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Abstract. Snowfall detection and quantification are challenging tasks in the Earth system science field. Ground-8 

based instruments have limited spatial coverage and are scarce or absent at high latitudes. Therefore, the 9 

development of satellite-based snowfall retrieval methods is necessary for the global monitoring of snowfall.  10 

Passive Microwave (PMW) sensors can be exploited for snowfall quantification purposes because their 11 

measurements in the high-frequency channels (> 80 GHz) respond to snowfall microphysics.  However, the highly 12 

non-linear PMW multichannel response to snowfall, the weakness of snowfall signature and the contamination by 13 

the background surface emission/scattering signal make snowfall retrieval very difficult. This phenomenon is 14 

particularly evident at high latitudes, where light snowfall events in extremely cold and dry environmental 15 

conditions are predominant. Machine Learning (ML) techniques have been demonstrated to be very suitable to 16 

handle the complex PMW multichannel relationship to snowfall. Operational microwave sounders on near-polar 17 

orbit satellites such as the Advanced Technology Microwave Sounder (ATMS), and the European MetOp-SG 18 

Microwave Sounder in the future, offer a very good coverage at high latitudes. Moreover, their wide range of 19 

channel frequencies (from 23 GHz to 190 GHz), allows for the dynamic radiometric characterization of the surface 20 

at the time of the overpass along with the exploitation of the high-frequency channels for snowfall retrieval. The 21 

paper describes the High lAtitude sNow Detection and Estimation aLgorithm for ATMS (HANDEL-ATMS), a 22 

new machine learning-based snowfall retrieval algorithm developed specifically for high latitude environmental 23 

conditions and based on the ATMS observations. 24 

HANDEL-ATMS is based on the use of an observational dataset in the training phase, where each ATMS 25 

multichannel observation is associated with coincident (in time and space) CloudSat Cloud Profiling Radar (CPR) 26 

vertical snow profile and surface snowfall rate. The main novelty of the approach is the radiometric 27 

characterization of the background surface (including snow covered land and sea ice) at the time of the overpass 28 

to derive multi-channel surface emissivities and clear-sky contribution to be used in the snowfall retrieval process. 29 

The snowfall retrieval is based on four different artificial neural networks for snow water path (SWP) and surface 30 

snowfall rate (SSR) detection and retrieval HANDEL-ATMS shows very good detection capabilities - POD = 31 

0.83, FAR = 0.18, and HSS = 0.68 for the SSR detection module. Estimation error statistics show a good 32 

agreement with CPR snowfall products for SSR > 10-2 mm h-1 (RMSE 0.08 mm h -1, bias=0,02 mm h-1). The 33 

analysis of the results for an independent CPR dataset and of selected snowfall events evidence the unique 34 

capability of HANDEL-ATMS to detect and estimate SWP and SSR also in presence of extreme cold and dry 35 

environmental conditions typical of high latitudes. 36 

1 Introduction 37 

Snowfall retrieval is one important topic in the atmospheric science field. On a global scale, snowfall represents 38 

only 5 % of the total global precipitation but it is predominant above 60-70 ° N/S (see Levizzani et al, 2011). In 39 

recent years, several studies have highlighted the strong influence of global warming on snowfall distribution and 40 

regimes, especially at high latitudes (see Liu et al, 2009, Liu et al, 2012, Bintanja & Selten, 2014, Vihma et al, 41 

2015). However, global snowfall quantification is a challenging topic in weather sciences. Ground-based 42 

instruments such as raingauges or snowgauges provide only punctual measurements which can not fully capture 43 

the spatial variability of precipitation phenomena; moreover, the variability of snowflake shape and density has a 44 

strong influence on their fall speed and trajectories and therefore gauge-based measurements of falling snow result 45 

to be less accurate than for rain (see Skofronick-Jackson et al, 2015). Weather radars can provide areal 46 

measurements of precipitation - the rate estimation is based on the conversion of the measured backscattered 47 

radiation to precipitating hydrometeors content - but such operation presents some technical limitations (see Kidd 48 
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& Huffman, 2011). Finally, most of the regions where snowfall is predominant - such as Greenland, Siberia, 49 

Canada, and Antarctica - are uninhabited or otherwise sparsely populated areas where weather observation 50 

networks are very scarce or totally absent. Therefore, the development of satellite-based methods for snowfall 51 

retrieval is necessary for global monitoring of snowfall. Passive Microwave (PMW) sensors on board polar 52 

orbiting satellites can be exploited for snowfall detection purposes because the microwave (MW) signal is directly 53 

responsive to the spatial distribution and microphysics properties of precipitation-sized hydrometeors in the 54 

clouds; at the same time, the use of PMW sensors guarantees a high spatial coverage and high temporal resolution 55 

(see Kidd & Huffman, 2011).  56 

PMW snowfall detection and quantification is typically based on the ability to interpret the snowfall scattering 57 

signature in the high frequency channels (> 90 GHz), which respond more effectively to ice microphysics and are 58 

less prone to surface effects than low frequency channels, and to distinguish it from the clear-sky (surface and 59 

atmosphere) contribution (e.g., Panegrossi et al, 2017). However, several factors make the PMW snowfall signal 60 

ambiguous and the relationship between multichannel measurements and surface snowfall intensity highly non-61 

linear, especially in extremely cold/dry environmental conditions (see Panegrossi et al, 2022). The snowfall 62 

scattering signal is relatively weak and is highly dependent on the complex microphysical properties of snowflakes 63 

(Kim et al, 2008, Kulie et al, 2010, Kongoli et al, 2015), it is often masked by supercooled liquid water emission 64 

signal (Wang et al, 2013, Battaglia & Delanoe, 2013, Panegrossi et al, 2017, Rysman et al, 2018, Battaglia & 65 

Panegrossi, 2020, Panegrossi et al, 2022), and can be contaminated by the extremely variable background surface 66 

emissivity (Liu and Seo, 2013, Takbiri et al., 2019, Rahimi et al, 2017), especially in cold and dry conditions 67 

typical of the high latitude regions (Camplani et al, 2021). In this context, the availability of the latest generation 68 

microwave radiometers - such as the conically-scanning radiometer GPM Microwave Imager (GMI) and the cross-69 

track scanning radiometer Advanced Technology Microwave Sensor (ATMS) - whose channels cover a wide 70 

range of frequencies - offers new possibilities for global snowfall monitoring. The multi-channel PMW 71 

observations can be used for both a dynamic radiometric characterization of the background surface - using the 72 

low-frequency channels (< 90 GHz) - and for the detection and the estimation of the snowfall using the high-73 

frequency channels (> 90 GHz) (see Panegrossi et al, 2022).  74 

The PMW capability to characterize physically and radiometrically the background surface varies from sea to 75 

land, especially for the identification of cold/frozen surfaces. For what concerns the ocean, sea ice detection using 76 

PMW observations has been a well-documented topic in the remote sensing science field since the 70s. This is 77 

due to the strong contrast between sea ice (≈ 0.9) and open water (≈ 0.5) emissivity values at the MW low-78 

frequency range (~19 GHz) (see Comiso, 1983). Other studies highlighted the ability to discriminate between 79 

different types of ice using a set of low-frequency window channels, because the differences between the 80 

emissivities of the different types of sea ice increase with increasing frequency; in particular, at higher frequencies 81 

(30-50 GHz) the contrast between the emissivity of “new” ice and “old” ice increases, with a decrease of the 82 

emissivity at higher frequencies for “older” sea ice (see Comiso, 1983, Ulaby & Long, 2014). Moreover, it has 83 

been observed that the simultaneous presence of open water and sea ice causes a decrease in the low-frequency 84 

channel emissivity; the observed emissivity can be considered as a linear combination of the emissivity spectra of 85 

sea ice and open water (see Ulaby & Long, 2014). For what concerns continental areas, the detection of snow-86 

covered land surfaces using MW measurements results to be more difficult. In dry conditions, a snowpack acts as 87 

a volume scatterer; the scattering effect is dependent on the grain size and shape and on the depth of the snowpack 88 

(see Clifford, 2010). However, the presence of liquid water can mask the scattering signature (see Mätzler & 89 

