
Reviewer 2 1 

We would like to thank Reviewer #2 for his/her review of our paper and the important comments and suggestions 2 

provided. Please, find below our responses to the Reviewer's comments and the details on how we address them 3 

in the new version of the manuscript 4 

General comments.  5 

The text is a bit hard to follow. It is highly recommended that the authors make an effort to shorten it and 6 

make the language and the message more succinct. The quality of the figures can be significantly improved 7 

as well. There are a few important points that need to be cleared in the next revision.  8 

Thanks to the reviewer for the suggestion. We have shortened the manuscript and tried to make the message more 9 

succinct. We have also improved figures 2, 6, 7, 8, 11, and 14 (now Figures 13 and 16  because  new Figures 9 10 

and 11 have been added to address some comments by Reviewer 1)  and the captions have been modified 11 

accordingly.  12 

Figure 2: 13 

 14 

The caption has been changed 15 

from: 16 

Figure 2: Sea Ice Detection: 23 TB-T2m Plan. The color represents the mean AutoSnow sea ice percentage within each bin 17 
(left) and the observation occurrence (right). 18 
 19 
 to 20 
Figure 2: Sea Ice Detection: 23 TB-T2m Plan. The color represents the mean AutoSnow sea ice percentage within each bin 21 
(left) and the observation occurrence (right). The green (left) and red (right) lines represent the discriminant Equation 22 
between sea ice and ocean. 23 

  24 

For Figure 6, see answer to Comment 2.20. 25 

 26 



Figure 7: 27 

 28 

 29 

The caption has been changed 30 

from: 31 

Figure 7 HANDEL-ATMS SWP and SSR Detection Performances for different bins of TPW. The left y-axis 32 
reports POD, FAR and HSS vales, while the right y-axis reports the total number and snowfall observations in 33 
the dataset. POD-tot, FAR-tot and HSS-tot (dotted lines) represent the statistical scores estimated on the total 34 
dataset (values reported in Table 2). 35 

 36 
 37 
 to 38 

Figure 7: HANDEL-ATMS SWP and SSR Detection Performances for different bins of TPW. The left y-axis 39 
reports POD, FAR and HSS vales, while the right y-axis reports the total number and snowfall observations in 40 
the  dataset. 41 

 42 



Figure 8: 43 

  44 

 45 

 46 

The caption has not been changed 47 

 48 

 49 

 50 

 51 

 52 

 53 



Figure 11/13: 54 

 55 

The caption has been changed 56 

from: 57 

Figure 11: Greenland - 2016/04/24 - Synopsis along CloudSat Track. The  first panel shows the ECMWF TPW 58 
and T2m values along the CloudSat track. In the second panel, the 2CSP SWP (left) and the SSR (right) values 59 
are reported, besides the PESCA classification along CloudSat track. In the third panel, the CPR reflectivity 60 
(values are reported in the colorbar below), the supercooled water droplets detected by DARDAR (magenta points) 61 
are shown. Also the Digital Elevation Model (brown line) and the ECMWF Freezing Level (red line) along 62 
CloudSat track are reported. In the bottom panel the observed TBs of the main high-frequency channels (88 GHz, 63 
166 GHz, 183+3 GHz, 183+7 GHz) along CloudSat track are shown. 64 
 65 

 66 
 to 67 

Figure 13: Greenland - 2016/04/24 - Synopsis along CloudSat Track. The  first panel shows the ECMWF TPW 68 
and T2m values along the CloudSat track. In the second panel, the 2CSP SWP (left) and the SSR (right) values 69 
are reported, besides the PESCA classification along CloudSat track. In the third panel, the CPR reflectivity 70 
(values are reported in the colorbar on the right), the supercooled water droplets detected by DARDAR (magenta 71 
points) are shown. Also the Digital Elevation Model (brown line) and the ECMWF Freezing Level (red line) 72 
along CloudSat track are reported. In the bottom panel the observed TBs of the main high-frequency channels 73 
(88 GHz, 166 GHz, 183+3 GHz, 183+7 GHz) along CloudSat track are shown. 74 



Figure 14/16: 75 

  76 

The caption has not been changed 77 

For the new Figures 9 and 11, see answers to Comments 2.5 and 2.18. 78 

2.1) The explanation of the inverse radiative transfer modeling is missing. Such an inversion can be 79 

significantly underconstrained and add additional uncertainty to the results. 80 

Thanks to the reviewer for the comment. The model used is a plane-parallel approximation (see Ulaby&Long, 81 

