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Author’s response  1 

Public justification (visible to the public if the article is accepted and published): 2 

The referees have all suggested public subject to minor revisions or technical corrections, however, the 3 

number of suggested revisions is quite large. Since each of the referees has indicated a willingness to provide 4 

further review, I have decided to "reconsider after major revisions", although the authors should be aware 5 

that there is no foreseen impediment to publication at this time; the decision is only to allow the referees to 6 

provide one additional review.  7 

 8 

We would like to thank the editor. Please, find below our responses to the Reviewers’ comments and the details 9 

on how we address them in the new version of the manuscript. 10 

The following main changes have been set with respect to the previous manuscript version, in order to answer the 11 

reviewers' comments: 12 

Table 2 and Figure 9 have been added and the numbers of the subsequent figures and tables have changed 13 

accordingly. 14 

The following references have been added: 15 

 16 

Delanoë, J., and R. J. Hogan: Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds. 17 

J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346, 2010. 18 

 19 

Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P., Skofronick-Jackson, G., & Kirschbaum, D. B.: So, 20 

how much of the Earth’s surface is covered by rain gauges?. Bulletin of the American Meteorological Society, 21 

98(1), 69-78, https://doi.org/10.1175/BAMS-D-14-00283.1, 2017. 22 

 23 

Moreover, Figures 6, 8, 10 (11 in the revised manuscript), 11 (12 in the revised manuscript), 13 (14 in the revised 24 

manuscript), 15 (16 in the revised manuscript), and 16 (17 in the revised manuscript) have been modified. 25 

  26 

https://doi.org/10.1175/BAMS-D-14-00283.1
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 27 

 28 

Reviewer 1 29 

 I think the paper can be published after some clarifications about the used RT model.  30 

 31 

We would like to thank Reviewer #1 for his/her review of our paper and the important comments and suggestions 32 

provided. Please, find below our responses to the Reviewer’s comments and the details on how we address them 33 

in the new version of the manuscript.  34 

 35 

1.1) It appears that the used model is a zeroth-order approximation of the radiative transfer equation, 36 

which can only be applied to a weakly scattering medium. The atmospheric attenuation is modeled by a 37 

one-way transmissivity parameter, which may be highly uncertain for high-frequency channels when ice 38 

and snow particles strongly scatter the upwelling emission. This class of models is applicable largely to low-39 

frequency channels with minimal atmospheric scattering. This caveat needs to be acknowledged. Further 40 

details about the RT model seem to be necessary. The authors might consider addressing this in the 41 

appendix. 42 

 43 

Thanks to the reviewer for the comment. We totally agree with the reviewer about the high uncertainty of the 44 

modeling of the scattering effect for high-frequency channels. However, in this work we apply the RT model in 45 

clear sky conditions, i.e. we consider only absorption and emission from atmospheric gasses and surface emission 46 

in the RT, which can be considered scatter-free for the microwave frequency range. Therefore, a comparison 47 

between the clear-sky simulated signal and the observed ones is performed, in order to highlight the snowfall 48 

signature.  49 

In lines 103-104 (lines 93-94 in the revised manuscript) the following statement is reported: 50 

The derived surface emissivities are used to infer the clear-sky contribution to the measured brightness 51 

temperatures (TBs) in the high-frequency channels in the snowfall retrieval process.  52 

To make the text clearer, the term “simulated TBs” and the acronym “TBsim” have been replaced with “clear-sky 53 

simulated TBs”.  54 
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 55 

 56 

Reviewer 2 57 

This work by Camplani et al. presented a new snowfall detection and intensity estimation technique. The 58 

results are very encouraging. I have several minor comments. 59 

 60 

We would like to thank Reviewer #2 for his/her review of our paper and the important comments and suggestions 61 

provided. Please, find below our responses to the Reviewer’s comments and the details on how we address them 62 

in the new version of the manuscript.  63 

 64 

Minors: 65 

 66 

2.1) From line 567, you explained why the newly designed method (HANDEL) performs better than 67 

SLALOM. Two reasons are provided for the better performance from HANDEL, including (1) regional 68 

database vs. global database; and (2) environmental parameters from model vs. from TBs. Which factor 69 

do you think is more important for the better performance from HANDEL? 70 

 71 

Thanks to the reviewer for pointing out this aspect. For sure, both factors are relevant. However, we think that the 72 

added value of the approach is the use of the differences between simulated and observed TBs. In Table 3 the 73 

statistical scores evaluated for the surface snowfall rate (SSR) detection module by using different predictor sets 74 

(for the test dataset) are reported. It can be observed that the use of the differences between measured and 75 

simulated clear-sky TBs gives better performances (the fourth row of Table 3 shows an HSS=0.69) with respect 76 

to the addition of environmental variables to the predictor set (the third row of Table 3 shows an HSS=0.68). This 77 

second approach is very similar to that used in SLALOM-CT, except for the fact that HANDEL-ATMS is trained 78 

over a “regional” database, so we can state that the added value of HANDEL-ATMS derives from the use of the 79 

ΔTBobs-sim (differences between measured and simulated clear-sky TB).  80 

To clarify this point, the following statement is reported in the text (lines 448-456): 81 

It is possible to see that the best performance is obtained when the predictor set is composed of ATMS TBobs and 82 

∆TBobs−sim, (besides PESCA surface flag, the pixel elevation and the cosine of the viewing angle). In particular, it 83 

is notable the improvement of the detection capabilities with respect to a predictor set composed of ATMS TBobs 84 

and environmental parameters. On the other hand, the simultaneous use of both the ΔTBobs-sim and the 85 

environmental parameters show scores almost equal to that obtained by using only ΔTBobs-sim.  This indicates that 86 

the computation of the multi-channel clear-sky TBs at the time of the overpass through the estimation of the 87 

dynamic surface class emissivity spectra and its deviation from the measured TBs plays a fundamental role in 88 

snowfall retrieval. It provides essential information to the ANN to be able to exploit the subtle snowfall-related 89 

signal in ATMS measurements. This is the most innovative aspect of HANDEL-ATMS. 90 

which has been modified as (lines 449-459 in the revised manuscript): 91 

It is possible to see that the best performance is obtained when the predictor set is composed of ATMS TBobs and 92 