Hüppi, 1989). At the same time, large areas of Greenland and Antarctica, while covered by dry snowpacks 90 

throughout the year, do not show a significant difference between the two ATMS low frequency channels. Finally, 91 

some snow-free areas, such as rocky mountains and cold deserts, present a scattering signature very similar to that 92 

of the snowpack (see Grody & Basist, 1996). Therefore, the detection of snow-covered areas is very complex. A 93 

set of several tests, each of which identifies snowpacks characterized by different physical and radiometric 94 

characteristics, may be used. 95 

This paper describes the development of a machine learning-based algorithm for snowfall retrieval (the High 96 

lAtitude sNowfall Detection and Estimation aLgorithm for ATMS, HANDEL-ATMS), exploiting ATMS 97 

radiometer multi-channel measurements and using the CloudSat Cloud Profiling Radar (CPR) snowfall products 98 

as reference. The algorithm has been developed focusing on the typical conditions of high latitude regions - low 99 

humidity, low temperature, presence of snowpack on land or sea ice over ocean, and light snowfall intensity.  100 
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The main novelty of the approach is the exploitation of the ATMS wide range of channels (from 22 GHz to 183 101 

GHz) to obtain the dynamic radiometric characterization of the background surface at the time of the overpass.  102 

The derived surface emissivities are used to infer the clear-sky contribution to the measured TBs in the high 103 

frequency channels in the snowfall retrieval process. This approach is similar to the work of Zhao and Weng, 104 

2002, for AMSU observations limited to non-scattering surfaces (i.e., ocean and vegetated land), however the 105 

application to surfaces with a very complex and time-varying emissivity (such as snow cover and sea ice) required 106 

a far-away more advanced algorithm taking advantage of machine learning techniques.  Moreover, the algorithm 107 

is based on the exploitation of an observational dataset where each ATMS multichannel observation is associated 108 

with coincident (in time and space) CloudSat CPR vertical snow profile and surface snowfall rate (hereafter 109 

ATMS-CPR coincidence dataset). 110 

Several snowfall retrieval algorithms for cross-track scanning radiometers have evolved in the last 20 years 111 

starting from the Advanced Microwave Sounder Unit-B (AMSU-B) (Zhao and Weng, 2002, Kongoli et al, 2003, 112 

Skofronick-Jackson et al, 2004, Noh et al, 2009, Liu and Seo 2013), and Microwave Humidity Sounder (MHS) 113 

(see Liu & Seo, 2013, Edel et al, 2020), and evolving to ATMS (Kongoli et al, 2015, Meng et al, 2017, Kongoli 114 

et al, 2018, You et al, 2022, Sanò et al, 2022). Some of them are based on radiative transfer simulations of observed 115 

snowfall events (Kongoli et al, 2003, Skofronick-Jackson et al, 2004, Kim et al, 2008), or on in-situ data (see 116 

Kongoli et al, 2015, Meng et al, 2017, Kongoli et al, 2018), others on CPR observations (Edel et al, 2020, You et 117 

al, 2022, Sanò et al, 2022), or a combination of them (Noh et al, 2009, Liu & Seo, 2013). In the last five years, 118 

there has been an increasing use of machine learning (ML) approaches trained on CPR-based coincidence datasets. 119 

These approaches have proven to be very effective for snowfall retrieval. On one side, ML techniques are suitable 120 

to handle the complex, non-linear PMW multichannel response to snowfall (e.g., Rysman et al, 2018, Edel et al, 121 

2020, Sanò et al, 2022). On the other hand, the use of CPR-based datasets overcomes some of the limitations 122 

deriving from the use of cloud-radiation model simulations, which are particularly challenging for snowfall events. 123 

However, some limitations of the radar product used as a reference and issues related to the spatial and temporal 124 

matching between the CPR and the PMW radiometer measurements introduce some uncertainty. Moreover, the 125 

2CSP product is based on assumptions on snow microphysics, uses optimal estimation to retrieve snow 126 

parameters, and uses a simplified radar reflectivity equation and is affected by CloudSat CPR limitations as 127 

outlined in Battaglia & Panegrossi, 2020. 128 

For what concerns ATMS, the ML-based Snow retrievaL ALgorithm fOr gpM–Cross Track (SLALOM-CT) 129 

(Sanò et al, 2022) has been developed within the EUMETSAT Satellite APplication Facility for Hydrology (H 130 

SAF) in preparation for the launch of the EPS-SG Microwave Sounder (MWS). Similarly to HANDEL-ATMS, it 131 

is trained on a ATMS-CPR coincidence dataset. SLALOM-CT is the evolution for cross-track scanning 132 

radiometers of the Snow retrievaL ALgorithm fOr GMI (SLALOM) (Rysman et al, 2018, Rysman et al, 2019) 133 

which was the first ML algorithm for snowfall detection and retrieval for GMI trained and tested on GMI-CPR 134 

coincident observations made available in the NASA GPM-CloudSat coincidence dataset (Turk et al, 2021a). One 135 

of the novelties in the SLALOM (SLALOM-CT) approach is the use of the GMI (ATMS) low-frequency channels 136 

to better constrain the snowfall retrieval to the characteristics of the surface at the time of the overpass (Turk et 137 

al, 2021b). SLALOM-CT is based on a modular scheme, i.e., four separate modules are used for snowfall 138 

detection, supercooled water layer detection, snow water path (SWP) and surface snowfall rate (SSR) estimate. 139 

The predictor set is composed of the ATMS TBs and some environmental variables (T2m, TPW, and principal 140 

components derived from temperature and humidity profiles).  141 

However, none of the algorithms mentioned here were tailored specifically to the extreme conditions typical of 142 

high latitudes. The present work has the aim to develop an algorithm for snowfall detection and estimation by 143 

exploiting the large frequency range typical of the last generation radiometers and to obtain a dynamic radiometric 144 

characterization of the background surface at the time of the satellite overpass in order to highlight the complex 145 

relationship between upwelling radiation and snowfall signature, which makes the detection very difficult in the 146 

typical conditions of the high latitudes. 147 

This article is organized as follows: Section 2 provides background information on ATMS and CPR, on the 148 

methodology used to build the coincidence dataset and on the machine learning approaches used to develop the 149 

algorithm. In Section 3 the algorithm structure is described. In Section 4 the overall performance scores are 150 

reported and analyzed; a case study is analyzed and a comparison with SLALOM-CT is reported. Section 5 is 151 

dedicated to the summary of the main results and to the conclusions.  152 
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2. Instruments and methods 153 

2.1 Advanced Technology Microwave Sounder (ATMS) 154 

ATMS is a total power cross-track scanning radiometer within 52.7° off the nadir direction. It has a total of 22 155 

channels with the first 16 channels primarily used for temperature sounding from the surface to about 1 hPa (45 156 

km) and the remaining channels used for water vapor sounding in the troposphere from the surface to about 200 157 

hPa (10 km), and for cloud properties and precipitation retrieval. There are two receiving antennas: one serving 158 

channels 1–15 below 60 GHz, and the other for channels above 60 GHz. The beamwidth changes with frequency 159 

and is 5.2° for channels 1–2 (23.8–31.4 GHz), 2.2° for channels 3–16 (50.3–57.29 and 88.2 GHz), and 1.1° for 160 

channels 17–22 (165.5–183.3 GHz). The corresponding nadir resolutions are 74.78, 31.64, and 15.82 km, 161 

respectively. The outmost field of view (FOV) sizes are 323.1 km × 141.8 km (cross-track × along-track), 136.7 162 

km × 60.0 km, and 68.4 km × 30.0 km, respectively (see Weng et al, 2012). ATMS is currently carried by three 163 

near-polar orbiting satellites, Suomi National Polar-orbiting Partnership (SNPP) NOAA-20, and NOAA-21 164 

providing global coverage including polar regions. Each satellite revisiting time is equal to 12 hours at the equator, 165 

but drops to 100 minutes over the polar regions, ensuring a very high temporal resolution for the research area of 166 

interest in this work. Moreover, the operational nature of the mission guarantees observations for the next decades. 167 

It is worth noticing that the polarization of ATMS channels is not defined as vertical or horizontal, but as “Quasi-168 

Vertical'' or “Quasi-Horizontal”. The “Quasi” prefix is used to indicate that ATMS (and any other cross-track 169 

scanner) measures vertical or horizontal polarization only when looking at nadir and a mixture of V and H 170 

polarization for off-nadir scan angles. 171 

2.2 Cloud Profiling Radar (CPR) 172 

The CPR is a 94 GHz nadir-looking radar onboard CloudSat. CloudSat was launched on April 28, 2006; the W-173 

band (94 GHz) Cloud Profiling Radar (CPR) operations began on June 2, 2006. CPR has been acquiring the first-174 

ever continuous global time series of vertical cloud structures and vertical profiles of cloud liquid and ice water 175 

content with a 485-m vertical resolution and a 1.4-km antenna 3-dB footprint. The reference CloudSat snowfall 176 

product is the 2C-Snow-Profile (2CSP) product (Version 5 is used in this work). It provides estimates of snowfall 177 

characteristics for each observed profile. In particular, it provides an estimate of the Snow Water Path (SWP), i. 178 

e., the total snow water content integrated over the atmospheric column, and of the Surface Snowfall Rate (SSR) 179 

