
Reviewer 1 1 

 2 

We would like to thank Reviewer #1 for his/her review of our paper and the important comments and suggestions 3 

provided. Please, find below our responses to the Reviewer’s comments and the details on how we address them 4 

in the new version of the manuscript. 5 

 6 

1.1) Line 27: This approach has been used before so it’s not accurate to call it innovative. Zhao and Weng 7 

(2002, http://www.jstor.org/stable/26184983) retrieved ice cloud parameters by isolating ice scattering 8 

signature. The latter is derived from observed high frequency TBs and simulated cloud base (i.e. clear-sky) 9 

TBs. They calculated the over land cloud base high frequency TBs from low frequencies with the 10 

assumption that low frequency measurements are less affected by cloud scattering. Please modify the 11 

manuscript accordingly and cite Zhao and Weng’s paper. 12 

 13 

Thanks to the reviewer for the very useful suggestion. The HANDEL-ATMS approach is indeed very similar to 14 

Zhao&Weng’s approach. However, it is also worth noticing some important differences: 15 

1) the Zhao&Weng Algorithm screens out all possible “scattering surfaces” including snow cover and sea 16 

ice, that are the kind of surfaces where HANDEL-ATMS is focused on. 17 

2)  the Simulated clear-sky TB estimated by Zhao&Wheng is obtained by an empirical relationship between 18 

AMSU-A 23 and 31 GHz and 89 and 150 GHz clear-sky TB; in our work, an emissivity spectrum has 19 

been estimated for the ATMS channels downstream a background surface classification and the 20 

differences between the observed signal and the simulated one for 16 different channels have been used 21 

as input of a neural network approach 22 

Moreover in the Abstract we stated:  23 

 24 

 The main novelty of the approach is the radiometric characterization of the background surface (including snow 25 

covered land and sea ice) at the time of the overpass to derive multi-channel surface emissivities and clear-sky 26 

contribution to be used in the snowfall retrieval process.  27 

 28 

The statement in parenthesis, in our opinion, is sufficient to restrict the novelty of the approach to some 29 

background surfaces. Therefore we would like to keep the abstract as it is. However, we recognize the importance 30 

of the Zhao&Weng approach and the similarities between that work and HANDEL-ATMS and we modified the 31 

Introduction (lines 99-121): 32 

From: 33 

 34 

The main novelty of the approach is the exploitation of the ATMS wide range of channels (from 22 GHz to 183 35 

GHz) to obìtain the radiometric characterization of the background surface at the time of the overpass.  The 36 

derived  surface emissivities are used to infer the clear-sky contribution to the measured TBs in the high frequency 37 

channels in the  snowfall retrieval process. Moreover, the algorithm is based on the exploitation of an 38 

observational  dataset where each ATMS multichannel observation is associated with coincident (in time and 39 

space)  CloudSat CPR vertical snow profile and surface snowfall rate (hereafter ATMS-CPR coincidence dataset). 40 

Several snowfall retrieval algorithms for cross-track scanning radiometers have evolved in the last 20 years 41 

starting from the Advanced Microwave Sounder Unit-B (AMSU-B) (Kongoli et al, 2003, Skofronick-Jackson et 42 

al, 2004, Noh et al., 2009, Liu and Seo 2013), and Microwave Humidity Sounder (MHS) (see Liu & Seo, 2013, 43 

Edel et al, 2020), and evolving to ATMS (Kongoli et al, 2015, Meng et al, 2017, Kongoli et al, 2018, You et al, 44 

2022, Sanò et  al, 2022). Some of them are based on radiative transfer simulations of observed snowfall events 45 

(Kongoli et al, 2003, Skofronick-Jackson et al, 2004, Kim et al, 2008), or on in-situ data (see Kongoli et al, 2015, 46 

Meng et al, 2017, Kongoli et al, 2018), others on CPR observations (Edel et al, 2020, You et al, 2022, Sanò et  al, 47 

2022), or a combination of them (Noh et al, 2009, Liu & Seo, 2013). 48 

to: 49 

The main novelty of the approach is the exploitation of the ATMS wide range of channels (from 22 GHz to 183 50 

GHz) to obìtain the radiometric characterization of the background surface at the time of the overpass.  The 51 

derived  surface emissivities are used to infer the clear-sky contribution to the measured TBs in the high frequency 52 

http://www.jstor.org/stable/26184983


channels in the  snowfall retrieval process. This approach is similar to the work of Zhao and Weng, 2002, for 53 

AMSU observations limited to non-scattering surfaces (i.e., ocean and vegetated land), however the application 54 

to surfaces with a very complex and time-varying emissivity (such as snow cover and sea ice) required a far-away 55 

more advanced algorithm taking advantage of machine learning techniques.  Moreover, the algorithm is based 56 

on the exploitation of an observational  dataset where each ATMS multichannel observation is associated with 57 

coincident (in time and space)  CloudSat CPR vertical snow profile and surface snowfall rate (hereafter ATMS-58 

