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Abstract. Snowfall detection and quantification are challenging tasks in the Earth system science field. Ground-8 

based instruments have limited spatial coverage and are scarce or absent at high latitudes. Therefore, the 9 

development of satellite-based snowfall retrieval methods is necessary for the global monitoring of snowfall.  10 

Passive Microwave (PMW) sensors can be exploited for snowfall quantification purposes because their 11 

measurements in the high-frequency channels (> 80 GHz) respond to snowfall microphysics.  However, the highly 12 

non-linear PMW multichannel response to snowfall, the weakness of snowfall signature and the contamination by 13 

the background surface emission/scattering signal make snowfall retrieval very difficult. This phenomenon is 14 

particularly evident at high latitudes, where light snowfall events in extremely cold and dry environmental 15 

conditions are predominant. Machine Learning (ML) techniques have been demonstrated to be very suitable to 16 

handle the complex PMW multichannel relationship to snowfall. Operational microwave sounders on near-polar 17 

orbit satellites such as the Advanced Technology Microwave Sounder (ATMS), and the European MetOp-SG 18 

Microwave Sounder in the future, offer a very good coverage at high latitudes. Moreover, their wide range of 19 

channel frequencies (from 23 GHz to 190 GHz), allows for the dynamic radiometric characterization of the surface 20 

at the time of the overpass along with the exploitation of the high-frequency channels for snowfall retrieval. The 21 

paper describes the High lAtitude sNow Detection and Estimation aLgorithm for ATMS (HANDEL-ATMS), a 22 

new machine learning-based snowfall retrieval algorithm developed specifically for high latitude environmental 23 

conditions and based on the ATMS observations. 24 

HANDEL-ATMS is based on the use of anThe High lAtitude sNow Detection and Estimation aLgorithm for 25 

ATMS (HANDEL-ATMS) is a new machine learning (ML)-based snowfall retrieval algorithm for Advanced 26 

Technology Microwave Sounder (ATMS) observations that is developed specifically to detect and quantify high-27 

latitude snowfall events that often form in cold, dry environments and produce light snowfall rates. ATMS and 28 

the future European MetOp-SG Microwave Sounder offer good high-latitude coverage and sufficient microwave 29 

channel diversity (23 to 190 GHz) that allows both surface radiometric properties to be dynamically characterized 30 

and the non-linear and sometimes subtle passive microwave response to falling snow to be detected. HANDEL-31 

ATMS is based on a combined active-passive microwave observational dataset in the training phase, where each 32 

ATMS multichannel observation is associated with coincident (in time and space) CloudSat Cloud Profiling Radar 33 

(CPR) vertical snow profileprofiles and surface snowfall raterates. The main novelty of the approach is the 34 

radiometric characterization of the background surface (including snow -covered land and sea ice) at the time of 35 

the overpass to derive multi-channel surface emissivities and clear-sky contribution to be used in the snowfall 36 

retrieval process. The snowfall retrieval is based on four different artificial neural networks for snow water path 37 

(SWP) and surface snowfall rate (SSR) detection and retrievalestimate. HANDEL-ATMS shows very good 38 

detection capabilities - POD = 0.83, FAR = 0.18, and HSS = 0.68 for the SSR detection module. Estimation error 39 

statistics show a good agreement with CPR snowfall products for SSR > 10-2 mm h-1 (RMSE = 0.08 mm h -1, 40 

bias= = 0,02 mm h-1). The analysis of the results for an independent CPR dataset and of selected snowfall events 41 

evidence the unique capability of HANDEL-ATMS to detect and estimate SWP and SSR also in presence of 42 

extreme cold and dry environmental conditions typical of high latitudes. 43 

1 Introduction 44 

Snowfall retrieval is one important topic in the atmospheric science field. On a global scale, snowfall represents 45 

only 5 % of the total global precipitation but it is predominant above 60- - 70 ° N/S (see Levizzani et al, 2011). In 46 

recent years, several studies have highlighted the strong influence of global warming on snowfall distribution and 47 

regimes, especially at high latitudes (see Liu et al, 2009, Liu et al, 2012, Bintanja & Selten, 2014, Vihma et al, 48 
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2015). However, global snowfall quantification is a challenging topic in weather sciences. Ground-based 49 

instruments such as raingauges or snowgauges provide only punctual measurements which can not fully capture 50 

the spatial variability of precipitation phenomena; (Kidd et al, 2017); moreover, the variability of snowflake shape 51 

and density has a strong influence on theirstrongly influences particle fall speed and trajectoriestrajectory and 52 

therefore reduces the gauge-based measurements measurement accuracy of falling snow result, especially 53 

compared to be less accurate than for rain (see measurements (Skofronick-Jackson et al, 2015). Weather radars 54 

can provide areal measurements of precipitation - the rate estimation is based on the conversion of the measured 55 

backscattered radiation to precipitating hydrometeors content - but such operation presents some technical 56 

limitations (see Kidd & Huffman, 2011). Finally, most of the regions where snowfall is predominant - such as 57 

Greenland, Siberia, Canada, and Antarctica - are uninhabited or otherwise sparsely populated areas where weather 58 

observation networks are very scarce or totally absent. Therefore, the development of satellite-based methods for 59 

snowfall retrieval is necessary for global monitoring of snowfall. Passive Microwave (PMW) sensors on 60 

boardonboard polar orbiting satellites can be exploited for snowfall detection purposes because the microwave 61 

(MW) signal is directly responsive to the spatial distribution and microphysics properties of precipitation-sized 62 

hydrometeors in the clouds; at the same time, the use of PMW sensors guarantees a high spatial coverage and high 63 

temporal resolution (see Kidd & Huffman, 2011).  64 

PMW snowfall detection and quantification isare typically based on the ability to interpret the snowfall scattering 65 

signature in the high -frequency channels (> 90 GHz), which respond more effectively to ice microphysics and 66 

are less prone to surface effects than low -frequency channels, and to distinguish it from the clear-sky (surface 67 

and atmosphere) contribution (e.g., Panegrossi et al, 2017). However, several factors make the PMW snowfall 68 

signal ambiguous and the relationship between multichannel measurements and surface snowfall intensity highly 69 

non-linear, especially in extremely cold/dry environmental conditions (see Panegrossi et al, 2022). The snowfall 70 

scattering signal is relatively weak and is highly dependent on the complex microphysical properties of snowflakes 71 

(Kim et al, 2008, Kulie et al, 2010, Kongoli et al, 2015), it is often masked by supercooled liquid water emission 72 

signal (Wang et al, 2013, Battaglia & DelanoeDelanoë, 2013, Panegrossi et al, 2017, Rysman et al, 2018, 73 

Battaglia & Panegrossi, 2020, Panegrossi et al, 2022), and can be contaminated by the extremely variable 74 

background surface emissivity (Liu and Seo, 2013, Takbiri et al.,, 2019, Rahimi et al, 2017), especially in cold 75 

and dry conditions typical of the high latitude regions (Camplani et al, 2021). In this context, the availability of 76 

the latest generation microwaveMW radiometers - such as the conically-scanning radiometer GPM Microwave 77 

Imager (GMI) and the cross-track scanning radiometer Advanced Technology Microwave Sensor (ATMS) - 78 

whose channels cover a wide range of frequencies - offers new possibilities for global snowfall monitoring. The 79 

multi-channel PMW observations can be used for both a dynamic radiometric characterization of the background 80 

surface - using the low-frequency channels (< 90 GHz) - and for the detection and the estimation of the snowfall 81 

using the high-frequency channels (> 90 GHz) (see Panegrossi et al, 2022).  82 

The PMW capability to characterize physically and radiometrically the background surface varies from sea to 83 

land, especially for the identification of cold/frozen surfaces. For what concerns the ocean, sea ice detection using 84 

PMW observations has been a well-documented topic in the remote sensing science field since the 70s. This is 85 

due to the strong contrast between sea ice (≈ 0.9) and open water (≈ 0.5) emissivity values at the MW low-86 

frequency range (~19 GHz) (see Comiso, 1983). Other studies highlighted the ability to discriminate between 87 

different types of ice using a set of low-frequency window channels, because the differences between the 88 

emissivities of the different types of sea ice increase with increasing frequency; in particular, at higher frequencies 89 

(30-50 GHz) the contrast between the emissivity of “new” ice and “old” ice increases, with a decrease of the 90 

emissivity at higher frequencies for “older” sea ice (see Comiso, 1983, Ulaby & Long, 2014). Moreover, it has 91 

been observed that the simultaneous presence of open water and sea ice causes a decrease in the low-frequency 92 

channel emissivity; the observed emissivity can be considered as a linear combination of the emissivity spectra of 93 

sea ice and open water (see Ulaby & Long, 2014). For what concerns continental areas, the detection of snow-94 

covered land surfaces using MW measurements results to be more difficult. In dry conditions, a snowpack acts as 95 

a volume scatterer; the scattering effect is dependent on the grain size and shape and on the depth of the snowpack 96 

(see Clifford, 2010). However, the presence of liquid water can mask the scattering signature (see Mätzler & 97 

Hüppi, 1989). At the same time, large areas of Greenland and Antarctica, while covered by dry snowpacks 98 

throughout the year, do not show a significant difference between the two ATMS low -frequency channels. 99 