∆TBobs−sim, (besides the PESCA surface flag, the pixel surface elevation, and the cosine of the viewing angle). In 93 

particular, it is notable the improvement of the detection capabilities with respect to a predictor set composed of 94 

ATMS TBobs and environmental parameters, which is used in other approaches such as that of SLALOM-CT. 95 

On the other hand, the simultaneous use of both the ΔTBobs-sim and the environmental parameters show scores 96 

almost equal to that obtained by using only ΔTBobs-sim.  This indicates that the computation of the multi-channel 97 

clear-sky TBs at the time of the overpass through the estimation of the dynamic surface class emissivity spectra 98 

and its deviation from the measured TBs plays a fundamental role in snowfall retrieval, in particular in cold/dry 99 

environmental conditions. It provides essential information to the ANN to be able to exploit the subtle snowfall-100 

related signal in ATMS measurements. This is the most innovative aspect of the HANDEL-ATMS. 101 

 102 

2.2) Figure 3 and the corresponding texts: can you explain in detail how you define the “pseudo- emissivity”. 103 

Some of these emissivity values are greater than 1. 104 

 105 

Thanks to the reviewer for the suggestion. In lines 287-288, there is the following statement: 106 
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23 GHz pseudo-emissivity (i. e. the ratio between an observed brightness temperature (TB) and a near surface 107 

temperature value) -  108 

However, the text has been modified to make this definition clearer. In particular, lines 287-288 (lines 282-283 in 109 

the revised manuscript) have been modified  110 

from: 111 

23 GHz pseudo-emissivity (i. e. the ratio between an observed brightness temperature (TB) and a near surface 112 

temperature value) - pem23). 113 

to 114 

23 GHz pseudo-emissivity (pem23) (i.e., the ratio between the 23 GHz observed TB and the near-surface 115 

temperature value). 116 

and lines 300-302 (lines 294-297 in the revised manuscript) have been modified  117 

from: 118 

Downstream of the sea ice/open water identification, information about sea ice characteristics is obtained from 119 

the analysis of the two low-frequency pseudo-emissivity (pem23 and pem31), which are a good approximation of 120 

sea-ice emissivity for low-frequency channels especially in cold and dry conditions. 121 

to: 122 

Downstream of the sea ice/open water identification, information about sea ice characteristics is obtained from 123 

the analysis of the two low-frequency pseudo-emissivity values (pem23 and pem31) (defined as the ratio between 124 

the observed TB and the near-surface temperature value) which can be considered a good approximation of sea-125 

ice emissivity for low-frequency channels especially in cold and dry conditions. 126 

 127 

2.3) Figure 4. It seems that the emissivity at 165 GHz is too low over ocean. See below, it can be as low as 128 

0.35 for 165 GHz. Can you please check. 129 

 130 
Thanks to the reviewer for the suggestion. The points highlighted in the plot correspond to 183.31 ± 7 GHz and 131 

not to 165.5 GHz. The values highlighted are the emissivity for the “Ocean” class and the lower limit of the 132 

“standard deviation” belt respectively. In the following figure, a comparison between the PESCA Ocean class 133 

emissivity retrieved values for ATMS frequency channels and the emissivity spectrum derived from the TESSEM 134 

model (Prigent et al, 2017) for Open Water is reported. 135 



5 
 

136 
It is possible to observe that there is a good agreement up to 165.5 GHz, while at 183.31±7 GHz. On the contrary, 137 

the 183.31±7 GHz mean emissivity value is lower with respect to that obtained by applying the emissivity model, 138 

and it is characterized by high standard deviation. However, these results are preliminary, and a refinement process 139 

has been carried out by clustering each PESCA surface class. The difference between the emissivity at 183.31±7 140 

GHz derived from PESCA and the ones in TESSEM is due to the optical thickness of the atmosphere in the water 141 

vapor absorption band. In the 183.31 GHz band, the atmosphere is opaque, due to water vapor absorption and a 142 

direct estimate of the emissivity from the observed TBs presents some issues; also downstream of the refinement 143 

process, the emissivity values obtained are lower than those expected. However, in these conditions the opacity 144 

of the atmosphere guarantees the minor impact of the surface conditions on the upwelling radiation; in fact, despite 145 

the emissivity underestimation at 183.31±7 GHz, the RMSE of the simulated clear sky TBs, as compared to the 146 

observed ones, is very small (about 3.5 K).  147 

REFERENCES: 148 

Prigent, C., Aires, F., Wang, D., Fox, S., & Harlow, C.: Sea‐surface emissivity parametrization from microwaves 149 

to millimetre waves. Quarterly Journal of the Royal Meteorological Society, 143(702), 596-605. 150 

https://doi.org/10.1002/qj.2953, 2017. 151 

  152 

https://doi.org/10.1002/qj.2953
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 153 

2.4) Figure 7 bottom panel. It shows that the HSS is smaller for TPW being 10 mm, compared with TPW 154 

being 4 mm. Specifically, the HSS decreases from about 0.6 to about 0.4. I am surprised by this result. Can 155 

you explain why? In contrast for snow water path (top panel), the HSS remains about 0.6.156 

 157 
 158 

Thanks to the reviewer for the question. This behavior is due to the fact that there is not a perfect correspondence 159 

between the snow water path flag and the snowfall rate flag derived from the CloudSat CPR 2C-Snow profile 160 

product, and so there are observations (about 10 % of the SWP observations in the selected datasets) where the 161 

presence of snow in the atmosphere is not matched by the presence of surface snowfall because of warmer near-162 

surface conditions. In the following Figures the histograms of SWP/SSR occurrences as a function of TPW and 163 

