
Reviewer 1 1 

 2 

We would like to thank Reviewer #1 for his/her review of our paper and the important comments and suggestions 3 

provided. Please, find below our responses to the Reviewer’s comments and the details on how we address them 4 

in the new version of the manuscript. 5 

 6 

1.1) Line 27: This approach has been used before so it’s not accurate to call it innovative. Zhao and Weng 7 

(2002, http://www.jstor.org/stable/26184983) retrieved ice cloud parameters by isolating ice scattering 8 

signature. The latter is derived from observed high frequency TBs and simulated cloud base (i.e. clear-sky) 9 

TBs. They calculated the over land cloud base high frequency TBs from low frequencies with the 10 

assumption that low frequency measurements are less affected by cloud scattering. Please modify the 11 

manuscript accordingly and cite Zhao and Weng’s paper. 12 

 13 

Thanks to the reviewer for the very useful suggestion. The HANDEL-ATMS approach is indeed very similar to 14 

Zhao&Weng’s approach. However, it is also worth noticing some important differences: 15 

1) the Zhao&Weng Algorithm screens out all possible “scattering surfaces” including snow cover and sea 16 

ice, that are the kind of surfaces where HANDEL-ATMS is focused on. 17 

2)  the Simulated clear-sky TB estimated by Zhao&Wheng is obtained by an empirical relationship between 18 

AMSU-A 23 and 31 GHz and 89 and 150 GHz clear-sky TB; in our work, an emissivity spectrum has 19 

been estimated for the ATMS channels downstream a background surface classification and the 20 

differences between the observed signal and the simulated one for 16 different channels have been used 21 

as input of a neural network approach 22 

Moreover in the Abstract we stated:  23 

 24 

 The main novelty of the approach is the radiometric characterization of the background surface (including snow 25 

covered land and sea ice) at the time of the overpass to derive multi-channel surface emissivities and clear-sky 26 

contribution to be used in the snowfall retrieval process.  27 

 28 

The statement in parenthesis, in our opinion, is sufficient to restrict the novelty of the approach to some 29 

background surfaces. Therefore we would like to keep the abstract as it is. However, we recognize the importance 30 

of the Zhao&Weng approach and the similarities between that work and HANDEL-ATMS and we modified the 31 

Introduction (lines 99-121): 32 

From: 33 

 34 

The main novelty of the approach is the exploitation of the ATMS wide range of channels (from 22 GHz to 183 35 

GHz) to obìtain the radiometric characterization of the background surface at the time of the overpass.  The 36 

derived  surface emissivities are used to infer the clear-sky contribution to the measured TBs in the high frequency 37 

channels in the  snowfall retrieval process. Moreover, the algorithm is based on the exploitation of an 38 

observational  dataset where each ATMS multichannel observation is associated with coincident (in time and 39 

space)  CloudSat CPR vertical snow profile and surface snowfall rate (hereafter ATMS-CPR coincidence dataset). 40 

Several snowfall retrieval algorithms for cross-track scanning radiometers have evolved in the last 20 years 41 

starting from the Advanced Microwave Sounder Unit-B (AMSU-B) (Kongoli et al, 2003, Skofronick-Jackson et 42 

al, 2004, Noh et al., 2009, Liu and Seo 2013), and Microwave Humidity Sounder (MHS) (see Liu & Seo, 2013, 43 

Edel et al, 2020), and evolving to ATMS (Kongoli et al, 2015, Meng et al, 2017, Kongoli et al, 2018, You et al, 44 

2022, Sanò et  al, 2022). Some of them are based on radiative transfer simulations of observed snowfall events 45 

(Kongoli et al, 2003, Skofronick-Jackson et al, 2004, Kim et al, 2008), or on in-situ data (see Kongoli et al, 2015, 46 

Meng et al, 2017, Kongoli et al, 2018), others on CPR observations (Edel et al, 2020, You et al, 2022, Sanò et  al, 47 

2022), or a combination of them (Noh et al, 2009, Liu & Seo, 2013). 48 

to: 49 

The main novelty of the approach is the exploitation of the ATMS wide range of channels (from 22 GHz to 183 50 

GHz) to obìtain the radiometric characterization of the background surface at the time of the overpass.  The 51 

derived  surface emissivities are used to infer the clear-sky contribution to the measured TBs in the high frequency 52 

http://www.jstor.org/stable/26184983


channels in the  snowfall retrieval process. This approach is similar to the work of Zhao and Weng, 2002, for 53 

AMSU observations limited to non-scattering surfaces (i.e., ocean and vegetated land), however the application 54 

to surfaces with a very complex and time-varying emissivity (such as snow cover and sea ice) required a far-away 55 

more advanced algorithm taking advantage of machine learning techniques.  Moreover, the algorithm is based 56 

on the exploitation of an observational  dataset where each ATMS multichannel observation is associated with 57 

coincident (in time and space)  CloudSat CPR vertical snow profile and surface snowfall rate (hereafter ATMS-58 

CPR coincidence dataset). 59 

Several snowfall retrieval algorithms for cross-track scanning radiometers have evolved in the last 20 years 60 

starting from the Advanced Microwave Sounder Unit-B (AMSU-B) (Zhao and Weng 2002, Kongoli et al, 2003, 61 

Skofronick-Jackson et al, 2004, Noh et al, 2009, Liu and Seo 2013), and Microwave Humidity Sounder (MHS) 62 

(see Liu & Seo, 2013, Edel et al, 2020), and evolving to ATMS (Kongoli et al, 2015, Meng et al, 2017, Kongoli et 63 

al, 2018, You et al, 2022, Sanò et  al, 2022). Some of them are based on radiative transfer simulations of observed 64 

snowfall events (Kongoli et al, 2003, Skofronick-Jackson et al, 2004, Kim et al, 2008), or on in-situ data (see 65 

Kongoli et al, 2015, Meng et al, 2017, Kongoli et al, 2018), others on CPR observations (Edel et al, 2020, You et 66 

al, 2022, Sanò et  al, 2022), or a combination of them (Noh et al, 2009, Liu & Seo, 2013). 67 

The following reference has been added to the text (Line 810): 68 

 69 

Zhao, L., & Weng, F.: Retrieval of ice cloud parameters using the Advanced Microwave Sounding Unit. Journal 70 

of Applied Meteorology and Climatology, 41(4), 384-395, https://www.jstor.org/stable/26184983, 2002. 71 

 72 

Reference:  73 

 74 

Zhao, L., & Weng, F.: Retrieval of ice cloud parameters using the Advanced Microwave Sounding Unit. Journal 75 

of Applied Meteorology and Climatology, 41(4), 384-395, https://www.jstor.org/stable/26184983, 2002. 76 

 77 

1.2) Line 67: replace with "new" or "latest" 78 

 79 

Thanks to the reviewer for the suggestion. The text has been modified 80 

From: 81 

the availability of the last generation microwave radiometers 82 

to: 83 

the availability of the latest generation microwave radiometers 84 

 85 

1.3) Line 89: Contrary to what’s stated here, Greenland and Antarctica show scattering year-round in 86 

window and water vapor sounding channels, and even in the low temperature sounding channels. 87 

 88 

Thanks to the reviewer for the comment. Greenland and Anctartica have been defined as scatter-free by 89 

Grody&Basist, 1996. For what concerns our paper, the intention was to underline the absence of a significant 90 

difference between the emissivities at 23 GHz and at 31 GHz, typical of the snowcover over Greenland and 91 

Antarctic plateau (see Camplani et al, 2021), without referring to higher frequencies, as opposed to  deep dry snow 92 

at lower latitudes where this difference is evident. So we agree that the term “scatter-free” can be misleading if 93 

we also consider high-frequency channels. Therefore, the text has been changed 94 

from: 95 

At the same time, large areas of Greenland and Antarctica could appear as “scatter-free”, although these areas 96 

throughout the year are covered by dry snowpacks. 97 

to: 98 

At the same time, large areas of Greenland and Antarctica, although these areas are covered by dry snowpacks 99 

throughout the year, do not show a significant difference between the two ATMS low frequency channels. 100 

 101 

 102 

References: 103 

https://www.jstor.org/stable/26184983
https://www.jstor.org/stable/26184983


Grody, N. C., & Basist, A. N.: Global identification of snowcover using SSM/I measurements. IEEE Transactions 104 

on geoscience and remote sensing, 34(1), 237-249, DOI: 10.1109/36.481908, 1996. 105 

 106 

Camplani, A., Casella, D., Sanò, P., & Panegrossi, G.: The Passive microwave Empirical cold Surface 107 

Classification Algorithm (PESCA): Application to GMI and ATMS. Journal of Hydrometeorology, 22(7), 1727-108 

1744,https://doi.org/10.1175/JHM-D-20-0260.1, 2021. 109 

 110 

1.4) Lines 116-119: While 2CSP is a well-recognized product and is not derived from radiative transfer 111 

modeling, it does include assumptions about snow microphysics, and uses optimal estimation to retrieve 112 

these parameters. The algorithm also uses a simplified radar reflectivity equation. Refer to the 2CSP ATBD 113 

at https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/2c-snow-profile/2C-SNOW-114 