2014); the gas absorption model is that described by Rosenkranz, 1998. In particular, the emissivity has been 82 

calculated by inverting the radiative transfer equation 83 

𝑇𝐵 = 𝑇𝑢𝑝 + (1 − 𝜀) ∗ 𝑇𝑑𝑜𝑤𝑛 ∗ 𝑒
−𝜏 + 𝜀 ∗ 𝑇𝑠𝑘𝑖𝑛 ∗ 𝑒

−𝜏 84 

to 85 

𝜀 =
𝑇𝐵 − 𝑇𝑢𝑝 − 𝑇𝑑𝑜𝑤𝑛 ∗ 𝑒

−𝜏

𝑒−𝜏 ∗ (𝑇𝑠𝑘𝑖𝑛 − 𝑇𝑑𝑜𝑤𝑛)
 86 

where Tup represents atmospheric upward emission, Tdown represents the atmospheric downward emission, 𝜏 87 

represents the atmospheric optical thickness, ε represents the emissivity, Tskin represents the skin temperature and 88 

TB the ATMS observed TB. Tup, Tdown, and 𝜏 are obtained by applying the Rosenkranz model using ECMWF-89 

AUX temperature and water vapour profiles, Tskin is obtained from ECMWF-AUX product. 90 

 91 

References: 92 

Rosenkranz, P. W., Water vapor microwave continuum absorption: A comparison of measurements and models. 93 

Radio Science, 33(4), 919-928. https://doi.org/10.1029/98RS01182, 1998. 94 

 95 

Ulaby, F., & Long, D., Microwave radar and radiometric remote sensing, 1st Edition, the Univ. of Michigan Press, 96 

ISBN: 978-0-472-11935-6, 2014. 97 

2.2) Please clarify upfront whether the estimated values of surface emissivities are used dynamically or 98 

statistically in the algorithm. Do they change in time or not? 99 

https://doi.org/10.1029/98RS01182


Thanks to the reviewer for the comment. The emissivity values are retrieved for each pixel using the low-100 

frequency TBs  and environmental parameters at the time of the overpass; therefore, the emissivities are used 101 

dynamically. So the text has been changed: 102 

Line 27: 103 

from: 104 

Moreover, their wide range of channel frequencies (from 23 GHz to 190 GHz), allows for the radiometric 105 

characterization of the surface at the time of the overpass along with the exploitation of the high-frequency 106 

channels for snowfall retrieval. 107 

to: 108 

Moreover, their wide range of channel frequencies (from 23 GHz to 190 GHz), allows for the dynamic radiometric 109 

characterization of the surface at the time of the overpass along with the exploitation of the high-frequency 110 

channels for snowfall retrieval. 111 

 112 

Line 136: 113 

from: 114 

The present work has the aim to develop an algorithm for snowfall detection and estimation by exploiting the 115 

large frequency range typical of the last generation radiometers and to obtain a radiometric characterization of 116 

the background surface at the time of the satellite overpass in order to highlight the complex relationship between 117 

upwelling radiation and snowfall signature, which makes the detection very difficult in the typical conditions of 118 

the high latitudes. 119 

to: 120 

The present work has the aim to develop an algorithm for snowfall detection and estimation by exploiting the 121 

large frequency range typical of the last generation radiometers and to obtain a dynamic radiometric 122 

characterization of the background surface at the time of the satellite overpass in order to highlight the complex 123 

relationship between upwelling radiation and snowfall signature, which makes the detection very difficult in the 124 

typical conditions of the high latitudes. 125 

 126 

2.3) It will be helpful if the authors clarify why we need land surface classification for the algorithm. For 127 

example, there are multiple products for the detection of the presence of snow and sea ice dynamics using 128 

optical bands (every 30 minutes). These optical products can be more accurate than microwave 129 

classification schemes, in terms of the presence or absence of frozen surfaces. Why we should not use them?  130 

Thanks to the reviewer for the question. There are indeed multiple products for snow-cover and sea ice detection. 131 

However, PESCA aim is to obtain information ancillary to the snowfall retrieval at the time of the overpass, by 132 

exploiting the same instruments and the same type of data which will be used downstream for snowfall retrieval 133 