T2m are reported. It is possible to observe that in moister/warmer environmental conditions there is a larger number 164 

of SWP observations than SSR ones.  165 
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 166 

 167 
Generally, PMW measurements respond mostly to the snow in the atmospheric column than to snowfall at the 168 

ground, so SWP statistical scores tend to improve with increasing TPW and T2m while SSR statistical scores show 169 

a maximum for TPW between 3-4 mm (or T2m around 270 K) and then decrease in conditions where the mismatch 170 

between SWP and SSR become significant. In lines 473-476 (lines 477-482 in the revised manuscript) there are 171 

the following statements: 172 

It is possible to observe that in Figure 7 SSR detection capabilities show a maximum HSS value for TPW between 173 

3 mm and 5 mm, and then there is a slight decrease due to the decrease of POD. A similar situation can be 174 

observed in Figure 8, where HSS reaches a maximum between 250 K and 275 K, and it is lower than for SWP. 175 

This is due to the fact that PMW measurements respond mostly to the snow in the atmospheric column and in 176 

moister/warmer conditions the presence of snow in the atmosphere is not always linked to surface snowfall.  177 
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In order to address the Reviewer’s comment, a new Table has been added to the paper: 178 

 179 

Class TPW (mm) T2m 

(K) 

# 

obs 

% SWP 

obs 

% SSR 

obs 

SWP 

(kg m-2) 

SSR 

(mm h-1) 

Ocean 6.2 273 3.9*105 79 64 0.046 0.071 

New Sea Ice 3.2 255 2.1*105 38 38 0.033 0.050 

Broken Sea Ice 5.2 266 1.4*105 57 57 0.044 0.073 

Multilayer Sea Ice 4.5 260 9.9*104 43 43 0.033 0.051 

 Land 5.3 270 2.8*104 43 41 0.043 0.068 

Perennial Snow 1.6 248 3.6*105 31 31 0.022 0.035 

Winter Polar Snow 2.1 245 6.0*104 32 32 0.033 0.048 

Deep Dry Snow 3.8 261 1.1*105 50 50 0.040 0.066 

Thin Snow 4.5 267 1.8*104 54 53 0.041 0.070 

Coast 4.0 259 3.1*105 47 46 0.043 0.068 

Table 2: Environmental Characteristics for each PESCA class (test dataset):  the number of occurrences, the 180 
mean TPW and T2m value, the percentage of   SWP/SSR observations (over the total occurrences), and the 181 
mean SWP and SSR values are shown 182 

and the following statements have been added to the text (line 342, lines 336-344 in the revised manuscript):  183 

In Table 2 the number of PESCA class occurrences, the percentage of snowfall observations, and the most 184 

significant environmental characteristics in the ATMS-CPR coincident dataset are reported. It can be observed 185 

that Land and Ocean classes are characterized by the warmest/moistest conditions and by the most intense 186 

snowfall events (on average), while Perennial and Winter Polar Snow classes and New and Multilayer Sea Ice 187 

classes are characterized by the coldest/driest environmental conditions and by the lightest snowfall events (on 188 

average). Thin Snow and Broken Sea Ice classes show intermediate environmental conditions and snowfall 189 

intensity values. It is also interesting to highlight that a mismatch between the percentage of SWP and SSR 190 

observations is observed mostly over the Ocean class and, less frequently other classes (Land, Thin Snow, and 191 

Coast), where warmer and moister environmental conditions are found. 192 

 193 

2.5) Fig. 10, As a comparison, can you provide a similar two-panel plot from SLALOM-CT? 194 

 195 

Thanks to the reviewer for the suggestion. These scatterplots have been already reported in the following article 196 

by the same authors of the present paper:  197 

 198 

Sanò, P., Casella, D., Camplani, A., D’Adderio, L. P., & Panegrossi, G., A Machine Learning Snowfall Retrieval 199 

Algorithm for ATMS. Remote Sensing, 14(6), 1467, https://doi.org/10.3390/rs14061467, 2022. 200 

 201 

Therefore, we decided not to include it in this paper.  202 

 203 

2.6) Are these results for all ATMSs (i.e., NPP, NOAA20, and NOAA21)? 204 

 205 

Thanks to the reviewer for the question. The study, currently, has been carried out over a dataset from 2014 to 206 

2016, so only observations from ATMS onboard NPP were available. However, we are confident that HANDEL 207 

can be used by exploiting the ATMS measurements provided by satellites following NPP.  A dedicated study is 208 

being carried out to verify if HANDEL's performance remains consistent for the other satellites.  209 

In lines 193-196 (lines 185-189 in the revised manuscript) there is the following statement: 210 
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The present study is based on a coincidence dataset between CPR and SNPP ATMS observations between January 211 

2014 and August 2016. The same dataset has been used for the development of SLALOM-CT (Sanò et al, 2022). 212 

Each coincidence comes from observations from CloudSat CPR and ATMS - onboard SNPP - within a maximum 213 

15-minute time window. 214 

However, to make this concept clearer, the text has been modified to: 215 

The present study is based on a coincidence dataset between CPR and ATMS observations between January 2014 216 

and August 2016. The same dataset has been used for the development of SLALOM-CT (Sanò et al, 2022). Each 217 

coincidence comes from observations from CloudSat CPR and ATMS within a maximum 15-minute time window. 218 

In the period considered within the dataset, only the SNPP satellite was in orbit, so the dataset is composed only 219 

of observations obtained from ATMS onboard this satellite.  220 
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 221 