PROFILE_PDICD.P1_R05.rev0_.pdf. Please modify the text here accordingly. 115 

Thanks to the reviewer for the clarification. In the text, we wanted to highlight the issues inherent in using a 116 

dataset based on simulations (cloud-resolving model and radiative transfer) with respect to one based on 117 

coincident observations.  The text has been changed 118 

from: 119 

On the other side, the use of CPR-based datasets overcomes some of the limitations deriving from the assumptions 120 

to be made in cloud-radiation model simulations (e. g., the microphysics scheme, the emissivity of the background 121 

surface, scattering properties of ice hydrometeors), which are particularly problematic for snowfall estimation. 122 

However, some limitations of the radar product used as reference and issues related to the spatial and temporal 123 

matching between the CPR and the PMW radiometer measurements introduces some uncertainty. 124 

to: 125 

On the other hand, the use of CPR-based datasets overcomes some of the limitations deriving from the use of 126 

cloud-radiation model simulations, which are particularly challenging for snowfall events. However, some 127 

limitations of the radar product used as a reference and issues related to the spatial and temporal matching 128 

between the CPR and the PMW radiometer measurements introduce some uncertainty. Moreover, the 2CSP 129 

product is based on assumptions on snow microphysics, uses optimal estimation to retrieve snow parameters , 130 

and uses a simplified radar reflectivity equation and is affected by CloudSat CPR limitations as outlined in 131 

Battaglia & Panegrossi, 2020. 132 

 133 

Reference: 134 

 135 

Battaglia, A., & Panegrossi, G.: What can we learn from the CloudSat radiometric mode observations of snowfall 136 

over the ice-free ocean?. Remote Sensing, 12(20), 3285, https://doi.org/10.3390/rs12203285, 2020. 137 

 138 

1.5) Line 181: How is the underestimation of heavy snowfall handled in training and validating the SWP 139 

and SSR models? 140 

Thanks to the reviewer for the question.  The aim of the algorithm is to reproduce the 2C-Snow Profile product 141 

snowfall climatology, which is the only global radar product obtained from satellites. So, the underestimation has 142 

not been corrected . 143 

The following statement has been added to the text (line 223): 144 

Moreover, it is worth noting that CPR 2CSP product limitations for snowfall detection and estimation (see Section 145 

2.2) affect the algorithm snowfall retrieval capabilities. 146 

 147 

 148 

1.6) Line 273:  Do the ANNs use environmental parameters? What are they? 149 

https://doi.org/10.1175/JHM-D-20-0260.1


Thanks to the reviewer for the question. The final version of the algorithm does not use environmental parameters 150 

as input of the ANNs, but only some ancillary parameters (Digital Elevation Model (DEM), radiometer viewing 151 

angle). So the text has been modified 152 

from 153 

Four ANNs are then applied to a predictor set consisting of ATMS TBobs, ∆TBobs−sim, a surface classification 154 

flag, and other environmental and ancillary parameters.  155 

to: 156 

Four ANNs are then applied to a predictor set consisting of ATMS TBobs, ∆TBobs−sim, a surface classification 157 

flag, and other ancillary parameters (elevation and ATMS viewing angle for the final version).  158 

 159 

 160 

 161 

 162 

1.7) Lines 191-192: Add the info on the dataset’s geographic area. Was the data filtered for high latitudes 163 

given the focus of this study? 164 

 165 

Thanks to the reviewer for the suggestion and for the question. The data have been not filtered based on a 166 

geographic criteria. However, the data selection is based on temperature (T2m<280 K) and water vapor content 167 

(TPW<10 mm) and on elevation (see lines 320-321 and Camplani et al, 2021); As a consequence, the majority of 168 

the observations selected are obtained over high latitude areas. A statement about the dataset composition has 169 

been added (see answer to Comment 1.21). 170 

Reference:  171 

 172 

Camplani, A., Casella, D., Sanò, P., & Panegrossi, G.: The Passive microwave Empirical cold Surface 173 

Classification Algorithm (PESCA): Application to GMI and ATMS. Journal of Hydrometeorology, 22(7), 1727-174 

1744,https://doi.org/10.1175/JHM-D-20-0260.1, 2021. 175 

 176 

1.8) Lines 193-194: With a 15-min time window, the snow mass that ATMS detects in the atmosphere most 177 

likely is higher than the near-surface snow (SSR) observed by CPR (refer to You et al., doi: 178 

10.1029/2019GL083426). This adds uncertainties to the SSR (and to a lesser degree to SWP). Suggest the 179 

authors run an experiment where ATMS data is collocated with CPR snowfall rate with a certain time lag 180 

(30-minute?), and compare the retrieved ATMS snowfall rate with what is presented in this manuscript. 181 

 182 

Thanks to the reviewer for the suggestion. The suggested experiment is extremely interesting, and we want to take 183 

it into account for future works. However, the selection of coincident observations and the making of a coincidence 184 

dataset is a computationally and time consuming process, so we do not have the possibility to face this problem 185 

during the revision phase. The following statement have been added to the conclusions (line 597): 186 

 187 

Moreover, recent studies have highlighted that TBs correlate more strongly with lagged surface precipitation 188 

(with a time lag of 30-60 min for snowfall) than the simultaneous precipitation rate ( see You et al, 2019) . 189 

Therefore, an analysis based on a coincident dataset characterized by different  time lags will be carried out. The 190 

results of this analysis will be compared with HANDEL-ATMS performances in order to identify a way to exploit 191 

this information to improve SSR detection and estimation. 192 

 193 

The following reference has been added to the text (Line 806): 194 

 195 

You, Y., Meng, H., Dong, J., & Rudlosky, S.: Time‐lag correlation between passive microwave measurements and 196 

surface precipitation and its impact on precipitation retrieval evaluation. Geophysical Research Letters, 46(14), 197 

8415-8423, doi: 10.1029/2019GL083426, 2019. 198 

 199 

Reference:  200 

https://doi.org/10.1175/JHM-D-20-0260.1


 201 

You, Y., Meng, H., Dong, J., & Rudlosky, S.: Time‐lag correlation between passive microwave measurements 202 

and surface precipitation and its impact on precipitation retrieval evaluation. Geophysical Research Letters, 203 

46(14), 8415-8423, doi: 10.1029/2019GL083426, 2019. 204 

 205 

1.9) Line 282: Is there any noticeable discontinuity in the retrieved SWP and SSR between the different 206 

surface classes? Please add some discussion in the appropriate section. 207 

 208 

Thanks to the reviewer for the comment. As it is possible to observe by the case study reported,  discontinuities 209 

in the SWP/SSR retrieval are not observed in correspondence with the surface class change. Also for other case 210 

studies analyzed it has not been observed any discontinuity in snowfall retrievals in correspondence with a surface 211 

class change. In the following plots the statistical scores (POD, FAR and HSS) are reported as a function of the 212 

class. It is possible to observe that there are not very large differences. Also the error statistics do not show any 213 

significant difference between the various surface classes (see the answer to 1.23, Figure 9). So, the following 214 

statement has been added in the section dedicated to the case study (line 525): 215 

Discontinuities in snowfall retrievals are not observed in correspondence with surface class changes.  216 

 217 

1.10) Line 283: replace NASA with NOAA 218 

Thanks to the reviewer for the correction. The text has been modified 219 

from: 220 

the NASA AutoSnow product 221 

to: 222 

the NOAA AutoSnow product 223 

 224 

1.11) Line 290: While this is outside the scope of this study, is it possible to improve snow cover classification 225 

using ML approach? I’d like to get the authors’ comments on it. 226 

Thanks to the reviewer for the question. In Camplani et al, 2021 a comparison between the PESCA performances 227 

and the performance obtained with a RobustBoost approach (Machine Learning ensemble method) has been 228 

carried out. The results show that the performances obtained with this ML approach are very similar to those 229 

obtained by using PESCA. However, the leading idea of PESCA is to use a simple and not too computationally 230 

demanding method to obtain a surface classification ancillary to the snowfall retrieval by exploiting the radiometer 231 

low-frequency channels.  Indeed, in our opinion, the use  of ML approaches for the prediction of the surface 232 

emissivity for snow cover surfaces is very promising. In particular, it could be of great benefit for the exploitation 233 

of the heterogeneous observations from the radiometer constellation. In this context, we are presently working in 234 

how the future measurements of CIMR radiometer, with an unprecedented spatial resolution, but no high 235 

frequency channels, can be exploited for  improving the snowfall and IWP estimates of other radiometers equipped 236 

with high frequency channels, such as EPS-SG MWI, ICI, MWS the ATMS and AWS-STERNA. We sincerely 237 

thank the reviewer for this comment, and we would be pleased to further discuss this topic when the revision of 238 

this manuscript will be completed. 239 

Reference: 240 

 241 

Camplani, A., Casella, D., Sanò, P., & Panegrossi, G.: The Passive microwave Empirical cold Surface 242 

Classification Algorithm (PESCA): Application to GMI and ATMS. Journal of Hydrometeorology, 22(7), 1727-243 

1744,https://doi.org/10.1175/JHM-D-20-0260.1, 2021. 244 

 245 

1.12) Line 327: give explicit definitions of POD, FAR, and HSS even though they are well known. 246 

 247 

Thanks to the reviewer for the suggestion. The text has been modified 248 

 249 

 250 

from:  251 

https://doi.org/10.1175/JHM-D-20-0260.1


The statistical scores (POD, FAR, HSS) of PESCA identification of sea ice and snow cover (using AutoSnow as 252 

reference) are summarized in Table 1. 253 

to: 254 

The statistical scores of PESCA identification of sea ice and snow cover (using AutoSnow as the reference) are 255 

summarized in Table 1. In particular, the Probability of Detection (POD), the False Alarm Ratio (FAR), and the 256 