(see Camplani et al, 2021). We are more interested in the emissivity spectrum in the microwave than in very 134 

accurate and high-resolution snow and sea ice detection. Moreover, products based on optical observations are 135 

unreliable in presence of clouds, while our goal is to use them to retrieve cloud properties. To our knowledge, the 136 

only product available every 30 min comes from geostationary satellites that show several limitations in observing 137 

high latitudes.  138 

 139 

References: 140 

Camplani, A., Casella, D., Sanò, P., & Panegrossi, G.: The Passive microwave Empirical cold Surface 141 

Classification Algorithm (PESCA): Application to GMI and ATMS. Journal of Hydrometeorology, 22(7), 1727-142 

1744,https://doi.org/10.1175/JHM-D-20-0260.1, 2021. 143 

2.4) From a methodological standpoint, the explanations of neural networks need to be improved. A the 144 

same time, the use of linear discriminant analysis seems outdated in light of the new deep-learning 145 

classification models.  146 

https://doi.org/10.1175/JHM-D-20-0260.1


Thanks to the reviewer for the comment. We know that deep-learning classification models are more effective 147 

than models based on other machine learning approaches, such as linear discriminant analysis. However, our goal 148 

was to obtain a classification scheme preliminary to the snowfall retrieval modules, and so we have chosen to use 149 

methods which are simple and not too computationally and time consuming.  150 

 151 

2.5) While the paper focuses on different land surface types and sea ice ages, it is unclear how statistically 152 

significant the presented results are in Table 7. The number of training and testing samples needs to be 153 

clarified.  154 

Thanks to the reviewer for the suggestion. We believe that the reviewer is referring to Table 6. We have replaced 155 

it with Figure 9. In the two plots the statistical scores for each class, the total observation number and the snowfall 156 

observation number for the test phase are reported. For what concerns the number of training and testing samples, 157 

see answer to Comment 2.6. 158 

 159 
 Figure 9: Same as Figure 7 but for  PESCA surface classes. 160 

 161 

 162 

The violet continuous and dashed line represents the total class occurrence and the snowfall occurrence for each 163 

class respectively. So, it is possible to observe that also the less populated classes, such as Thin Snow, are 164 

characterized by about 3*104 total observations and 1*104 snowfall observations. So the statistics can be 165 

considered statistically significant. This Figure has been added to the manuscript. 166 



2.6) It would benefit the paper if the authors provide the entire confusion matrix of the detection of snowfall, 167 

including, recall, precision, and accuracy. 168 

Thanks to the reviewer for the suggestion. Here the confusion matrices and the precision, recall and accuracy 169 

values are reported. 170 

 171 

SWP detection - Confusion Matrix 

HANDEL/2CSP YES NO 

YES 606711 106407 

NO 106541 581671 

precision=0.85 172 

recall=0.85 173 

accuracy=0,84 174 

 175 

SSR detection - Confusion Matrix 

HANDEL/2CSP YES NO 

YES 541688 102542 

NO 113615 643485 

precision=0.82 176 

recall=0.84 177 

accuracy=0,84 178 

The total number of observations is 1,40*10 6, which corresponds to about ⅔ of the total observations number. A 179 

similar proportion can be observed for the SWP and SSR observations. The following statement has been added 180 

to the text (line 223):  181 

In this work, the dataset has been filtered based on humidity (TPW < 10 mm) and temperature (T2m <280 K) 182 

conditions (the working limits of the PESCA algorithm, see Camplani et al, 2021)  leading to a good 183 

representation of the higher latitudes with 80 % of the dataset elements located above 60°N/S. are . The dataset 184 

is made of 2,14*10 6 elements, including 1,07*10 6 elements with falling snow (2CSP SWP > kg/m2) and 9,99*10 185 
5 with snowfall at the surface (2CSP SSR > 0 mm/h) . The training and test phases have been conducted by splitting 186 

randomly the dataset, with ⅓ of the elements in the training and ⅔ of the elements in the test dataset. 187 

Therefore, data about the dataset dimension, the training and test phase and the snowfall have been added to the 188 

text. We would prefer not to add the confusion matrices to the text in order to avoid further lengthening the 189 

manuscript. We think that the information about the dataset, joined with the statistical scores, shows  a 190 



comprehensive picture of the study. At the same time, the recall gives the same information of POD, and precision 191 

can be considered the complementary value  to 1 of the FAR. The information linked to the accuracy can be 192 

misleading: so we would prefer to keep in the text only the information about POD, FAR and HSS. 193 

