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Abstract. This paper explores the possibility of using multi-source precipitation estimates for 13 

climatological applications. A data processing algorithm (RainGRS Clim) has been developed to work 14 

on precipitation accumulations such as daily or monthly totals, which are significantly longer than 15 

operational accumulations (generally between 5 min and 1 h). The algorithm makes the most of 16 

additional opportunities, such as the possibility to complement with delayed data, access to high-quality 17 

data that are not operationally available, and the greater efficiency of the algorithms for data quality 18 

control and merging on longer accumulations. Verification of the developed algorithms was carried out 19 

on monthly accumulations through comparison with precipitation from manual rain gauges. As a result, 20 

monthly accumulations estimated by RainGRS Clim were found to be significantly more reliable than 21 

accumulations generated operationally. This improvement is particularly noticeable for the winter 22 

months, when precipitation estimation is much more difficult due to less reliable radar estimates. 23 

 24 

1. Introduction 25 

 26 

The estimation of precipitation on the ground surface with high spatial resolution is one of the 27 

most important issues in meteorology, but at the same time one of the most complex because of the very 28 

high spatial and temporal variability of precipitation, especially in the case of intense events associated 29 

with convective phenomena. This makes its precise quantitative estimation very difficult and subject to 30 

many errors. None of the available techniques, i.e. rain gauge measurements, meteorological radar 31 

measurements or satellite estimates based on measurements in different electromagnetic radiation bands, 32 

provide satisfactory precision. Consequently, different methods are being developed to combine 33 

precipitation data obtained by these techniques, with the aim of exploiting the advantages of each 34 

technique while minimising its weaknesses (Ochoa-Rodriguez et al., 2019; Jurczyk et al., 2020b; 35 

Wetchayont et al., 2023). 36 

The generation of such multi-source precipitation estimates is currently the standard procedure 37 

used for quantitative precipitation estimation (QPE). In operational (i.e. real-time) applications, the most 38 

common time step for estimating the precipitation field is the 1-hour step, as it often follows the demand 39 

from hydrological rainfall-runoff models (Sokol et al., 2021). However, sub-hourly resolutions, such as 40 

10-minute resolution, are also increasingly used. Such data are becoming essential, in particular as input 41 

for nowcasting precipitation forecast models, for precipitation-runoff models forecasting flash floods, 42 

which are triggered by intense but short-lived and rapidly fluctuating precipitation (e.g., Chan et al., 43 

2016; Neuper and Ehret, 2019), or for performing analyses of the occurrence of precipitation extremes 44 

(e.g., Bonaccorso et al., 2020; Lengfeld et al., 2020; Marra et al., 2022). 45 

However, there is also growing demand among climatologists and agrometeorologists, for 46 

example, for longer precipitation totals – of the order of days, months or years, or even entire multi-year 47 

periods – that still maintain high spatial resolution. This demand can in fact already be met, as radar 48 

observations of precipitation, providing the highest spatial resolution of all measurement techniques, 49 
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have been performed routinely for several decades. So, long series of radar as well as multi-source 50 

precipitation estimates are already available. Weather radar networks have covered a large part of the 51 

more densely populated areas of the globe, so that increasingly radar data, when supplemented with 52 

other observations, are also applied in climatological studies to provide extensive information on the 53 

multi-year variability of the precipitation field with very high spatial resolution not available with other 54 

measurement techniques (Fabry et al., 2017; Saltikoff et al., 2019a). They are also used to study the 55 

climatology of intense convective phenomena, as the high spatial resolution is particularly important in 56 

this case (Hamidi et al., 2017; Burcea et al., 2019; Voormansik et al., 2021; Hänsler and Weiler, 2022; 57 

Piscitelli et al., 2022). 58 

Consequently, there is a need to produce reliable estimates of precipitation accumulation over 59 

longer time periods (daily, monthly, yearly, or even longer) with data from databases containing 60 

operationally generated multi-source precipitation at higher temporal resolutions, e.g. as 10-min 61 

precipitation accumulations. It turns out that simply adding up, for example, 10-min estimates does not 62 

give satisfactory results, because any quality control algorithms for precipitation observations become 63 

much more effective for longer accumulations of at least 1 hour (Morbidelli et al., 2018; Villalobos-64 