Heidke Skill Score (HSS) are reported. POD, FAR, and HSS are defined by equations 2,3 and 4. 257 

POD=
ℎ

ℎ+𝑚
  258 

(2) 259 

FAR=
𝑓

𝑓+ℎ
 260 

(3) 261 

HSS=
2(ℎ∗𝑐𝑛−𝑓∗𝑚)

(ℎ+𝑚)∗(𝑚+𝑐𝑛)+(ℎ+𝑓)(𝑓+𝑐𝑛)
 262 

(4) 263 

where h represents the hits, f represents the false alarms, m represents the misses and cn represents the correct 264 

negatives 265 

 266 

1.13) Line 346: Give reference to the radiative transfer model, or add some information about the model. 267 

 268 

Thanks to the reviewer for the suggestion. The simulations are based on a plane-parallel approximation (see Ulaby, 269 

2014) and the gas absorption model is described by Rosenkranz, 1998. The text has been modified (see answer to 270 

Comment 1.15). 271 

The following reference has been added to the text (Line 806): 272 

Rosenkranz, P. W., Water vapor microwave continuum absorption: A comparison of measurements and models. 273 

Radio Science, 33(4), 919-928. https://doi.org/10.1029/98RS01182, 1998. 274 

References:  275 

 276 

Ulaby, F., & Long, D., Microwave radar and radiometric remote sensing, 1st Edition, the Univ. of Michigan Press, 277 

ISBN: 978-0-472-11935-6, 2014. 278 

Rosenkranz, P. W., Water vapor microwave continuum absorption: A comparison of measurements and models. 279 

Radio Science, 33(4), 919-928. https://doi.org/10.1029/98RS01182, 1998. 280 

 281 

1.14) Line 350: Is the polarization effect on emissivity also neglected between viewing angles of 40 degree 282 

and 52.7 degree (the max ATMS viewing angle)? Need to state it if it’s the case. 283 

Thanks to the reviewer for the question. The polarization effect is less than 0.05  between 0 ° and 52.7 °, so it has 284 

not been considered. In the plot below the dependence of the ocean emissivity on viewing angle at 89 GHz (top) 285 

and the differences between the emissivity at nadir and the emissivity at a certain angle (bottom) are reported 286 

based on the FASTEM model (see Prigent et al, 2017) . It is possible to observe that, while the V and H emissivity 287 

show a variation up to 0.15, the QV and QH emissivity variation is   lower than 0.05 for scan angles < 52 °. 288 

The text has been modified  289 

from: 290 

The emissivity spectra dependence on the ATMS viewing angle for polarized surfaces has been neglected because 291 

an analysis of such dependence in the ATMS-CPR coincidence dataset has shown that it is significant only for 292 

larger viewing angles (tot for >40 °). This is due to the fact that cross-track scanning radiometers measure a 293 

signal (off-nadir) which derives from a mixture between the two polarizations (e.g., quasi-vertical, QV, and quasi-294 

horizontal, QH). As a consequence, although the emissivities of polarized surfaces, such as open water surfaces, 295 

are strongly influenced by the viewing angle, for the cross-track scanning radiometers the emissivity variation is 296 

compensated by the effect of the mixture of the two polarization (see also Felde & Pickle, 1995, Prigent et al, 297 

2000, Mathew et al, 2008, Prigent et al, 2017).  298 

https://doi.org/10.1029/98RS01182
https://doi.org/10.1029/98RS01182


to: 299 

The emissivity spectra dependence on the ATMS viewing angle for polarized surfaces has been neglected because 300 

an analysis of such dependence in the ATMS-CPR coincidence dataset has shown that it is not significant for 301 

ATMS viewing angles (emissivity difference smaller than 0.05 for angles up to 52.7 °). This is due to the fact that 302 

cross-track scanning radiometers measure a signal (off-nadir) which derives from a mixture between the two 303 

polarizations (e.g., quasi-vertical, QV, and quasi-horizontal, QH). As a consequence, although the emissivities of 304 

polarized surfaces, such as open water surfaces, are strongly influenced by the viewing angle, for the cross-track 305 

scanning radiometers the emissivity variation is compensated by the effect of the mixture of the two polarization 306 

(see also Felde & Pickle, 1995, Prigent et al, 2000, Mathew et al, 2008, Prigent et al, 2017).  307 

 308 
 309 

Reference: 

Prigent, C., Aires, F., Wang, D., Fox, S., & Harlow, C.: Sea‐surface emissivity parametrization from 

microwaves to millimetre waves. Quarterly Journal of the Royal Meteorological Society, 143(702), 596-605, 

https://doi.org/10.1002/qj.2953, 2017. 

 

 310 

https://doi.org/10.1002/qj.2953


 311 

1.15) Line 362: Reference for the RTM? 312 

Thanks to the reviewer for the suggestion. The text has been modified 313 

from: 314 

The RMSE between simulated clear-sky TBs - based on the mean emissivity values estimated for each class - and 315 

the coincident observed clear-sky TBs appears to be too high to implement a robust signal analysis (>10 K).  316 

to: 317 

The clear-sky radiative transfer model simulations are based on the mean emissivity values estimated for each 318 

class, and simulated by using the plane-parallel approximation (Ulaby & Long, 2014) and the Rosenkrantz gas 319 

absorption model  (Rosenkrantz, 1998) - The RMSE between simulated clear-sky TBs and the coincident observed 320 

clear-sky TBs appears to be too high to implement a robust signal analysis (>10 K).  321 

 322 

References: 323 

Rosenkranz, P. W., Water vapor microwave continuum absorption: A comparison of measurements and models. 324 

Radio Science, 33(4), 919-928. https://doi.org/10.1029/98RS01182, 1998. 325 

 326 

Ulaby, F., & Long, D., Microwave radar and radiometric remote sensing, 1st Edition, the Univ. of Michigan Press, 327 

ISBN: 978-0-472-11935-6, 2014. 328 

 329 

1.16) Line 397, the RMSE for ocean is 3.37 K in Table 2. 330 

 331 

Thanks to the reviewer for the observation. The text has been modified 332 

from: 333 

very low RMSE values (≈ 2 K) 334 

to: 335 

 low RMSE values (< 4 K) 336 

 337 

1.17) Line 403: Since high frequencies are more important for snowfall retrieval, need to discuss the impact 338 

of the significant uncertainties at these channels to retrieve SWP and SSR. 339 

Thanks to the reviewer for the suggestion. In Figure 9 (see answer to Comment 1.23)  the statistical scores for 340 

each PESCA class are reported. It is possible to observe that the worst scores are obtained for classes characterized 341 

by high uncertainties in the clear-sky TB simulations (Perennial Snow, Winter Polar Snow). However, it is also 342 

worth noting that these classes are mostly associated with environmental conditions (very dry and cold, with very 343 

light snowfall events, see Camplani et al, 2021) which make it difficult both to obtain a more accurate clear 344 

emissivity estimation and to retrieve snowfall. At the same time, it can be observed that classes characterized by 345 

the highest uncertainties on the emissivity estimate (Deep Dry Snow and Broken Sea Ice), show statistical scores 346 

which are coherent with the general scores of the algorithm. So it is clear that the uncertainties on emissivity 347 

estimation have less influence than other factors, such as the environmental conditions. 348 

The text has been modified (line 471) 349 

from: 350 

In Table 6 the statistical scores of the algorithm performance by considering each PESCA class for both the SWP 351 

and the SSR detection module are reported. It can be observed that, also considering specifically the classes where 352 

the detection is more problematic, both for the uncertainties linked to the emissivity retrieval (see Table 2), for 353 

the extremely dry and cold environmental conditions, and for the low intensity of the snowfall events,  such as 354 

Perennial Snow or Winter Polar Snow, HANDEL-ATMS has good detection capabilities (POD and FAR values 355 

greater than 0.7 and less than 0.25, respectively, for both SWP and SSR). These results provide evidence that 356 

HANDEL-ATMS can be used to analyze snowfall occurrence in the polar regions. 357 

to: 358 

https://doi.org/10.1029/98RS01182


In Figure 9 the statistical scores of the algorithm performance by considering each PESCA class for both the 359 

SWP and the SSR detection module are reported. It can be observed that, also considering specifically the classes 360 

associated to extremely dry and cold environmental conditions such as Perennial Snow or Winter Polar Snow 361 

(see Camplani et al, 2021) (where the detection is more problematic due to the uncertainties in the emissivity 362 

retrieval (see Table 2) , and to the low snowfall intensity), , HANDEL-ATMS has good detection capabilities (POD 363 

and FAR values greater than 0.7 and less than 0.25, respectively, for both SWP and SSR). On the other hand, it 364 

is possible to observe also that for surface classes characterized by the highest emission estimation uncertainties, 365 

such as Deep Dry Snow, the statistical scores are coherent with the general scores and better than those obtained 366 

in presence of extremely dry/cold environmental conditions. So, it is possible to conclude that the extremely 367 

cold/dry environmental conditions -  have more influence on the detection than the uncertainties on clear sky 368 

emissivity estimation. Generally, these results provide evidence that HANDEL-ATMS can be used to analyze 369 

snowfall occurrence in the polar regions. 370 

 371 

Reference: 372 

 373 

Camplani, A., Casella, D., Sanò, P., & Panegrossi, G.: The Passive microwave Empirical cold Surface 374 