Reviewer 3 222 

 223 

This AMT manuscript submission describes a new ATMS Machine Learning (ML) snowfall detection 224 

algorithm (HANDEL-ATMS) that is trained on ATMS-CloudSat observations and products. This 225 

algorithm can be considered as a new retrieval scheme with strong ties to a productive lineage of microwave 226 

retrieval algorithms from this research group. The current retrieval applies an updated methodology and 227 

exploits a different sensor (ATMS) to detect and quantify snowfall rates using cross-track microwave 228 

sounder observations compared to previous related retrievals developed by this group. HANDEL-ATMS 229 

is also specifically developed to improve snowfall detection and estimation at high latitudes. 230 

Overall, the results presented in this study are meaningful to the microwave precipitation remote sensing 231 

community and deserve to be published. The authors demonstrate that this algorithm performs well under 232 

the typically challenging conditions (light snowfall rates, very dry atmospheric conditions, surface 233 

emissivity complications) that often occur at high latitudes. Key algorithm components that enable 234 

improved algorithm performance are also described and highlighted. 235 

I recommend that the manuscript be published after the authors consider the minor comments listed below. 236 

 237 

We would like to thank Reviewer #3 for his/her review of our paper and the important comments and suggestions 238 

provided. Please, find below our responses to the Reviewer’s comments and the details on how we address them 239 

in the new version of the manuscript.  240 

 241 

3.1) Abstract: The first paragraph can be reduced considerably since it is covered exhaustively and 242 

effectively in the introduction. A possible way to reorganize the abstract is: 243 

 244 

The High lAtitude sNow Detection and Estimation aLgorithm for ATMS (HANDEL-ATMS) is a new 245 

machine learning (ML)-based snowfall retrieval algorithm for Advanced Technology Microwave Sounder 246 

(ATMS) observations that is developed specifically to detect and quantify high latitude snowfall events that 247 

often form in cold, dry environments and produce light snowfall rates. ATMS and the future European 248 

MetOp-SG Microwave sounder offer good high latitude coverage and sufficient microwave channel 249 

diversity (23 to 190 GHz) that allows both surface radiometric properties to be dynamically characterized 250 

and the non-linear and sometimes subtle passive microwave response to falling snow to be detected. 251 

HANDEL-ATMS is based on a combined active-passive microwave observational dataset in the training 252 

phase, where each ATMS multichannel observation is associated with coincident (in time and space) 253 

CloudSat Cloud Profiling Radar (CPR) vertical snow profiles and surface snowfall rates. {The rest of the 254 

second abstract paragraph can follow.} 255 

 256 

The above paragraph is only a suggestion and not mandatory. But it offers a way to distill and condense 257 

much of the introductory/background/motivation content into only 2-3 sentences. 258 

 259 

Thanks to the reviewer for the suggestion. The text in the Abstract (Lines 8-27, lines 8-17 in the revised 260 

manuscript) has been modified as suggested 261 

from: 262 

Snowfall detection and quantification are challenging tasks in the Earth system science field. Ground-based 263 

instruments have limited spatial coverage and are scarce or absent at high latitudes. Therefore, the development 264 

of satellite-based snowfall retrieval methods is necessary for the global monitoring of snowfall.  Passive 265 

Microwave (PMW) sensors can be exploited for snowfall quantification purposes because their measurements in 266 

the high-frequency channels (> 80 GHz) respond to snowfall microphysics.  However, the highly non-linear PMW 267 

multichannel response to snowfall, the weakness of snowfall signature and the contamination by the background 268 

surface emission/scattering signal make snowfall retrieval very difficult. This phenomenon is particularly evident 269 

at high latitudes, where light snowfall events in extremely cold and dry environmental conditions are predominant. 270 

Machine Learning (ML) techniques have been demonstrated to be very suitable to handle the complex PMW 271 

multichannel relationship to snowfall. Operational microwave sounders on near-polar orbit satellites such as the 272 
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Advanced Technology Microwave Sounder (ATMS), and the European MetOp-SG Microwave Sounder in the 273 

future, offer a very good coverage at high latitudes. Moreover, their wide range of channel frequencies (from 23 274 

GHz to 190 GHz), allows for the dynamic radiometric characterization of the surface at the time of the overpass 275 

along with the exploitation of the high-frequency channels for snowfall retrieval. The paper describes the High 276 

lAtitude sNow Detection and Estimation aLgorithm for ATMS (HANDEL-ATMS), a new machine learning-based 277 

snowfall retrieval algorithm developed specifically for high latitude environmental conditions and based on the 278 

ATMS observations. 279 

HANDEL-ATMS is based on the use of an observational dataset in the training phase, where each ATMS 280 

multichannel observation is associated with coincident (in time and space) CloudSat Cloud Profiling Radar (CPR) 281 

vertical snow profile and surface snowfall rate. 282 

to: 283 

The High lAtitude sNow Detection and Estimation aLgorithm for ATMS (HANDEL-ATMS) is a new machine 284 

learning (ML)-based snowfall retrieval algorithm for Advanced Technology Microwave Sounder (ATMS) 285 

observations that is developed specifically to detect and quantify high latitude snowfall events that often form in 286 

cold, dry environments and produce light snowfall rates. ATMS and the future European MetOp-SG Microwave 287 