Finally, some snow-free areas, such as rocky mountains and cold deserts, present a scattering signature very 100 
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similar to that of the snowpack (see Grody & Basist, 1996). Therefore, the detection of snow-covered areas is very 101 

complex. A set of several tests, each of which identifies snowpacks characterized by different physical and 102 

radiometric characteristics, may be used. 103 

This paper describes the development of a machine learning-based algorithm for snowfall retrieval (the High 104 

lAtitude sNowfall Detection and Estimation aLgorithm for ATMS, HANDEL-ATMS), exploiting ATMS 105 

radiometer multi-channel measurements and using the CloudSat Cloud Profiling Radar (CPR) snowfall products 106 

as reference. The algorithm has been developed focusing on the typical conditions of high -latitude regions - low 107 

humidity, low temperature, presence of snowpack on land or sea ice over ocean, and light snowfall intensity.  108 

The main novelty of the approach is the exploitation of the ATMS wide range of channels (from 22 GHz to 183 109 

GHz) to obtain the dynamic radiometric characterization of the background surface at the time of the overpass.  110 

The derived surface emissivities are used to infer the clear-sky contribution to the measured brightness 111 

temperatures (TBs) in the high -frequency channels in the snowfall retrieval process. This approach is similar to 112 

the work of Zhao and Weng, 2002, for AMSU observations limited to non-scattering surfaces (i.e., ocean and 113 

vegetated land), however the application to surfaces with a very complex and time-varying emissivity (such as 114 

snow cover and sea ice) required a far-away more advanced algorithm taking advantage of machine learning 115 

techniques.  Moreover, the algorithm is based on the exploitation of also exploits an observational dataset where 116 

eachcomposed of ATMS multichannel observation is associated with observations and coincident (in time and 117 

space) CloudSat CPR vertical snow profileprofiles and surface snowfall raterates (hereafter the ATMS-CPR 118 

coincidencecoincident dataset). 119 

Several snowfall retrieval algorithms for cross-track scanning radiometers have evolved in the last 20 years 120 

starting from the Advanced Microwave Sounder Unit-B (AMSU-B) (Zhao and Weng, 2002, Kongoli et al, 2003, 121 

Skofronick-Jackson et al, 2004, Noh et al, 2009, Liu and Seo 2013), and Microwave Humidity Sounder (MHS) 122 

(see Liu & Seo, 2013, Edel et al, 2020), and evolving to ATMS (Kongoli et al, 2015, Meng et al, 2017, Kongoli 123 

et al, 2018, You et al, 2022, Sanò et al, 2022). Some of them are based on radiative transfer simulations of observed 124 

snowfall events (Kongoli et al, 2003, Skofronick-Jackson et al, 2004, Kim et al, 2008), or on in-situ data (see 125 

Kongoli et al, 2015, Meng et al, 2017, Kongoli et al, 2018), others on CPR observations (Edel et al, 2020, You et 126 

al, 2022, Sanò et al, 2022), or a combination of them (Noh et al, 2009, Liu & Seo, 2013). In the last five years, 127 

there has been an increasing use of machine learning (ML) approaches trained on CPR-based coincidence datasets. 128 

These approaches have proven to be very effective for snowfall retrieval. On one side, ML techniques are suitable 129 

to handle the complex, non-linear PMW multichannel response to snowfall (e.g., Rysman et al, 2018, Edel et al, 130 

2020, Sanò et al, 2022). On the other hand, the use of CPR-based datasets overcomes some of the limitations 131 

deriving from the use of cloud-radiation model simulations, which are particularly challenging for snowfall events. 132 

However, some limitations of the radar product used as a reference and issues related to the spatial and temporal 133 

matching between the CPR and the PMW radiometer measurements introduce some uncertainty. Moreover, the 134 

2-C-Snow-Profile (2CSP) product is based on assumptions on snow microphysics, uses optimal estimation to 135 

retrieve snow parameters, and uses a simplified radar reflectivity equation, and is affected by CloudSat CPR 136 

limitations as outlined in Battaglia & Panegrossi, 2020. 137 

For what concerns ATMS, the ML-based Snow retrievaL ALgorithm fOr gpM–Cross Track (SLALOM-CT) 138 

(Sanò et al, 2022) has been developed within the EUMETSAT Satellite APplication Facility for Hydrology (H 139 

SAF) in preparation for the launch of the EPS-SG Microwave Sounder (MWS). Similarly to HANDEL-ATMS, it 140 

is trained on aan ATMS-CPR coincidence dataset. SLALOM-CT is the evolution for cross-track scanning 141 

radiometers of the Snow retrievaL ALgorithm fOr GMI (SLALOM) (Rysman et al, 2018, Rysman et al, 2019) 142 

which was the first ML algorithm for snowfall detection and retrieval for GMI trained and tested on GMI-CPR 143 

coincident observations made available in the NASA GPM-CloudSat coincidence dataset (Turk et al, 2021a). One 144 

of the novelties in the SLALOM (SLALOM-CT) approach is the use of the GMI (ATMS) low-frequency channels 145 

to better constrain the snowfall retrieval to the characteristics of the surface at the time of the overpass (Turk et 146 

al, 2021b). SLALOM-CT is based on a modular scheme, i.e., four separate modules are used for snowfall 147 

detection, supercooled water layer detection, snow water path (SWP)), and surface snowfall rate (SSR) estimate. 148 

The predictor set is composed of the ATMS TBs and some environmental variables (T2m,2 meters Temperature - 149 

T2m, Total Precipitable Water - TPW, and principal components derived from temperature and humidity profiles).  150 

However, none of the algorithms mentioned here were tailored specifically to the extreme conditions typical of 151 

high latitudes. The present work has the aim to develop an algorithm for snowfall detection and estimation by 152 
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exploiting the large frequency range typical of the last generation radiometers and to obtain a dynamic radiometric 153 

characterization of the background surface at the time of the satellite overpass in order to highlight the complex 154 

relationship between upwelling radiation and snowfall signature, which makes the detection very difficult in the 155 

typical conditions of the high latitudes. 156 

This article is organized as follows: Section 2 provides background information on ATMS and CPR, on the 157 

methodology used to build the coincidence dataset, and on the machine learning approaches used to develop the 158 

algorithm. In Section 3 the algorithm structure is described. In Section 4 the overall performance scores are 159 

reported and analyzed; a case study is analyzed and a comparison with SLALOM-CT is reported. Section 5 is 160 

dedicated to the summary of the main results and to the conclusions.  161 

2. Instruments and methods 162 

2.1 Advanced Technology Microwave Sounder (ATMS) 163 

ATMS is a total power cross-track scanning radiometer within 52.7° off the nadir direction. It has a total of 22 164 

channels with the first 16 channels primarily used for temperature sounding from the surface to about 1 hPa (45 165 

km) and the remaining channels used for water vapor sounding in the troposphere from the surface to about 200 166 

hPa (10 km), and for cloud properties and precipitation retrieval. There are two receiving antennas: one serving 167 

channels 1–15 below 60 GHz, and the other for channels above 60 GHz. The beamwidth changes with frequency 168 

and is 5.2° for channels 1–2 (23.8–31.4 GHz), 2.2° for channels 3–16 (50.3–57.29 and 88.2 GHz), and 1.1° for 169 

channels 17–22 (165.5–183.3 GHz). The corresponding nadir resolutions are 74.78, 31.64, and 15.82 km, 170 

respectively. The outmost field of view (FOV) sizes are 323.1 km × 141.8 km (cross-track × along-track), 136.7 171 

km × 60.0 km, and 68.4 km × 30.0 km, respectively (see Weng et al, 2012). ATMS is currently carried by three 172 

near-polar orbiting satellites, Suomi National Polar-orbiting Partnership (SNPP)), NOAA-20, and NOAA-21 173 

providing global coverage including polar regions. Each satellite revisiting time is equal to 12 hours at the equator, 174 

but drops to 100 minutes over the polar regions, ensuring a very high temporal resolution for the research area of 175 

interest in this work. Moreover, the operational nature of the mission guarantees observations for the next decades. 176 

It is worth noticing that the polarization of ATMS channels is not defined as vertical or horizontal, but as “Quasi-177 

Vertical'' or “Quasi-Horizontal”. The “Quasi” prefix is used to indicate that ATMS (and any other cross-track 178 

scanner) measures vertical or horizontal polarization only when looking at nadir and a mixture of V and H 179 

polarization for off-nadir scan angles. 180 

2.2 Cloud Profiling Radar (CPR) 181 

The CPR is a 94 GHz nadir-looking radar onboard CloudSat. CloudSat was launched on April 28, 2006; the W-182 

band (94 GHz) Cloud Profiling Radar (CPR) operations began on June 2, 2006. CPR has been acquiring the first-183 

ever continuous global time series of vertical cloud structures and vertical profiles of cloud liquid and ice water 184 

content with a 485-m vertical resolution and a 1.4-km antenna 3-dB footprint. The reference CloudSat snowfall 185 

product is the 2C-Snow-Profile (2CSP) product (Version 5 is used in this work). It provides estimates of snowfall 186 

characteristics for each observed profile. In particular, it provides an estimate of the Snow Water Path (SWP), i. 187 

e., the total snow water content integrated over the atmospheric column, and of the Surface Snowfall Rate (SSR) 188 

(see Stephens et al, 2008). SWP is estimated also when there is no snowfall at the ground level, therefore, the 189 

presence of SWP is not always linked to the SSR, especially in warmer near-surface conditions (see Wood & 190 