CPR coincidence dataset). 59 

Several snowfall retrieval algorithms for cross-track scanning radiometers have evolved in the last 20 years 60 

starting from the Advanced Microwave Sounder Unit-B (AMSU-B) (Zhao and Weng 2002, Kongoli et al, 2003, 61 

Skofronick-Jackson et al, 2004, Noh et al, 2009, Liu and Seo 2013), and Microwave Humidity Sounder (MHS) 62 

(see Liu & Seo, 2013, Edel et al, 2020), and evolving to ATMS (Kongoli et al, 2015, Meng et al, 2017, Kongoli et 63 

al, 2018, You et al, 2022, Sanò et  al, 2022). Some of them are based on radiative transfer simulations of observed 64 

snowfall events (Kongoli et al, 2003, Skofronick-Jackson et al, 2004, Kim et al, 2008), or on in-situ data (see 65 

Kongoli et al, 2015, Meng et al, 2017, Kongoli et al, 2018), others on CPR observations (Edel et al, 2020, You et 66 

al, 2022, Sanò et  al, 2022), or a combination of them (Noh et al, 2009, Liu & Seo, 2013). 67 

The following reference has been added to the text (Line 810): 68 

 69 

Zhao, L., & Weng, F.: Retrieval of ice cloud parameters using the Advanced Microwave Sounding Unit. Journal 70 

of Applied Meteorology and Climatology, 41(4), 384-395, https://www.jstor.org/stable/26184983, 2002. 71 

 72 

Reference:  73 

 74 

Zhao, L., & Weng, F.: Retrieval of ice cloud parameters using the Advanced Microwave Sounding Unit. Journal 75 

of Applied Meteorology and Climatology, 41(4), 384-395, https://www.jstor.org/stable/26184983, 2002. 76 

 77 

1.2) Line 67: replace with "new" or "latest" 78 

 79 

Thanks to the reviewer for the suggestion. The text has been modified 80 

From: 81 

the availability of the last generation microwave radiometers 82 

to: 83 

the availability of the latest generation microwave radiometers 84 

 85 

1.3) Line 89: Contrary to what’s stated here, Greenland and Antarctica show scattering year-round in 86 

window and water vapor sounding channels, and even in the low temperature sounding channels. 87 

 88 

Thanks to the reviewer for the comment. Greenland and Anctartica have been defined as scatter-free by 89 

Grody&Basist, 1996. For what concerns our paper, the intention was to underline the absence of a significant 90 

difference between the emissivities at 23 GHz and at 31 GHz, typical of the snowcover over Greenland and 91 

Antarctic plateau (see Camplani et al, 2021), without referring to higher frequencies, as opposed to  deep dry snow 92 

at lower latitudes where this difference is evident. So we agree that the term “scatter-free” can be misleading if 93 

we also consider high-frequency channels. Therefore, the text has been changed 94 

from: 95 

At the same time, large areas of Greenland and Antarctica could appear as “scatter-free”, although these areas 96 

throughout the year are covered by dry snowpacks. 97 

to: 98 

At the same time, large areas of Greenland and Antarctica, although these areas are covered by dry snowpacks 99 

throughout the year, do not show a significant difference between the two ATMS low frequency channels. 100 

 101 

 102 

References: 103 

https://www.jstor.org/stable/26184983
https://www.jstor.org/stable/26184983


Grody, N. C., & Basist, A. N.: Global identification of snowcover using SSM/I measurements. IEEE Transactions 104 

on geoscience and remote sensing, 34(1), 237-249, DOI: 10.1109/36.481908, 1996. 105 

 106 

Camplani, A., Casella, D., Sanò, P., & Panegrossi, G.: The Passive microwave Empirical cold Surface 107 

Classification Algorithm (PESCA): Application to GMI and ATMS. Journal of Hydrometeorology, 22(7), 1727-108 

1744,https://doi.org/10.1175/JHM-D-20-0260.1, 2021. 109 

 110 

1.4) Lines 116-119: While 2CSP is a well-recognized product and is not derived from radiative transfer 111 

modeling, it does include assumptions about snow microphysics, and uses optimal estimation to retrieve 112 

these parameters. The algorithm also uses a simplified radar reflectivity equation. Refer to the 2CSP ATBD 113 

at https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/2c-snow-profile/2C-SNOW-114 

PROFILE_PDICD.P1_R05.rev0_.pdf. Please modify the text here accordingly. 115 

Thanks to the reviewer for the clarification. In the text, we wanted to highlight the issues inherent in using a 116 

dataset based on simulations (cloud-resolving model and radiative transfer) with respect to one based on 117 

coincident observations.  The text has been changed 118 

from: 119 

On the other side, the use of CPR-based datasets overcomes some of the limitations deriving from the assumptions 120 

to be made in cloud-radiation model simulations (e. g., the microphysics scheme, the emissivity of the background 121 

surface, scattering properties of ice hydrometeors), which are particularly problematic for snowfall estimation. 122 