Sounder offer good high-latitude coverage and sufficient microwave channel diversity (23 to 190 GHz) that allows 288 

both surface radiometric properties to be dynamically characterized and the non-linear and sometimes subtle 289 

passive microwave response to falling snow to be detected. HANDEL-ATMS is based on a combined active-290 

passive microwave observational dataset in the training phase, where each ATMS multichannel observation is 291 

associated with coincident (in time and space) CloudSat Cloud Profiling Radar (CPR) vertical snow profiles and 292 

surface snowfall rates. 293 

 294 

3.2) Lines 42-44: I suggest offering an appropriate reference that illustrates and quantifies the lack of 295 

surface gauge coverage globally (e.g., Kidd et al. 2017). 296 

 297 

Thanks to the reviewer for the suggestion. Lines 42-44 (lines 32-34 in the revised manuscript) have been modified 298 

from: 299 

However, global snowfall quantification is a challenging topic in weather sciences. Ground-based instruments 300 

such as raingauges or snowgauges provide only punctual measurements which can not fully capture the spatial 301 

variability of precipitation phenomena; 302 

to: 303 

However, global snowfall quantification is a challenging topic in weather sciences. Ground-based instruments 304 

such as raingauges or snowgauges provide only punctual measurements which can not fully capture the spatial 305 

variability of precipitation phenomena (Kidd et al, 2017); 306 

 307 

and the following reference has been added to the reference section: 308 

 309 

Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P., Skofronick-Jackson, G., & Kirschbaum, D. B.: So, 310 

how much of the Earth’s surface is covered by rain gauges?. Bulletin of the American Meteorological Society, 311 

98(1), 69-78, https://doi.org/10.1175/BAMS-D-14-00283.1, 2017. 312 

 313 

3.3) Lines 44-45: consider a more active writing style and shortening the sentence:”...the variability of 314 

snowflake shape and density strongly influences particle fall speed and trajectory and therefore reduces 315 

the gauge-based measurement accuracy of falling snow, especially compared to rain measurements (see 316 

Skofronick-Jackson et al 2015)” 317 

 318 

Thanks to the reviewer for the suggestion. Lines 44-46 (lines 34-36 in the revised manuscript) have been modified  319 

from: 320 

moreover, the variability of snowflake shape and density has a strong influence on their fall speed and trajectories 321 

and therefore gauge-based measurements of falling snow result to be less accurate than for rain (see Skofronick-322 

Jackson et al, 2015). 323 

to: 324 

https://doi.org/10.1175/BAMS-D-14-00283.1


12 
 

moreover, the variability of snowflake shape and density strongly influences particle fall speed and trajectory and 325 

therefore reduces the gauge-based measurement accuracy of falling snow, especially compared to rain 326 

measurements (Skofronick-Jackson et al, 2015). 327 

 328 

3.4) Lines 107-110: similar to the previous comment. “Moreover, the algorithm also exploits an 329 

observational dataset composed of ATMS multichannel observations and coincident (time and space) 330 

CloudSat CPR vertical snow profiles and surface snowfall rates (hereafter the ATMS-CPR coincident 331 

dataset)”. I will refrain from offering further ways to condense content and provide a more active writing 332 

style, but please know that I can provide further suggestions. 333 

 334 

Thanks to the reviewer for the suggestion. Lines 107-110 (lines 97-99 in the revised manuscript) have been 335 

modified 336 

from: 337 

Moreover, the algorithm is based on the exploitation of an observational dataset where each ATMS multichannel 338 

observation is associated with coincident (in time and space) CloudSat CPR vertical snow profile and surface 339 

snowfall rate (hereafter ATMS-CPR coincidence dataset).   340 

to: 341 

Moreover, the algorithm also exploits an observational dataset composed of ATMS multichannel observations 342 

and coincident (time and space) CloudSat CPR vertical snow profiles and surface snowfall rates (hereafter the 343 

ATMS-CPR coincident dataset). 344 

 345 

3.5) Line 128: It might be worth mentioning explicitly here that the CPR may struggle with high snowfall 346 

rates, but also note that CPR is uniquely suited to detect light snowfall rates that dominate high latitudes. 347 

EDIT: The authors mention high snowfall rate underestimation in Line 183, which is great. But I still think 348 

it is worthwhile to also highlight CloudSat’s strength of detecting light snowfall - GPM, the only other 349 

spaceborne radar, cannot be used for training since its detection limit is far too high to effectively detect 350 

light snowfall. GPM’s orbit also renders it largely useless to very high latitudes. 351 

 352 

Thanks to the reviewer for the suggestion. See the answer to question 3.6. 353 

 354 

3.6) Lines 189-191: This proves that I should read the entire article before commenting. My previous 355 

comment has mostly been rectified by this content. Feel free to ignore it, or at the very least explicitly 356 

highlight the further GPM drawbacks that make CPR the optimal training dataset for high latitude 357 

snowfall applications. 358 

 359 

Thanks to the reviewer for the suggestion. The following statement has been added to the text (Line 191, lines 360 

180-183 in the revised manuscript) 361 

 These features appear to be an advantage compared to the GPM-Core Observatory (GPM-CO), which provides 362 

observations only between 67 ° N and 67 ° S, and to the Ku- and Ka-band DPR has low sensitivity and is not 363 

suitable to effectively detect light snowfall events (Casella et al, 2017).  364 

 365 

3.7) Line 216: The parenthetical DARDAR reference is incomplete. 366 

 367 

Thanks to the reviewer for the comment. Lines 215-216 (lines 209-210 in the revised manuscript) have been 368 

modified 369 

from: 370 

The supercooled water information has been extracted from the DARDAR product (see DARDAR). 371 

to: 372 

The supercooled water information has been extracted from the DARDAR product (DARDAR, Delanoë &Hogan, 373 

2010). 374 

and the following reference has been added to the reference section: 375 
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Delanoë, J., and R. J. Hogan: Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds. 376 