Classification Algorithm (PESCA): Application to GMI and ATMS. Journal of Hydrometeorology, 22(7), 1727-375 

1744,https://doi.org/10.1175/JHM-D-20-0260.1, 2021. 376 

 377 

1.18) Line 430: Logarithmic tangent function is not a common activation function. Please add a reference 378 

or explain what it is. 379 

Thanks to the reviewer for this comment. It was  a typo, the activation function is a sigmoid.  We used hyperbolic 380 

tangent and sigmoid functions, which are indeed very common activation functions. The choice of the activation 381 

functions has been performed by trial and testing.  382 

The manuscript has been modified  383 

from: 384 

The final architecture, for all modules, is composed of four layers: an input layer with a neurons number equal 385 

to the predictor number, and a hyperbolic tangent function as the activation function, a first hidden layer (60 386 

neurons), and hyperbolic tangent function, a second hidden layer (30 neurons), with a logarithmic tangent 387 

function.  388 

to: 389 

 The final architecture, for all modules, is composed of four layers: an input layer with a neurons number equal 390 

to the predictor number, and a hyperbolic tangent function as the activation function, a first hidden layer (60 391 

neurons), and hyperbolic tangent function, a second hidden layer (30 neurons), with a sigmoid function.  392 

 393 

1.19) Lines 435-436: Did the predictor set including TB_obs, TB_obs-TB_sim, and environmental variables 394 

give better result than the set only included the first two? If not, why? Is it because TB_sim also used the 395 

environmental variables being tested? 396 

Thanks to the reviewer for the question. The NNs that use both the Δobs-sim and the environmental parameters show 397 

detection scores almost equal to those obtained by using only  Δobs-sim. This is because the information about 398 

environmental conditions is already used as input in the clear-sky TB simulations The following statement has 399 

been added to the text (line 438):  400 

On the contrary, the simultaneous use of both the ΔTBobs-sim and the environmental parameters show scores almost 401 

equal to that obtained by using only ΔTBobs-sim .  402 

 403 

 404 

 405 

1.20) Lines 444: Which 16 ATMS channels and how are they selected? 406 

Thanks to the reviewer for the suggestion.  The sixteen channels are ATMS channels 1-9, 16-22. The ATMS 10-407 

15 channels peak above the tropopause, so we did not take them into account in the development of HANDEL-408 

https://doi.org/10.1175/JHM-D-20-0260.1


ATMS. Figure below shows the temperature weighting functions for a standard atmosphere in clear sky 409 

conditions.  410 

 411 

The text has been modified 412 

from:  413 

16 ATMS TBobs     414 

to: 415 

1-9, 16-22 ATMS channels TBobs (the 10-15 ATMS channels have not been considered because their weighting 416 

function peaks above the tropopause). 417 

 418 

1.21) Section 4.1: Some details about the validation data should be provided. Is the data from selected 419 

snowfall events used or from a time period? How many events were included and their geographic areas? 420 

How many data points were in the dataset etc.? The information is important because it provides the 421 

context for the performance metrics. 422 

Thanks to the reviewer for the suggestion. The following section has been added to the text of section 2.3 (line 423 

223): 424 

In this work, the dataset has been filtered based on humidity (TPW < 10 mm) and temperature (T2m <280 K) and 425 

elevation conditions (the working limits of the PESCA algorithm, see Camplani et al, 2021)  leading to a good 426 

representation of the higher latitudes with 80 % of the dataset elements located above 60°N/S . The dataset is 427 

made of 2,14*10 6 elements, including 1,07*10 6 elements with falling snow (2CSP SWP > 0 kg m-2) and 9,99*10 428 
5 with snowfall at the surface (2CSP SSR > 0 mm h-1) . The training and test phases have been conducted by 429 

splitting randomly the dataset, with ⅓ of the elements in the training and ⅔ of the elements in the test dataset. 430 

 431 

Reference: 432 

 433 



Camplani, A., Casella, D., Sanò, P., & Panegrossi, G.: The Passive microwave Empirical cold Surface 434 

Classification Algorithm (PESCA): Application to GMI and ATMS. Journal of Hydrometeorology, 22(7), 1727-435 

1744,https://doi.org/10.1175/JHM-D-20-0260.1, 2021. 436 

 437 

 438 

1.22) Line 451: A large percentage of the snowfall appears to fall when T_2m is around the freezing point 439 

or higher. Snowfall under such conditions generally has different characteristics from snowfall in high 440 

latitudes which is the focus of this study. Add some discussion about the data distribution and its impact on 441 

the new snowfall algorithm. 442 

Thanks to the reviewer for the suggestion.  Generally, the SWP detection shows better performances in moister 443 

and warmer conditions than in colder/drier situations for two main reasons: 1) the atmosphere is less transparent 444 

2) these conditions are usually associated with more intense events. However, in these conditions there can be a 445 

mismatch between the presence of falling snow in the atmosphere and the presence of snowfall at the surface; 446 

therefore, the SSR detection statistical scores show a maximum around 273 K and 5 mm and then decrease. From 447 

Figure 8, it is possible to observe that the maximum number of observations and of snowfall elements in the 448 

dataset  is around 273 K, where the best performances are obtained. However, it is worth noticing that HANDEL 449 

shows very good results also in very dry and very cold conditions.  We believe that this is the main achievement 450 

of this work, since the main objective of this study is to show that HANDEL is able to detect and retrieve snow 451 

also in extreme conditions typical of the higher latitudes. We think that this is the added value of this study. In 452 

order to highlight this aspect, we have added a new figure showing the variability of the estimation statistical 453 

scores and the mean SWP and SSR with TPW (see answer to Comment 1.25). 454 

 455 

1.23) Line 471: Add HSS to Table 6. 456 

 457 

Thanks to the reviewer for the suggestion.  458 

We have deleted Table 6 and we have added Figure 9, where the POD, FAR, HSS, the observation occurrences 459 

and the snowfall observation occurrences (SWP, SSR>0) are reported.  460 

 461 

 462 

 463 

 464 

https://doi.org/10.1175/JHM-D-20-0260.1


 465 
 Figure 9: Same as Figure 7 but for  PESCA surface classes. 466 
  467 

1.24) Table 5: Since the goal of this study is to retrieve snowfall in high latitude, it'd be informative to 468 

analyze how well the statistics represent the cold, dry and light snowfall versus the warm, moist, and heavier 469 

snowfall. Please add some quantitative analysis to show the performance of the snowfall representative of 470 

high latitude conditions. 471 

Thanks to the reviewer for the suggestion. The dependence of the detection scores on the environmental conditions 472 

has been reported in Figure 7 and in Figure 8. The presence of a less transparent atmosphere and the presence of 473 

high SWP values generates a more intense signal.  We have decided to add one Figure in the manuscript showing 474 

the variability of the snowfall estimation statistical scores, as well as SWP and SSR, with TPW (see  answer to 475 

Comment 1.25).  476 

 477 

1.25) Line 487: Typically, high latitude snowfall is rather light. Does this result mean that the snowfall 478 

retrieval in high latitude is generally overestimated? Add some discussion here. 479 

Thanks to the reviewer for the comment. From Figure 9 it is possible to observe that the algorithm tends to 480 

overestimate light snowfall, while there is a better agreement for more intense snowfall. Very light snowfall events 481 

are linked to the dry /cold environmental conditions typical of high latitude areas, where more intense snowfall 482 

events are typical of moister conditions. We state that “Generally, it can be observed that, although HANDEL-483 

ATMS is able to detect extremely light snowfall events, it does not have the sensitivity to correctly estimate their 484 

intensity.“   The final part of Section 4.1 has been largely modified (see below) 485 

We decided to add the following Figure to the paper in order to answer 1.22, 1.24 and 1.25.  486 

 487 



 488 
 489 

Figure 11: HANDEL-ATMS SWP and SSR Detection Performances for different bins of TPW. The left y-axis 490 
reports RMSE absolute values and the mean intensity value for each 1-mm TPW bin, while the relative bias, 491 
calculated as the ratio between the bias and the SWP/SSR mean value for each bin. 492 
 493 
 494 

 The text has been modified to comment the Figure 11 (Line 488) 495 

from: 496 

. Generally, it can be observed that, although HANDEL-ATMS is able to detect extremely light snowfall events, it 497 

does not have the sensitivity to correctly estimate their intensity. 498 

  499 

to: 500 
 501 

Figure 11 shows the dependence of HANDEL-ATMS snowfall estimation error statistics, as well of SWP and SSR, 502 

on TPW. The curves represent the mean SWP or SSR computed for each 1-mm TPW bin, the RMSE and the relative 503 

bias (the ratio between the bias and the SWP/SSR mean value for each bin). TPW and snowfall intensity are 504 

strongly correlated.  An increase of the absolute RMSE can be observed as TPW increases, and it is larger than 505 

the SWP/SSR mean value for TPW < 8 mm. A similar behavior can be observed by analyzing the dependence of 506 