However, some limitations of the radar product used as reference and issues related to the spatial and temporal 123 

matching between the CPR and the PMW radiometer measurements introduces some uncertainty. 124 

to: 125 

On the other hand, the use of CPR-based datasets overcomes some of the limitations deriving from the use of 126 

cloud-radiation model simulations, which are particularly challenging for snowfall events. However, some 127 

limitations of the radar product used as a reference and issues related to the spatial and temporal matching 128 

between the CPR and the PMW radiometer measurements introduce some uncertainty. Moreover, the 2CSP 129 

product is based on assumptions on snow microphysics, uses optimal estimation to retrieve snow parameters , 130 

and uses a simplified radar reflectivity equation and is affected by CloudSat CPR limitations as outlined in 131 

Battaglia & Panegrossi, 2020. 132 

 133 

Reference: 134 

 135 

Battaglia, A., & Panegrossi, G.: What can we learn from the CloudSat radiometric mode observations of snowfall 136 

over the ice-free ocean?. Remote Sensing, 12(20), 3285, https://doi.org/10.3390/rs12203285, 2020. 137 

 138 

1.5) Line 181: How is the underestimation of heavy snowfall handled in training and validating the SWP 139 

and SSR models? 140 

Thanks to the reviewer for the question.  The aim of the algorithm is to reproduce the 2C-Snow Profile product 141 

snowfall climatology, which is the only global radar product obtained from satellites. So, the underestimation has 142 

not been corrected . 143 

The following statement has been added to the text (line 223): 144 

Moreover, it is worth noting that CPR 2CSP product limitations for snowfall detection and estimation (see Section 145 

2.2) affect the algorithm snowfall retrieval capabilities. 146 

 147 

 148 

1.6) Line 273:  Do the ANNs use environmental parameters? What are they? 149 

https://doi.org/10.1175/JHM-D-20-0260.1


Thanks to the reviewer for the question. The final version of the algorithm does not use environmental parameters 150 

as input of the ANNs, but only some ancillary parameters (Digital Elevation Model (DEM), radiometer viewing 151 

angle). So the text has been modified 152 

from 153 

Four ANNs are then applied to a predictor set consisting of ATMS TBobs, ∆TBobs−sim, a surface classification 154 

flag, and other environmental and ancillary parameters.  155 

to: 156 

Four ANNs are then applied to a predictor set consisting of ATMS TBobs, ∆TBobs−sim, a surface classification 157 

flag, and other ancillary parameters (elevation and ATMS viewing angle for the final version).  158 

 159 

 160 

 161 

 162 

1.7) Lines 191-192: Add the info on the dataset’s geographic area. Was the data filtered for high latitudes 163 

given the focus of this study? 164 

 165 

Thanks to the reviewer for the suggestion and for the question. The data have been not filtered based on a 166 

geographic criteria. However, the data selection is based on temperature (T2m<280 K) and water vapor content 167 

(TPW<10 mm) and on elevation (see lines 320-321 and Camplani et al, 2021); As a consequence, the majority of 168 

the observations selected are obtained over high latitude areas. A statement about the dataset composition has 169 

been added (see answer to Comment 1.21). 170 

Reference:  171 

 172 

Camplani, A., Casella, D., Sanò, P., & Panegrossi, G.: The Passive microwave Empirical cold Surface 173 

Classification Algorithm (PESCA): Application to GMI and ATMS. Journal of Hydrometeorology, 22(7), 1727-174 

1744,https://doi.org/10.1175/JHM-D-20-0260.1, 2021. 175 

 176 

1.8) Lines 193-194: With a 15-min time window, the snow mass that ATMS detects in the atmosphere most 177 

likely is higher than the near-surface snow (SSR) observed by CPR (refer to You et al., doi: 178 

10.1029/2019GL083426). This adds uncertainties to the SSR (and to a lesser degree to SWP). Suggest the 179 

authors run an experiment where ATMS data is collocated with CPR snowfall rate with a certain time lag 180 

(30-minute?), and compare the retrieved ATMS snowfall rate with what is presented in this manuscript. 181 

 182 

Thanks to the reviewer for the suggestion. The suggested experiment is extremely interesting, and we want to take 183 

it into account for future works. However, the selection of coincident observations and the making of a coincidence 184 

dataset is a computationally and time consuming process, so we do not have the possibility to face this problem 185 

during the revision phase. The following statement have been added to the conclusions (line 597): 186 

 187 

Moreover, recent studies have highlighted that TBs correlate more strongly with lagged surface precipitation 188 

(with a time lag of 30-60 min for snowfall) than the simultaneous precipitation rate ( see You et al, 2019) . 189 

Therefore, an analysis based on a coincident dataset characterized by different  time lags will be carried out. The 190 

results of this analysis will be compared with HANDEL-ATMS performances in order to identify a way to exploit 191 

this information to improve SSR detection and estimation. 192 

 193 

The following reference has been added to the text (Line 806): 194 

 195 

You, Y., Meng, H., Dong, J., & Rudlosky, S.: Time‐lag correlation between passive microwave measurements and 196 

surface precipitation and its impact on precipitation retrieval evaluation. Geophysical Research Letters, 46(14), 197 