Herrera et al., 2022). In particular, any algorithms for the adjustment of radar to rain gauge data often 65 

work too randomly when shorter accumulations are used, and the cross-checking of different types of 66 

precipitation data is then also subject to much higher uncertainty. 67 

Generating accumulations for longer time intervals therefore provides the possibility of carrying 68 

out so-called reanalyses, i.e. re-generating the corresponding precipitation accumulation. This brings the 69 

following potential benefits: (i) data sets can be supplemented with data that were missing from the 70 

operational estimation, e.g. due to delays in their arrival at the system, (ii) in addition, data from such 71 

measurement techniques that are available too late for operational applications, or measured with a 72 

longer calculation step (e.g. daily, such as from manual rain gauges) can be used (Imhoff et al, 2021), 73 

(iii) algorithms for performing quality control on radar precipitation data and then combining them with 74 

data from other sources generally work much more effectively on longer accumulations (Wagner et al., 75 

2012; Park et al., 2019). 76 

Various initiatives are being undertaken to estimate precipitation data for climatological purposes 77 

with the high spatial resolution obtained from radar observations, including on a trans-national scale. 78 

One of the major initiatives in this area is the EURADCLIM (EUropean RADar CLIMatology) dataset, 79 

which is based on radar data obtained from the Operational Program on the Exchange of Weather Radar 80 

Information (OPERA) – a EUMETNET (EUropean METeorological NETwork) initiative (Saltikoff et 81 

al., 2019b), and rain gauge data obtained from the European Climate Assessment & Dataset (ECA&D) 82 

project. Both of these networks are pan-European and cover the area of most of Europe. In the 83 

EURADCLIM programme, radar quality control adapted to longer precipitation accumulation intervals, 84 

such as 1-h and daily intervals, is performed (Overeem et al., 2023). Quality control is also performed 85 

on longer rain gauge accumulations within ECA&D (Klok and Klein Tank, 2009). 86 
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The concept of generating long-term precipitation estimation presented in this paper is based on 87 

using algorithms for quality control of the input data and combining them into multi-source estimates, 88 

which are applied operationally to 10-min data. However, new quality control methods and new data 89 

sources were also included – something that was not possible during the operational generation of 90 

precipitation estimates. 91 

Section 2 describes all input data, those available operationally as well as those used for 92 

reanalyses. Section 3 presents the algorithm for combining precipitation data into a multi-source 93 

precipitation field, used both operationally and for reanalyses, and Section 4 proposes a scheme for 94 

generating long-term estimates. Section 5 shows and discusses the results of the verification of the 95 

reanalyses of monthly totals in different seasons compared to operationally generated estimates, while 96 

Section 6 shows an example of the system performance. Finally, Section 7 provides conclusions. 97 

 98 

2. Precipitation data 99 

 100 

2.1. Precipitation measurement data available for the area of Poland 101 

 102 

Table 1 summarises the general characteristics of the precipitation data available for the area of 103 

Poland: from in situ and remote sensing measurements, available both in real-time and after a shorter or 104 

longer processing time, which can take up to two months (this is the case for quality control of the data 105 

from manual rain gauges). 106 

 107 

Table 1. In situ precipitation measurement networks available for Poland. 108 

 109 

Observation technique Temporal 

resolution 

Network density / 

spatial resolution 

Delay 

Telemetric rain gauge 

network 

10 min 1 gauge per 625 km2 

(about 500 gauges) 

6 min (then data from more than 

90% of the gauges are usually 

available) 

Manual rain gauge network 24 hrs 1 gauge per 434 km2 

(about 720 gauges) 

About 2 months (due to the transfer 

of the data and manual quality 

control) 

Ground weather radar 

network 

10 min About 1 km 6 min (because the lowest scan is 

generated at the beginning) 

Geostationary meteorological 

satellites (Meteosat and 

NWC-SAF software) 

5 min (in rapid 

scan system) 

About 5-6 km 1-5 min (due to scan strategy) 

 110 
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This study uses precipitation data generated by the Institute of Meteorology and Water 111 