HANDEL-ATMS snowfall estimation error statistics on T2m (not shown).   A very moderate overestimation is 507 

observed for TPW < 8 mm and for lower SWP and SSR values (< 0.1 mm/h), with relative bias around 5%, (up 508 

to 8% only for extremely low TPW values and very low number of observations (see Figure 7)), while 509 

underestimation (relative bias up to -5%)  is observed for higher TPW values and higher SWP and SSR  values. 510 

Generally, light snowfall events are linked to the very cold/dry environmental conditions typical of high-latitude 511 

regions. So, the algorithm manages to detect also the very light snowfall typical of high latitudes, but tends to 512 

slightly overestimate snowfall intensity in such conditions.  It can be concluded that HANDEL-ATMS has good 513 

detection capabilities (also for extremely light snowfall) but it shows some limitations in  correctly estimating its 514 

intensity, with slight overestimation of the very light snowfall typical of high latitudes. 515 

 516 

1.26) Lines 555-558: See the comment on line 27. 517 

 518 

Thanks to the reviewer for the suggestion. The text has been modified 519 

from: 520 

 521 

The  driving and innovative principle in the algorithm development is the exploitation of the full range of ATMS 522 

channel frequencies to characterize the frozen background surface radiative properties at the time of the overpass 523 

to be able to better isolate and interpret the snowfall-related contribution to the measured multi-channel upwelling 524 

radiation.  525 

to 526 

 527 

The driving and innovative principle in the algorithm development is the exploitation of the full range of ATMS 528 

channel frequencies to characterize the frozen background surface radiative properties at the time of the overpass 529 

to be able to better isolate and interpret the snowfall-related contribution to the measured multi-channel upwelling 530 

radiation. A similar approach has been used by Zhao &Weng, 2002; however, their application was limited to 531 

non-scattering surfaces and was based on empirical relationships. 532 

 533 

Reference:  534 

 535 

Zhao, L., & Weng, F.: Retrieval of ice cloud parameters using the Advanced Microwave Sounding Unit. Journal 536 

of Applied Meteorology and Climatology, 41(4), 384-395, https://www.jstor.org/stable/26184983, 2002. 537 

 538 

  539 

https://www.jstor.org/stable/26184983


Reviewer 2 540 

We would like to thank Reviewer #2 for his/her review of our paper and the important comments and suggestions 541 

provided. Please, find below our responses to the Reviewer's comments and the details on how we address them 542 

in the new version of the manuscript 543 

General comments.  544 

The text is a bit hard to follow. It is highly recommended that the authors make an effort to shorten it and 545 

make the language and the message more succinct. The quality of the figures can be significantly improved 546 

as well. There are a few important points that need to be cleared in the next revision.  547 

Thanks to the reviewer for the suggestion. We have shortened the manuscript and tried to make the message more 548 

succinct. We have also improved figures 2, 6, 7, 8, 11, and 14 (now Figures 13 and 16  because  new Figures 9 549 

and 11 have been added to address some comments by Reviewer 1)  and the captions have been modified 550 

accordingly.  551 

Figure 2: 552 

 553 

The caption has been changed 554 

from: 555 

Figure 2: Sea Ice Detection: 23 TB-T2m Plan. The color represents the mean AutoSnow sea ice percentage within each bin 556 
(left) and the observation occurrence (right). 557 
 558 
 to 559 
Figure 2: Sea Ice Detection: 23 TB-T2m Plan. The color represents the mean AutoSnow sea ice percentage within each bin 560 
(left) and the observation occurrence (right). The green (left) and red (right) lines represent the discriminant Equation 561 
between sea ice and ocean. 562 

  563 

For Figure 6, see answer to Comment 2.20. 564 

 565 



Figure 7: 566 

 567 

 568 

The caption has been changed 569 

from: 570 

Figure 7 HANDEL-ATMS SWP and SSR Detection Performances for different bins of TPW. The left y-axis 571 
reports POD, FAR and HSS vales, while the right y-axis reports the total number and snowfall observations in 572 
the dataset. POD-tot, FAR-tot and HSS-tot (dotted lines) represent the statistical scores estimated on the total 573 
dataset (values reported in Table 2). 574 

 575 
 576 
 to 577 

Figure 7: HANDEL-ATMS SWP and SSR Detection Performances for different bins of TPW. The left y-axis 578 
reports POD, FAR and HSS vales, while the right y-axis reports the total number and snowfall observations in 579 
the  dataset. 580 

 581 



Figure 8: 582 

  583 

 584 

 585 

The caption has not been changed 586 

 587 

 588 

 589 

 590 

 591 

 592 



Figure 11/13: 593 

 594 

The caption has been changed 595 

from: 596 

Figure 11: Greenland - 2016/04/24 - Synopsis along CloudSat Track. The  first panel shows the ECMWF TPW 597 
and T2m values along the CloudSat track. In the second panel, the 2CSP SWP (left) and the SSR (right) values 598 
are reported, besides the PESCA classification along CloudSat track. In the third panel, the CPR reflectivity 599 
(values are reported in the colorbar below), the supercooled water droplets detected by DARDAR (magenta points) 600 
are shown. Also the Digital Elevation Model (brown line) and the ECMWF Freezing Level (red line) along 601 
CloudSat track are reported. In the bottom panel the observed TBs of the main high-frequency channels (88 GHz, 602 
166 GHz, 183+3 GHz, 183+7 GHz) along CloudSat track are shown. 603 
 604 

 605 
 to 606 

Figure 13: Greenland - 2016/04/24 - Synopsis along CloudSat Track. The  first panel shows the ECMWF TPW 607 
and T2m values along the CloudSat track. In the second panel, the 2CSP SWP (left) and the SSR (right) values 608 
are reported, besides the PESCA classification along CloudSat track. In the third panel, the CPR reflectivity 609 
(values are reported in the colorbar on the right), the supercooled water droplets detected by DARDAR (magenta 610 
points) are shown. Also the Digital Elevation Model (brown line) and the ECMWF Freezing Level (red line) 611 
along CloudSat track are reported. In the bottom panel the observed TBs of the main high-frequency channels 612 
(88 GHz, 166 GHz, 183+3 GHz, 183+7 GHz) along CloudSat track are shown. 613 



Figure 14/16: 614 

  615 

The caption has not been changed 616 

For the new Figures 9 and 11, see answers to Comments 2.5 and 2.18. 617 

2.1) The explanation of the inverse radiative transfer modeling is missing. Such an inversion can be 618 

significantly underconstrained and add additional uncertainty to the results. 619 

Thanks to the reviewer for the comment. The model used is a plane-parallel approximation (see Ulaby&Long, 620 

2014); the gas absorption model is that described by Rosenkranz, 1998. In particular, the emissivity has been 621 

calculated by inverting the radiative transfer equation 622 

𝑇𝐵 = 𝑇𝑢𝑝 + (1 − 𝜀) ∗ 𝑇𝑑𝑜𝑤𝑛 ∗ 𝑒
−𝜏 + 𝜀 ∗ 𝑇𝑠𝑘𝑖𝑛 ∗ 𝑒

−𝜏 623 

to 624 

𝜀 =
𝑇𝐵 − 𝑇𝑢𝑝 − 𝑇𝑑𝑜𝑤𝑛 ∗ 𝑒

−𝜏

𝑒−𝜏 ∗ (𝑇𝑠𝑘𝑖𝑛 − 𝑇𝑑𝑜𝑤𝑛)
 625 

where Tup represents atmospheric upward emission, Tdown represents the atmospheric downward emission, 𝜏 626 

represents the atmospheric optical thickness, ε represents the emissivity, Tskin represents the skin temperature and 627 

TB the ATMS observed TB. Tup, Tdown, and 𝜏 are obtained by applying the Rosenkranz model using ECMWF-628 

AUX temperature and water vapour profiles, Tskin is obtained from ECMWF-AUX product. 629 

 630 

References: 631 

Rosenkranz, P. W., Water vapor microwave continuum absorption: A comparison of measurements and models. 632 

Radio Science, 33(4), 919-928. https://doi.org/10.1029/98RS01182, 1998. 633 

 634 

Ulaby, F., & Long, D., Microwave radar and radiometric remote sensing, 1st Edition, the Univ. of Michigan Press, 635 

ISBN: 978-0-472-11935-6, 2014. 636 

2.2) Please clarify upfront whether the estimated values of surface emissivities are used dynamically or 637 

statistically in the algorithm. Do they change in time or not? 638 

https://doi.org/10.1029/98RS01182


Thanks to the reviewer for the comment. The emissivity values are retrieved for each pixel using the low-639 

frequency TBs  and environmental parameters at the time of the overpass; therefore, the emissivities are used 640 

dynamically. So the text has been changed: 641 

Line 27: 642 

from: 643 

Moreover, their wide range of channel frequencies (from 23 GHz to 190 GHz), allows for the radiometric 644 

characterization of the surface at the time of the overpass along with the exploitation of the high-frequency 645 

channels for snowfall retrieval. 646 

to: 647 

Moreover, their wide range of channel frequencies (from 23 GHz to 190 GHz), allows for the dynamic radiometric 648 

characterization of the surface at the time of the overpass along with the exploitation of the high-frequency 649 

channels for snowfall retrieval. 650 

 651 

Line 136: 652 

from: 653 

The present work has the aim to develop an algorithm for snowfall detection and estimation by exploiting the 654 

large frequency range typical of the last generation radiometers and to obtain a radiometric characterization of 655 

the background surface at the time of the satellite overpass in order to highlight the complex relationship between 656 

upwelling radiation and snowfall signature, which makes the detection very difficult in the typical conditions of 657 

the high latitudes. 658 

to: 659 

The present work has the aim to develop an algorithm for snowfall detection and estimation by exploiting the 660 

large frequency range typical of the last generation radiometers and to obtain a dynamic radiometric 661 

characterization of the background surface at the time of the satellite overpass in order to highlight the complex 662 

relationship between upwelling radiation and snowfall signature, which makes the detection very difficult in the 663 

typical conditions of the high latitudes. 664 

 665 

2.3) It will be helpful if the authors clarify why we need land surface classification for the algorithm. For 666 

example, there are multiple products for the detection of the presence of snow and sea ice dynamics using 667 

optical bands (every 30 minutes). These optical products can be more accurate than microwave 668 

classification schemes, in terms of the presence or absence of frozen surfaces. Why we should not use them?  669 