J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346, 2010. 377 

 378 

3.8) Lines 236-237: Rephrase slightly to “Moreover, clustering techniques have been used to characterize 379 

the background surface from a radiometric point of view.” 380 

 381 

Thanks to the reviewer for the suggestion. Lines 236-237 (lines 230-231 in the revised manuscript) have been 382 

modified 383 

from: 384 

Moreover, clustering techniques have been used to characterize from a radiometric point of view the background 385 

surface. 386 

to: 387 

Moreover, clustering techniques have been used to characterize the background surface from a radiometric point 388 

of view. 389 

 390 

3.9) Lines 286-287: The inputs listed in parentheses are somewhat confusing to read due to embedded 391 

parentheses. 392 

 393 

Thanks to the reviewer for the comment. 394 

Lines 285-288 (lines 280-283 in the revised manuscript) have been modified 395 

from: 396 

 It is based on a decision tree that makes use of a limited number of inputs (the ratio TB23QV/TB31QV - ratio, the 397 

difference between TB23QV and TB88QV or Scattering  Index - SI, 23 GHz pseudo-emissivity (i. e. the ratio between 398 

an observed brightness temperature (TB) and a near surface temperature value) - pem23). 399 

to: 400 

It is based on a decision tree that makes use of a limited number of inputs: the ratio between TB23QV and TB31QV 401 

(ratio), the difference between TB23QV and TB88QV or Scattering Index (SI), 23 GHz pseudo-emissivity (pem23) 402 

(i.e., the ratio between the 23 GHz observed TB and the near-surface temperature value). 403 

 404 

3.10) Fig. 3: I initially thought the green line indicated in the first two figure panels was somehow related 405 

to the green discriminant line indicated in Fig. 2, but I think it is the 1:1 line. Consider either explicitly 406 

mentioning this in the figure caption, or change the color or linestyle of the 1:1 line in Fig. 3. 407 

 408 

Thanks to the reviewer for the suggestion.  409 

The caption of Figure 3 has been modified  410 

from: 411 

Figure 3: Sea Ice detection and classification: relationship between 31 GHz Pseudo-Emissivity (y-axis) and 23 412 

GHz Pseudo-Emissivity (x-axis). The color represents the mean AutoSnow sea ice percentage within each bin (top 413 

panel), the observation occurrence (middle panel), and the PESCA classification (Multi-Layer (ML),  Broken and 414 

New sea ice) with the Nearest Neighbor markers (bottom panel). 415 

to: 416 

Figure 3: Sea Ice detection and classification: relationship between 31 GHz Pseudo-Emissivity (y-axis) and 23 417 

GHz Pseudo-Emissivity (x-axis). The color represents the mean AutoSnow sea ice percentage within each bin (top 418 

panel), the observation occurrence (middle panel), and the PESCA classification (Multi-Layer (ML), Broken and 419 

New Sea Ice) with the Nearest Neighbor markers (bottom panel). The green continuous lines at the top and the 420 

center panels represent the bisector. 421 

 422 

3.11) Line 339: remove the letter “e” after “constantly” 423 

 424 

Thanks to the reviewer for the comment. Line 339 (line 333 in the revised manuscript) has been modified  425 

from: 426 

and constantly e throughout the year,  427 
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to: 428 

and constantly throughout the year,  429 

 430 

3.12) Line 394: “represents” should be regular, not superscript, font size 431 

 432 

Thanks to the reviewer for the comment. Line 394 (line 398 in the revised manuscript) has been modified 433 

from: 434 

where σ represents 435 

to: 436 

where σ represents 437 

3.13) Line 462-463: This is somewhat of a general question, but is it worth comparing/contrasting high 438 

latitude algorithm performance versus any other ATMS snowfall (or general precipitation) retrievals that 439 

have been developed? Or other microwave retrievals? The statement provided in these lines provoked this 440 

thought. Do other precipitation retrievals provide similar statistical results (POD > 0.8, FAR < 0.2) at high 441 

latitudes? 442 

 443 

Thanks to the reviewer for the comment. See the answer to question 3.18.  444 

 445 

3.14) Lines 464-465 and Tables 3, 4, and 5 captions: I recommend explicitly advertising to readers what 446 

validation dataset is used to generate the statistical scores as a function of TPW and T2m. I presume CPR 447 

2C-SNOW not used for training? 448 

 449 

Thanks to the reviewer for the suggestion. Yes, the statistical scores have been calculated for the test dataset (see 450 

Subsection 2.3, Lines 229-234, lines 223-228 in the revised manuscript).  451 

Lines 461-462 (lines 465-467 in the revised manuscript) have been modified (by considering that a new table -452 

Table 2 - has been added) 453 

from: 454 

In Table 4 the statistical scores of HANDEL-ATMS detection module performances are reported in terms of POD, 455 

FAR and HSS 456 

to: 457 

In Table 5 the statistical scores of HANDEL-ATMS detection module performances are reported in terms of POD, 458 

FAR, and HSS. These statistical scores - and the plot reported in the next figures - have been calculated for the 459 

test dataset. 460 

 461 

The caption of Figure 7 has been modified 462 

from: 463 

Figure 7: Dependence of HANDEL-ATMS SWP and SSR detection statistical scores on TPW. Each star represents 464 

the statistical score value for different 1-mm t bin of TPW. The left y-axis reports POD, FAR and HSS values, 465 

while the right y-axis reports the number of total and snowfall observations in the validation dataset. 466 

to: 467 

Figure 7: Dependence of HANDEL-ATMS SWP and SSR detection statistical scores on TPW calculated for the 468 

test dataset. Each star represents the statistical score value for different 1-mm bin of TPW. The left y-axis reports 469 