(see Stephens et al, 2008). SWP is estimated also when there is no snowfall at the ground level, therefore, the 180 

presence of SWP is not always linked to the SSR, especially in warmer near-surface conditions (see Wood & 181 

L’Ecuyer, 2018). 2CSP has several limitations, such as the contamination of the signal in the lowest 1000 - 1500 182 

m of the profile due to ground-clutter, the underestimation of the heavy snowfall, due to attenuation of the radar 183 

signal in these conditions, and the limited temporal sampling (although it is higher in the polar regions), and the 184 

day-only operation mode since 2011, which limits its use during the winter seasons (see Milani and Wood, 2021, 185 

Panegrossi et al, 2022). However, 2CSP has been demonstrated to be more accurate than GPM Dual-frequency 186 

Precipitation Radar (DPR) snowfall products (see Casella et al, 2017) and in good agreement with estimates 187 

obtained by ground-based radars (e.g., Mroz et al, 2021), although it is affected by underestimation for medium-188 

heavy snowfall events. Moreover, the polar orbit and the W-band high sensitivity make CPR suitable for snowfall 189 

monitoring at higher latitudes (as demonstrated in several studies, Kulie et al, 2016, Milani et al, 2018) typically 190 

characterized by light/moderate intensity (Beranghi et al, 2016).  191 

2.3 ATMS-CPR Coincidence Dataset 192 

The present study is based on a coincidence dataset between CPR and SNPP ATMS observations between January 193 

2014 and August 2016. The same dataset has been used for the development of SLALOM-CT (Sanò et al, 2022). 194 

Each coincidence comes from observations from CloudSat CPR and ATMS - onboard SNPP - within a maximum 195 

15-minute time window. Moreover, the elements in the dataset have been selected by removing all corrupted data 196 

and by applying an additional filter based on the minimum distance between CPR and ATMS IFOV center which 197 

(22 km).  The zonal distribution of the coincidences is due to the orbital geometry of CloudSat and SNPP, which 198 

are both sun-synchronous with a relatively small difference in the satellite height (i.e., about 689 km and 833 km 199 

for CloudSat and SNPP respectively). Therefore, the coincidence dataset is built from longer orbit fragments 200 

(often semi-orbits) and by a very large number of elements near the poles. There is an asymmetry in the CPR 201 

sampling between the Northern and the Southern hemisphere that can be observed in the dataset due to the CPR 202 

daytime-only mode operation since 2011, which influences mostly the acquisitions in the Southern Polar region 203 

(Milani and Wood, 2021). 204 
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The database has been built considering the horizontal resolution of the high-frequency channels of ATMS. The 205 

CPR snowfall product used as reference is the 2CSP (V5). Some model-derived variables, specifically Total 206 

Precipitable Water (TPW), the 2-m Temperature (T2m), the Skin Temperature, the freezing level height and the 207 

temperature and humidity profiles, have been added to the dataset to be used as ancillary parameters.  Both 2D 208 

and 3D environmental variables have been obtained from the European Center Medium Weather Forecast 209 

(ECMWF). In particular, they are obtained from the CPR ECMWF-AUX product where the set of ancillary 210 

ECMWF atmospheric state variable data is associated with each CloudSat CPR bin (the product is described by 211 

Partain, 2022). Moreover, a cloud-cover fraction index, which indicates the fraction of CPR observations where 212 

cloud is observed on the total CPR observations within each ATMS pixel, is added to the dataset. 213 

Information about the presence of supercooled water is added in the coincidence dataset to be used towards the 214 

correct interpretation of the snowfall signal in presence of supercooled water layers.  The supercooled water 215 

information has been extracted from the DARDAR product (see DARDAR). DARDAR, which stands for 216 

raDAR+liDAR, combines CPR radar and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar 217 

observations, onboard Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, 218 

and estimates both the cloud water phase and the ice water content and ice particle effective radius (see Battaglia 219 

& Delanoë, 2013, Ceccaldi et al, 2013). In particular, the coincidence dataset includes an index indicating the 220 

presence of supercooled cloud liquid water within each ATMS pixel, calculated as the fraction of DARDAR 221 

observations where supercooled water within and on the top of the cloud is observed to the total DARDAR 222 

observations within each pixel.  223 

The association of ATMS TBs and CPR products has been done by averaging the CPR snow products with a 224 

Gaussian function approximating the ATMS high-frequency antenna pattern (varying with the scan angle). It is 225 

worth noting, however, that the ATMS IFOV is under-sampled by the narrow swath of the CPR (see Sanò et al, 226 

2022 for details). Moreover, it is worth noting that CPR 2CSP product limitations for snowfall detection and 227 

estimation (see Section 2.2) might affect the ATMS-based snowfall estimates. 228 

In this work, the dataset has been filtered based on humidity (TPW < 10 mm), temperature (T2m <280 K) and 229 

elevation conditions (the working limits of the PESCA algorithm, see Camplani et al, 2021) leading to a good 230 

representation of the higher latitudes with 80 % of the dataset elements located above 60°N/S. The dataset is made 231 

of 2,14*10 6 elements, including 1,07*10 6 elements with falling snow (2CSP SWP > 0 kg m-2) and 9,99*10 5 with 232 

snowfall at the surface (2CSP SSR > 0 mm h-1). The training and test phases have been conducted by splitting 233 

randomly the dataset, with ⅓ of the elements in the training and ⅔ of the elements in the test dataset. 234 

2.4 Machine Learning approaches 235 

The algorithm is based on different machine-learning (ML) techniques. Moreover, clustering techniques have 236 

been used to characterize from a radiometric point of view the background surface. In particular, an unsupervised 237 

clustering technique has been used to identify emissivity clusters with small internal variability, and a supervised 238 

clustering technique has been used to identify an emissivity spectrum based on other parameters.  239 

2.4.1 Artificial Neural Networks  240 

The HANDEL-ATMS snowfall detection and estimation modules have been developed using feedforward 241 

multilayer neural network architectures, i. e., a neural network architecture where the neurons are arranged in 242 

layers. This architecture, which is defined by the number of layers, the number of neurons for each layer, and the 243 

transfer function of each neuron, has to be designed beforehand.   The weights of connection links and the bias 244 

values for each layer are estimated with a training process, based on the Levenberg–Marquardt algorithm (see 245 

Sanò et al, 2015). The specific networks architecture, and the training and optimization procedure of the 246 

HANDEL-ATMS algorithm are described in detail in section 3.2. 247 

2.4.2 Self Organizing Maps 248 

The unsupervised clustering method used for the background surface classification is the Self Organizing Map 249 

(SOM) method (see Faussett, 2006, Kohonen, 2012). The characteristic of this method is that classes that are close 250 

to each other from a topological point of view can be considered similar also from a physical and radiometric 251 

point of view (see Munchak et al, 2020). SOMs have been used in previous studies for the classification of the 252 

background surface by creating clusters based on emissivity values (see Prigent et al, 2001, Cordisco et al, 2006, 253 

Prigent et al, 2008, Munchak et al, 2020).  254 



6 
 

2.4.3 Linear Discriminant Analysis 255 

Several supervised clustering methods have been tested in this study, such as the linear discriminant analysis, the 256 

quadratic discriminant analysis, the classification tree, and the nearest neighbor method. The final choice came 257 

down to linear discriminant analysis (LDA, see Hastie et al, 2009) because this method guarantees satisfactory 258 

accuracy in the results with a difference between the performances of the training and the test phase which is not 259 

too significant, and a computational effort which is not too high.  260 

3 Algorithm description 261 

The configuration of the HANDEL-ATMS is summarized in the Flowchart in Figure 1. The process begins with 262 

the classification of the background surface using the PMW Empirical cold Surface Classification Algorithm 263 

(PESCA, Camplani et al, 2021); then, the surface emissivity spectra are derived through refinement process based 264 

on LDA and these are used to estimate clear-sky simulated TB (TBsim) using the ECMWF-AUX atmospheric 265 

temperature and water vapor profiles. Then, the differences between the TBsim and the ATMS observed TB (TBobs) 266 

are evaluated (∆TBobs−sim =TBobs -TBsim). Four ANNs are then applied to a predictor set consisting of ATMS TBobs, 267 