L’Ecuyer, 2018). 2CSP has several limitations, such as the contamination of the signal in the lowest 1000 - 1500 191 

m of the profile due to ground-clutter, the underestimation of the heavy snowfall, due to attenuation of the radar 192 

signal in these conditions, and the limited temporal sampling (although it is higher in the polar regions), and the 193 

day-only operation mode since 2011, which limits its use during the winter seasons (see Milani and Wood, 2021, 194 

Panegrossi et al, 2022). However, 2CSP has been demonstrated to be more accurate than GPM Dual-frequency 195 

Precipitation Radar (DPR) snowfall products (see Casella et al, 2017) and in good agreement with estimates 196 

obtained by ground-based radars (e.g., Mroz et al, 2021), although it is affected by underestimation for medium-197 

heavy snowfall events. Moreover, the polar orbit and the W-band high sensitivity make CPR suitable for snowfall 198 

monitoring at higher latitudes (as demonstrated in several studies, e.g., Kulie et al, 2016, Milani et al, 2018) 199 

typically characterized by light/moderate intensity (Beranghi et al, 2016). These features appear to be an 200 

advantage compared to the GPM-Core Observatory (GPM-CO), which provides observations only between 67 ° 201 

N and 67 ° S, and to the Ku- and Ka-band DPR has low sensitivity and is not suitable to effectively detect light 202 

snowfall events (Casella et al, 2017).  203 
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2.3 ATMS-CPR Coincidence Dataset 204 

The present study is based on a coincidence dataset between CPR and SNPP ATMS observations between January 205 

2014 and August 2016. The same dataset has been used for the development of SLALOM-CT (Sanò et al, 2022). 206 

Each coincidence comes from observations from CloudSat CPR and ATMS - onboard SNPP - within a maximum 207 

15-minute time window. In the period considered within the dataset, only the SNPP satellite was in orbit, so the 208 

dataset is composed only of observations obtained from ATMS onboard this satellite. Moreover, the elements in 209 

the dataset have been selected by removing all corrupted data and by applying an additional filter based on the 210 

minimum distance between CPR and ATMS instantaneous field of view (IFOV) center which (22 km).  The zonal 211 

distribution of the coincidences is due to the orbital geometry of CloudSat and SNPP, which are both sun-212 

synchronous with a relatively small difference in the satellite height (i.e., about 689 km and 833 km for CloudSat 213 

and SNPP respectively). Therefore, the coincidence dataset is built from longer orbit fragments (often semi-orbits) 214 

and by a very large number of elements near the poles. There is an asymmetry in the CPR sampling between the 215 

Northern and the Southern hemispherehemispheres that can be observed in the dataset due to the CPR daytime-216 

only mode operation since 2011, which influences mostly the acquisitions in the Southern Polar region (Milani 217 

and& Wood, 2021). 218 

The database has been built considering the horizontal resolution of the high-frequency channels of ATMS. The 219 

CPR snowfall product used as reference is the 2CSP (V5).) product. Some model-derived variables, specifically 220 

the Total Precipitable Water (TPW), the 2-mmeters Temperature (T2m), the Skin Temperature, the freezing level 221 

heightFreezing Level Height, and the temperature and humidity profiles, have been added to the dataset to be used 222 

as ancillary parameters.  Both 2D and 3D environmental variables have been obtained from the European Center 223 

Medium Weather Forecast (ECMWF). In particular, they are obtained from the CPR ECMWF-AUX product 224 

where the set of ancillary ECMWF atmospheric state variable data is associated with each CloudSat CPR bin (the 225 

product is described by Partain, 2022). Moreover, a cloud-cover fraction index, which indicates the fraction of 226 

CPR observations where cloud is observed on the total CPR observations within each ATMS pixel, is added to 227 

the dataset. 228 

Information about the presence of supercooled water is added into the coincidence dataset to be used towards the 229 

correct interpretation of the snowfall signal in presence of supercooled water layers.  The supercooled water 230 

information has been extracted from the DARDAR product (see DARDAR, Delanoë &Hogan, 2010). DARDAR, 231 

which stands for raDAR+liDAR, combines CPR radar and Cloud-Aerosol Lidar with Orthogonal Polarization 232 

(CALIOP) lidar observations, onboard Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 233 

(CALIPSO) satellite, and estimates both the cloud water phase and the ice water content and ice particle effective 234 

radius (see Battaglia & Delanoë, 2013, Ceccaldi et al, 2013). In particular, the coincidence dataset includes an 235 

index indicating the presence of supercooled cloud liquid water within each ATMS pixel, calculated as the fraction 236 

of DARDAR observations where supercooled water within and on the top of the cloud is observed to the total 237 

DARDAR observations within each pixel.  238 

The association of ATMS TBs and CPR products has been done by averaging the CPR snow products with a 239 

Gaussian function approximating the ATMS high-frequency antenna pattern (varying with the scan angle). It is 240 

worth noting, however, that the ATMS IFOV is under-sampled by the narrow swath of the CPR (see Sanò et al, 241 

2022 for details). Moreover, it is worth noting that CPR 2CSP product limitations for snowfall detection and 242 

estimation (see Section 2.2) might affect the ATMS-based snowfall estimates. 243 

In this work, the dataset has been filtered based on humidity (TPW < 10 mm), temperature (T2m <280 K)), and 244 

elevation conditions (the working limits of the PESCA algorithm, see Camplani et al, 2021) leading to a good 245 

representation of the higher latitudes with 80 % of the dataset elements located above 60°N/S. The dataset is made 246 

of 2,14*10 6 elements, including 1,07*10 6 elements with falling snow (2CSP SWP > 0 kg m-2) and 9,99*10 5 with 247 

snowfall at the surface (2CSP SSR > 0 mm h-1). The training and test phases have been conducted by splitting 248 

randomly the dataset, with ⅓ of the elements in the training and ⅔ of the elements in the test dataset. 249 

2.4 Machine Learning approachesApproaches 250 

The algorithm is based on different machine-learning (ML) techniques. Moreover, clustering techniques have 251 

been used to characterize the background surface from a radiometric point of view the background surface. In 252 

particular, an unsupervised clustering technique has been used to identify emissivity clusters with small internal 253 

variability, and a supervised clustering technique has been used to identify an emissivity spectrum based on other 254 

parameters.  255 
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2.4.1 Artificial Neural Networks  256 

The HANDEL-ATMS snowfall detection and estimation modules have been developed using feedforward 257 

multilayer neural network architectures, i. e., a neural network architecture where the neurons are arranged in 258 

layers. This architecture, which is defined by the number of layers, the number of neurons for each layer, and the 259 

transfer function of each neuron, has to be designed beforehand.   The weights of connection links and the bias 260 

values for each layer are estimated with a training process, based on the Levenberg–Marquardt algorithm (see 261 

Sanò et al, 2015). The specific networks architecture,network architectures and the training and optimization 262 

procedure of the HANDEL-ATMS algorithm are described in detail in section 3.2. 263 

2.4.2 Self Organizing Maps 264 

The unsupervised clustering method used for the background surface classification is the Self Organizing Map 265 

(SOM) method (see Faussett, 2006, Kohonen, 2012). The characteristic of this method is that classes that are close 266 

to each other from a topological point of view can be considered similar also from a physical and radiometric 267 

point of view (see Munchak et al, 2020). SOMs have been used in previous studies for the classification of the 268 

background surface by creating clusters based on emissivity values (see Prigent et al, 2001, Cordisco et al, 2006, 269 

Prigent et al, 2008, Munchak et al, 2020).  270 

2.4.3 Linear Discriminant Analysis 271 

Several supervised clustering methods have been tested in this study, such as the linear discriminant analysis, the 272 

quadratic discriminant analysis, the classification tree, and the nearest neighbor method. The final choice came 273 

down to linear discriminant analysis (LDA, see Hastie et al, 2009) because this method guarantees satisfactory 274 

accuracy in the results with a difference between the performances of the training and the test phase which is not 275 

too significant, and a computational effort which is not too high.  276 

3 Algorithm description 277 

The configuration of the HANDEL-ATMS is summarized in the Flowchart in Figure 1. The process begins with 278 

the classification of the background surface using the PMW Empirical cold Surface Classification Algorithm 279 

(PESCA, see Camplani et al, 2021); then, the surface emissivity spectra are derived through a refinement process 280 

based on LDA and these are used to estimate clear-sky simulated TB (TBsim) using the ECMWF-AUX 281 

atmospheric temperature and water vapor profiles. Then, the differences between the TBsimclear-sky simulated 282 

TB and the ATMS observed TB (TBobs) are evaluated (∆TBobs−sim =TBobs -TBsim). Four ANNs are then applied to 283 

a predictor set consisting of ATMS TBobs, ∆TBobs−sim, a surface classification flag, and other ancillary parameters 284 

(elevation and ATMS viewing angle for the final version). Finally, the pixels classified with the presence of 285 

snowfall by the detection module, are used in the estimation modules while for no-snowfall flagged pixels the 286 

snowfall rate value is set to 0 mm/ h-1. In the following sections, the main blocks of the algorithm are described 287 

in detail. 288 

3.1 Surface Classification and emissivity spectra estimationEmissivity Spectra Estimation 289 

3.1.1 PESCA Design and Performances 290 

The dynamic classification and radiometric characterization of the background surface at the time of the satellite 291 

overpass is based on PESCA exploiting ATMS low-frequency channels (Camplani et al, 2021). The algorithm 292 

discriminates between frozen and unfrozen surfaces (sea ice and open water, snow-covered land and snow-free 293 

land), and identifies 10 surface classes (4 over ocean, 5 over land, 1 for coast). The algorithm has been tuned 294 

against the NOAA AutoSnow product (see Romanov, 2019), which gives daily maps of sea ice and snow cover. 295 