POD, FAR and HSS values, while the right y-axis reports the number of total and snowfall observations in the 470 

test dataset. 471 

 472 

The caption of Figure 10 (Figure 11 in the revised manuscript) has been modified 473 

from: 474 

Figure 10: 2D Histogram reporting HANDEL-ATMS SWP (left) and SSR (right) estimation (y-axis) and 2CSP 475 

estimation (x-axis). The colorbar represents the number of observations for each HANDEL ATMS/2CSP bin. The 476 

violet dashed line represents the bisector. 477 

to: 478 
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Figure 11: 2D Histogram reporting HANDEL-ATMS SWP (left) and SSR (right) estimation (y-axis) and 2CSP 479 

estimation (x-axis). The colorbar represents the number of observations for each HANDEL ATMS/2CSP bin (test 480 

dataset). The violet dashed line represents the bisector. 481 

 482 

The caption of Figure 11 (Figure 12 in the revised manuscript) has been modified 483 

from: 484 

Figure 11: Dependence of HANDEL-ATMS SWP and SSR estimation on TPW. Each star represents the value of 485 

the statistical score for different 1-mm TPW bins. The left y-axis reports the RMSE and the mean intensity SWP 486 

and SSR value for each 1-mm TPW bin, while the right y-axis reports the relative bias, calculated as the  ratio 487 

between the bias and the SWP/SSR mean value for each bin 488 

to: 489 

Figure 12: Dependence of HANDEL-ATMS SWP and SSR estimation on TPW calculated for the test dataset. Each 490 

star represents the value of the statistical score for different 1-mm TPW bins. The left y-axis reports the RMSE 491 

and the mean intensity SWP and SSR value for each 1-mm TPW bin, while the right y-axis reports the relative 492 

bias, calculated as the ratio between the bias and the SWP/SSR mean value for each bin 493 

 494 

The caption of Table 3 (Table 4 in the revised manuscript) has been modified 495 

from: 496 

Table 3: HANDEL-ATMS SSR Detection Performance: Statistical scores for different Predictor Sets  497 

to: 498 

Table 4: HANDEL-ATMS SSR Detection Performance: Statistical scores for different Predictor Sets. The 499 

statistical scores have been calculated for the test dataset. 500 

 501 

The caption of Table 4 (Table 5 in the revised manuscript) has been modified 502 

from: 503 

Table 4: HANDEL-ATMS detection Performance - SWP and SSR Detection Modules Statistical Scores  504 

to: 505 

Table 5: HANDEL-ATMS detection Performance - SWP and SSR Detection Modules Statistical Scores. The 506 

statistical scores have been calculated for the test dataset. 507 

 508 

 The caption of Table 5 (Table 6 in the revised manuscript) has been modified 509 

from: 510 

Table 5: HANDEL-ATMS Estimation Performance - SWP and SSR Estimation Module Error Statistics    511 

to: 512 

Table 6: HANDEL-ATMS Estimation Performance - SWP and SSR Estimation Module Error Statistics. The error 513 

statistics have been calculated for the test dataset. 514 

 515 

3.15) Figs. 7, 8, and 9 and Line 467: Just to be certain that I am interpreting these figures correctly, are the 516 

POD statistics valid for the entire distribution of snowfall rates and snow water paths in each 1 mm TPW 517 

bin? It would be interesting to provide further context somewhere about how the snowfall rate and snow 518 

water path distributions vary as a function of TPW. EDIT: Fig. 11 does illustrate SWP and SSR 519 

distributions as a function of TPW. Maybe move Fig. 11 before current Figs. 7, 8, and 9 to provide more 520 

context regarding mean SWP and SSR values before the POD and FAR statistics are provided? 521 

 522 

Thanks to the reviewer for the suggestion. Yes, your interpretation is correct. We think that moving the figure 523 

should imply some more consistent changes in the section text since, following the algorithm flowchart, the 524 

detection capabilities are analyzed first and then the estimation capabilities; however, a reference to Figure 11 525 

(now 12) will be added. 526 

Lines 466-467 (lines 471-473 in the revised manuscript) have been modified 527 

from: 528 

This is due to the combined effect of a stronger scattering signal associated with more intense snowfall events - 529 

linked to moister and warmer environmental conditions - 530 



16 
 

to: 531 

This is due to the combined effect of a stronger scattering signal associated with more intense snowfall events - 532 

linked to moister and warmer environmental conditions, as can be observed in Figure 12 and Table 2 – 533 

 534 

3.16) Lines 479-481: This statement is exactly what I am referring to in the previous comment. 60% POD 535 

for very light snowfall rates is excellent and should be appropriately highlighted. But I do not see how this 536 

value is derived for a 0.001 mm h-1 snowfall rate based on Figs. 7, 8, and 9. 537 

 538 

Thanks to the reviewer for the comment. It is important to underline that detection and retrieval modules are based 539 

on different neural networks; so, the detection modules manage to identify “snowfall” conditions also in presence 540 

of very light snowfall events. In the plots below the dependence of HANDEL-ATMS snowfall detection 541 

capabilities in function of SWP/SSR values retrieved by CPR 2CSP product is reported - the statistics is calculated 542 

for snowfall observations, therefore only POD can be calculated.  543 

 544 

Figure 9: Dependence of HANDEL-ATMS SWP and SSR POD on SWP/SSR values. Each star represents the 545 
statistical score value for different SWP/SSR bins. The left y-axis reports POD values, while the right y-axis 546 
reports the number of snowfall observations in the test dataset. Only POD has been reported because the 547 
index has been calculated for observations where CPR 2CSP detects the presence of SWP/SSR. 548 

 549 

This plot has been added to the paper, and Lines 481-484 (lines 485-489 in the revised manuscript) have been 550 

modified: 551 

From: 552 

Moreover, also considering very low SWP and SSR values (SWP ≈ 0.001 kg m-2, SSR ≈ 0.001 mm h-1), HANDEL-553 

ATMS manages to detect around 60 % of the snowfall events. Similar considerations can be done also for the 554 

different background surfaces. 555 
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to: 556 

In Figure 9 the dependence of HANDEL-ATMS snowfall detection statistical scores on SWP and SSR values 557 

retrieved by CPR 2CSP is reported. Only POD is reported because the statistics are calculated for snowfall 558 

observations only (2CSP SWP/SSR > 0 kg m-2/mm h-1). It is possible to observe that also considering very low 559 

SWP and SSR values (SWP ≈ 0.001 kg m-2, SSR ≈ 0.001 mm h-1), HANDEL-ATMS manages to detect around 60 560 