8415-8423, doi: 10.1029/2019GL083426, 2019. 198 

 199 

Reference:  200 

https://doi.org/10.1175/JHM-D-20-0260.1


 201 

You, Y., Meng, H., Dong, J., & Rudlosky, S.: Time‐lag correlation between passive microwave measurements 202 

and surface precipitation and its impact on precipitation retrieval evaluation. Geophysical Research Letters, 203 

46(14), 8415-8423, doi: 10.1029/2019GL083426, 2019. 204 

 205 

1.9) Line 282: Is there any noticeable discontinuity in the retrieved SWP and SSR between the different 206 

surface classes? Please add some discussion in the appropriate section. 207 

 208 

Thanks to the reviewer for the comment. As it is possible to observe by the case study reported,  discontinuities 209 

in the SWP/SSR retrieval are not observed in correspondence with the surface class change. Also for other case 210 

studies analyzed it has not been observed any discontinuity in snowfall retrievals in correspondence with a surface 211 

class change. In the following plots the statistical scores (POD, FAR and HSS) are reported as a function of the 212 

class. It is possible to observe that there are not very large differences. Also the error statistics do not show any 213 

significant difference between the various surface classes (see the answer to 1.23, Figure 9). So, the following 214 

statement has been added in the section dedicated to the case study (line 525): 215 

Discontinuities in snowfall retrievals are not observed in correspondence with surface class changes.  216 

 217 

1.10) Line 283: replace NASA with NOAA 218 

Thanks to the reviewer for the correction. The text has been modified 219 

from: 220 

the NASA AutoSnow product 221 

to: 222 

the NOAA AutoSnow product 223 

 224 

1.11) Line 290: While this is outside the scope of this study, is it possible to improve snow cover classification 225 

using ML approach? I’d like to get the authors’ comments on it. 226 

Thanks to the reviewer for the question. In Camplani et al, 2021 a comparison between the PESCA performances 227 

and the performance obtained with a RobustBoost approach (Machine Learning ensemble method) has been 228 

carried out. The results show that the performances obtained with this ML approach are very similar to those 229 

obtained by using PESCA. However, the leading idea of PESCA is to use a simple and not too computationally 230 

demanding method to obtain a surface classification ancillary to the snowfall retrieval by exploiting the radiometer 231 

low-frequency channels.  Indeed, in our opinion, the use  of ML approaches for the prediction of the surface 232 

emissivity for snow cover surfaces is very promising. In particular, it could be of great benefit for the exploitation 233 

of the heterogeneous observations from the radiometer constellation. In this context, we are presently working in 234 

how the future measurements of CIMR radiometer, with an unprecedented spatial resolution, but no high 235 

frequency channels, can be exploited for  improving the snowfall and IWP estimates of other radiometers equipped 236 

with high frequency channels, such as EPS-SG MWI, ICI, MWS the ATMS and AWS-STERNA. We sincerely 237 

thank the reviewer for this comment, and we would be pleased to further discuss this topic when the revision of 238 

this manuscript will be completed. 239 

Reference: 240 

 241 

Camplani, A., Casella, D., Sanò, P., & Panegrossi, G.: The Passive microwave Empirical cold Surface 242 

Classification Algorithm (PESCA): Application to GMI and ATMS. Journal of Hydrometeorology, 22(7), 1727-243 

1744,https://doi.org/10.1175/JHM-D-20-0260.1, 2021. 244 

 245 

1.12) Line 327: give explicit definitions of POD, FAR, and HSS even though they are well known. 246 

 247 

Thanks to the reviewer for the suggestion. The text has been modified 248 

 249 

 250 

from:  251 

https://doi.org/10.1175/JHM-D-20-0260.1


The statistical scores (POD, FAR, HSS) of PESCA identification of sea ice and snow cover (using AutoSnow as 252 

reference) are summarized in Table 1. 253 

to: 254 

The statistical scores of PESCA identification of sea ice and snow cover (using AutoSnow as the reference) are 255 

summarized in Table 1. In particular, the Probability of Detection (POD), the False Alarm Ratio (FAR), and the 256 

Heidke Skill Score (HSS) are reported. POD, FAR, and HSS are defined by equations 2,3 and 4. 257 

POD=
ℎ

ℎ+𝑚
  258 

(2) 259 

FAR=
𝑓

𝑓+ℎ
 260 

(3) 261 

HSS=
2(ℎ∗𝑐𝑛−𝑓∗𝑚)

(ℎ+𝑚)∗(𝑚+𝑐𝑛)+(ℎ+𝑓)(𝑓+𝑐𝑛)
 262 

(4) 263 

where h represents the hits, f represents the false alarms, m represents the misses and cn represents the correct 264 

negatives 265 

 266 

1.13) Line 346: Give reference to the radiative transfer model, or add some information about the model. 267 