∆TBobs−sim, a surface classification flag, and other ancillary parameters (elevation and ATMS viewing angle for 268 

the final version). Finally, the pixels classified with the presence of snowfall by the detection module, are used in 269 

the estimation modules while for no-snowfall flagged pixels the snowfall rate value is set to 0 mm/h. In the 270 

following sections the main blocks of the algorithm are described in detail. 271 

3.1 Surface Classification and emissivity spectra estimation 272 

3.1.1 PESCA Design and Performances 273 

The dynamic classification and radiometric characterization of the background surface at the time of the satellite 274 

overpass is based on PESCA exploiting ATMS low-frequency channels (Camplani et al, 2021). The algorithm 275 

discriminates between frozen and unfrozen surfaces (sea ice and open water, snow-covered land and snow-free 276 

land), and identifies 10 surface classes (4 over ocean, 5 over land, 1 for coast). The algorithm has been tuned 277 

against the NOAA AutoSnow product (see Romanov, 2019), which gives daily maps of sea ice and snow cover. 278 

For each ATMS observation, a flag reporting the AutoSnow class percentage (sea ice, open water, snow-covered 279 

land, snow-free land) has been calculated; then, a threshold has been applied to discriminate between sea ice and 280 

open water pixels (sea ice AutoSnow class > 10 %) and between snow-covered and snow-free land pixels (snow-281 

covered land AutoSnow class > 50 %). ATMS pixels have been classified into land, ocean, and coast pixels using 282 

a land-sea mask.  283 

The land module discriminates between snow-free land and snow-covered land and identifies four different snow 284 

cover classes (Perennial, Winter Polar, Thin, and Deep Dry). It is based on a decision tree that makes use of a 285 

limited number of inputs (the ratio TB23QV/TB31QV - ratio, the difference between TB23QV and TB88QV or Scattering 286 

Index - SI, 23 GHz pseudo-emissivity (i. e. the ratio between an observed brightness temperature (TB) and a near-287 

surface temperature value) - pem23). The module has been described by Camplani et al, 2021. 288 

For what concerns the ocean module, a simple relationship to distinguish between sea ice and open water 289 

observations has been identified. In Figure 2 a Cartesian plane where the x-axis represents 23 GHz observed TBs 290 

and the y-axis represents the near-surface temperature (T2m) is shown.  In the figure each point represents a pseudo-291 

emissivity value, and the color describes the mean AutoSnow sea ice percentage within each bin (see Figure 2, 292 

left panel). It is possible to observe that open water (0 % of sea ice, blue) and sea ice (100 % of sea ice, red) are 293 

characterized by very different pseudo-emissivities. There is a transition area between open water and sea ice 294 

pseudo-emissivity values for IFOVs where both open water and sea ice are present. The simple relationship for 295 

sea ice identification is reported in the left panel as a green line where the condition for sea ice identification is 296 

defined by Equation 1.  297 

 𝑇𝐵23𝑄𝑉 > 𝑇2𝑚 − 96 𝐾 298 

(1) 299 

Downstream of the sea ice/open water identification, information about sea ice characteristics is obtained from 300 

the analysis of the two low-frequency pseudo-emissivity (pem23 and pem31), which are a good approximation of 301 

sea-ice emissivity for low-frequency channels especially in cold and dry conditions. In Figure 3 (top panel) it is 302 

possible to observe that there are sea ice classified observations characterized by the contemporary presence of 303 

open water and sea ice above the bisector of the plane and in correspondence with low emissivity values. In the 304 

center panel, where the color represents sea ice occurrences, it is evident the presence of one cluster, in 305 

correspondence with high pseudo-emissivity, with two “tails” above and below the bisector. This behavior has 306 
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been used to identify 3 different sea ice classes (New Sea Ice, Broken Sea Ice, and Multilayer Sea Ice) using a 307 

Nearest Neighbor Method based on a set of reference points that define the areas of interest for each sea ice class. 308 

In Figure 3 (bottom panel) a classification representation is reported, where the markers represent the reference 309 

points. The labels of the classes have been chosen by analyzing their physical properties and by comparing the 310 

estimated emissivity spectra with those reported in previous studies (Hewison & English ,1999, Munchak et al, 311 

2020). 312 

PESCA’s upper working limits for T2m and TPW have been established to 280 K and 10 mm, respectively (see 313 

Camplani et al, 2021 for details). Moreover, the land module does not work in the high elevation areas outside 314 

the polar regions (surface elevation > 2500 m for latitude < 67 ° N/S) because the ATMS low spatial resolution 315 

does not allow for depicting the small-scale snow-cover variability that characterizes the orographic regions. An 316 

analysis carried out using the ATMS-CPR coincidence dataset highlights that the presence of cloud cover does 317 

not influence the overall PESCA performances (not shown). Within these well-defined limits, the PESCA 318 

manages to optimally discriminate between sea ice, open water, snow-free land and snow-covered land. The 319 

statistical scores of PESCA identification of sea ice and snow cover (using AutoSnow as the reference) are 320 

summarized in Table 1. In particular, the Probability of Detection (POD), the False Alarm Ratio (FAR), and the 321 

Heidke Skill Score (HSS) are reported. POD, FAR, and HSS are defined by equations 2,3 and 4. 322 

POD=
ℎ

ℎ+𝑚
  323 

(2) 324 

FAR=
𝑓

𝑓+ℎ
 325 

(3) 326 

HSS=
2(ℎ∗𝑐𝑛−𝑓∗𝑚)

(ℎ+𝑚)∗(𝑚+𝑐𝑛)+(ℎ+𝑓)(𝑓+𝑐𝑛)
 327 

(4) 328 

where h represents the hits, f represents the false alarms, m represents the misses and cn represents the correct 329 

negatives. PESCA manages to optimally detect the presence of a frozen background (sea ice over the ocean, snow 330 

covered land over the continental part) at the time of the satellite overpass. It is important to underline that the 331 

variability of the HSS compared to POD and FAR is due to the different number of correct negatives. An analysis 332 

of the physical characteristics of the PESCA classes has been conducted by considering the mean T2m, the 333 

geographical and seasonal distribution associated with each class. For what concerns the land classes, please refer 334 

to Camplani et al, 2021. For what concerns sea ice, the New Sea Ice class, which is detected during the winter at 335 

high latitudes and for low temperatures, represents the sea ice that forms during the winter. The Broken Sea Ice 336 

class, which is predominant in the lower latitudes and whose occurrence increases during the Spring season, 337 

represents the co-presence of sea ice and water. The Multilayer Sea Ice class, which is detected only at the high 338 

latitudes, for very low temperatures, and constantly e throughout the year, represents the ice pack typical of those 339 

regions and extreme cold conditions.  340 

3.1.2 PESCA emissivity spectra estimation 341 

The emissivity spectra of each class have been estimated by applying the PESCA algorithm to the cloud-free (0% 342 

CPR cloud mask fraction) ATMS observations in the ATMS-CPR dataset satisfying PESCA working limits.  The 343 

ATMS clear-sky TBs measured for each PESCA surface class have been used as input to an inverse radiative 344 

transfer model (RTM) based on plane-parallel approximation (Ulaby & Long, 2014) and the Rosenkrantz (1998) 345 

gas absorption model. The emissivity spectra have been estimated by calculating the mean and the standard 346 

deviation of the emissivity values for each class (excluding the values lower than the 10th percentile and higher 347 

than the 90th percentile). The emissivity spectra dependence on the ATMS viewing angle for polarized surfaces 348 

has been neglected because an analysis of such dependence in the ATMS-CPR coincidence dataset has shown 349 

that it is not significant (emissivity difference smaller than 0.05 for angles up to 52.7 °). This is due to the fact 350 

that cross-track scanning radiometers measure a signal (off-nadir) which derives from a mixture between the two 351 

polarizations (e.g., quasi-vertical, QV, and quasi-horizontal, QH). As a consequence, although the emissivities of 352 

polarized surfaces, such as open water surfaces, are strongly influenced by the viewing angle, the emissivity 353 

variation is compensated by the effect of the mixture of the two polarizations (see also Felde & Pickle, 1995, 354 

Prigent et al, 2000, Mathew et al, 2008, Prigent et al, 2017).  355 

The estimated spectra are shown in Figure 4 and Figure 5 for ocean and land classes respectively (the coast has 356 

also been considered as a separate class, however its spectrum is not shown in Figures 4-5). It is possible to 357 



8 
 

observe that the classes are well-characterized from a radiometric point of view, showing distinct behavior of the 358 

emissivity spectra (e.g., the mean values). However, all the classes present significant standard deviations at high 359 

frequency, and some classes - such as the snow classes and the Broken Sea Ice class - present a high value of 360 

standard deviation also at low frequency.  361 

The clear-sky RTM simulations based on the mean emissivity values estimated for each class, have been compared 362 

to the coincident observed clear-sky TBs. - but the RMSE between simulated and observed clear-sky TBs appeared 363 

to be too high to implement a robust signal analysis (>10 K). For this reason, a refinement process for the 364 

emissivity spectra estimation based on machine learning techniques has been developed downstream of the 365 