Detail comments: 194 

2.7) Section 2.4 is long and has some generic explanations about for example neutral networks, which is not 195 

necessary at this time. It is recommended to shorten the text. 196 

Agreed. The text has been shortened (see answer to Comment 2.8).  197 

2.8) The explanation of the architecture of the neural network is weak. First of all the networks use the 198 

Levenberg-Marquardt algorithm which is extremely old and is not being used in modern training of deep 199 

neural networks. Unlike algorithms like Adam, it is prone to get stuck in local minima and suffer from the 200 

vanishing gradient problem.  201 

We agree with the reviewer that the LM algorithm is outdated and it is not being used in deep neural network 202 

training. Our point here is that our networks are shallow, as written in section 3.2 of the manuscript:  203 

 204 

The snowfall detection and estimation modules have been based on ANNs. Four ANNs have been developed: two 205 

for the detection of SWP and SSR and two for the SWP and SSR estimate. The performance of more than 50 206 

architectures have been tested, by varying the number of layers, the number of neurons for each layer, and the 207 

activation functions. The final architecture, for all modules, is composed of four layers: an input layer with a 208 

neurons number equal to the predictor number, and a hyperbolic tangent function as the activation function, a 209 

first hidden layer (60 neurons), and hyperbolic tangent function, a second hidden layer (30 neurons), with a 210 

logarithmic tangent function. 211 

 212 

Therefore, the neural networks described in this paper are composed of less than 150 weights. These networks fall 213 

into the category of feed forward, or multilayer perceptron networks, or shallow neural networks. The LM 214 

optimizer is prone to several issues when the depth of the network grows (i.e. if the number of weights to be 215 

trained is higher than about 500, see Yu & Wilamowski, 2018), such as gradient vanishing, however it has been 216 

proven to be a very accurate optimizer for shallow neural networks. The use of the LM optimizer forces the choice 217 

of the error function, that needs to be the mean squared error, in regression problems, and may result slower than 218 

other optimizers, however it has proven to reach higher accuracy in many problems, even in very recent papers, 219 

in particular we followed the Hagan&Menhaj, 1994 implementation of the LM algorithm that has been cited in 220 

about 700 papers after 2022 (see the google scholar link to recent citation of this paper). Moreover, we did test 221 

the impact of the choice of the optimizer for one of the neural networks module of the HANDEL-ATMS algorithm, 222 

and the results confirmed the use of the LM optimizer as an optimal choice for the complexity of the networks 223 

that we are training and for the size of the dataset that we are using. In particular the LM optimizer resulted to be 224 

more accurate but slower than other optimizers (including the Conjugate-gradient, gradient descend with 225 

momentum and Adam optimizers). 226 

 227 

About the first point raised by the reviewer “The explanation of the architecture of the neural network is weak”, 228 

we believe that He/She is referring to section 2.4.1, that was intended as a brief introduction, and that has been 229 

modified  230 

 231 

 232 

 233 

 234 

 235 

from: 236 

 237 



2.4.1 Artificial Neural Networks  238 

An Artificial Neural Network (ANN) is an information-processing system inspired by the functioning of biological 239 

neural networks. It is composed of neurons, i. e., elements where the information is processed using an activation 240 

function, and the connecting links between the neurons, where a weight multiplies the deriving from the upstream 241 

signal.  In particular, the HANDEL-ATMS snowfall detection and estimation modules have been developed using 242 

feedforward multilayer neural network architectures, i. e., a neural network architecture where the neurons are 243 

arranged in layers; each neuron belonging to a layer receives, as input to its transfer function, a weighted sum of 244 

the outputs of the previous layer. This architecture, which is defined by the number of layers, the number of 245 

neurons for each layer, and the transfer function of each neuron, has to be designed beforehand. The weights of 246 

connection links and the bias values for each layer are estimated with a training process, based on the Levenberg–247 

Marquardt algorithm (see Sanò et al, 2015) 248 

to: 249 

2.4.1 Artificial Neural Networks  250 

The HANDEL-ATMS snowfall detection and estimation modules have been developed using feedforward 251 

multilayer neural network architectures, i. e., a neural network architecture where the neurons are arranged in 252 

layers. This architecture, which is defined by the number of layers, the number of neurons for each layer, and the 253 

transfer function of each neuron, has to be designed beforehand.   The weights of connection links and the bias 254 

values for each layer are estimated with a training process, based on the Levenberg–Marquardt algorithm (see 255 