% of the snowfall events. 561 

 562 

3.17) Lines 487-488: Similar to the previous comment, POD > 0.7 and FAR < 0.25 for the Perennial Snow 563 

and Winter Polar Snow surface categories. These values are very impressive. But instead of generally 564 

stating that these values are impressive due to both the complicated backgrounds with variable surface 565 

emissivity and “low snowfall intensity”, I recommend providing some basic quantitative guidance to bolster 566 

this analysis. A suggestion: either state what the mean or median snowfall rate is for each of these categories 567 

or provide snowfall rate distributions for various surface categories. 568 

 569 

Thanks to the reviewer for the comment. A new table has been added to the paper in order to properly address and 570 

emphasize the important aspects raised by the reviewer.  571 

 572 

Class TPW (mm) T2m 

(K) 

# 

obs 

% SWP 

obs 

% SSR 

obs 

SWP 

(kg m-2) 

SSR 

(mm h-1) 

Ocean 6.2 273 3.9*105 79 64 0.046 0.071 

New Sea Ice 3.2 255 2.1*105 38 38 0.033 0.050 

Broken Sea Ice 5.2 266 1.4*105 57 57 0.044 0.073 

Multilayer Sea Ice 4.5 260 9.9*104 43 43 0.033 0.051 

 Land 5.3 270 2.8*104 43 41 0.043 0.068 

Perennial Snow 1.6 248 3.6*105 31 31 0.022 0.035 

Winter Polar Snow 2.1 245 6.0*104 32 32 0.033 0.048 

Deep Dry Snow 3.8 261 1.1*105 50 50 0.040 0.066 

Thin Snow 4.5 267 1.8*104 54 53 0.041 0.070 

Coast 4.0 259 3.1*105 47 46 0.043 0.068 

Table 2: Environmental Characteristics for each PESCA class (test dataset):  the number of occurrences, the 573 
mean TPW and T2m value, the percentage of   SWP/SSR observations (over the total occurrences) and the 574 
mean SWP and SSR values are shown 575 
 576 

The following statement has been added (Line 342. Lines 336-344 in the revised manuscript) 577 

In Table 2 the number of PESCA class occurrences, the percentage of snowfall observations, and the most 578 

significant environmental characteristics in the ATMS-CPR coincident dataset are reported. It can be observed 579 

that Land and Ocean classes are characterized by the warmest/moistest conditions and by the most intense 580 

snowfall events (on average), while Perennial and Winter Polar Snow classes and New and Multilayer Sea Ice 581 

classes are characterized by the coldest/driest environmental conditions and by the lightest snowfall events (on 582 

average). Thin Snow and Broken Sea Ice classes show intermediate environmental conditions and snowfall 583 

intensity values. It is also interesting to highlight that a mismatch between the percentage of SWP and SSR 584 

observations is observed mostly over the Ocean class and, less frequently other classes (Land, Thin Snow, and 585 

Coast), where warmer and moister environmental conditions are found. 586 

Moreover, Lines 487-491 (lines 492-497 in the revised manuscript) have been modified 587 

from: 588 
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It can be observed that, also considering specifically the classes associated to extremely dry and cold 589 

environmental conditions such as Perennial Snow or Winter Polar Snow (see Camplani et al, 2021), where the 590 

detection is more problematic due to the uncertainties in the emissivity retrieval (see Table 2) , and to the low 591 

snowfall intensity,  HANDEL-ATMS has good detection capabilities (POD and FAR values greater than 0.7 and 592 

less than 0.25, respectively, for both SWP and SSR). 593 

to: 594 

 It can be observed that, also considering specifically the classes associated with extremely dry and cold 595 

environmental conditions such as Perennial Snow or Winter Polar Snow (see Camplani et al, 2021 and Table 2), 596 

where the detection is more problematic due to low snowfall intensity (see Table 2) and to the uncertainties in the 597 

emissivity retrieval (see Table 3), HANDEL-ATMS has good detection capabilities (POD and FAR values greater 598 

than 0.7 and less than 0.25, respectively, for both SWP and SSR). 599 

 600 

3.18) Section 4.3: This section somewhat addresses my previous suggestion of comparing other ATMS or 601 

passive microwave retrievals to the HANDEL-ATMS results. Do other passive microwave SSR retrievals 602 

exist - even historical studies - that advertise much different statistical scores than the current study? I am 603 

trying to gain further context and encourage the authors to find ways to highlight how revolutionary 604 

HANDEL-ATMS is for high latitude snowfall rate retrievals. 605 

 606 

Thanks to the reviewer for the positive comment. An ATMS snowfall retrieval algorithm based on the CPR 2CSP 607 

product is described by You et al, 2022. This algorithm has been developed for snowfall retrieval over ocean, sea 608 

ice, and coastal areas and it is based on logistic regression methods. A general comparison between the two 609 

algorithms is not possible because they work over different environmental conditions (dry and cold environmental 610 

conditions typical of high latitude areas for HANDEL-ATMS, specific background surfaces for the You et al 611 

algorithm). However, it is interesting to observe that both the algorithms show higher statistical scores over open 612 

water (ocean) with respect to sea ice or a coast. Moreover, the You et al algorithm shows better performances in 613 

presence of higher SWP/SSR values. Other ATMS snowfall retrieval algorithms, such as Kongoli et al, 2015 and 614 

Meng et al, 2017 have been trained over a specific geographic area (the CONUS U. S.) which is not representative 615 

of the extreme high latitude environmental conditions which HANDEL-ATMS development has focused on, 616 

therefore a comparison could be not very significant. Algorithms that rely on other MW radiometers carried out 617 

by non-polar orbiting satellites, such as GMI onboard GPM-CO, do not retrieve snowfall at high latitudes, and so 618 

a direct comparison can not be carried out. 619 
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