PESCA classification. 366 

The refinement process has been based on a combination of an unsupervised classification technique (SOM) and 367 

a supervised technique (LDA). The unsupervised classification identifies clusters characterized by the minimum 368 

inner variability from a radiometric point of view. The supervised technique, instead, has the goal to identify the 369 

previously obtained clusters, and the associated emissivity spectra, by using only input variables that are not 370 

affected by the presence of clouds. The final emissivity spectra are estimated as the mean emissivity for each 371 

frequency within each cluster identified by the supervised technique.  Therefore, as first step, the emissivity 372 

spectra have been clusterized in order to minimize the emissivity variability in each cluster by arranging the 373 

retrieved emissivity values for six ATMS channels (23.8 GHz, 31.4 GHz, 50.3 GHz, 88.2 GHz, 165.5 GHz, and 374 

183.31±7 GHz) in a one-dimensional SOM architecture. Then, an LDA model has been trained using the 375 

previously obtained clusters as reference and using the PESCA input parameters (pem23, pem31, ratio and SI), 376 

some environmental parameters (TPW, T2m, surface pressure - Psurf) and ancillary variables (latitude - lat, Julian 377 

day - jd, altitude - DEM, the maximum solar height during the day - Hsun) as input. The use of the LDA is 378 

necessary to associate an emissivity spectrum to all the observations which are classified by PESCA, 379 

independently of the presence of clouds. It is worth noticing that the whole predictor set of the LDA has resulted 380 

to be redundant; therefore, a subset of the predictors has been selected for each class. The accuracy of the LDA 381 

classification is given by the ratio between the number of hits (observations where LDA identifies the associated 382 

SOM class) and the total number of observations; it can be considered as an indicator of the effectiveness of the 383 

LDA model in rebuilding the SOM results. 384 

The evaluation of the refinement process is based on the comparison between the simulated clear-skyTBs and the 385 

observed clear-sky TBs for each PESCA surface class. For each PESCA surface class, the number of clusters that 386 

simultaneously lowers the errors (RMSE) between the simulated and observed clear-sky TBs at high frequency 387 

(without lowering the classification accuracy too much) is chosen. 388 

 In Table 2 the number of clusters, the predictors selected, the accuracy, RMSE and percentage normalized root 389 

mean squared error (NRMSE%) (Gareth et al, 2013) estimated on the test dataset, are reported for the 165.5 GHz 390 

channel. NRMSE% is defined by Equation 5. 391 

𝑁𝑅𝑀𝑆𝐸% = (
𝑅𝑀𝑆𝐸

𝜎
∗ 100)  392 

(5) 393 

where σ represents the standard deviation of the measured clear-sky TBs dataset in each PESCA class. It can be 394 

considered an indicator of the effectiveness of the refinement process.  395 

For some classes, such as the Ocean class, the refinement process leads to low RMSE values (< 4 K). For other 396 

classes, such as Deep Dry Snow and Broken Sea Ice, RMSE remains > 5 K even with a high number of clusters, 397 

although there is a significant reduction compared to the initial variance in each class (NRMSE% < 50). This is 398 

due to the variability of snow-covered background within each class; in the worst scenario, the limited number of 399 

predictors are insufficient to infer the emissivity spectrum at high frequency. Overall, the refinement process 400 

allows to obtain a general improvement of the accuracy of the dynamic emissivity estimation for the PESCA 401 

classes; however, for some classes, the high-frequency channel uncertainty remains significant. The emissivity 402 

spectra obtained by PESCA refinement are used as inputs of the RTM to obtain clear sky simulated TBs (TBsim) 403 

to be compared to the actual observations (TBobs). The comparison between TBsim with TBobs allows to highlight 404 

and interpret the MW signal in presence of snowfall.  405 

In Figure 6, the snowfall signal is represented as a function of the SWP for the 165.5 GHz channel and for different 406 

PESCA classes. The red line and shaded areas represent the mean values and standard deviations of the difference 407 

between TBobs and TBsim (∆TBobs−sim =TBobs -TBsim) for SWP bins calculated for observations where 2CSP SWP 408 

> 0 kg m-2. The blue lines represent the uncertainty due to surface emissivity variability for each PESCA. They 409 
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are centered on the estimated bias for each class (close to 0 K) and the dashed lines correspond to the standard 410 

deviation of ∆TBobs−sim in clear sky conditions. A clear scattering signal (∆TBobs−sim < 0) is observed over all the 411 

classes considered for intense snowfall events (SWP > 1 kg m−2). For lower SWP values, the signal is more 412 

ambiguous and changes with the background surface. While over Land there is a clear scattering signal for SWP 413 

> 0.1 kg m−2, over the Perennial Snow class a scattering signal can be observed only for SWP > 0.5 kg m−2 . For 414 

SWP < 0.1 kg m−2, the mean ∆TBobs−sim for snowfall observations is less than its standard deviation in clear sky. 415 

This is due mainly to the emissivity variability for each surface class, and to the error introduced by the use of 416 

model-derived temperature and water vapor profiles in the RT simulations. However, while for the Land class the 417 

mean ∆TBobs−sim < 0 K can be explained as a predominant scattering effect for all SWP values, for the Perennial 418 

Snow class the mean ∆TBobs−sim > 0 K can be interpreted as a predominant emission signal with respect to the 419 

radiatively cold background (Figure 5). The Thin Snow class shows an intermediate behavior: for SWP < 0.1 kg 420 

m−2 the red shaded area within the RMSE limits (blue lines) of the RT simulations denotes the difficulty in 421 

interpreting the signal, while a clear scattering signal can be observed for SWP > 0.3 kg m−2. For what concerns 422 

ocean and new sea ice classes, a clear scattering signal is visible only for high SWP values (> 1 kg m-2) while for 423 

low SWP values a significant emission signal is observed. It is very likely that the emission effect observed over 424 

ocean and sea ice is generated by supercooled cloud liquid water. The ubiquitous presence of supercooled water 425 

layers in snowing clouds (see Wang et al, 2013, Battaglia & Panegrossi, 2020), especially over oceans (see 426 

Battaglia & Delanoe, 2013), generates an emission effect which is particularly significant over radiatively cold 427 

surfaces (such as Perennial Snow, Ocean and New Sea Ice at high frequency, see Figure 4), and can mask or 428 

overcome the weak scattering signal generated by falling snow especially in light snowfall events. It is also 429 

important to underline that the DARDAR product identifies mostly supercooled water layers at the cloud top 430 

(Rysman et al, 2018, Panegrossi et al, 2017), while it has been shown that the impact of supercooled water layers 431 

embedded in the clouds can be very significant on the measured TBs at MW high frequency window channels 432 

(Battaglia & Panegrossi, 2020, Panegrossi et al, 2022).  433 

3.2 ANN Design for snowfall retrieval 434 

The snowfall detection and estimation modules have been based on ANNs. Four ANNs have been developed: two 435 

for the detection of SWP and SSR and two for the SWP and SSR estimate. The performance of more than 50 436 

architectures have been tested, by varying the number of layers, the number of neurons for each layer, and the 437 

activation functions.  The final architecture, for all modules, is composed of four layers: an input layer with a 438 

neurons number equal to the predictor number, and a hyperbolic tangent function as the activation function, a first 439 

hidden layer (60 neurons), and hyperbolic tangent function, a second hidden layer (30 neurons), with a sigmoid 440 

function (for more information about the Neural Network characteristics, see Sanò et al, 2015). At the same time, 441 

several predictor sets have been tested combining in different ways ATMS TBobs, ∆TBobs−sim, PESCA surface 442 

class, ATMS angle of view, ancillary information (surface elevation from a Digital Elevation Model), and model-443 

derived environmental variables (T2m, TPW, and freezing level height). In Table 3 the statistical scores of the 444 

algorithm performance for the SSR detection module obtained for different predictor sets are reported. It is 445 

possible to see that the best performance is obtained when the predictor set is composed of ATMS TBobs and 446 

∆TBobs−sim, (besides PESCA surface flag, the pixel elevation and the cosine of the viewing angle). In particular, it 447 

is notable the improvement of the detection capabilities with respect to a predictor set composed of ATMS TBobs 448 

and environmental parameters. On the other hand, the simultaneous use of both the ΔTBobs-sim and the 449 

environmental parameters show scores almost equal to that obtained by using only ΔTBobs-sim.  This indicates that 450 

the computation of the multi-channel clear-sky TBs at the time of the overpass through the estimation of the 451 

dynamic surface class emissivity spectra and its deviation from the measured TBs plays a fundamental role in 452 

snowfall retrieval. It provides essential information to the ANN to be able to exploit the subtle snowfall-related 453 

signal in ATMS measurements. This is the most innovative aspect of HANDEL-ATMS. 454 