Sanò et al, 2015). The specific networks architecture, and the training and optimization procedure of the 256 

HANDEL-ATMS algorithm are described in detail in section 3.2. 257 

 258 

References: 259 

 260 

Yu, H., & Wilamowski, B. M.: Levenberg–marquardt training. In Intelligent systems (pp. 12-1), CRC Press, ISBN 261 

9781315218427, 2018. 262 

 263 

Hagan, M. T., & Menhaj, M. B.: Training feedforward networks with the Marquardt algorithm, IEEE transactions 264 

on Neural Networks, 5(6), 989-993, DOI: 10.1109/72.329697, 1994. 265 

 266 

2.9) Line 424–445 It is unclear how the detection and estimation networks are implemented. What are the 267 

cost functions? This must be clarified.  268 

Thanks to the reviewer for the suggestion. The cost function is a sum of squares error (SSE) given by the following 269 

equation: 270 

𝐸 =
1

𝑛
∑

𝑛

𝑖=1

(𝑦𝑖 − 𝑡𝑖)
2 271 

where y represents the output of the neural networks, and t represents the reference truth value. The characteristics 272 

of this Neural network approach have been largely described by Sanò et al, 2015, doi:10.5194/amt-8-837-2015). 273 

So, a reference to this paper has been added (line 431): 274 

(for more information about the Neural Network characteristics, see Sanò et al, 2015) 275 

 276 

References: 277 

 278 

Sanò, P., Panegrossi, G., Casella, D., Di Paola, F., Milani, L., Mugnai, A., Petracca, M., & Dietrich, S.: The 279 

Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for AMSU/MHS observations: 280 

description and application to European case studies. Atmospheric Measurement Techniques, 8(2), 837-857, 281 

https://doi.org/10.5194/amt-8-837-2015, 2015. 282 

 283 

2.10) Line 345-346: It is not well-described how the inverse radiative transfer model is used. What is the 284 

forward RT model? 285 

https://doi.org/10.1109/72.329697
https://doi.org/10.1109/72.329697
https://doi.org/10.5194/amt-8-837-2015


Thanks to the reviewer for the question. The simulations are based on a plane-parallel approximation (see Ulaby, 286 

2014) and the gas absorption model is described by Rosenkranz, 1998. The text has been modified (see answer to 287 

Comment 1.15). 288 

 289 

The text has been modified 290 

from: 291 

The RMSE between simulated clear-sky TBs - based on the mean emissivity values estimated for each class - and 292 

the coincident observed clear-sky TBs appears to be too high to implement a robust signal analysis (>10 K).  293 

to: 294 

 The clear-sky radiative transfer model simulations are based on the mean emissivity values estimated for each 295 

class, and simulated by using the plane-parallel approximation (Ulaby & Long, 2014) and the Rosenkrantz gas 296 

absorption model  (Rosenkrantz, 1998) - The RMSE between simulated clear-sky TBs and the coincident observed 297 

clear-sky TBs appears to be too high to implement a robust signal analysis (>10 K).  298 

 299 

The following reference has been added to the text (Line 756): 300 

Rosenkranz, P. W., Water vapor microwave continuum absorption: A comparison of measurements and models. 301 

Radio Science, 33(4), 919-928. https://doi.org/10.1029/98RS01182, 1998. 302 

 303 

References: 304 

Rosenkranz, P. W., Water vapor microwave continuum absorption: A comparison of measurements and models. 305 

Radio Science, 33(4), 919-928. https://doi.org/10.1029/98RS01182, 1998. 306 

 307 

Ulaby, F., & Long, D., Microwave radar and radiometric remote sensing, 1st Edition, the Univ. of Michigan Press, 308 