Thanks to the reviewer for the question. There are indeed multiple products for snow-cover and sea ice detection. 670 

However, PESCA aim is to obtain information ancillary to the snowfall retrieval at the time of the overpass, by 671 

exploiting the same instruments and the same type of data which will be used downstream for snowfall retrieval 672 

(see Camplani et al, 2021). We are more interested in the emissivity spectrum in the microwave than in very 673 

accurate and high-resolution snow and sea ice detection. Moreover, products based on optical observations are 674 

unreliable in presence of clouds, while our goal is to use them to retrieve cloud properties. To our knowledge, the 675 

only product available every 30 min comes from geostationary satellites that show several limitations in observing 676 

high latitudes.  677 

 678 

References: 679 

Camplani, A., Casella, D., Sanò, P., & Panegrossi, G.: The Passive microwave Empirical cold Surface 680 

Classification Algorithm (PESCA): Application to GMI and ATMS. Journal of Hydrometeorology, 22(7), 1727-681 

1744,https://doi.org/10.1175/JHM-D-20-0260.1, 2021. 682 

2.4) From a methodological standpoint, the explanations of neural networks need to be improved. A the 683 

same time, the use of linear discriminant analysis seems outdated in light of the new deep-learning 684 

classification models.  685 

https://doi.org/10.1175/JHM-D-20-0260.1


Thanks to the reviewer for the comment. We know that deep-learning classification models are more effective 686 

than models based on other machine learning approaches, such as linear discriminant analysis. However, our goal 687 

was to obtain a classification scheme preliminary to the snowfall retrieval modules, and so we have chosen to use 688 

methods which are simple and not too computationally and time consuming.  689 

 690 

2.5) While the paper focuses on different land surface types and sea ice ages, it is unclear how statistically 691 

significant the presented results are in Table 7. The number of training and testing samples needs to be 692 

clarified.  693 

Thanks to the reviewer for the suggestion. We believe that the reviewer is referring to Table 6. We have replaced 694 

it with Figure 9. In the two plots the statistical scores for each class, the total observation number and the snowfall 695 

observation number for the test phase are reported. For what concerns the number of training and testing samples, 696 

see answer to Comment 2.6. 697 

 698 
 Figure 9: Same as Figure 7 but for  PESCA surface classes. 699 

 700 

 701 

The violet continuous and dashed line represents the total class occurrence and the snowfall occurrence for each 702 

class respectively. So, it is possible to observe that also the less populated classes, such as Thin Snow, are 703 

characterized by about 3*104 total observations and 1*104 snowfall observations. So the statistics can be 704 

considered statistically significant. This Figure has been added to the manuscript. 705 



2.6) It would benefit the paper if the authors provide the entire confusion matrix of the detection of snowfall, 706 

including, recall, precision, and accuracy. 707 

Thanks to the reviewer for the suggestion. Here the confusion matrices and the precision, recall and accuracy 708 

values are reported. 709 

 710 

SWP detection - Confusion Matrix 

HANDEL/2CSP YES NO 

YES 606711 106407 

NO 106541 581671 

precision=0.85 711 

recall=0.85 712 

accuracy=0,84 713 

 714 

SSR detection - Confusion Matrix 

HANDEL/2CSP YES NO 

YES 541688 102542 

NO 113615 643485 

precision=0.82 715 

recall=0.84 716 

accuracy=0,84 717 

The total number of observations is 1,40*10 6, which corresponds to about ⅔ of the total observations number. A 718 

similar proportion can be observed for the SWP and SSR observations. The following statement has been added 719 

to the text (line 223):  720 

In this work, the dataset has been filtered based on humidity (TPW < 10 mm) and temperature (T2m <280 K) 721 

conditions (the working limits of the PESCA algorithm, see Camplani et al, 2021)  leading to a good 722 

representation of the higher latitudes with 80 % of the dataset elements located above 60°N/S. are . The dataset 723 

is made of 2,14*10 6 elements, including 1,07*10 6 elements with falling snow (2CSP SWP > kg/m2) and 9,99*10 724 
5 with snowfall at the surface (2CSP SSR > 0 mm/h) . The training and test phases have been conducted by splitting 725 

randomly the dataset, with ⅓ of the elements in the training and ⅔ of the elements in the test dataset. 726 

Therefore, data about the dataset dimension, the training and test phase and the snowfall have been added to the 727 

text. We would prefer not to add the confusion matrices to the text in order to avoid further lengthening the 728 

manuscript. We think that the information about the dataset, joined with the statistical scores, shows  a 729 



comprehensive picture of the study. At the same time, the recall gives the same information of POD, and precision 730 

can be considered the complementary value  to 1 of the FAR. The information linked to the accuracy can be 731 

misleading: so we would prefer to keep in the text only the information about POD, FAR and HSS. 732 

Detail comments: 733 

2.7) Section 2.4 is long and has some generic explanations about for example neutral networks, which is not 734 

necessary at this time. It is recommended to shorten the text. 735 

Agreed. The text has been shortened (see answer to Comment 2.8).  736 

2.8) The explanation of the architecture of the neural network is weak. First of all the networks use the 737 

Levenberg-Marquardt algorithm which is extremely old and is not being used in modern training of deep 738 

neural networks. Unlike algorithms like Adam, it is prone to get stuck in local minima and suffer from the 739 

vanishing gradient problem.  740 

We agree with the reviewer that the LM algorithm is outdated and it is not being used in deep neural network 741 

training. Our point here is that our networks are shallow, as written in section 3.2 of the manuscript:  742 

 743 

The snowfall detection and estimation modules have been based on ANNs. Four ANNs have been developed: two 744 

for the detection of SWP and SSR and two for the SWP and SSR estimate. The performance of more than 50 745 

architectures have been tested, by varying the number of layers, the number of neurons for each layer, and the 746 

activation functions. The final architecture, for all modules, is composed of four layers: an input layer with a 747 

neurons number equal to the predictor number, and a hyperbolic tangent function as the activation function, a 748 

first hidden layer (60 neurons), and hyperbolic tangent function, a second hidden layer (30 neurons), with a 749 

logarithmic tangent function. 750 

 751 

Therefore, the neural networks described in this paper are composed of less than 150 weights. These networks fall 752 

into the category of feed forward, or multilayer perceptron networks, or shallow neural networks. The LM 753 

optimizer is prone to several issues when the depth of the network grows (i.e. if the number of weights to be 754 

trained is higher than about 500, see Yu & Wilamowski, 2018), such as gradient vanishing, however it has been 755 

proven to be a very accurate optimizer for shallow neural networks. The use of the LM optimizer forces the choice 756 

of the error function, that needs to be the mean squared error, in regression problems, and may result slower than 757 

other optimizers, however it has proven to reach higher accuracy in many problems, even in very recent papers, 758 

in particular we followed the Hagan&Menhaj, 1994 implementation of the LM algorithm that has been cited in 759 

about 700 papers after 2022 (see the google scholar link to recent citation of this paper). Moreover, we did test 760 

the impact of the choice of the optimizer for one of the neural networks module of the HANDEL-ATMS algorithm, 761 

and the results confirmed the use of the LM optimizer as an optimal choice for the complexity of the networks 762 

that we are training and for the size of the dataset that we are using. In particular the LM optimizer resulted to be 763 

more accurate but slower than other optimizers (including the Conjugate-gradient, gradient descend with 764 

momentum and Adam optimizers). 765 

 766 

About the first point raised by the reviewer “The explanation of the architecture of the neural network is weak”, 767 

we believe that He/She is referring to section 2.4.1, that was intended as a brief introduction, and that has been 768 

modified  769 

 770 

 771 

 772 

 773 

 774 

from: 775 

 776 



2.4.1 Artificial Neural Networks  777 

An Artificial Neural Network (ANN) is an information-processing system inspired by the functioning of biological 778 

neural networks. It is composed of neurons, i. e., elements where the information is processed using an activation 779 

function, and the connecting links between the neurons, where a weight multiplies the deriving from the upstream 780 

signal.  In particular, the HANDEL-ATMS snowfall detection and estimation modules have been developed using 781 

feedforward multilayer neural network architectures, i. e., a neural network architecture where the neurons are 782 

arranged in layers; each neuron belonging to a layer receives, as input to its transfer function, a weighted sum of 783 

the outputs of the previous layer. This architecture, which is defined by the number of layers, the number of 784 

neurons for each layer, and the transfer function of each neuron, has to be designed beforehand. The weights of 785 

connection links and the bias values for each layer are estimated with a training process, based on the Levenberg–786 