For each ATMS observation, a flag reporting the AutoSnow class percentage (sea ice, open water, snow-covered 296 

land, snow-free land) has been calculated; then, a threshold has been applied to discriminate between sea ice and 297 

open water pixels (sea ice AutoSnow class > 10 %) and between snow-covered and snow-free land pixels (snow-298 

covered land AutoSnow class > 50 %). ATMS pixels have been classified into land, ocean, and coast pixels using 299 

a land-sea mask.  300 

The land module discriminates between snow-free land and snow-covered land and identifies four different snow 301 

cover classes (Perennial, Winter Polar, Thin, and Deep Dry). It is based on a decision tree that makes use of a 302 

limited number of inputs (: the ratio between TB23QV/ and TB31QV - (ratio,), the difference between TB23QV and 303 

TB88QV or Scattering Index - (SI,), 23 GHz pseudo-emissivity (pem23) (i. e.., the ratio between anthe 23 GHz 304 

observed brightness temperature (TB) and athe near-surface temperature value) - pem23). The module has been 305 

described by Camplani et al, 2021. 306 
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For what concerns the ocean module, a simple relationship to distinguish between sea ice and open water 307 

observations has been identified. In Figure 2 a Cartesian plane where the x-axis represents 23 GHz observed TBs 308 

and the y-axis represents the near-surface temperature (T2m) is shown.  In the figure, each point represents a 309 

pseudo-emissivity value, and the color describes the mean AutoSnow sea ice percentage within each bin (see 310 

Figure 2, left panel). It is possible to observe that open water (0 % of sea ice, blue) and sea ice (100 % of sea ice, 311 

red) are characterized by very different pseudo-emissivities. There is a transition area between open water and sea 312 

ice pseudo-emissivity values for IFOVs where both open water and sea ice are present. The simple relationship 313 

for sea ice identification is reported in the left panel as a green line where the condition for sea ice identification 314 

is defined by Equation 1.  315 

 𝑇𝐵23𝑄𝑉 > 𝑇2𝑚 − 96 𝐾 316 

(1) 317 

Downstream of the sea ice/open water identification, information about sea ice characteristics is obtained from 318 

the analysis of the two low-frequency pseudo-emissivity values (pem23 and pem31),) (defined as the ratio between 319 

the observed TB and the near-surface temperature value) which arecan be considered a good approximation of 320 

sea-ice emissivity for low-frequency channels especially in cold and dry conditions. In Figure 3 (top panel) it is 321 

possible to observe that there are sea ice -classified observations characterized by the contemporary presence of 322 

open water and sea ice above the bisector of the plane and in correspondence with low emissivity values. In the 323 

center panel, where the color represents sea ice occurrences, it is evident the presence of one cluster, in 324 

correspondence with high pseudo-emissivity, with two “tails” above and below the bisector. This behavior has 325 

been used to identify 3 different sea ice classes (New Sea Ice, Broken Sea Ice, and Multilayer Sea Ice) using a 326 

Nearest Neighbor Method based on a set of reference points that define the areas of interest for each sea ice class. 327 

In Figure 3 (bottom panel) a classification representation is reported, where the markers represent the reference 328 

points. The labels of the classes have been chosen by analyzing their physical properties and by comparing the 329 

estimated emissivity spectra with those reported in previous studies (Hewison & English ,, 1999, Munchak et al, 330 

2020). 331 

PESCA’s upper working limits for T2m and TPW have been established to 280 K and 10 mm, respectively (see 332 

Camplani et al, 2021 for details). Moreover, the land module does not work in the high elevation areas outside 333 

the polar regions (surface elevation > 2500 m for latitude < 67 ° N/S) because the ATMS low spatial resolution 334 

does not allow for depicting the small-scale snow-cover variability that characterizes the orographic regions. An 335 

analysis carried out using the ATMS-CPR coincidence dataset highlights that the presence of cloud cover does 336 

not influence the overall PESCA performances (not shown). Within these well-defined limits, the PESCA 337 

manages to optimally discriminate between sea ice, open water, snow-free land, and snow-covered land. The 338 

statistical scores of PESCA identification of sea ice and snow cover (using AutoSnow as the reference truth) are 339 

summarized in Table 1. In particular, the Probability of Detection (POD), the False Alarm Ratio (FAR), and the 340 

Heidke Skill Score (HSS) are reported. POD, FAR, and HSS are defined by equations 2, 3, and 4. 341 

POD=
ℎ

ℎ+𝑚
  342 

(2) 343 

FAR=
𝑓

𝑓+ℎ
 344 

(3) 345 

HSS=
2(ℎ∗𝑐𝑛−𝑓∗𝑚)

(ℎ+𝑚)∗(𝑚+𝑐𝑛)+(ℎ+𝑓)(𝑓+𝑐𝑛)
 346 

(4) 347 

where h represents the hits, f represents the false alarms, m represents the misses and cn represents the correct 348 

negatives. PESCA manages to optimally detect the presence of a frozen background (sea ice over the ocean, snow 349 

covered land over the continental part) at the time of the satellite overpass. It is important to underline that the 350 

variability of the HSS compared to POD and FAR is due to the different number of correct negatives. An analysis 351 

of the physical characteristics of the PESCA classes has been conducted by considering the mean T2m, and the 352 

geographical and seasonal distribution associated with each class. For what concerns the land classes, please refer 353 

to Camplani et al, 2021. For what concerns sea ice, the New Sea Ice class, which is detected during the winter at 354 

high latitudes and for low temperatures, represents the sea ice that forms during the winter. The Broken Sea Ice 355 

class, which is predominant in the lower latitudes and whose occurrence increases during the Spring season, 356 

represents the co-presence of sea ice and water. The Multilayer Sea Ice class, which is detected only at the high 357 
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latitudes, for very low temperatures, and constantly e throughout the year, represents the ice pack typical of those 358 

regions and extreme cold conditions.  359 

In Table 2 the number of PESCA class occurrences, the percentage of snowfall observations, and the most 360 

significant environmental characteristics in the ATMS-CPR coincident dataset are reported. It can be observed 361 

that Land and Ocean classes are characterized by the warmest/moistest conditions and by the most intense 362 

snowfall events (on average), while Perennial and Winter Polar Snow classes and New and Multilayer Sea Ice 363 

classes are characterized by the coldest/driest environmental conditions and by the lightest snowfall events (on 364 

average). Thin Snow and Broken Sea Ice classes show intermediate environmental conditions and snowfall 365 

intensity values. It is also interesting to highlight that a mismatch between the percentage of SWP and SSR 366 

observations is observed mostly over the Ocean class and, less frequently over other classes (Land, Thin Snow, 367 

and Coast), where warmer and moister environmental conditions are found. 368 

3.1.2 PESCA emissivity spectra estimationEmissivity Spectra Estimation 369 

The emissivity spectra of each class have been estimated by applying the PESCA algorithm to the cloud-free (0% 370 

CPR cloud mask fraction) ATMS observations in the ATMS-CPR dataset satisfying PESCA working limits.  The 371 

ATMS clear-sky TBs measured for each PESCA surface class have been used as input to an inverse radiative 372 

transfer model (RTM) based on plane-parallel approximation (Ulaby & Long, 2014) and the Rosenkrantz (, 1998) 373 

gas absorption model. The emissivity spectra have been estimated by calculating the mean and the standard 374 

deviation of the emissivity values for each class (excluding the values lower than the 10th percentile and higher 375 

than the 90th percentile). The emissivity spectra dependence on the ATMS viewing angle for polarized surfaces 376 

has been neglected because an analysis of such dependence in the ATMS-CPR coincidence dataset has shown 377 

that it is not significant (emissivity difference smaller than 0.05 for angles up to 52.7 °). This is due to the fact 378 

that cross-track scanning radiometers measure a signal (off-nadir) whichthat derives from a mixture between the 379 

two polarizations (e.g., quasi-vertical, QV, and quasi-horizontal, QH). As a consequence, although the emissivities 380 

of polarized surfaces, such as open water surfaces, are strongly influenced by the viewing angle, the emissivity 381 

variation is compensated by the effect of the mixture of the two polarizations (see also Felde & Pickle, 1995, 382 

Prigent et al, 2000, Mathew et al, 2008, Prigent et al, 2017).  383 

The estimated spectra are shown in Figure 4 and Figure 5 for ocean and land classes respectively (the coast has 384 

also been considered as a separate class,; however, its spectrum is not shown in Figures 4-5). It is possible to 385 

observe that the classes are well-characterized from a radiometric point of view, showing distinct behavior of the 386 

emissivity spectra (e.g., the mean values). However, all the classes present significant standard deviations at high 387 

frequency, and some classes - such as the snow classes and the Broken Sea Ice class - present a high value of 388 

standard deviation also at low frequency.  389 

The clear-sky RTM simulations based on the mean emissivity values estimated for each class, have been compared 390 

to the coincident observed clear-sky TBs. - but the RMSE between simulated and observed clear-sky TBs appeared 391 

to be too high to implement a robust signal analysis (>10 K). For this reason, a refinement process for the 392 

emissivity spectra estimation based on machine learning techniques has been developed downstream of the 393 