 268 

Thanks to the reviewer for the suggestion. The simulations are based on a plane-parallel approximation (see Ulaby, 269 

2014) and the gas absorption model is described by Rosenkranz, 1998. The text has been modified (see answer to 270 

Comment 1.15). 271 

The following reference has been added to the text (Line 806): 272 

Rosenkranz, P. W., Water vapor microwave continuum absorption: A comparison of measurements and models. 273 

Radio Science, 33(4), 919-928. https://doi.org/10.1029/98RS01182, 1998. 274 

References:  275 

 276 

Ulaby, F., & Long, D., Microwave radar and radiometric remote sensing, 1st Edition, the Univ. of Michigan Press, 277 

ISBN: 978-0-472-11935-6, 2014. 278 

Rosenkranz, P. W., Water vapor microwave continuum absorption: A comparison of measurements and models. 279 

Radio Science, 33(4), 919-928. https://doi.org/10.1029/98RS01182, 1998. 280 

 281 

1.14) Line 350: Is the polarization effect on emissivity also neglected between viewing angles of 40 degree 282 

and 52.7 degree (the max ATMS viewing angle)? Need to state it if it’s the case. 283 

Thanks to the reviewer for the question. The polarization effect is less than 0.05  between 0 ° and 52.7 °, so it has 284 

not been considered. In the plot below the dependence of the ocean emissivity on viewing angle at 89 GHz (top) 285 

and the differences between the emissivity at nadir and the emissivity at a certain angle (bottom) are reported 286 

based on the FASTEM model (see Prigent et al, 2017) . It is possible to observe that, while the V and H emissivity 287 

show a variation up to 0.15, the QV and QH emissivity variation is   lower than 0.05 for scan angles < 52 °. 288 

The text has been modified  289 

from: 290 

The emissivity spectra dependence on the ATMS viewing angle for polarized surfaces has been neglected because 291 

an analysis of such dependence in the ATMS-CPR coincidence dataset has shown that it is significant only for 292 

larger viewing angles (tot for >40 °). This is due to the fact that cross-track scanning radiometers measure a 293 

signal (off-nadir) which derives from a mixture between the two polarizations (e.g., quasi-vertical, QV, and quasi-294 

horizontal, QH). As a consequence, although the emissivities of polarized surfaces, such as open water surfaces, 295 

are strongly influenced by the viewing angle, for the cross-track scanning radiometers the emissivity variation is 296 

compensated by the effect of the mixture of the two polarization (see also Felde & Pickle, 1995, Prigent et al, 297 

2000, Mathew et al, 2008, Prigent et al, 2017).  298 

https://doi.org/10.1029/98RS01182
https://doi.org/10.1029/98RS01182


to: 299 

The emissivity spectra dependence on the ATMS viewing angle for polarized surfaces has been neglected because 300 

an analysis of such dependence in the ATMS-CPR coincidence dataset has shown that it is not significant for 301 

ATMS viewing angles (emissivity difference smaller than 0.05 for angles up to 52.7 °). This is due to the fact that 302 

cross-track scanning radiometers measure a signal (off-nadir) which derives from a mixture between the two 303 

polarizations (e.g., quasi-vertical, QV, and quasi-horizontal, QH). As a consequence, although the emissivities of 304 

polarized surfaces, such as open water surfaces, are strongly influenced by the viewing angle, for the cross-track 305 

scanning radiometers the emissivity variation is compensated by the effect of the mixture of the two polarization 306 

(see also Felde & Pickle, 1995, Prigent et al, 2000, Mathew et al, 2008, Prigent et al, 2017).  307 

 308 
 309 

Reference: 

Prigent, C., Aires, F., Wang, D., Fox, S., & Harlow, C.: Sea‐surface emissivity parametrization from 

microwaves to millimetre waves. Quarterly Journal of the Royal Meteorological Society, 143(702), 596-605, 

https://doi.org/10.1002/qj.2953, 2017. 

 

 310 

https://doi.org/10.1002/qj.2953


 311 

1.15) Line 362: Reference for the RTM? 312 

Thanks to the reviewer for the suggestion. The text has been modified 313 

from: 314 

The RMSE between simulated clear-sky TBs - based on the mean emissivity values estimated for each class - and 315 

the coincident observed clear-sky TBs appears to be too high to implement a robust signal analysis (>10 K).  316 

to: 317 

The clear-sky radiative transfer model simulations are based on the mean emissivity values estimated for each 318 

class, and simulated by using the plane-parallel approximation (Ulaby & Long, 2014) and the Rosenkrantz gas 319 

absorption model  (Rosenkrantz, 1998) - The RMSE between simulated clear-sky TBs and the coincident observed 320 

clear-sky TBs appears to be too high to implement a robust signal analysis (>10 K).  321 

 322 

References: 323 

Rosenkranz, P. W., Water vapor microwave continuum absorption: A comparison of measurements and models. 324 