Marquardt algorithm (see Sanò et al, 2015) 787 

to: 788 

2.4.1 Artificial Neural Networks  789 

The HANDEL-ATMS snowfall detection and estimation modules have been developed using feedforward 790 

multilayer neural network architectures, i. e., a neural network architecture where the neurons are arranged in 791 

layers. This architecture, which is defined by the number of layers, the number of neurons for each layer, and the 792 

transfer function of each neuron, has to be designed beforehand.   The weights of connection links and the bias 793 

values for each layer are estimated with a training process, based on the Levenberg–Marquardt algorithm (see 794 

Sanò et al, 2015). The specific networks architecture, and the training and optimization procedure of the 795 

HANDEL-ATMS algorithm are described in detail in section 3.2. 796 

 797 

References: 798 

 799 

Yu, H., & Wilamowski, B. M.: Levenberg–marquardt training. In Intelligent systems (pp. 12-1), CRC Press, ISBN 800 

9781315218427, 2018. 801 

 802 

Hagan, M. T., & Menhaj, M. B.: Training feedforward networks with the Marquardt algorithm, IEEE transactions 803 

on Neural Networks, 5(6), 989-993, DOI: 10.1109/72.329697, 1994. 804 

 805 

2.9) Line 424–445 It is unclear how the detection and estimation networks are implemented. What are the 806 

cost functions? This must be clarified.  807 

Thanks to the reviewer for the suggestion. The cost function is a sum of squares error (SSE) given by the following 808 

equation: 809 

𝐸 =
1

𝑛
∑

𝑛

𝑖=1

(𝑦𝑖 − 𝑡𝑖)
2 810 

where y represents the output of the neural networks, and t represents the reference truth value. The characteristics 811 

of this Neural network approach have been largely described by Sanò et al, 2015, doi:10.5194/amt-8-837-2015). 812 

So, a reference to this paper has been added (line 431): 813 

(for more information about the Neural Network characteristics, see Sanò et al, 2015) 814 

 815 

References: 816 

 817 

Sanò, P., Panegrossi, G., Casella, D., Di Paola, F., Milani, L., Mugnai, A., Petracca, M., & Dietrich, S.: The 818 

Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for AMSU/MHS observations: 819 

description and application to European case studies. Atmospheric Measurement Techniques, 8(2), 837-857, 820 

https://doi.org/10.5194/amt-8-837-2015, 2015. 821 

 822 

2.10) Line 345-346: It is not well-described how the inverse radiative transfer model is used. What is the 823 

forward RT model? 824 

https://doi.org/10.1109/72.329697
https://doi.org/10.1109/72.329697
https://doi.org/10.5194/amt-8-837-2015


Thanks to the reviewer for the question. The simulations are based on a plane-parallel approximation (see Ulaby, 825 

2014) and the gas absorption model is described by Rosenkranz, 1998. The text has been modified (see answer to 826 

Comment 1.15). 827 

 828 

The text has been modified 829 

from: 830 

The RMSE between simulated clear-sky TBs - based on the mean emissivity values estimated for each class - and 831 

the coincident observed clear-sky TBs appears to be too high to implement a robust signal analysis (>10 K).  832 

to: 833 

 The clear-sky radiative transfer model simulations are based on the mean emissivity values estimated for each 834 

class, and simulated by using the plane-parallel approximation (Ulaby & Long, 2014) and the Rosenkrantz gas 835 

absorption model  (Rosenkrantz, 1998) - The RMSE between simulated clear-sky TBs and the coincident observed 836 

clear-sky TBs appears to be too high to implement a robust signal analysis (>10 K).  837 

 838 

The following reference has been added to the text (Line 756): 839 

Rosenkranz, P. W., Water vapor microwave continuum absorption: A comparison of measurements and models. 840 

Radio Science, 33(4), 919-928. https://doi.org/10.1029/98RS01182, 1998. 841 

 842 

References: 843 

Rosenkranz, P. W., Water vapor microwave continuum absorption: A comparison of measurements and models. 844 

Radio Science, 33(4), 919-928. https://doi.org/10.1029/98RS01182, 1998. 845 

 846 

Ulaby, F., & Long, D., Microwave radar and radiometric remote sensing, 1st Edition, the Univ. of Michigan Press, 847 

ISBN: 978-0-472-11935-6, 2014. 848 

 849 

2.11) Lines 362-365: How emissivity is used for calculating the simulated TBs? It seems recursive to use the 850 

observations to estimate the emissivity and then use it for retrievals. Please clarify whether the used 851 

emissivities are dynamic or static.  852 

Thanks to the reviewer for the comment. The emissivity values are retrieved for each pixel and are used to estimate 853 

the simulated TBs. Only low-frequency channels are used to classify the observations (by using PESCA) and to 854 

retrieve an emissivity spectrum for the observations. Then, this spectrum has been used to estimate the TBs for 855 

all ATMS channels. So the process is not recursive. The emissivities are used dynamically because they have been 856 

calculated for each observation (see answer to Comment 2.2). 857 

2.12) Table 3: The parameters mentioned in the table are different than the ones mentioned in the text in 858 

lines 435-437. 859 

Thanks to the reviewer for the comment. The Table has been changed: 860 

 861 

 862 

 863 

 864 

 865 

https://doi.org/10.1029/98RS01182
https://doi.org/10.1029/98RS01182


from: 866 

 867 

Predictor Set  POD FAR HSS 

∆TBobs−sim 0.75 0.29 0.48 

TBobs 0.81 0.18 0.65 

TBobs+environmental var 0.82 0.17 0.68 

TBobs+∆TBobs−sim 0.84 0.16 0.69 

 Table 3: HANDEL-ATMS SSR Detection Performance: Statistical scores for different Predictor Sets 868 

to: 869 

 870 

Predictor Set  POD FAR HSS 

∆TBobs−sim+ ancillary 

parameters 

0.75 0.29 0.48 

TBobs+ ancillary parameters 0.81 0.18 0.65 

TBobs+environmental variables+ 

ancillary parameters 

0.82 0.17 0.68 

TBobs+∆TBobs−sim+ ancillary 

parameters 

0.84 0.16 0.69 

 Table 3: HANDEL-ATMS SSR Detection Performance: Statistical scores for different Predictor Sets 871 

Minor comments: 872 

2.13) Line 273: It is better to mention all the variables that have been used for training the network here. 873 

Thanks to the reviewer for the suggestion. The text has been changed  874 

from: 875 

Four ANNs are then applied to a predictor set consisting of ATMS TBobs, ∆TBobs−sim, a surface classification 876 

flag, and other environmental and ancillary parameters.  877 

to: 878 

Four ANNs are then applied to a predictor set consisting of ATMS TBobs, ∆TBobs−sim, a surface classification 879 

flag, and other ancillary parameters (elevation and ATMS viewing angle for the final version).  880 

 881 

2.14) line 203-204: list of environmental and ancillary parameters is not presented in the dataset. 882 

Thanks to the reviewer for the comment. The text has been changed 883 

from: 884 

Some model-derived variables have been added to the dataset to be used as ancillary variables.  885 

 886 

 887 

 888 



to: 889 

Some model-derived variables, specifically Total Precipitable Water (TPW), the 2-m Temperature (T2m), the Skin 890 

Temperature, the freezing level height and the temperature and humidity profiles, have been added to the dataset 891 

to be used as ancillary parameters.  892 

 893 

2.15) Line 356: “…for ocean and land respectively.” 894 

Thanks to the reviewer for the correction.  895 

The text has been changed 896 

from: 897 

The estimated spectra are shown in Figure 4 and Figure 5 for the land and ocean classes, respectively. 898 

to:  899 

The estimated spectra are shown in Figure 4 and Figure 5 for ocean and land respectively. 900 

 901 

 902 

2.16) Line 387: What is the used atmospheric radiative transfer model? Please spell out RTM. 903 

Thanks to the reviewer for the comment. The model used is that described by Rosenkranz, 1998. The text has been 904 

modified 905 

from: 906 

An emissivity spectrum, (calculated as the mean of the emissivity values for each cluster), together with ECMWF 907 

temperature and water vapor profiles, is used as input in the RTM to simulate the clear-sky TBs. 908 

 to 909 

An emissivity spectrum, (calculated as the mean of the emissivity values for each cluster), together with ECMWF 910 

temperature and water vapor profiles, is used as input in the radiative transfer model (RTM) (seeUlaby & Long 911 

,2014, Rosenkrantz, 1998)  to simulate the clear-sky TBs. 912 

 913 

References: 914 

Rosenkranz, P. W., Water vapor microwave continuum absorption: A comparison of measurements and models. 915 

Radio Science, 33(4), 919-928. https://doi.org/10.1029/98RS01182, 1998. 916 

 917 

Ulaby, F., & Long, D., Microwave radar and radiometric remote sensing, 1st Edition, the Univ. of Michigan Press, 918 

ISBN: 978-0-472-11935-6, 2014. 919 

2.17) Table 2: What is the accuracy represented here? The accuracy of PESCA for surface classification? 920 

Thanks to the reviewer for the comment. The accuracy represented here is the ratio between the number of 921 

observations where both SOM and LDA identify the same cluster and the total observations of the class. 922 

 923 

2.18) Line 489: Remove the dot at the beginning of the sentence. 924 

Thanks to the reviewer for the correction. The text has been largely modified  to address some comments by 925 