PESCA classification. 394 

The refinement process has been based on a combination of an unsupervised classification technique (SOM) and 395 

a supervised technique (LDA). The unsupervised classification identifies clusters characterized by the minimum 396 

inner variability from a radiometric point of view. The supervised technique, instead, has the goal to identify the 397 

previously obtained clusters, and the associated emissivity spectra, by using only input variables that are not 398 

affected by the presence of clouds. The final emissivity spectra are estimated as the mean emissivity for each 399 

frequency within each cluster identified by the supervised technique.  Therefore, as first step, the emissivity 400 

spectra have been clusterized in order to minimize the emissivity variability in each cluster by arranging the 401 

retrieved emissivity values for six ATMS channels (23.8 GHz, 31.4 GHz, 50.3 GHz, 88.2 GHz, 165.5 GHz, and 402 

183.31±7 GHz) in a one-dimensional SOM architecture. Then, an LDA model has been trained using the 403 

previously obtained clusters as reference and using the PESCA input parameters (pem23, pem31, ratio, and SI), 404 

some environmental parameters (TPW, T2m, surface pressure - Psurf)), and ancillary variables (latitude - lat, Julian 405 

day - jd, altitude - DEM, the maximum solar height during the day - Hsun) as input. The use of the LDA is 406 

necessary to associate an emissivity spectrum to all the observations whichthat are classified by PESCA, 407 

independently of the presence of clouds. It is worth noticing that the whole predictor set of the LDA has resulted 408 

to be redundant; therefore, a subset of the predictors has been selected for each class. The accuracy of the LDA 409 
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classification is given by the ratio between the number of hits (observations where LDA identifies the associated 410 

SOM class) and the total number of observations; it can be considered as an indicator of the effectiveness of the 411 

LDA model in rebuilding the SOM results. 412 

The evaluation of the refinement process is based on the comparison between the simulated clear-skyTBssky TBs 413 

and the observed clear-sky TBs for each PESCA surface class. For each PESCA surface class, the number of 414 

clusters that simultaneously lowers the errors (RMSE) between the simulated and observed clear-sky TBs at high 415 

frequency (without lowering the classification accuracy too much) is chosen. 416 

 In Table 23 the number of clusters, the predictors selected, the accuracy, RMSE and percentage normalized root 417 

mean squared error (NRMSE%) (Gareth et al, 2013) estimated on the test dataset, are reported for the 165.5 GHz 418 

channel. NRMSE% is defined by Equation 5. 419 

𝑁𝑅𝑀𝑆𝐸% = (
𝑅𝑀𝑆𝐸

𝜎
∗ 100)  420 

(5) 421 

where σ represents the standard deviation of the measured clear-sky TBs dataset in each PESCA class. It can be 422 

considered an indicator of the effectiveness of the refinement process.  423 

For some classes, such as the Ocean class, the refinement process leads to low RMSE values (< 4 K). For other 424 

classes, such as Deep Dry Snow and Broken Sea Ice, RMSE remains > 5 K even with a high number of clusters, 425 

although there is a significant reduction compared to the initial variance in each class (NRMSE% < 50). This is 426 

due to the variability of snow-covered background within each class; in the worst scenario, the limited number of 427 

predictors areis insufficient to infer the emissivity spectrum at high frequency. Overall, the refinement process 428 

allows to obtain a general improvement of the accuracy of the dynamic emissivity estimation for the PESCA 429 

classes; however, for some classes, the high-frequency channel uncertainty remains significant. The emissivity 430 

spectra obtained by PESCA refinement are used as inputs of the RTM to obtain clear -sky simulated TBs (TBsim) 431 

to be compared to the actual observations (TBobs). The comparison between TBsimclear-sky simulated TBs with 432 

TBobsobserved TBs allows to highlight and interpret the MW signal in presence of snowfall.  433 

In Figure 6, the snowfall signal is represented as a function of the SWP for the 165.5 GHz channel and for different 434 

PESCA classes. The red line and shaded areas represent the mean values and standard deviations of the difference 435 

between TBobs and TBsimobserved TBs and clear-sky simulated TBs (∆TBobs−sim =TBobs -TBsim) for SWP bins 436 

calculated for observations where 2CSP SWP > 0 kg m-2. The blue lines represent the uncertainty due to surface 437 

emissivity variability for each PESCA class. They are centered on the estimated bias for each class (close to 0 K) 438 

and the dashed lines correspond to the standard deviation of ∆TBobs−sim in clear sky conditions. A clear scattering 439 

signal (∆TBobs−sim < 0) is observed over all the classes considered for intense snowfall events (SWP > 1 kg m−2). 440 

For lower SWP values, the signal is more ambiguous and changes with the background surface. While over Land 441 

there is a clear scattering signal for SWP > 0.1 kg m−2, over the Perennial Snow class a scattering signal can be 442 

observed only for SWP > 0.5 kg m−2 . For SWP < 0.1 kg m−2, the mean ∆TBobs−sim for snowfall observations is 443 

less than its standard deviation in clear sky. This is due mainly to the emissivity variability for each surface class, 444 

and to the error introduced by the use of model-derived temperature and water vapor profiles in the RT 445 

simulations. However, while for the Land class the mean ∆TBobs−sim < 0 K can be explained as a predominant 446 

scattering effect for all SWP values, for the Perennial Snow class the mean ∆TBobs−sim > 0 K can be interpreted as 447 

a predominant emission signal with respect to the radiatively cold background (see Figure 5). The Thin Snow 448 

class shows an intermediate behavior: for SWP < 0.1 kg m−2 the red shaded area within the RMSE limits (blue 449 

lines) of the RT simulations denotes the difficulty in interpreting the signal, while a clear scattering signal can be 450 

observed for SWP > 0.3 kg m−2. For what concerns ocean and new sea ice classes, a clear scattering signal is 451 

visible only for high SWP values (> 1 kg m-2) while for low SWP values a significant emission signal is observed. 452 

It is very likely that theThe emission effect observed over ocean and sea ice is likely generated by supercooled 453 

cloud liquid water. The ubiquitous presence of supercooled water layers in snowing clouds (see Wang et al, 2013, 454 

Battaglia & Panegrossi, 2020), especially over oceans (see Battaglia & DelanoeDelanoë, 2013), generates an 455 

emission effect whichthat is particularly significant over radiatively cold surfaces (such as Perennial Snow, Ocean 456 

and New Sea Ice at high frequency, see Figure 4), and can mask or overcome the weak scattering signal generated 457 

by falling snow especially in light snowfall events. It is also important to underline that the DARDAR product 458 

identifies mostly supercooled water layers at the cloud top (Rysman et al, 2018, Panegrossi et al, 2017), while it 459 

has been shown that the impact of supercooled water layers embedded in the clouds can be very significant on the 460 

measured TBs at MW high -frequency window channels (Battaglia & Panegrossi, 2020, Panegrossi et al, 2022).  461 
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3.2 ANN Design for snowfall retrievalSnowfall Retrieval 462 

The snowfall detection and estimation modules have been based on ANNs. Four ANNs have been developed: two 463 

for the detection of SWP and SSR and two for the SWP and SSR estimate. The performanceperformances of more 464 

than 50 architectures have been tested, by varying the number of layers, the number of neurons for each layer, and 465 

the activation functions.  The final architecture, for all modules, is composed of four layers: an input layer with a 466 

neuronsneuron number equal to the predictor number, and a hyperbolic tangent function as the activation function, 467 

a first hidden layer (60 neurons), and a hyperbolic tangent function, a second hidden layer (30 neurons), with a 468 

sigmoid function (for more information about the Neural Network characteristics, see Sanò et al, 2015). At the 469 

same time, several predictor sets have been tested combining in different ways ATMS TBobs, ∆TBobs−sim, PESCA 470 

surface class, ATMS angle of view, ancillary information (surface elevation from a Digital Elevation Model), and 471 

model-derived environmental variables (T2m, TPW, and freezing level height).the Freezing Level Height). In 472 

Table 34 the statistical scores of the algorithm performance for the SSR detection module obtained for different 473 

predictor sets are reported. It is possible to see that the best performance is obtained when the predictor set is 474 

composed of ATMS TBobs and ∆TBobs−sim, (besides the PESCA surface flag, the pixel surface elevation, and the 475 

cosine of the viewing angle). In particular, it is notable the improvement of the detection capabilities with respect 476 

to a predictor set composed of ATMS TBobs and environmental parameters., which is used in other approaches 477 

such as that of SLALOM-CT. On the other hand, the simultaneous use of both the ΔTBobs-sim and the environmental 478 

parameters show scores almost equal to that obtained by using only ΔTBobs-sim.  This indicates that the computation 479 

of the multi-channel clear-sky TBs at the time of the overpass through the estimation of the dynamic surface class 480 

emissivity spectra and its deviation from the measured TBs plays a fundamental role in snowfall retrieval., in 481 

particular in cold/dry environmental conditions. It provides essential information to the ANN to be able to exploit 482 

the subtle snowfall-related signal in ATMS measurements. This is the most innovative aspect of HANDEL-483 

ATMS. 484 

Based on these results, the final set of predictors for HANDEL-ATMS is composed by 16ATMSof 16 ATMS 485 

channels TBobs (1-9, 16-22, channels 10-15 have not been considered because their weighting function peaks 486 

above the tropopause), and the corresponding ∆TBobs−sim, the PESCA classification flag, the pixel elevation 487 

(obtained from a DEM) and the cosine of the viewviewing angle.  488 

4. Results 489 

4.1 HANDEL-ATMS Performances 490 

In Table 4 5 the statistical scores of HANDEL-ATMS detection module performances are reported in terms of 491 