Management – National Research Institute (IMGW), which performs the function of the national 112 

meteorological and hydrological service in Poland (Szturc et al., 2018). All these data are quality 113 

controlled by dedicated applications or systems. 114 

 115 

2.2. Rain gauge data 116 

 117 

  118 

 119 

Figure 1. Rain gauge networks of IMGW, from left: telemetric and manual rain gauge networks. 120 

 121 

10-min precipitation accumulations are provided operationally at IMGW by a network of 122 

telemetric rain gauges, most of which are tipping-bucket gauges – considered one of the less accurate 123 

of the various types of rain gauge (Hoffmann et al., 2016; Segovia-Cardozo et al., 2021) in addition to 124 

being subject to significant failure rates. For quality control of telemetric rain gauge data, the 125 

RainGaugeQC system is used at IMGW to perform error detection and corrections on 10-min data in 126 

real-time (Ośródka et al., 2022). 127 

One of the most important additional benefits of carrying out reanalyses, relative to the generation 128 

of a real-time precipitation field, is the possibility to exploit the much more accurate measurements 129 

performed by manual rain gauges mostly once a day. The network of such rain gauges (Hellmann type) 130 

installed at IMGW is relatively dense, and even denser than the network of telemetric rain gauges (Fig. 131 

1 and Table 1). These are the most accurate of the in situ point measurements, but they are available 132 

with a very long delay of almost two months, mainly due to the human-made data quality control. In 133 

addition, measurements from manual rain gauges are subjected to quality control in the IMGW historical 134 

database, using standard algorithms based on procedures recommended by the WMO (WMO-No. 305, 135 

1993, Chapter 6). 136 
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 137 

2.3. Weather radar data 138 

 139 

The radar data used to generate the precipitation field estimates come from the Polish POLRAD 140 

weather radar network, operated by the IMGW. It consists of eight Doppler radars manufactured by 141 

Leonardo Germany (Fig. 2). They are currently being replaced by new models with dual-polarised radar 142 

beams, and two new radars are being installed. Three-dimensional raw data, so-called volumes (raw 143 

data), and two-dimensional products are generated by the Rainbow 5 system every 10 min (a shift to 5-144 

min measurement frequency is currently underway), with 0.5-km spatial resolution and a range of 250 145 

km. For further details on the POLRAD network, see Ośródka and Szturc (2022). 146 

 147 

 148 

 149 

Figure 2. Computational domain of Poland (900 km x 800 km) with 250-km radar coverage of the weather radar 150 

network in Poland in 2022. 151 

 152 

The RADVOL-QC system (Ośródka et al., 2014; Ośródka and Szturc, 2022) is used to quality 153 

control of radar data of the POLRAD network, which corrects the source 3D radar data and generates 154 

dynamic maps of the data quality index. Merging data from individual radars into radar composite maps 155 

is done by applying algorithms that take account of the spatial distribution of the quality index in the 156 

radar data, which is assessed dynamically for each time step (Jurczyk et al., 2020a). 157 

 158 

2.4. Precipitation from meteorological satellites 159 

 160 
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Satellite precipitation is generated by an algorithm developed at IMGW based on products 161 

provided by the EUMETSAT NWC-SAF programme (Tapiador et al., 2019). The algorithm working 162 

within RainGRS system is based on several NWC-SAF products, depicting the spatial distribution of 163 

clouds and the intensity of precipitation, including convective precipitation. A detailed description of 164 

the algorithm was presented by Jurczyk et al. (2020b). 165 

Quality control of satellite precipitation is also carried out by the RainGRS system, taking into 166 

account primarily which NWC-SAF products are available at a given time. The quality of satellite 167 

precipitation, which is quantified by the quality index, is significantly lower at night-time, when visible 168 

range-based products analysing the physical properties of hydrometeors are not available. 169 

 170 

3. RainGRS system 171 

 172 

3.1. Merging of precipitation data into a multi-source precipitation field 173 

 174 

At IMGW, multi-source estimation of the precipitation field is carried out operationally by the 175 