Based on these results, the final set of predictors for HANDEL-ATMS is composed by 16ATMS channels TBobs 455 

(1-9, 16-22, channels 10-15 have not been considered because their weighting function peaks above the 456 

tropopause), and the corresponding ∆TBobs−sim, the PESCA classification flag, the pixel elevation (obtained from 457 

a DEM) and the cosine of the view angle.  458 
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4. Results 459 

4.1 HANDEL-ATMS Performances 460 

In Table 4 the statistical scores of HANDEL-ATMS detection module performances are reported in terms of POD, 461 

FAR and HSS. It is possible to observe good detection capabilities both for SWP and SSR modules (POD > 0.8, 462 

FAR < 0.2).  463 

In Figure 7 and in Figure 8 the dependence of HANDEL-ATMS snowfall detection statistical scores on TPW and 464 

on T2m is reported. In both figures, it is possible to observe that the SWP detection capabilities improve (with an 465 

increase of POD and HSS and a decrease of FAR) with increasing humidity and temperature. This is due to the 466 

combined effect of a stronger scattering signal associated with more intense snowfall events - linked to moister 467 

and warmer environmental conditions - and to the lower transmissivity of the atmosphere which masks the 468 

background surface signal, reducing its impact and the uncertainties linked to its variability. On the other hand, 469 

colder and drier conditions are usually linked to background surface types characterized by high radiometric 470 

variability such as Perennial Snow and Winter Polar Snow classes, which cause uncertainty in emissivity 471 

estimation. It is possible to observe that in Figure 7 SSR detection capabilities show a maximum HSS value for 472 

TPW between 3 mm and 5 mm, and then there is a slight decrease due to the decrease of POD. A similar situation 473 

can be observed in Figure 8, where the HSS reaches a maximum between 250 K and 275 K, and it is lower than 474 

for SWP. This is due to the fact that PMW measurements respond mostly to the snow in the atmospheric column 475 

and in moister/warmer conditions the presence of snow in the atmosphere is not always linked to surface snowfall. 476 

In both cases, it is worth noting that also considering very dry (TPW ≈ 2 mm) or very cold (T2m ≈ 240 K) 477 

conditions, HANDEL-ATMS shows good detection capabilities, in spite of the uncertainties linked to the 478 

modeling of the background surface and the weakness of the signal in such conditions. Moreover, also considering 479 

very low SWP and SSR values (SWP ≈ 0.001 kg m-2, SSR ≈ 0.001 mm h-1), HANDEL-ATMS manages to detect 480 

around 60 % of the snowfall events. Similar considerations can be done also for the different background surfaces. 481 

The detection capabilities are influenced both by the typical environmental conditions of each PESCA class and 482 

by the uncertainties linked to the emissivity estimation. In Figure 9 the statistical scores of the algorithm 483 

performance by considering each PESCA class for both the SWP and the SSR detection module are reported. It 484 

can be observed that, also considering specifically the classes associated to extremely dry and cold environmental 485 

conditions such as Perennial Snow or Winter Polar Snow (see Camplani et al, 2021), where the detection is more 486 

problematic due to the uncertainties in the emissivity retrieval (see Table 2) , and to the low snowfall intensity,  487 

HANDEL-ATMS has good detection capabilities (POD and FAR values greater than 0.7 and less than 0.25, 488 

respectively, for both SWP and SSR). On the other hand, for surface classes characterized by the highest emission 489 

estimation uncertainties, such as Deep Dry Snow, the statistical scores are coherent with the general scores and 490 

better than those obtained in presence of extremely dry/cold environmental conditions. So, it is possible to 491 

conclude that the extremely cold/dry environmental conditions - have more influence on the detection than the 492 

uncertainties on clear sky emissivity estimation.   Generally, these results provide evidence that HANDEL-ATMS 493 

can be used to analyze snowfall occurrence in the polar regions. 494 

The error statistics of the two estimation modules are reported in Table 5 in terms of bias, RMSE and the 495 

coefficient of determination R2, which is defined by Equation 6. 496 

𝑅2 = 1 −
𝑅𝑀𝑆𝐸2

𝑠𝑡𝑑2
 497 

(6) 498 

It is worth noticing that the biases are negligible for both modules while RMSE values are comparable to the light 499 

events recorded in the dataset. Moreover, as expected, RMSE and R2 values are respectively higher and lower for 500 

the SSR module than for the SWP module. In Figure 10 the density scatterplots between the SWP and SSR values 501 

retrieved by HANDEL-ATMS and the 2CSP corresponding values are reported. For both modules an 502 

overestimation can be observed for very light snowfall (SWP < 10−2 kg m−2 and SSR < 10−2 mm h−1), while there 503 

is a very good agreement for higher SWP and SSR values. In order to relate these results to the environmental 504 

conditions, Figure 11 shows the dependence of HANDEL-ATMS snowfall estimation error statistics, as well of 505 

SWP and SSR, on TPW. The curves represent, for each 1-mm TPW bin, the mean 2-CSP SWP or SSR computed, 506 

the RMSE and the relative bias (the ratio between the bias and the SWP/SSR mean value for each bin). As 507 

expected, TPW and snowfall intensity are strongly correlated.  An increase of the absolute RMSE can be observed 508 

as TPW increases, and it is larger than the SWP/SSR mean value for TPW < 8 mm. A similar behavior can be 509 



11 
 

observed by analyzing the dependence of HANDEL-ATMS snowfall estimation error statistics on T2m (not 510 

shown).   A very moderate overestimation is observed for TPW < 8 mm and for lower SWP and SSR values (< 511 

0.1 mm/h), with relative bias around 5%, (up to 8% only for extremely low TPW values and very low number of 512 

observations (see Figure 7)), while underestimation (relative bias up to -5%) is observed for higher TPW values 513 

and higher SWP and SSR values. Generally, light snowfall events are linked to the very cold/dry environmental 514 

conditions typical of high-latitude regions. So, the algorithm manages to estimate also the very light SWP and 515 

SSR typical of high latitudes but tends to slightly overestimate snowfall intensity in such conditions.  516 

From the analysis of Figure 7-11, it can be concluded that HANDEL-ATMS has good detection capabilities (also 517 

for extremely light snowfall) but it shows some limitations in correctly estimating its intensity, with slight 518 

overestimation of the very light snowfall typical of high latitudes. 519 

 520 

4.2 A Case Study: Greenland-2016/04/24 521 

The case study reported corresponds to the observation of a moderately light snowfall event over the central part 522 

of Greenland that occurred on 24 April 2016. ATMS overpass is between 14:51:23 UTC. and 14:57:47 UTC., 523 

while the CPR overpass is between 15:05:25 UTC. and 15:11:45 UTC., with a time difference of 14 minutes and 524 

2 seconds. This event presents several characteristics typical of high latitudes, such as light snowfall rate, dry and 525 

cold atmospheric conditions, and presence of a frozen background surface, a typical case of interest for the 526 

application of HANDEL-ATMS.  527 

In Figure 12 PESCA classification is reported. The entire territory of Greenland, except for a narrow area on the 528 

southwestern coast, is identified as a snow-covered surface; PESCA identifies the Perennial Snow class in the 529 

central part of Greenland and along CloudSat track, and the Polar Winter Snow class near the northern shoreline.  530 

CloudSat overpasses the central part of the island, and CPR track is along the central part of the ATMS swath.  531 

In Figure 13 a synopsis of the event along the CPR track is reported showing T2m and TPW, the 2CSP SWP and 532 

SSR values, the cross-section of CPR reflectivity, with the DARDAR supercooled water information 533 

superimposed (in magenta). Moreover, the PESCA surface classification, and the TBs of the main ATMS high-534 

frequency channels along the CloudSat track are also shown. The event is characterized by dry conditions (TPW 535 

< 5 mm) and T2m below 273 K, except over the coast. CPR observes a cloud system associated to the snowfall 536 

event between 68°N and 76°N; DARDAR detects the presence of a supercooled water layer at the cloud top 537 

between 68°N and 72°N and indicates the presence of supercooled droplets embedded in the deeper cloud 538 

associated to the more intense snowfall. According to the 2CSP product, a light shallow snowfall system is found 539 

in the inner part of the island while deeper, more intense snowfall, with a peak of intensity between 72°N and 540 

76°N, is found near the shoreline.  For what concerns the associated ATMS observations, an increase of the 88 541 

GHz and 165 GHz TBs is observed in correspondence with the supercooled water layer, while only a slight 542 

decrease of 165.5 and 183.3+7 GHz TBs can be observed in coincidence with the snowfall intensity peak.  543 