ISBN: 978-0-472-11935-6, 2014. 309 

 310 

2.11) Lines 362-365: How emissivity is used for calculating the simulated TBs? It seems recursive to use the 311 

observations to estimate the emissivity and then use it for retrievals. Please clarify whether the used 312 

emissivities are dynamic or static.  313 

Thanks to the reviewer for the comment. The emissivity values are retrieved for each pixel and are used to estimate 314 

the simulated TBs. Only low-frequency channels are used to classify the observations (by using PESCA) and to 315 

retrieve an emissivity spectrum for the observations. Then, this spectrum has been used to estimate the TBs for 316 

all ATMS channels. So the process is not recursive. The emissivities are used dynamically because they have been 317 

calculated for each observation (see answer to Comment 2.2). 318 

2.12) Table 3: The parameters mentioned in the table are different than the ones mentioned in the text in 319 

lines 435-437. 320 

Thanks to the reviewer for the comment. The Table has been changed: 321 

 322 

 323 

 324 

 325 

 326 

https://doi.org/10.1029/98RS01182
https://doi.org/10.1029/98RS01182


from: 327 

 328 

Predictor Set  POD FAR HSS 

∆TBobs−sim 0.75 0.29 0.48 

TBobs 0.81 0.18 0.65 

TBobs+environmental var 0.82 0.17 0.68 

TBobs+∆TBobs−sim 0.84 0.16 0.69 

 Table 3: HANDEL-ATMS SSR Detection Performance: Statistical scores for different Predictor Sets 329 

to: 330 

 331 

Predictor Set  POD FAR HSS 

∆TBobs−sim+ ancillary 

parameters 

0.75 0.29 0.48 

TBobs+ ancillary parameters 0.81 0.18 0.65 

TBobs+environmental variables+ 

ancillary parameters 

0.82 0.17 0.68 

TBobs+∆TBobs−sim+ ancillary 

parameters 

0.84 0.16 0.69 

 Table 3: HANDEL-ATMS SSR Detection Performance: Statistical scores for different Predictor Sets 332 

Minor comments: 333 

2.13) Line 273: It is better to mention all the variables that have been used for training the network here. 334 

Thanks to the reviewer for the suggestion. The text has been changed  335 

from: 336 

Four ANNs are then applied to a predictor set consisting of ATMS TBobs, ∆TBobs−sim, a surface classification 337 

flag, and other environmental and ancillary parameters.  338 

to: 339 

Four ANNs are then applied to a predictor set consisting of ATMS TBobs, ∆TBobs−sim, a surface classification 340 

flag, and other ancillary parameters (elevation and ATMS viewing angle for the final version).  341 

 342 

2.14) line 203-204: list of environmental and ancillary parameters is not presented in the dataset. 343 

Thanks to the reviewer for the comment. The text has been changed 344 

from: 345 

Some model-derived variables have been added to the dataset to be used as ancillary variables.  346 

 347 

 348 

 349 



to: 350 

Some model-derived variables, specifically Total Precipitable Water (TPW), the 2-m Temperature (T2m), the Skin 351 

Temperature, the freezing level height and the temperature and humidity profiles, have been added to the dataset 352 

to be used as ancillary parameters.  353 

 354 

2.15) Line 356: “…for ocean and land respectively.” 355 

Thanks to the reviewer for the correction.  356 

The text has been changed 357 

from: 358 

The estimated spectra are shown in Figure 4 and Figure 5 for the land and ocean classes, respectively. 359 

to:  360 

The estimated spectra are shown in Figure 4 and Figure 5 for ocean and land respectively. 361 

 362 

 363 

2.16) Line 387: What is the used atmospheric radiative transfer model? Please spell out RTM. 364 

Thanks to the reviewer for the comment. The model used is that described by Rosenkranz, 1998. The text has been 365 

modified 366 

from: 367 

An emissivity spectrum, (calculated as the mean of the emissivity values for each cluster), together with ECMWF 368 

temperature and water vapor profiles, is used as input in the RTM to simulate the clear-sky TBs. 369 

 to 370 

An emissivity spectrum, (calculated as the mean of the emissivity values for each cluster), together with ECMWF 371 

temperature and water vapor profiles, is used as input in the radiative transfer model (RTM) (seeUlaby & Long 372 

,2014, Rosenkrantz, 1998)  to simulate the clear-sky TBs. 373 

 374 

References: 375 

Rosenkranz, P. W., Water vapor microwave continuum absorption: A comparison of measurements and models. 376 

Radio Science, 33(4), 919-928. https://doi.org/10.1029/98RS01182, 1998. 377 

 378 

Ulaby, F., & Long, D., Microwave radar and radiometric remote sensing, 1st Edition, the Univ. of Michigan Press, 379 