Radio Science, 33(4), 919-928. https://doi.org/10.1029/98RS01182, 1998. 325 

 326 

Ulaby, F., & Long, D., Microwave radar and radiometric remote sensing, 1st Edition, the Univ. of Michigan Press, 327 

ISBN: 978-0-472-11935-6, 2014. 328 

 329 

1.16) Line 397, the RMSE for ocean is 3.37 K in Table 2. 330 

 331 

Thanks to the reviewer for the observation. The text has been modified 332 

from: 333 

very low RMSE values (≈ 2 K) 334 

to: 335 

 low RMSE values (< 4 K) 336 

 337 

1.17) Line 403: Since high frequencies are more important for snowfall retrieval, need to discuss the impact 338 

of the significant uncertainties at these channels to retrieve SWP and SSR. 339 

Thanks to the reviewer for the suggestion. In Figure 9 (see answer to Comment 1.23)  the statistical scores for 340 

each PESCA class are reported. It is possible to observe that the worst scores are obtained for classes characterized 341 

by high uncertainties in the clear-sky TB simulations (Perennial Snow, Winter Polar Snow). However, it is also 342 

worth noting that these classes are mostly associated with environmental conditions (very dry and cold, with very 343 

light snowfall events, see Camplani et al, 2021) which make it difficult both to obtain a more accurate clear 344 

emissivity estimation and to retrieve snowfall. At the same time, it can be observed that classes characterized by 345 

the highest uncertainties on the emissivity estimate (Deep Dry Snow and Broken Sea Ice), show statistical scores 346 

which are coherent with the general scores of the algorithm. So it is clear that the uncertainties on emissivity 347 

estimation have less influence than other factors, such as the environmental conditions. 348 

The text has been modified (line 471) 349 

from: 350 

In Table 6 the statistical scores of the algorithm performance by considering each PESCA class for both the SWP 351 

and the SSR detection module are reported. It can be observed that, also considering specifically the classes where 352 

the detection is more problematic, both for the uncertainties linked to the emissivity retrieval (see Table 2), for 353 

the extremely dry and cold environmental conditions, and for the low intensity of the snowfall events,  such as 354 

Perennial Snow or Winter Polar Snow, HANDEL-ATMS has good detection capabilities (POD and FAR values 355 

greater than 0.7 and less than 0.25, respectively, for both SWP and SSR). These results provide evidence that 356 

HANDEL-ATMS can be used to analyze snowfall occurrence in the polar regions. 357 

to: 358 

https://doi.org/10.1029/98RS01182


In Figure 9 the statistical scores of the algorithm performance by considering each PESCA class for both the 359 

SWP and the SSR detection module are reported. It can be observed that, also considering specifically the classes 360 

associated to extremely dry and cold environmental conditions such as Perennial Snow or Winter Polar Snow 361 

(see Camplani et al, 2021) (where the detection is more problematic due to the uncertainties in the emissivity 362 

retrieval (see Table 2) , and to the low snowfall intensity), , HANDEL-ATMS has good detection capabilities (POD 363 

and FAR values greater than 0.7 and less than 0.25, respectively, for both SWP and SSR). On the other hand, it 364 

is possible to observe also that for surface classes characterized by the highest emission estimation uncertainties, 365 

such as Deep Dry Snow, the statistical scores are coherent with the general scores and better than those obtained 366 

in presence of extremely dry/cold environmental conditions. So, it is possible to conclude that the extremely 367 

cold/dry environmental conditions -  have more influence on the detection than the uncertainties on clear sky 368 

emissivity estimation. Generally, these results provide evidence that HANDEL-ATMS can be used to analyze 369 

snowfall occurrence in the polar regions. 370 

 371 

Reference: 372 

 373 

Camplani, A., Casella, D., Sanò, P., & Panegrossi, G.: The Passive microwave Empirical cold Surface 374 

Classification Algorithm (PESCA): Application to GMI and ATMS. Journal of Hydrometeorology, 22(7), 1727-375 

1744,https://doi.org/10.1175/JHM-D-20-0260.1, 2021. 376 

 377 

1.18) Line 430: Logarithmic tangent function is not a common activation function. Please add a reference 378 

or explain what it is. 379 

Thanks to the reviewer for this comment. It was  a typo, the activation function is a sigmoid.  We used hyperbolic 380 

tangent and sigmoid functions, which are indeed very common activation functions. The choice of the activation 381 

functions has been performed by trial and testing.  382 

The manuscript has been modified  383 

from: 384 

The final architecture, for all modules, is composed of four layers: an input layer with a neurons number equal 385 

to the predictor number, and a hyperbolic tangent function as the activation function, a first hidden layer (60 386 

neurons), and hyperbolic tangent function, a second hidden layer (30 neurons), with a logarithmic tangent 387 

function.  388 

to: 389 

 The final architecture, for all modules, is composed of four layers: an input layer with a neurons number equal 390 

to the predictor number, and a hyperbolic tangent function as the activation function, a first hidden layer (60 391 

neurons), and hyperbolic tangent function, a second hidden layer (30 neurons), with a sigmoid function.  392 