RainGRS system. A detailed description of this system, which combines rain gauge, radar and satellite 176 

precipitation data summarised in Table 1, was presented by Jurczyk et al. (2020b). This combination 177 

algorithm takes into account the quality information of the individual input data, attributed to them when 178 

performing their quality control. 179 

In operational work, the 10-min computational step of generating estimates of the precipitation 180 

field is enforced by the resolution of the radar data, which is the source of the most important high-181 

resolution information on the spatial distribution of the precipitation field. When the radars of the 182 

POLRAD network are replaced (process in ongoing from 2022 to 2023), all included radars will operate 183 

with a 5-min time step. This will enable the temporal resolution of the multi-source precipitation 184 

estimates generated by RainGRS to be increased as well. 185 

The algorithm for combining rainfall data from different sources is based on a conditional 186 

merging that attempts to enhance the strengths of the individual inputs and reduce the impact of their 187 

weaknesses. It is commonly assumed that radar data is the best representation of the spatial distribution 188 

of the precipitation field, while a network of rain gauges effectively reduces the bias of this estimation. 189 

Satellite rainfall, in contrast, plays a mainly complementary role in the absence of other data. 190 

First, the rain gauge values are interpolated at radar pixel resolution, employing the Ordinary 191 

Kriging method to obtain an unbiased estimate of precipitation. The radar values at rain gauge locations 192 

and the same method of interpolation are used to get the interpolated radar field. Subsequently, the 193 

deviation between the measured and interpolated radar value (R – Rint) is computed and added to the rain 194 

gauge interpolated value at each pixel of the domain, according to the following formula: 195 

𝑅𝐺 = 𝐺𝑖𝑛𝑡 + (𝑅 − 𝑅𝑖𝑛𝑡)     (1) 196 
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where Rint is the radar precipitation interpolated from data at rain gauge locations. A satellite field SG is 197 

obtained from an analogical formula. 198 

It can be noted that the accuracy of the computed estimate depends on the distance to the nearest 199 

available rain gauge, and the radar precipitation field is preferable in the case of a long distance. 200 

Therefore, the resulting precipitation field RG is recombined with the radar precipitation field, applying 201 

the weighted scheme, which includes the quality of individual precipitation fields to obtain a combined 202 

GR field: 203 

𝐺𝑅 =
𝑅𝐺∙𝑄𝐼𝐺+𝑅∙𝑄𝐼𝑅∙(1−𝑄𝐼𝐺)

𝑄𝐼𝐺+𝑄𝐼𝑅∙(1−𝑄𝐼𝐺)
     (2) 204 

where QIG and QIR are the quality indices for gauge and radar, respectively. The quality index, QI, is 205 

the dimensionless quantity ranging from 0 (for the poorest quality) to 1 (for the best data). 206 

A combined gauge-satellite field GS is obtained analogically to the above procedure, where the 207 

satellite data S and relevant quality field QIS are taken. 208 

The final quantitative precipitation estimate (GRS) is a combination of gauge-radar and gauge-209 

satellite fields computed by means of the following weighted formula: 210 

𝐺𝑅𝑆 =
𝐺𝑅∙𝑄𝐼𝑑+𝐺𝑆∙(1−𝑄𝐼𝑑)∙𝑄𝐼𝑆

𝑄𝐼𝑑+𝑄𝐼𝑆∙(1−𝑄𝐼𝑑)
     (3) 211 

where the QId is a field of radar data quality as a function of the distance d to the nearest radar site. 212 

 213 

3.2. Generation of daily accumulations 214 

 215 

The basic 10-min precipitation accumulations are aggregated into different time intervals (e.g. 1-216 

hour, several hours, daily, or longer accumulations) depending on current needs. Due to gaps in data 217 

that occur in operational work, sometimes these accumulations may not be complete. In order to ensure 218 

the completeness of the accumulations, the gaps are complemented by temporal interpolation of the data 219 

from time steps directly before and after the gap. Such averaging from neighbouring measurements is 220 

carried out if this interval is not too long, and in the opposite case data are set to have no data value. For 221 

example, when generating hourly accumulation, at most two consecutive 10-minute measurements are 222 

allowed to be missing, but no more than three terms may be missing in one hour. 223 