POD, FAR and HSS. It is possible to observe good detection capabilities both for SWP and SSR modules (POD 492 

> 0.8, FAR < 0.2)., and HSS. These statistical scores - and the plot reported in the next figures - have been 493 

calculated for the test dataset.  494 

In Figure 7 and in Figure 8 the dependence of HANDEL-ATMS snowfall detection statistical scores on TPW and 495 

on T2m is reported. In both figures, it is possible to observe that the SWP detection capabilities improve (with an 496 

increase of POD and HSS and a decrease of FAR) with increasing humidity and temperature. This is due to the 497 

combined effect of a stronger scattering signal associated with more intense snowfall events - linked to moister 498 

and warmer environmental conditions, as can be observed in Figure 12 and Table 2 - and to the lower 499 

transmissivity of the atmosphere which masks the background surface signal, reducing its impact and the 500 

uncertainties linked to its variability. On the other hand, colder and drier conditions are usually linked to 501 

background surface types characterized by high radiometric variability such as Perennial Snow and Winter Polar 502 

Snow classes, which cause uncertainty in emissivity estimation. It is possible to observe that in Figure 7 SSR 503 

detection capabilities show a maximum HSS value for TPW between 3 mm and 5 mm, and then there is a slight 504 

decrease due to the decrease of POD. A similar situation can be observed in Figure 8, where the HSS reaches a 505 

maximum between 250 K and 275 K, and it is lower than for SWP. This is due to the fact that PMW measurements 506 

respond mostly to the snow in the atmospheric column and in moister/warmer conditions the presence of snow in 507 

the atmosphere is not always linked to surface snowfall. In both cases, it is worth noting that also considering very 508 

dry (TPW ≈ 2 mm) or very cold (T2m ≈ 240 K) conditions, HANDEL-ATMS shows good detection capabilities, 509 

in spite of the uncertainties linked to the modeling of the background surface and the weakness of the signal in 510 

such conditions. Moreover,In Figure 9 the dependence of HANDEL-ATMS snowfall detection statistical scores 511 

on SWP and SSR values retrieved by CPR 2CSP is reported. Only POD is reported because the statistics are 512 

calculated for snowfall observations only (2CSP SWP/SSR > 0 kg m-2/mm h-1). It is possible to observe that also 513 
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considering very low SWP and SSR values (SWP ≈ 0.001 kg m-2, SSR ≈ 0.001 mm h-1), HANDEL-ATMS 514 

manages to detect around 60 % of the snowfall events. Similar considerations can be done also for the different 515 

background surfaces.  516 

The detection capabilities are influenced both by the typical environmental conditions of each PESCA class and 517 

by the uncertainties linked to the emissivity estimation. In Figure 910 the statistical scores of the algorithm 518 

performance by considering each PESCA class for both the SWP and the SSR detection module are reported. It 519 

can be observed that, also considering specifically the classes associated towith extremely dry and cold 520 

environmental conditions such as Perennial Snow or Winter Polar Snow (see Camplani et al, 2021 and Table 2), 521 

where the detection is more problematic due to the low snowfall intensity (see Table 2) and to the uncertainties in 522 

the emissivity retrieval (see Table 2) , and to the low snowfall intensity, 3), HANDEL-ATMS has good detection 523 

capabilities (POD and FAR values greater than 0.7 and less than 0.25, respectively, for both SWP and SSR). On 524 

the other hand, for surface classes characterized by the highest emission estimation uncertainties, such as Deep 525 

Dry Snow, the statistical scores are coherent with the general scores and better than those obtained in presence of 526 

extremely dry/cold environmental conditions. So, it is possible to conclude that the extremely cold/dry 527 

environmental conditions - have more influence on the detection than the uncertainties on clear sky emissivity 528 

estimation.   Generally, these results provide evidence that HANDEL-ATMS can be used to analyze snowfall 529 

occurrence in the polar regions. 530 

The error statistics of the two estimation modules are reported in Table 56 in terms of bias, RMSE and the 531 

coefficient of determination R2, which is defined by Equation 6. 532 

𝑅2 = 1 −
𝑅𝑀𝑆𝐸2

𝑠𝑡𝑑2
 533 

(6) 534 

It is worth noticing that the biases are negligible for both modules while RMSE values are comparable to the light 535 

events recorded in the dataset. Moreover, as expected, RMSE and R2 values are respectively higher and lower for 536 

the SSR module than for the SWP module. In Figure 1011 the density scatterplots between the SWP and SSR 537 

values retrieved by HANDEL-ATMS and the 2CSP corresponding values are reported. For both modules, an 538 

overestimation can be observed for very light snowfall (SWP < 10−2 kg m−2 and SSR < 10−2 mm h−1), while there 539 

is a very good agreement for higher SWP and SSR values. In order to relate these results to the environmental 540 

conditions, Figure 1112 shows the dependence of HANDEL-ATMS snowfall estimation error statistics, as well 541 

ofas SWP and SSR, on TPW. The curves represent, for each 1-mm TPW bin, the mean 2-CSP2CSP SWP or SSR 542 

computed, the RMSE, and the relative bias (the ratio between the bias and the SWP/SSR mean value for each 543 

bin). As expected, TPW and snowfall intensity are strongly correlated.  An increase ofin the absolute RMSE can 544 

be observed as TPW increases, and it is larger than the SWP/SSR mean value for TPW < 8 mm. A similar behavior 545 

can be observed by analyzing the dependence of HANDEL-ATMS snowfall estimation error statistics on T2m (not 546 

shown).   A very moderate overestimation is observed for TPW < 8 mm and for lower SWP and SSR values (< 547 

0.1 mm/ h-1), with relative bias around 5%, (up to 8% only for extremely low TPW values and very low number 548 

of observations (, see Figure 7)),), while underestimation (relative bias up to -5%) is observed for higher TPW 549 

values and higher SWP and SSR values. Generally, light snowfall events are linked to the very cold/dry 550 

environmental conditions typical of high-latitude regions. So, the algorithm manages to estimate also the very 551 

light SWP and SSR typical of high latitudes but tends to slightly overestimate snowfall intensity in such 552 

conditions.  553 

From the analysis of Figure 7-1112, it can be concluded that HANDEL-ATMS has good detection capabilities 554 

(also for extremely light snowfall)), but it shows some limitations in correctly estimating its intensity, with slight 555 

overestimation of the very light snowfall typical of high latitudes. 556 

 557 

4.2 A Case Study: Greenland-2016/04/24 558 

The case study reported corresponds to the observation of a moderately light snowfall event over the central part 559 

of Greenland that occurred on 24 April 2016. ATMS overpass is between 14:51:23 UTC. and 14:57:47 UTC., 560 

while the CPR overpass is between 15:05:25 UTC. and 15:11:45 UTC., with a time difference of 14 minutes and 561 

2 seconds. This event presents several characteristics typical of high latitudes, such as light snowfall rate, dry and 562 

cold atmospheric conditions, and presence of a frozen background surface, a typical case of interest for the 563 

application of HANDEL-ATMS.  564 
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In Figure 1213 PESCA classification is reported. The entire territory of Greenland, except for a narrow area on 565 

the southwestern coast, is identified as a snow-covered surface; the PESCA identifies the Perennial Snow class in 566 

the central part of Greenland and along the CloudSat track, and the Polar Winter Snow class near the northern 567 

shoreline.  CloudSat overpasses the central part of the island, and the CPR track is along the central part of the 568 

ATMS swath.  569 

In Figure 1314 a synopsis of the event along the CPR track is reported showing T2m and TPW, the 2CSP SWP 570 

and SSR values, and the cross-section of CPR reflectivity, with the DARDAR supercooled water information 571 

superimposed (in magenta). Moreover, the PESCA surface classification, and the TBs of the main ATMS high-572 

frequency channels along the CloudSat track are also shown. The event is characterized by dry conditions (TPW 573 

< 5 mm) and T2m below 273 K, except over the coast. CPR observes a cloud system associated towith the snowfall 574 

event between 68° ° N and 76° ° N; DARDAR detects the presence of a supercooled water layer at the cloud top 575 

between 68° ° N and 72° ° N and indicates the presence of supercooled droplets embedded in the deeper cloud 576 

associated towith the more intense snowfall. According to the 2CSP product, a light shallow snowfall system is 577 

found in the inner part of the island while deeper, more intense snowfall, with a peak of intensity between 72° ° 578 

N and 76°N, is found near the shoreline.  For what concerns the associated ATMS observations, an increase of 579 

the 88 GHz and 165 GHz TBs is observed in correspondence with the supercooled water layer, while only a slight 580 

decrease of 165.5 and 183.3+31 ± 7 GHz TBs can be observed in coincidence with the snowfall intensity peak.  581 

In figure 12Figure 15 the maps of the TBobs at 165.5 GHz (top panel) and the ∆TBobs−sim at 165.5 GHz (bottom 582 

panel) are reported. In the top panel, it is possible to observe that, despite the snowfall event, there is not a clear 583 