 393 

1.19) Lines 435-436: Did the predictor set including TB_obs, TB_obs-TB_sim, and environmental variables 394 

give better result than the set only included the first two? If not, why? Is it because TB_sim also used the 395 

environmental variables being tested? 396 

Thanks to the reviewer for the question. The NNs that use both the Δobs-sim and the environmental parameters show 397 

detection scores almost equal to those obtained by using only  Δobs-sim. This is because the information about 398 

environmental conditions is already used as input in the clear-sky TB simulations The following statement has 399 

been added to the text (line 438):  400 

On the contrary, the simultaneous use of both the ΔTBobs-sim and the environmental parameters show scores almost 401 

equal to that obtained by using only ΔTBobs-sim .  402 

 403 

 404 

 405 

1.20) Lines 444: Which 16 ATMS channels and how are they selected? 406 

Thanks to the reviewer for the suggestion.  The sixteen channels are ATMS channels 1-9, 16-22. The ATMS 10-407 

15 channels peak above the tropopause, so we did not take them into account in the development of HANDEL-408 
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ATMS. Figure below shows the temperature weighting functions for a standard atmosphere in clear sky 409 

conditions.  410 

 411 

The text has been modified 412 

from:  413 

16 ATMS TBobs     414 

to: 415 

1-9, 16-22 ATMS channels TBobs (the 10-15 ATMS channels have not been considered because their weighting 416 

function peaks above the tropopause). 417 

 418 

1.21) Section 4.1: Some details about the validation data should be provided. Is the data from selected 419 

snowfall events used or from a time period? How many events were included and their geographic areas? 420 

How many data points were in the dataset etc.? The information is important because it provides the 421 

context for the performance metrics. 422 

Thanks to the reviewer for the suggestion. The following section has been added to the text of section 2.3 (line 423 

223): 424 

In this work, the dataset has been filtered based on humidity (TPW < 10 mm) and temperature (T2m <280 K) and 425 

elevation conditions (the working limits of the PESCA algorithm, see Camplani et al, 2021)  leading to a good 426 

representation of the higher latitudes with 80 % of the dataset elements located above 60°N/S . The dataset is 427 

made of 2,14*10 6 elements, including 1,07*10 6 elements with falling snow (2CSP SWP > 0 kg m-2) and 9,99*10 428 
5 with snowfall at the surface (2CSP SSR > 0 mm h-1) . The training and test phases have been conducted by 429 

splitting randomly the dataset, with ⅓ of the elements in the training and ⅔ of the elements in the test dataset. 430 

 431 

Reference: 432 

 433 



Camplani, A., Casella, D., Sanò, P., & Panegrossi, G.: The Passive microwave Empirical cold Surface 434 

Classification Algorithm (PESCA): Application to GMI and ATMS. Journal of Hydrometeorology, 22(7), 1727-435 

1744,https://doi.org/10.1175/JHM-D-20-0260.1, 2021. 436 

 437 

 438 

1.22) Line 451: A large percentage of the snowfall appears to fall when T_2m is around the freezing point 439 

or higher. Snowfall under such conditions generally has different characteristics from snowfall in high 440 

latitudes which is the focus of this study. Add some discussion about the data distribution and its impact on 441 

the new snowfall algorithm. 442 

Thanks to the reviewer for the suggestion.  Generally, the SWP detection shows better performances in moister 443 

and warmer conditions than in colder/drier situations for two main reasons: 1) the atmosphere is less transparent 444 

2) these conditions are usually associated with more intense events. However, in these conditions there can be a 445 

mismatch between the presence of falling snow in the atmosphere and the presence of snowfall at the surface; 446 

therefore, the SSR detection statistical scores show a maximum around 273 K and 5 mm and then decrease. From 447 

Figure 8, it is possible to observe that the maximum number of observations and of snowfall elements in the 448 

dataset  is around 273 K, where the best performances are obtained. However, it is worth noticing that HANDEL 449 

shows very good results also in very dry and very cold conditions.  We believe that this is the main achievement 450 

of this work, since the main objective of this study is to show that HANDEL is able to detect and retrieve snow 451 

also in extreme conditions typical of the higher latitudes. We think that this is the added value of this study. In 452 

order to highlight this aspect, we have added a new figure showing the variability of the estimation statistical 453 

scores and the mean SWP and SSR with TPW (see answer to Comment 1.25). 454 

 455 

1.23) Line 471: Add HSS to Table 6. 456 

 457 

Thanks to the reviewer for the suggestion.  458 

We have deleted Table 6 and we have added Figure 9, where the POD, FAR, HSS, the observation occurrences 459 

and the snowfall observation occurrences (SWP, SSR>0) are reported.  460 

 461 

 462 

 463 

 464 
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 465 
 Figure 9: Same as Figure 7 but for  PESCA surface classes. 466 
  467 