In figure 12 the maps of the TBobs at 165.5 GHz (top panel) and the ∆TBobs−sim at 165.5 GHz (bottom panel) are 544 

reported. In the top panel, it is possible to observe that, despite the snowfall event, there is not a clear TB scattering 545 

signal in the area where 2CSP detects snowfall (70°N-76°N, 40°W-70°W), instead a slight increase in the TBs 546 

can be observed in the area where DARDAR detects the supercooled water layer at the cloud top. The map of 547 

∆TBobs−sim allows to observe an emission signal (∆TBobs−sim > 0) over the central part of the ATMS swath due to 548 

the combined effect of the emission by the supercooled liquid water layers at the cloud top, as evidenced by 549 

DARDAR), (evidently exceeding the scattering signal of the weak and shallow snowfall), over a radiatively cold 550 

surface background. Only near the shoreline, the TBobs are slightly lower than the TBsim (∆TBobs−sim < 0) due to 551 

the stronger scattering signal of the deeper snowfall system. In Figure 15 the results of the HANDEL-ATMS four 552 

modules are reported. It is worth noting that both detection modules find snowfall in the central region of 553 

Greenland and near the northern coast. The estimated snowfall intensity for this event is generally low (SWP < 554 

0.1 kg m−2 and SSR < 0.1 mm h−1) except over the western coast, where SWP reaches 0.5 kg m−2 and SSR reaches 555 

1 mm h−1. It is worth noticing that HANDEL-ATMS detects snowfall also where there is an emission signal 556 

(∆TBobs−sim > 0) and that discontinuities in snowfall retrievals are not observed in correspondence with surface 557 

class changes.  558 

Finally, a comparison between the HANDEL-ATMS and the 2CSP is reported in Figure 16. There is a substantial 559 

agreement on the snowfall detection of the two products. It can be observed that HANDEL-ATMS tends to 560 

overestimate very light SWP and SSR in presence of shallow system (2CSP SWP < 0.05 kg m-2 and SSR <0. 1 561 
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mm h-1, between 68°N and 72°N), consistently with what shown in Figure 10, while there is a good agreement 562 

between 72°N and 76°N, where snowfall intensity increases.  563 

The analysis of this case study demonstrates that the algorithm can interpret the ambiguity of the 564 

emission/scattering signal often associated with snowfall events at high latitudes (as described in Section 4.1) and 565 

efficiently detect, and, to a less extent, quantify snowfall even in extreme cold and dry conditions. 566 

4.3 Comparison with SLALOM-CT 567 

SLALOM-CT has been introduced in Section 1. It presents some similarities with HANDEL-ATMS: it is based 568 

on an ANN approach and uses CPR-2CSP product as reference. On the other hand, substantial differences have 569 

to be highlighted: SLALOM-CT was designed to operate on a global scale, while HANDEL-ATMS has been 570 

developed specifically for the environmental conditions typical of high latitudes. Moreover, the predictor sets are 571 

different: in addition to TB observations, SLALOM-CT relies on several model derived environmental 572 

parameters, while HANDEL-ATMS relies on differences between simulated clear-sky TBs, based on the dynamic 573 

estimation of the background surface emissivity (i.e., at the time of the satellite overpass), and observed TBs 574 

(ΔTBobs−sim), as described in Section 3. 575 

In Table 6 a comparison between the statistical scores of the detection performances of the two algorithms is 576 

reported for different environmental conditions. The comparison has been carried out considering the same 577 

elements of the ATMS-CPR coincidence dataset. It can be observed that the differences between the two algorithm 578 

performances increase  as the environmental conditions become more extreme (i.e., lower T2m and TPW), with 579 

consistently better snowfall detection capabilities of HANDEL-ATMS than SLALOM-CT. Considering the 580 

working limits of HANDEL-ATMS, POD increases by 2 % and FAR decreases by 8 %, while for very cold/dry 581 

conditions (T2m < 250 K, TPW < 5 mm), POD increases by 7 % and FAR decreases by 16 %; for extremely 582 

dry/cold conditions (T2m < 240 K, TPW < 3 mm), typical of the inner part of Greenland and Antarctica, POD 583 

increases by 18 % and FAR decreases by 16 %. 584 

5 Conclusions and Future Perspectives 585 

In this paper a new snowfall retrieval algorithm, the High lAtitude sNow Detection and Estimation aLgorithm for 586 

ATMS (HANDEL-ATMS), is described. The algorithm is based on machine learning techniques trained with 587 

CPR 2CSP snowfall product and it is designed specifically for the cold and dry environmental conditions typical 588 

of high latitude regions.  The driving and innovative principle in the algorithm development is the exploitation of 589 

the full range of ATMS channel frequencies to characterize the background surface radiative properties at the time 590 

of the overpass to be able to better isolate and interpret the snowfall-related contribution to the measured multi-591 

channel upwelling radiation. A similar approach has been used by Zhao &Weng, 2002; however, their application 592 

was limited to non-scattering surfaces and was based on empirical relationships.  This approach is proven to be 593 

effective for snowfall detection and quantification at high latitudes, particularly in presence of a frozen (snow-594 

covered land or sea ice) background surface, also compared to other state-of-the art machine learning based 595 

methods. 596 

HANDEL-ATMS can detect snowfall at high latitudes in good agreement with CPR. The estimation modules tend 597 

to slightly overestimate the intensity of light snowfall events (SWP < 10−2 kg m−2), with mean relative bias < 5% 598 

for SSR < 0.1 mm/h, but it shows good accuracy for more intense snowfall events (SWP > 10−2 kg m−2, SWP < 1 599 

kg m−2). It is worth noting, however, that the uncertainty associated with the surface emissivity estimation in some 600 

conditions affects the capabilities of HANDEL-ATMS to correctly interpret the snowfall signature. Such 601 

uncertainty propagates in the RTM simulation of clear-sky TBs used as input in the algorithm. Despite these 602 

limitations, it is worth noticing that the development of an algorithm capable of retrieving snowfall at high 603 

latitudes with good accuracy is an important development in the climate science field. The possibility to exploit 604 

the high temporal sampling of the near-polar operational satellites carrying ATMS radiometers allows to achieve 605 

full coverage of the polar regions. Moreover, the future European MetOp Second Generation (MetOp-SG) 606 

mission, with the launch of the Sat-A Microwave Sounder (MWS), with characteristics very similar to ATMS, 607 

will soon provide additional coverage to improve global snowfall monitoring. The HANDEL-ATMS 608 

methodology will be adapted to be able to exploit MWS measurements in the future. The capability to estimate 609 

snowfall at high temporal resolution is ancillary to the development of a snowfall monitoring system for the high 610 

latitudes and to the analysis of the snowfall climatology in these areas, with possible applications in climate change 611 

studies in the polar regions.  612 
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Future research will address some open issues. The estimation of the surface emissivity and the simulated clear-613 

sky multi-channel TBs needs to be further improved, either by considering other predictor sets or by using a 614 

different technique for the emissivity spectra definition including a more advanced RTM. Another important 615 

aspect is the quantification of the error linked to the background surface emissivity estimation on the snowfall 616 

detection capabilities. This would be also useful for the development of modules for mountainous areas, which 617 

have not been considered in the current version of the algorithm. Moreover, the effect on the algorithm snowfall 618 

detection capabilities of the uncertainties linked to the model-derived environmental variables (e.g., temperature 619 

and water vapor profile), which are used in the clear-sky TB simulations, should be investigated. The use of the 620 

ATMS water vapor (183 GHz band) and temperature (50 GHz band) sounding channels to characterize the 621 

atmospheric conditions at the time of the overpass in order to complement or avoid the use of model-derived data 622 

is another subject of future research. Moreover, the development of a separate supercooled liquid water detection 623 

module will be also evaluated, similarly to what is done in other PMW snowfall detection and estimation 624 

algorithms (Rysman et al, 2018, Sanò et al, 2022). Such information can be exploited to improve snowfall 625 

detection and estimation capabilities since the emission by the cloud droplets in dry conditions tends to mask the 626 

snowfall scattering signal (see Panegrossi et al, 2017, Panegrossi et al, 2022), and adds larger uncertainties in the 627 

CPR snowfall products used as reference (Battaglia & Panegrossi, 2021). Moreover, recent studies have 628 

highlighted that TBs correlate more strongly with lagged surface precipitation (with a time lag of 30-60 min for 629 

snowfall) than the simultaneous precipitation rate (see You et al, 2019). Therefore, an analysis based on a 630 

coincident dataset characterized by different time lags will be conducted. The results of this analysis will be 631 

compared with HANDEL-ATMS performances in order to identify a way to exploit this information towards the 632 

improvement of SSR detection and estimation. Finally, since the algorithm has been developed only for specific 633 

environmental conditions typical mostly of high latitudes an integration with other approaches, such as SLALOM-634 