ISBN: 978-0-472-11935-6, 2014. 380 

2.17) Table 2: What is the accuracy represented here? The accuracy of PESCA for surface classification? 381 

Thanks to the reviewer for the comment. The accuracy represented here is the ratio between the number of 382 

observations where both SOM and LDA identify the same cluster and the total observations of the class. 383 

 384 

2.18) Line 489: Remove the dot at the beginning of the sentence. 385 

Thanks to the reviewer for the correction. The text has been largely modified  to address some comments by 386 

Reviewer 1. 387 

https://doi.org/10.1029/98RS01182


from: 388 

. Generally, it can be observed that, although HANDEL-ATMS is able to detect extremely light snowfall events, it 389 

does not have the sensitivity to correctly estimate their intensity.  390 

to: 391 

 392 

Figure 11 shows the dependence of HANDEL-ATMS snowfall estimation error statistics, as well of SWP and SSR, 393 

on TPW . The curves represent the mean SWP or SSR computed for each 1-mm TPW bin, the RMSE and the 394 

relative bias (the ratio between the bias and the SWP/SSR mean value for each bin). TPW and snowfall intensity 395 

are strongly correlated.  An increase of the absolute RMSE can be observed as TPW increases, and it is larger 396 

than the SWP/SSR mean value for TPW < 8 mm. A similar behavior can be observed by analyzing the dependence 397 

of HANDEL-ATMS snowfall estimation error statistics on T2m (not shown).   A very moderate overestimation is 398 

observed for TPW < 8 mm and for lower SWP and SSR values (< 0.1 mm/h), with relative bias around 5%, (up 399 

to 8% only for extremely low TPW values and very low number of observations (see Figure 7)), while 400 

underestimation (relative bias up to -5%)  is observed for higher TPW values and higher SWP and SSR  values.  401 

So, it can be concluded that HANDEL-ATMS has good detection capabilities (also for extremely light snowfall) 402 

but it shows some limitations in  correctly estimating its intensity, with slight overestimation of the very light 403 

snowfall typical of high latitudes. 404 

 405 
 406 



Figure 11: HANDEL-ATMS SWP and SSR Detection Performances for different bins of TPW. The left y-axis 407 
reports RMSE absolute values and the mean intensity value for each 1-mm TPW bin, while the relative bias, 408 
calculated as the ratio between the bias and the SWP/SSR mean value for each bin. 409 

 410 

2.19) Figure 1: The inputs of PESCA mentioned in this figure are not aligned with the original paper. For 411 

example, there exists no explanation for the low-frequency ratio and scattering coefficients. 412 

Thanks to the reviewer for the comment. Indeed, there is not a direct mention of the PESCA input parameters; 413 

however, these parameters are derived from the inputs cited in the box (low-frequency ratio is a ratio between two 414 

TBobs, the scattering index is a difference between two TBobs, pemLF is a ratio between a TBobs and T2m,see 415 

Camplani et al, 2021). We wanted to highlight that we use the same inputs in more than one module - e. g., TBs 416 

are used both for surface classification and snowfall detection and estimate. The same definition of the input 417 

variables of PESCA can be found in the paper in section 3.1.1. 418 

References: 419 

 420 

Camplani, A., Casella, D., Sanò, P., & Panegrossi, G.: The Passive microwave Empirical cold Surface 421 

Classification Algorithm (PESCA): Application to GMI and ATMS. Journal of Hydrometeorology, 22(7), 1727-422 

1744,https://doi.org/10.1175/JHM-D-20-0260.1, 2021. 423 

2.20) Figure 6: No results are presented over sea ice. 424 

Thanks to the reviewer for the comment. 425 

Figure 6 has been modified, with two new subplots related to two PESCA classes (Ocean and New sea Ice). 426 

 427 

https://doi.org/10.1175/JHM-D-20-0260.1


 428 
The following statement has been added to the text (line 423): 429 

For what concerns ocean and new sea ice classes, a clear scattering signal is visible only for high SWP values 430 

(> 1 kg m-2) while for low SWP values a significant emission signal is observed. The ubiquitous presence of 431 

supercooled water layers in snowing clouds (Wang et al, 2013, Battaglia & Panegrossi 2020), especially over 432 

oceans (Battaglia & Delanoe, 2013), generates an emission effect which is particularly significant over 433 

radiatively cold surfaces (such as Ocean and New Sea Ice at high frequency, see Figure 4), and can mask or 434 

overcome the weak scattering signal generated by falling snow especially in light snowfall events. It is also 435 

important to underline that the DARDAR product identifies only  supercooled water layers at the cloud top 436 