TB scattering signal in the area where 2CSP detects snowfall (70° ° N- - 76° ° N, 40° ° W- - 70° ° W), instead a 584 

slight increase in the TBs can be observed in the area where DARDAR detects the supercooled water layer at the 585 

cloud top. The map of ∆TBobs−sim allows to observeshows an emission signal (∆TBobs−sim > 0) over the central part 586 

of the ATMS swath due to the combined effect of the emission by the supercooled liquid water layers at the cloud 587 

top, as evidenced by DARDAR),, (evidently exceeding the scattering signal of the weak and shallow snowfall), 588 

over a radiatively cold surface background. Only near the shoreline, the TBobsobserved TBs are slightly lower 589 

than the TBsimclear-sky simulated TBs (∆TBobs−sim < 0) due to the stronger scattering signal of the deeper snowfall 590 

system. In Figure 1516 the results of the HANDEL-ATMS four modules are reported. It is worth noting that both 591 

detection modules find snowfall in the central region of Greenland and near the northern coast. The estimated 592 

snowfall intensity for this event is generally low (SWP < 0.1 kg m−2 and SSR < 0.1 mm h−1) except over the 593 

western coast, where SWP reaches 0.5 kg m−2 and SSR reaches 1 mm h−1. It is worth noticing that HANDEL-594 

ATMS detects snowfall also where there is an emission signal (∆TBobs−sim > 0) and that discontinuities in snowfall 595 

retrievals are not observed in correspondence with surface class changes.  596 

Finally, a comparison between the HANDEL-ATMS and the 2CSP is reported in Figure 1617. There is a 597 

substantial agreement on the snowfall detection of the two products. It can be observed that HANDEL-ATMS 598 

tends to overestimate very light SWP and SSR in presence of the shallow system (2CSP SWP < 0.05 kg m-2 and 599 

SSR <0. 1 mm h-1, between 68° ° N and 72° ° N), consistently with what is shown in Figure 10, while there is a 600 

good agreement between 72° ° N and 76° ° N, where snowfall intensity increases.  601 

The analysis of this case study demonstrates that the algorithm can interpret the ambiguity of the 602 

emission/scattering signal often associated with snowfall events at high latitudes (as described in Section 4.1) and 603 

efficiently detect, and, to a less extent, quantify snowfall even in extreme cold and dry conditions. 604 

4.3 Comparison with SLALOM-CT 605 

SLALOM-CT has been introduced in Section 1. It presents some similarities with HANDEL-ATMS: it is based 606 

on an ANN approach and uses the CPR- 2CSP product as reference. On the other hand, substantial differences 607 

have to be highlighted: SLALOM-CT was designed to operate on a global scale, while HANDEL-ATMS has been 608 

developed specifically for the environmental conditions typical of high latitudes. Moreover, the predictor sets are 609 

different: in addition to TB observations, SLALOM-CT relies on several model -derived environmental 610 

parameters, while HANDEL-ATMS relies on differences between simulated clear-sky TBs, based on the dynamic 611 

estimation of the background surface emissivity (i.e., at the time of the satellite overpass), and observed TBs 612 

(ΔTBobs−sim), as described in Section 3. 613 

In Table 67 a comparison between the statistical scores of the detection performances of the two algorithms is 614 

reported for different environmental conditions. The comparison has been carried out considering the same 615 

elements of the ATMS-CPR coincidence dataset. It can be observed that the differences between the two algorithm 616 
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performances increase  as the environmental conditions become more extreme (i.e., lower T2m and TPW), with 617 

consistently better snowfall detection capabilities of HANDEL-ATMS than SLALOM-CT. Considering the 618 

working limits of HANDEL-ATMS, POD increases by 2 % and FAR decreases by 8 %, while for very cold/dry 619 

conditions (T2m < 250 K, TPW < 5 mm), POD increases by 7 % and FAR decreases by 16 %; for extremely 620 

dry/cold conditions (T2m < 240 K, TPW < 3 mm), typical of the inner part of Greenland and Antarctica, POD 621 

increases by 18 % and FAR decreases by 16 %. 622 

5 Conclusions and Future Perspectives 623 

In this paper, a new snowfall retrieval algorithm, the High lAtitude sNow Detection and Estimation aLgorithm 624 

for ATMS (HANDEL-ATMS), is described. The algorithm is based on machine learning techniques trained with 625 

CPR 2CSP snowfall product and it is designed specifically for the cold and dry environmental conditions typical 626 

of high -latitude regions.  The driving and innovative principle in the algorithm development is the exploitation 627 

of the full range of ATMS channel frequencies to characterize the background surface radiative properties at the 628 

time of the overpass to be able to better isolate and interpret the snowfall-related contribution to the measured 629 

multi-channel upwelling radiation. A similar approach has been used by Zhao &Weng, 2002; however, their 630 

application was limited to non-scattering surfaces and was based on empirical relationships.  This approach is 631 

proven to be effective for snowfall detection and quantification at high latitudes, particularly in presence of a 632 

frozen (snow-covered land or sea ice) background surface, also compared to other state-of-the -art machine 633 

learning -based methods. 634 

HANDEL-ATMS can detect snowfall at high latitudes in good agreement with CPR. The estimation modules tend 635 

to slightly overestimate the intensity of light snowfall events (SWP < 10−2 kg m−2), with mean relative bias < 5% 636 

for SSR < 0.1 mm/ h-1, but it shows good accuracy for more intense snowfall events (SWP > 10−2 kg m−2, SWP < 637 

1 kg m−2). It is worth noting, however, that the uncertainty associated with the surface emissivity estimation in 638 

some conditions affects the capabilities of HANDEL-ATMS to correctly interpret the snowfall signature. Such 639 

uncertainty propagates in the RTM simulation of clear-sky TBs used as input in the algorithm. Despite these 640 

limitations, it is worth noticing that the development of an algorithm capable of retrieving snowfall at high 641 

latitudes with good accuracy is an important development in the climate science field. The possibility to exploit 642 

the high temporal sampling of the near-polar operational satellites carrying ATMS radiometers allows to achieve 643 

full coverage of the polar regions. Moreover, the future European MetOp Second Generation (MetOp-SG) 644 

mission, with the launch of the Sat-A Microwave Sounder (MWS), with characteristics very similar to ATMS, 645 

will soon provide additional coverage to improve global snowfall monitoring. The HANDEL-ATMS 646 

methodology will be adapted to be able to exploit MWS measurements in the future. The capability to estimate 647 

snowfall at high temporal resolution is ancillary to the development of a snowfall monitoring system for the high 648 

latitudes and to the analysis of the snowfall climatology in these areas, with possible applications in climate change 649 

studies in the polar regions.  650 

Future research will address some open issues. The estimation of the surface emissivity and the simulated clear-651 

sky multi-channel TBs needs to be further improved, either by considering other predictor sets or by using a 652 

different technique for the emissivity spectra definition including a more advanced RTM. Another important 653 

aspect is the quantification of the error linked to the background surface emissivity estimation on the snowfall 654 

detection capabilities. This would be also useful for the development of modules for mountainous areas, which 655 

have not been considered in the current version of the algorithm. Moreover, the effect on the algorithm snowfall 656 

detection capabilities of the uncertainties linked to the model-derived environmental variables (e.g., temperature 657 

and water vapor profile), which are used in the clear-sky TB simulations, should be investigated. The use of the 658 

ATMS water vapor (183 GHz band) and temperature (50 GHz band) sounding channels to characterize the 659 

atmospheric conditions at the time of the overpass in order to complement or avoid the use of model-derived data 660 

is another subject of future research. Moreover, the development of a separate supercooled liquid water detection 661 

module will be also evaluated, similarly to what is done in other PMW snowfall detection and estimation 662 

algorithms (Rysman et al, 2018, Sanò et al, 2022). Such information can be exploited to improve snowfall 663 

detection and estimation capabilities since the emission by the cloud droplets in dry conditions tends to mask the 664 

snowfall scattering signal (see Panegrossi et al, 2017, Panegrossi et al, 2022), and adds larger uncertainties in the 665 

CPR snowfall products used as reference (Battaglia & Panegrossi, 2021). Moreover, recent studies have 666 

highlighted that TBs correlate more strongly with lagged surface precipitation (with a time lag of 30-60 min for 667 

snowfall) than the simultaneous precipitation rate (see You et al, 2019). Therefore, an analysis based on a 668 
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coincident dataset characterized by different time lags will be conducted. The results of this analysis will be 669 

compared with HANDEL-ATMS performances in order to identify a way to exploit this information towards the 670 

improvement of SSR detection and estimation. Finally, since the algorithm has been developed only for specific 671 

environmental conditions typical mostly of high latitudes an integration with other approaches, such as that of the 672 

SLALOM-CT, designed for global estimation of snowfall, could be considered in the future to improve global 673 

snowfall monitoring based on ATMS and on future cross-track scanning radiometers. 674 
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 917 
Figure 1: HANDEL-ATMS workflow diagram (please, refer to the text for details)). 918 
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 920 
Figure 2: Sea Ice detection representation on a 23 GHz TB-T2m Plane. The color represents the mean 921 
AutoSnow sea ice percentage within each bin (left) and the observation occurrence (right). The green (left) 922 
and red (right) lines represent the discriminant Equation (Equation 1) between sea ice and ocean. 923 

 924 
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 925 
Figure 3: Sea Ice detection and classification: relationship between 31 GHz Pseudo-Emissivity (y-axis) and 23 926 
GHz Pseudo-Emissivity (x-axis). The color represents the mean AutoSnow sea ice percentage within each bin 927 
(top panel), the observation occurrence (middle panel), and the PESCA classification (Multi-Layer (ML), 928 
Broken and New sea iceSea Ice) with the Nearest Neighbor markers (bottom panel). The green continuous 929 
lines at the top and the center panels represent the bisector. 930 