Reviewer 1. 926 

https://doi.org/10.1029/98RS01182


from: 927 

. Generally, it can be observed that, although HANDEL-ATMS is able to detect extremely light snowfall events, it 928 

does not have the sensitivity to correctly estimate their intensity.  929 

to: 930 

 931 

Figure 11 shows the dependence of HANDEL-ATMS snowfall estimation error statistics, as well of SWP and SSR, 932 

on TPW . The curves represent the mean SWP or SSR computed for each 1-mm TPW bin, the RMSE and the 933 

relative bias (the ratio between the bias and the SWP/SSR mean value for each bin). TPW and snowfall intensity 934 

are strongly correlated.  An increase of the absolute RMSE can be observed as TPW increases, and it is larger 935 

than the SWP/SSR mean value for TPW < 8 mm. A similar behavior can be observed by analyzing the dependence 936 

of HANDEL-ATMS snowfall estimation error statistics on T2m (not shown).   A very moderate overestimation is 937 

observed for TPW < 8 mm and for lower SWP and SSR values (< 0.1 mm/h), with relative bias around 5%, (up 938 

to 8% only for extremely low TPW values and very low number of observations (see Figure 7)), while 939 

underestimation (relative bias up to -5%)  is observed for higher TPW values and higher SWP and SSR  values.  940 

So, it can be concluded that HANDEL-ATMS has good detection capabilities (also for extremely light snowfall) 941 

but it shows some limitations in  correctly estimating its intensity, with slight overestimation of the very light 942 

snowfall typical of high latitudes. 943 

 944 
 945 



Figure 11: HANDEL-ATMS SWP and SSR Detection Performances for different bins of TPW. The left y-axis 946 
reports RMSE absolute values and the mean intensity value for each 1-mm TPW bin, while the relative bias, 947 
calculated as the ratio between the bias and the SWP/SSR mean value for each bin. 948 

 949 

2.19) Figure 1: The inputs of PESCA mentioned in this figure are not aligned with the original paper. For 950 

example, there exists no explanation for the low-frequency ratio and scattering coefficients. 951 

Thanks to the reviewer for the comment. Indeed, there is not a direct mention of the PESCA input parameters; 952 

however, these parameters are derived from the inputs cited in the box (low-frequency ratio is a ratio between two 953 

TBobs, the scattering index is a difference between two TBobs, pemLF is a ratio between a TBobs and T2m,see 954 

Camplani et al, 2021). We wanted to highlight that we use the same inputs in more than one module - e. g., TBs 955 

are used both for surface classification and snowfall detection and estimate. The same definition of the input 956 

variables of PESCA can be found in the paper in section 3.1.1. 957 

References: 958 

 959 

Camplani, A., Casella, D., Sanò, P., & Panegrossi, G.: The Passive microwave Empirical cold Surface 960 

Classification Algorithm (PESCA): Application to GMI and ATMS. Journal of Hydrometeorology, 22(7), 1727-961 

1744,https://doi.org/10.1175/JHM-D-20-0260.1, 2021. 962 

2.20) Figure 6: No results are presented over sea ice. 963 

Thanks to the reviewer for the comment. 964 

Figure 6 has been modified, with two new subplots related to two PESCA classes (Ocean and New sea Ice). 965 

 966 

https://doi.org/10.1175/JHM-D-20-0260.1


 967 
The following statement has been added to the text (line 423): 968 

For what concerns ocean and new sea ice classes, a clear scattering signal is visible only for high SWP values 969 

(> 1 kg m-2) while for low SWP values a significant emission signal is observed. The ubiquitous presence of 970 

supercooled water layers in snowing clouds (Wang et al, 2013, Battaglia & Panegrossi 2020), especially over 971 

oceans (Battaglia & Delanoe, 2013), generates an emission effect which is particularly significant over 972 

radiatively cold surfaces (such as Ocean and New Sea Ice at high frequency, see Figure 4), and can mask or 973 

overcome the weak scattering signal generated by falling snow especially in light snowfall events. It is also 974 

important to underline that the DARDAR product identifies only  supercooled water layers at the cloud top 975 

(Panegrossi et al., 2017), while it has been shown that the impact of supercooled water layers embedded in the 976 

clouds can be very significant on the measured TBs at MW high frequency window channels  (Battaglia & 977 

Panegrossi, 2020, Panegrossi et al., 2022) . It is very likely that the emission effect observed over ocean and sea 978 

ice is generated by supercooled liquid layers which are not identified  by the DARDAR product. 979 

 Figure 6 caption has been modified accordingly 980 

from: 981 
Figure 6: 165.5 GHz Snowfall Signature as a function of SWP for three Land surface Classes. The red line and 982 
shaded areas represent the mean values and standard deviations of ΔTBobs−sim (i.e., the snowfall signature) 983 

while the blue lines are centered on the estimated bias and standard deviation of ΔTBobs−sim  in clear sky 984 
conditions for the corresponding PESCA surface class. 985 

 986 

 987 



to: 988 
Figure 6: 165.5 GHz Snowfall Signature as a function of SWP for five PESCA surface classes. The red line and 989 
shaded areas represent the mean values and standard deviations of ΔTBobs−sim (i.e., the snowfall signature) 990 

while the blue lines are centered on the estimated bias and standard deviation of ΔTBobs−sim  in clear sky 991 
conditions for the corresponding PESCA surface class. 992 
 993 

The following reference has been added to the text (Line 798): 994 

 995 

Wang, Y., Liu, G., Seo, E. K., & Fu, Y.: Liquid water in snowing clouds: Implications for satellite remote sensing 996 

of snowfall. Atmospheric research, 131, 60-72, https://doi.org/10.1016/j.atmosres.2012.06.008,2013. 997 

 998 

References: 999 

 1000 

Battaglia, A., & Delanoë, J.: Synergies and complementarities of CloudSat‐CALIPSO snow observations. Journal 1001 

of Geophysical Research: Atmospheres, 118(2), 721-731. https://doi.org/10.1029/2012JD018092, 2013. 1002 

 1003 

Battaglia, A., & Panegrossi, G.: What can we learn from the CloudSat radiometric mode observations of snowfall 1004 

over the ice-free ocean?. Remote Sensing, 12(20), 3285, https://doi.org/10.3390/rs12203285, 2020. 1005 

 1006 

Panegrossi, G., Rysman, J. F., Casella, D., Marra, A. C., Sanò, P., & Kulie, M. S.: CloudSat-based assessment of 1007 

GPM Microwave Imager snowfall observation capabilities. Remote Sensing, 9(12), 1263, 1008 

https://doi.org/10.3390/rs9121263, 2017. 1009 

 1010 

Panegrossi, G., Casella, D., Sanò, P., Camplani, A., & Battaglia, A.: Recent advances and challenges in satellite-1011 

based snowfall detection and estimation. Precipitation Science, 333-376, https://doi.org/10.1016/B978-0-12-1012 

822973-6.00015-9, 2022. 1013 

 1014 

Wang, Y., Liu, G., Seo, E. K., & Fu, Y.: Liquid water in snowing clouds: Implications for satellite remote sensing 1015 

of snowfall. Atmospheric research, 131, 60-72, https://doi.org/10.1016/j.atmosres.2012.06.008,2013. 1016 

 1017 

 1018 

 1019 

2.21) Figure 10: Please mention that the shown green dots denote the CPR overpass. 1020 

Thanks to the reviewer for the suggestion. The caption of Figures 10 12, and 13 (now Figures 12, 14, and 15)  has 1021 

been changed 1022 

Figure 10/12: 1023 

from: 1024 

Figure 10:  Greenland - 2016/04/24 - PESCA Background Surface Classification. 1025 

 to: 1026 
Figure 12:  Greenland - 2016/04/24 - PESCA Background Surface Classification. The green dotted line 1027 
represents the CloudSat track. 1028 

 1029 

 1030 

 1031 

 1032 
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Figure 12/14: 1033 

from: 1034 

Figure 12: Greenland - 2016/04/24 - 165 GHz Channel measured TB (TBobs) (top panel) and the deviation of 1035 
TBobs from the simulated clear-sky TBs ( ∆TBobs−sim) (bottom panel) 1036 

 1037 
 to: 1038 

Figure 14: Greenland - 2016/04/24 - 165 GHz Channel measured TB (TBobs) (top panel) and the deviation of 1039 
TBobs from the simulated clear-sky TBs ( ∆TBobs−sim) (bottom panel). The red dotted line (top 1040 
panel) and the green dotted line (bottom panel)  represent the CloudSat track. 1041 

Figure 13/15: 1042 

from: 1043 

Figure 13:  Greenland - 2016/04/24 - Maps of the HANDEL-ATMS module’s output: the SWP detection mask 1044 
(top panel), the estimated SWP (kg m-2) (second panel), the SSR detection mask (third panel), the estimated SSR 1045 
(mm h-1) (bottom panel). 1046 
 1047 

 1048 
 to: 1049 

Figure 15:  Greenland - 2016/04/24 - Maps of the HANDEL-ATMS module’s output: the SWP detection mask 1050 
(top panel), the estimated SWP (kg m-2) (second panel), the SSR detection mask (third panel), the estimated SSR 1051 
(mm h-1) (bottom panel). The green dotted lines (bottom panel)  represent the CloudSat track. 1052 

 1053 

 1054 