(Panegrossi et al., 2017), while it has been shown that the impact of supercooled water layers embedded in the 437 

clouds can be very significant on the measured TBs at MW high frequency window channels  (Battaglia & 438 

Panegrossi, 2020, Panegrossi et al., 2022) . It is very likely that the emission effect observed over ocean and sea 439 

ice is generated by supercooled liquid layers which are not identified  by the DARDAR product. 440 

 Figure 6 caption has been modified accordingly 441 

from: 442 
Figure 6: 165.5 GHz Snowfall Signature as a function of SWP for three Land surface Classes. The red line and 443 
shaded areas represent the mean values and standard deviations of ΔTBobs−sim (i.e., the snowfall signature) 444 

while the blue lines are centered on the estimated bias and standard deviation of ΔTBobs−sim  in clear sky 445 
conditions for the corresponding PESCA surface class. 446 

 447 

 448 



to: 449 
Figure 6: 165.5 GHz Snowfall Signature as a function of SWP for five PESCA surface classes. The red line and 450 
shaded areas represent the mean values and standard deviations of ΔTBobs−sim (i.e., the snowfall signature) 451 

while the blue lines are centered on the estimated bias and standard deviation of ΔTBobs−sim  in clear sky 452 
conditions for the corresponding PESCA surface class. 453 
 454 

The following reference has been added to the text (Line 798): 455 

 456 

Wang, Y., Liu, G., Seo, E. K., & Fu, Y.: Liquid water in snowing clouds: Implications for satellite remote sensing 457 

of snowfall. Atmospheric research, 131, 60-72, https://doi.org/10.1016/j.atmosres.2012.06.008,2013. 458 

 459 
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GPM Microwave Imager snowfall observation capabilities. Remote Sensing, 9(12), 1263, 469 

https://doi.org/10.3390/rs9121263, 2017. 470 
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Panegrossi, G., Casella, D., Sanò, P., Camplani, A., & Battaglia, A.: Recent advances and challenges in satellite-472 

based snowfall detection and estimation. Precipitation Science, 333-376, https://doi.org/10.1016/B978-0-12-473 

822973-6.00015-9, 2022. 474 
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 480 

2.21) Figure 10: Please mention that the shown green dots denote the CPR overpass. 481 

Thanks to the reviewer for the suggestion. The caption of Figures 10 12, and 13 (now Figures 12, 14, and 15)  has 482 

been changed 483 

Figure 10/12: 484 

from: 485 

Figure 10:  Greenland - 2016/04/24 - PESCA Background Surface Classification. 486 

 to: 487 
Figure 12:  Greenland - 2016/04/24 - PESCA Background Surface Classification. The green dotted line 488 
represents the CloudSat track. 489 

 490 

 491 

 492 

 493 
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Figure 12/14: 494 

from: 495 

Figure 12: Greenland - 2016/04/24 - 165 GHz Channel measured TB (TBobs) (top panel) and the deviation of 496 
TBobs from the simulated clear-sky TBs ( ∆TBobs−sim) (bottom panel) 497 

 498 
 to: 499 

Figure 14: Greenland - 2016/04/24 - 165 GHz Channel measured TB (TBobs) (top panel) and the deviation of 500 
TBobs from the simulated clear-sky TBs ( ∆TBobs−sim) (bottom panel). The red dotted line (top 501 
panel) and the green dotted line (bottom panel)  represent the CloudSat track. 502 

Figure 13/15: 503 

from: 504 

Figure 13:  Greenland - 2016/04/24 - Maps of the HANDEL-ATMS module’s output: the SWP detection mask 505 
(top panel), the estimated SWP (kg m-2) (second panel), the SSR detection mask (third panel), the estimated SSR 506 
(mm h-1) (bottom panel). 507 
 508 

 509 
 to: 510 

Figure 15:  Greenland - 2016/04/24 - Maps of the HANDEL-ATMS module’s output: the SWP detection mask 511 
(top panel), the estimated SWP (kg m-2) (second panel), the SSR detection mask (third panel), the estimated SSR 512 
(mm h-1) (bottom panel). The green dotted lines (bottom panel)  represent the CloudSat track. 513 

 514 


