoring of vessels at any reachable location.”

73. Use SCIPPER abbreviation after the written out acronym instead of before.
AC: This is adapted according to suggestion.

148. Provide the manufacturer and model of the EC sensors of the UAS systems like was done for the stationary systems.

AC: Both drone systems are integrated systems. The Explicit system is referred to as the Explicit Mini-Sniffer System. Chalmers system is experimental and does not have a particular denotation.

149. Ambient air quality laboratory use more stringent calibration methods, why are these not applied here? Not only the sensors need to be calibrated but the VMRs inside the cylinders need to be checked too. Without this step the calibrations risk to be erroneous.

AC: We agree, and this study highlights the importance of the accuracy of the calibration gases and recommends validations of delivered cylinders in reference laboratories amongst other measures to assure quality, e.g. round-robin tests. The text is now updated accordingly (l. 279ff).

224. However kn is also correct the use of kts is more common in the maritime sector

AC: This is adapted according to suggestion.

257. Cfr comment 149, issue with unreliable VMRs of ordered gasses is a bit lost here, suggestion to move this to 149. However the data correction for the measurements that were conducted using the sensors calibrated using the wrong VMR reference ratios should be elaborated here.

AC: This section is based on an observation that we made in connection with the calibrations. Therefore, we think, that it should be associated with the discussion section.

264. Please elaborate on possibility that FSC could potentially change between measurement and sampling. My opinion is that for most cases no substantial change is expected, but it can not ruled out, certainly when vessels have been doing fuel change over procedures. A potential may to exclude this potential error, was to limit the analyses to vessels with only 1 fuel type on board.

AC: We agree that theoretically it could be possible that the fuel was switched shortly before or between remote measurement and onboard inspection including fuel sample/collection of bunker delivery note. However, as this is an unlikely case close to the harbour, we decided to keep all cases in the study. Nevertheless, we clarified this in the text (l. 289ff).

290. The graph is interesting, however, not that relevant for operational use. What is important is not the reported uncertainty, but the maximum allowable difference. For measurements under the non-compliance threshold the reported uncertainty and maximum allowable difference can be the same, however as soon as the non-compliance reporting threshold is reached, the reported uncertainty is irrelevant for operational reasons, but its rather the difference between the FSC measurement and the FSC limit which must be examined, to avoid type II errors where compliant vessels are assigned as non-compliant.

Please also refer to the comparison analysis made by airborne measurement and EGCS/fuel samples https://www.mdpi.com/2073-4433/14/4/623

AC: Figure 2 shows that deviations between the estimated FSC and the expected FSCs from fuel sampling and bunker delivery notes are off up to a multiple of the currently reported uncertainties.
This is due to the hitherto used error budgeting by the individual groups and proves the value of comparisons in the field in a true-world environment. This is a relevant outcome of this campaign.

The authors intended to elaborate more on the distribution of the absolute deviations over a span of different expected FSCs. However, the values of the expected FSC was heavily centred on 0.082%Sm/m with nearly 70% of all values being in the tight range between 0.075 and 0.010%Sm/m. We added this information to section 2.6 Fuel samples and bunker delivery notes.

The suggested reference found surprisingly low uncertainties for a similar system especially for FSCs around 0.1%Sm/m. We are uncertain if the findings are comparable.

300. Reference could be made to the negative bias correction by Van Roy et al 2022 b which observed similar negative biases.

 AC: The reference is now included in section 3.2 where the negative bias and suggestions for corrective measures are discussed.

357. The over NO correction could also be a potential cause for the negative bias. Not that Van Roy et al. b use lower NO correction factors compared to Chalmers.

 AC: This is discussed in more detail now (l. 381ff).

330. Note that Van Roy et al. evaluated RH and T impact (https://doi.org/10.3390/atmos14040623), see supplementary material.

 AC: In their study, van Roy et al. saw only little dependence on RH and T. Also, between the systems in this study were systems, e.g. exp.uas, that did not indicate such a correlation while it was more apparent for others, e.g. cha.las. As discussed in section 3.2, we suggest that the cause for the observed differences, also with respect to the observation by van Roy, might be in the individual instrumental setups instead of the underlying methodologies. We see a need for further testing on instrumental basis to understand this effect better with a particular focus on areas, on which condensation can occur, like filters. This is already emphasized in the paper (l 369ff).

420. Round robin test are first mentioned here, they should have been mentioned before in the discussion on how to correct negative biases. Suggestion to add reference: https://www.mdpi.com/2073-4433/14/6/969

 AC: This is now explicitly included (also the suggested reference) in the discussion section in connection with the validation of calibration: “This highlights the need to validate VMRs of the calibration gases. Possible ways to conduct such a validation are by tests against the preceding calibration gases or, with higher accuracy, by accredited reference laboratories. Alternatively, round-robin tests can be used to validate the instrument calibration using reference gases or gas blends simulating different FSCs (Van Roy et al., 2023).” (l. 277ff).