1.24) Table 5: Since the goal of this study is to retrieve snowfall in high latitude, it'd be informative to 468 

analyze how well the statistics represent the cold, dry and light snowfall versus the warm, moist, and heavier 469 

snowfall. Please add some quantitative analysis to show the performance of the snowfall representative of 470 

high latitude conditions. 471 

Thanks to the reviewer for the suggestion. The dependence of the detection scores on the environmental conditions 472 

has been reported in Figure 7 and in Figure 8. The presence of a less transparent atmosphere and the presence of 473 

high SWP values generates a more intense signal.  We have decided to add one Figure in the manuscript showing 474 

the variability of the snowfall estimation statistical scores, as well as SWP and SSR, with TPW (see  answer to 475 

Comment 1.25).  476 

 477 

1.25) Line 487: Typically, high latitude snowfall is rather light. Does this result mean that the snowfall 478 

retrieval in high latitude is generally overestimated? Add some discussion here. 479 

Thanks to the reviewer for the comment. From Figure 9 it is possible to observe that the algorithm tends to 480 

overestimate light snowfall, while there is a better agreement for more intense snowfall. Very light snowfall events 481 

are linked to the dry /cold environmental conditions typical of high latitude areas, where more intense snowfall 482 

events are typical of moister conditions. We state that “Generally, it can be observed that, although HANDEL-483 

ATMS is able to detect extremely light snowfall events, it does not have the sensitivity to correctly estimate their 484 

intensity.“   The final part of Section 4.1 has been largely modified (see below) 485 

We decided to add the following Figure to the paper in order to answer 1.22, 1.24 and 1.25.  486 

 487 



 488 
 489 

Figure 11: HANDEL-ATMS SWP and SSR Detection Performances for different bins of TPW. The left y-axis 490 
reports RMSE absolute values and the mean intensity value for each 1-mm TPW bin, while the relative bias, 491 
calculated as the ratio between the bias and the SWP/SSR mean value for each bin. 492 
 493 
 494 

 The text has been modified to comment the Figure 11 (Line 488) 495 

from: 496 

. Generally, it can be observed that, although HANDEL-ATMS is able to detect extremely light snowfall events, it 497 

does not have the sensitivity to correctly estimate their intensity. 498 

  499 

to: 500 
 501 

Figure 11 shows the dependence of HANDEL-ATMS snowfall estimation error statistics, as well of SWP and SSR, 502 

on TPW. The curves represent the mean SWP or SSR computed for each 1-mm TPW bin, the RMSE and the relative 503 

bias (the ratio between the bias and the SWP/SSR mean value for each bin). TPW and snowfall intensity are 504 

strongly correlated.  An increase of the absolute RMSE can be observed as TPW increases, and it is larger than 505 

the SWP/SSR mean value for TPW < 8 mm. A similar behavior can be observed by analyzing the dependence of 506 



HANDEL-ATMS snowfall estimation error statistics on T2m (not shown).   A very moderate overestimation is 507 

observed for TPW < 8 mm and for lower SWP and SSR values (< 0.1 mm/h), with relative bias around 5%, (up 508 

to 8% only for extremely low TPW values and very low number of observations (see Figure 7)), while 509 

underestimation (relative bias up to -5%)  is observed for higher TPW values and higher SWP and SSR  values. 510 

Generally, light snowfall events are linked to the very cold/dry environmental conditions typical of high-latitude 511 

regions. So, the algorithm manages to detect also the very light snowfall typical of high latitudes, but tends to 512 

slightly overestimate snowfall intensity in such conditions.  It can be concluded that HANDEL-ATMS has good 513 

detection capabilities (also for extremely light snowfall) but it shows some limitations in  correctly estimating its 514 

intensity, with slight overestimation of the very light snowfall typical of high latitudes. 515 

 516 

1.26) Lines 555-558: See the comment on line 27. 517 

 518 

Thanks to the reviewer for the suggestion. The text has been modified 519 

from: 520 

 521 

The  driving and innovative principle in the algorithm development is the exploitation of the full range of ATMS 522 

channel frequencies to characterize the frozen background surface radiative properties at the time of the overpass 523 

to be able to better isolate and interpret the snowfall-related contribution to the measured multi-channel upwelling 524 

radiation.  525 

to 526 

 527 

The driving and innovative principle in the algorithm development is the exploitation of the full range of ATMS 528 

channel frequencies to characterize the frozen background surface radiative properties at the time of the overpass 529 

to be able to better isolate and interpret the snowfall-related contribution to the measured multi-channel upwelling 530 

radiation. A similar approach has been used by Zhao &Weng, 2002; however, their application was limited to 531 

non-scattering surfaces and was based on empirical relationships. 532 

 533 

Reference:  534 

 535 

Zhao, L., & Weng, F.: Retrieval of ice cloud parameters using the Advanced Microwave Sounding Unit. Journal 536 

of Applied Meteorology and Climatology, 41(4), 384-395, https://www.jstor.org/stable/26184983, 2002. 537 
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