CT, designed for global estimation of snowfall, could be considered in the future to improve global snowfall 635 

monitoring based on ATMS and on future cross-track scanning radiometers. 636 
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Figures 870 

 871 
Figure 1: HANDEL-ATMS workflow diagram (please, refer to the text for details) 872 

 873 
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 874 
Figure 2: Sea Ice detection representation on a 23 TB-T2m Plane. The color represents the mean AutoSnow 875 
sea ice percentage within each bin (left) and the observation occurrence (right). The green (left) and red (right) 876 
lines represent the discriminant Equation (Equation 1) between sea ice and ocean. 877 

 878 
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 879 
Figure 3: Sea Ice detection and classification: relationship between 31 GHz Pseudo-Emissivity (y-axis) and 23 880 
GHz Pseudo-Emissivity (x-axis). The color represents the mean AutoSnow sea ice percentage within each bin 881 
(top panel), the observation occurrence (middle panel), and the PESCA classification (Multi-Layer (ML), 882 
Broken and New sea ice) with the Nearest Neighbor markers (bottom panel). 883 

 884 
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 885 
Figure 4: Emissivity Spectra for PESCA Sea Classes. The continuous lines represent the mean values of the 886 
emissivity while the shaded areas represent the standard deviation calculated at the ATMS reference 887 
frequencies (23.8 GHz, 31.4 GHz, 50.3 GHz, 88.2 GHz, 165.5 GHz, and 183.3 ±7 GHz) represented by the dots. 888 

 889 
Figure 5: Same as Figure 4 but for PESCA Land Classes. 890 
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 891 
Figure 6: Snowfall Signature at 165.5 GHz as a function of SWP for five PESCA surface classes. The red line 892 
and shaded areas represent the mean values and standard deviations of ΔTBobs−sim (i.e., the snowfall signature) 893 
while the blue lines are centered on the estimated bias and standard deviation of ΔTBobs−sim in clear sky 894 
conditions for the corresponding PESCA surface class. 895 
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 896 

Figure 7: Dependence of HANDEL-ATMS SWP and SSR detection statistical scores on TPW. Each star 897 
represents the statistical score value for different 1-mm t bin of TPW. The left y-axis reports POD, FAR and 898 
HSS values, while the right y-axis reports the number of total and snowfall observations in the validation 899 
dataset. 900 

 901 
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 902 

Figure 8: Same as Figure 7 but for T2m bins. 903 
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 904 
Figure 9: Same as Figure 7 but for PESCA surface classes. Each star represents the value of the statistical 905 
score for each surface category. 906 

 907 

 908 
 909 

Figure 10: 2D Histogram reporting HANDEL-ATMS SWP (left) and SSR (right) estimation (y-axis) and 910 
2CSP estimation (x-axis). The colorbar represents the number of observations for each HANDEL-911 
ATMS/2CSP bin. The violet dashed line represents the bisector. 912 

 913 
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 914 
 915 

Figure 11: Dependence of HANDEL-ATMS SWP and SSR estimation on TPW. Each star represents the value 916 
of the statistical score for different 1-mm TPW bins. The left y-axis reports the RMSE and the mean intensity 917 
SWP and SSR value for each 1-mm TPW bin, while the right y-axis reports the relative bias, calculated as the 918 
ratio between the bias and the SWP/SSR mean value for each bin. 919 
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 920 
 921 

Figure 12:  Greenland - 2016/04/24 - ATMS overpass is between 14:54 UTC and 14:58 UTC, while the CPR 922 
overpass is between 15:05 UTC and 15:12 UTC.  Map of the PESCA Background Surface Classification. The 923 
green dotted line represents the CloudSat track. 924 

 925 
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 926 

Figure 13: Greenland - 2016/04/24 - Synopsis along CloudSat Track. First panel: ECMWF TPW and T2m 927 
values along the CloudSat track. Second panel: the 2CSP SWP (left) and the SSR (right), and the PESCA 928 
classification along CloudSat track. Third panel: CPR reflectivity (values are reported in the colorbar on the 929 
right), and supercooled water droplets detected by DARDAR (magenta points), Digital Elevation Model 930 
(brown line) and the ECMWF Freezing Level (red line) along CloudSat track. Bottom panel: the ATMS TBs 931 
of the high-frequency channels (88 GHz, 166 GHz, 183+3 GHz, 183+7 GHz) along CloudSat track. 932 

 933 

 934 

 935 

 936 

 937 

 938 
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 939 
Figure 14: Greenland - 2016/04/24 - 165 GHz Channel measured TB (TBobs) (top panel) and the deviation of 940 
TBobs from the simulated clear-sky TBs (∆TBobs−sim) (bottom panel). The red dotted line (top panel) and the 941 
green dotted line (bottom panel) represent the CloudSat track. 942 

 943 

 944 
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  945 
Figure 15:  Greenland - 2016/04/24 - Maps of the HANDEL-ATMS module’s output: the SWP detection mask 946 
(top panel), the estimated SWP (kg m-2) (second panel), the SSR detection mask (third panel), the estimated 947 
SSR (mm h-1) (bottom panel). The green dotted lines (bottom panel) represent the CloudSat track. 948 
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 949 
 950 

 951 

 952 
Figure 16: Greenland - 2016/04/24 - Comparison between CPR 2C-SNOW-PROFILE and HANDEL-ATMS 953 
SWP and SSR estimates along the CloudSat track. 954 

 955 

 956 

Tables 957 

 958 

 959 

 960 

 OCEAN MODULE LAND MODULE 

POD 0.99 0.98 

FAR 0.01 0.01 

HSS 0.98 0.72 

 961 
Table 1: PESCA Overall Statistical Scores 962 
 963 

 964 

 965 

 966 

 967 

 968 

 969 

 970 

 971 

 972 

 973 

 974 
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 975 

 976 

Class n clusters accuracy 165.5 GHz 

RMSE (K) 

165.5 GHz  

NRMSE% 

Predictor Set 

Ocean 2 0.9 3.37 44  Psurf - TPW - T2m 

New Sea Ice 3 0.74 4.52 48 SI - T2m - Psurf- ratio - jd - pem23 

Broken Sea Ice 16 0.56 5.34 41 pem23 - TPW - SI - Psurf   

Multilayer Sea Ice 9 0.53 4.38 34 pem31 - SI - TPW - T2m - pem23 - Psurf 

 Land 2 0.87 4.57 52 DEM - jd - TPW 

Perennial Snow 8 0.65 5.98 54 pem23 - jd - SI - pem31 - lat 

Winter Polar Snow 5 0.76 5.87 37 pem31 -SI - lat -Hsol - pem31 - jd 

Deep Dry Snow 15 0.34 6.77 45 SI - pem31 - ratio    

Thin Snow 3 0.78 6.03 39 SI -ratio - lat 

Coast 13 0.43 6.80 44 SI - pem23 - pem31 - DEM - T2m  

Table 2: Classification Refinement - Parameters. 977 
 978 

Predictor Set  POD FAR HSS 

∆TBobs−sim+ ancillary parameters 0.75 0.29 0.48 

TBobs+ ancillary parameters 0.81 0.18 0.65 

TBobs+environmental var+ 

ancillary parameters 

0.82 0.17 0.68 

TBobs+∆TBobs−sim+ ancillary 

parameters 

0.84 0.16 0.69 

 Table 3: HANDEL-ATMS SSR Detection Performance: Statistical scores for different Predictor Sets 979 

 980 

 POD FAR HSS 

SWP 0.85 0.15 0.70 

SSR 0.84 0.16 0.69 

Table 4: HANDEL-ATMS detection Performance - SWP and SSR Detection Modules Statistical Scores 981 
 982 

 RMSE bias R2 

SWP (kg m-2) 0.047 0.001 0.72 

SSR (mm h-1) 0.079 0.002 0.61 

Table 5: HANDEL-ATMS Estimation Performance - SWP and SSR Estimation Module Error Statistics  983 
 984 
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 POD FAR 

 SLALOM-CT HANDEL-ATMS SLALOM-CT HANDEL-ATMS 

TPW<10 mm T2m<280 K (*) 0.82 0.84 0.19 0.16 

TPW<5 mm T2m<250 K 0.64 0.68 0.28 0.23 

TPW<3 mm T2m<240 K 0.45 0.54 0.33 0.28 

Table 6: Comparison between HANDEL-ATMS and SLALOM-CT detection Performances for Different 985 
Environmental Conditions (* HANDEL-ATMS working limits). 986 