 931 
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 932 
Figure 4: Emissivity Spectra for PESCA Sea Classes. The continuous lines represent the mean values of the 933 
emissivity while the shaded areas represent the standard deviation calculated at the ATMS reference 934 
frequencies (23.8 GHz, 31.4 GHz, 50.3 GHz, 88.2 GHz, 165.5 GHz, and 183.3 ±7 GHz) represented by the dots. 935 

 936 
Figure 5: Same as Figure 4 but for PESCA Land Classes. 937 
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 939 
Figure 6: Snowfall Signature at 165.5 GHz as a function of SWP for five PESCA surface classes. The red line 940 
and shaded areas represent the mean values and standard deviations of ΔTBobs−sim (i.e., the snowfall signature) 941 
while the blue lines are centered on the estimated bias and standard deviation of ΔTBobs−sim in clear sky 942 
conditions for the corresponding PESCA surface class. 943 
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 944 

Figure 7: Dependence of HANDEL-ATMS SWP and SSR detection statistical scores on TPW. calculated for 945 
the test dataset. Each star represents the statistical score value for different 1-mm t bin of TPW. The left y-946 
axis reports POD, FAR and HSS values, while the right y-axis reports the number of total and snowfall 947 
observations in the validationtest dataset. 948 
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 952 

Figure 8: Same as Figure 7 but for T2m bins. 953 
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Figure 9955 

 956 

Figure 9: Dependence of HANDEL-ATMS SWP and SSR POD on SWP/SSR values. Each star represents the 957 
statistical score value for different SWP/SSR bins. The left y-axis reports POD values, while the right y-axis 958 
reports the number of snowfall observations in the test dataset. Only POD has been reported because the 959 
index has been calculated for observations where CPR 2CSP detects the presence of SWP/SSR. 960 
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 962 
Figure 10: Same as Figure 7 but for PESCA surface classes. Each star represents the value of the statistical 963 
score for each surface category. 964 
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 966 
 967 

 968 
 969 

Figure 1011: 2D Histogram reporting HANDEL-ATMS SWP (left) and SSR (right) estimation (y-axis) and 970 
2CSP estimation (x-axis). The colorbar represents the number of observations for each HANDEL- 971 
ATMS/2CSP bin. (test dataset). The violet dashed line represents the bisector. 972 
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 977 
 978 

Figure 1112: Dependence of HANDEL-ATMS SWP and SSR estimation on TPW calculated for the test 979 
dataset. Each star represents the value of the statistical score for different 1-mm TPW bins. The left y-axis 980 
reports the RMSE and the mean intensity SWP and SSR value for each 1-mm TPW bin, while the right y-981 
axis reports the relative bias, calculated as the ratio between the bias and the SWP/SSR mean value for each 982 
bin. 983 
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 984 
 985 

Figure 1213:  Greenland - 2016/04/24 - ATMS overpass is between 14:54 UTC and 14:58 UTC, while the CPR 986 
overpass is between 15:05 UTC and 15:12 UTC.  Map of the PESCA Background Surface Classification. The 987 
green dotted line represents the CloudSat track. 988 
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 991 

Figure 1314: Greenland - 2016/04/24 - Synopsis along CloudSat Track. First panel: ECMWF TPW and T2m 992 
values along the CloudSat track. Second panel: the 2CSP SWP (left) and the SSR (right), and the PESCA 993 
classification along CloudSat track. Third panel: CPR reflectivity (values are reported in the colorbar on the 994 
right), and supercooled water droplets detected by DARDAR (magenta points), Digital Elevation Model 995 
(brown line) and the ECMWF Freezing Level (red line) along CloudSat track. Bottom panel: the ATMS TBs 996 
of the high-frequency channels (88 GHz, 166 GHz, 183+3 GHz, 183+7 GHz) along CloudSat track. 997 
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 1004 
Figure 1415: Greenland - 2016/04/24 - 165 GHz Channel measured TB (TBobs) (top panel) and the deviation 1005 
of TBobs from the simulated clear-sky TBs (∆TBobs−sim) (bottom panel). The red dotted line (top panel) and the 1006 
green dotted line (bottom panel) represent the CloudSat track. 1007 
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  1011 
Figure 1516:  Greenland - 2016/04/24 - Maps of the HANDEL-ATMS module’s output: the SWP detection 1012 
mask (top panel), the estimated SWP (kg m-2) (second panel), the SSR detection mask (third panel), the 1013 
estimated SSR (mm h-1) (bottom panel). The green dotted lines (bottom panel) represent the CloudSat track. 1014 
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 1018 

 1019 

 1020 
Figure 1617: Greenland - 2016/04/24 - Comparison between CPR 2C-SNOW-PROFILE and HANDEL-1021 
ATMS SWP and SSR estimates along the CloudSat track. 1022 
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 1027 

 1028 

 OCEAN MODULE LAND MODULE 

POD 0.99 0.98 

FAR 0.01 0.01 

HSS 0.98 0.72 

 1029 
Table 1: PESCA Overall Statistical Scores. 1030 
 1031 

 1032 

 1033 

 1034 

 1035 

 1036 

 1037 

 1038 

 1039 

 1040 

 1041 

 1042 

 1043 

 1044 

Class TPW (mm) T2m 
(K) 

# 

obs 

% 

SWP 
obs 

% SSR 
obs 

SWP 
(kg m-2) 

SSR 
(mm h-1) 

Ocean 6.2 273 3.9*105 79 64 0.046 0.071 

New Sea Ice 3.2 255 2.1*105 38 38 0.033 0.050 

Broken Sea Ice 5.2 266 1.4*105 57 57 0.044 0.073 

Multilayer Sea Ice 4.5 260 9.9*104 43 43 0.033 0.051 

 Land 5.3 270 2.8*104 43 41 0.043 0.068 

Perennial Snow 1.6 248 3.6*105 31 31 0.022 0.035 

Winter Polar Snow 2.1 245 6.0*104 32 32 0.033 0.048 

Deep Dry Snow 3.8 261 1.1*105 50 50 0.040 0.066 

Thin Snow 4.5 267 1.8*104 54 53 0.041 0.070 

Coast 4.0 259 3.1*105 47 46 0.043 0.068 

Table 2: Environmental Characteristics for each PESCA class (test dataset):  the number of occurrences, the 1045 
mean TPW and T2m value, the percentage of   SWP/SSR observations  (over the total occurrences) and the 1046 
mean SWP and SSR values are shown. 1047 

Class n clusters accuracy 165.5 GHz 

RMSE (K) 

165.5 GHz  

NRMSE% 

Predictor Set 

Ocean 2 0.9 3.37 44  Psurf - TPW - T2m 
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New Sea Ice 3 0.74 4.52 48 SI - T2m - Psurf- ratio - jd - pem23 

Broken Sea Ice 16 0.56 5.34 41 pem23 - TPW - SI - Psurf   

Multilayer Sea Ice 9 0.53 4.38 34 pem31 - SI - TPW - T2m - pem23 - Psurf 

 Land 2 0.87 4.57 52 DEM - jd - TPW 

Perennial Snow 8 0.65 5.98 54 pem23 - jd - SI - pem31 - lat 

Winter Polar Snow 5 0.76 5.87 37 pem31 -SI - lat -Hsol - pem31 - jd 

Deep Dry Snow 15 0.34 6.77 45 SI - pem31 - ratio    

Thin Snow 3 0.78 6.03 39 SI -ratio - lat 

Coast 13 0.43 6.80 44 SI - pem23 - pem31 - DEM - T2m  

Table 23: Classification Refinement - Parameters. 1048 
 1049 

 1050 

 1051 

 1052 

 1053 

 1054 

Predictor Set  POD FAR HSS 

∆TBobs−sim+ ancillary parameters 0.75 0.29 0.48 

TBobs+ ancillary parameters 0.81 0.18 0.65 

TBobs+environmental var+ 

ancillary parameters 

0.82 0.17 0.68 

TBobs+∆TBobs−sim+ ancillary 

parameters 

0.84 0.16 0.69 

 Table 34: HANDEL-ATMS SSR Detection Performance: Statistical scores for different Predictor Sets. The statistical 1055 
scores have been calculated for the test dataset. 1056 
 1057 
 1058 

 POD FAR HSS 

SWP 0.85 0.15 0.70 

SSR 0.84 0.16 0.69 

Table 45: HANDEL-ATMS detection Performance - SWP and SSR Detection Modules Statistical Scores. The statistical 1059 
scores have been calculated for the test dataset. 1060 
 1061 

 1062 

 RMSE bias R2 

SWP (kg m-2) 0.047 0.001 0.72 

SSR (mm h-1) 0.079 0.002 0.61 

Table 56: HANDEL-ATMS Estimation Performance - SWP and SSR Estimation Module Error Statistics. The error 1063 
statistics have been calculated for the test dataset. 1064 
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  1065 
 1066 

 POD FAR 

 SLALOM-CT HANDEL-ATMS SLALOM-CT HANDEL-ATMS 

TPW<10 mm T2m<280 K (*) 0.82 0.84 0.19 0.16 

TPW<5 mm T2m<250 K 0.64 0.68 0.28 0.23 

TPW<3 mm T2m<240 K 0.45 0.54 0.33 0.28 

Table 67: Comparison between HANDEL-ATMS and SLALOM-CT detection Performances for Different 1067 
Environmental Conditions (* HANDEL-ATMS working limits). 1068 