 224 

4. Generation of daily and monthly precipitation reanalyses (RainGRS Clim) 225 

 226 

4.1. Climatological reanalyses versus operational estimates 227 

 228 

Reanalysis of the precipitation fields is carried out on daily accumulations. This provides the 229 

following benefits in terms of the reliability of the generated estimates: 230 
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1. Complementation with data that was missing operationally due to its late arrival in the system. 231 

For reanalyses, a time regime is not as strict as in an operational work, so data that arrived too 232 

late can be included. In the operational RainGRS, more than 90% of the rain gauge data 233 

generally arrives within six minutes, so the remaining data can be involved in reanalyses. 234 

When it comes to radar data, delays mainly affect data from foreign radars. 235 

2. The use of measurement techniques that are available too late to be used operationally, or that 236 

take measurements with a time step longer than 10 minutes as standard. In the proposed 237 

algorithm for performing reanalyses, in addition to using daily precipitation accumulations 238 

provided by those measurement techniques from which data are operationally available, data 239 

from manual rain gauges can also be used. These measurements are taken only once a day and 240 

are available after about two months – for this reason they are not used in the operational 241 

version of RainGRS, but due to their high reliability these data are very important, even 242 

crucial. 243 

3. Greater effectiveness of quality control and data merging algorithms when applied to 244 

accumulations longer than 10 minutes, e.g. daily. Longer precipitation accumulations are more 245 

consistent, as they are much less affected by temporal inconsistencies between different 246 

measurement techniques (this is especially the case with radar measurements, which in 247 

practice are instantaneous), and are moreover less sensitive to errors of a random nature, which 248 

become more averaged over a longer time interval. Thus, the algorithms for both quality 249 

control and multi-source combination perform more effectively. 250 

At IMGW, combined daily accumulations have been generated since 2021 by the algorithm 251 

described in this paper. The resulting daily precipitation estimates can already be directly used to 252 

generate longer precipitation accumulations, e.g. monthly, seasonal, annual or even multi-year. In view 253 

of the above possibilities, which create new areas of application for multi-source precipitation fields, 254 

e.g. in climatology, the version of RainGRS that generates reanalyses of daily precipitation accumulation 255 

is referred to as the climatology version RainGRS Clim. 256 

 257 

4.2. Algorithm for the estimation of climatological multi-source precipitation fields 258 

 259 

The algorithm presented in this section for calculating quality-controlled daily and monthly 260 

rainfall totals follows the following scheme (Fig. 3): 261 

1. Daily totals are calculated from 10-min rain gauge data. In order to ensure the completeness 262 

of the 10-min data, missing rain gauge data is completed with spatially interpolated values 263 

from the data that are available. The Ordinary Kriging method is used to interpolate the data. 264 

2. The daily point accumulations from the rain gauges are spatially interpolated to obtain 265 

precipitation fields. 266 
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3. A human expert check of the daily rain gauge fields is carried out, during which erroneous 267 

values from individual rain gauges are removed. This check on the daily values enables the 268 

detection of errors that were not detected on the 10-min accumulations with automatic QC 269 

algorithms. The daily accumulations from the rain gauges are then spatially interpolated again 270 

(as in point 2). 271 

4. Daily accumulations of radar and satellite precipitation fields are calculated, also 272 

supplemented with late data. 273 

5. The daily radar precipitation fields are corrected by removing disturbances occurring at the 274 

locations of some radars, as this correction only works effectively on longer accumulations. 275 

6. Estimates of daily accumulations 𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠  are calculated by the RainGRS system using 276 

the algorithm described in Section 3.1, which uses daily accumulations of individual 277 

precipitation fields as input data. This approach minimises errors associated with temporal 278 

inconsistencies in the data (Villalobos-Herrera et al., 2022). 279 

7. An adjustment of daily accumulations calculated by the RainGRS to observations from manual 280 

rain gauges, which are considered the most reliable point estimate of rainfall, is performed. 281 

The adjustment factor is determined separately for each manual rain gauge location and then 282 

spatially interpolated using the inverse distance weighting method to distribute it spatially 283 

(Wang et al., 2020). This adjustment results in daily accumulations 𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙.+𝑎𝑑𝑗. of multi-284 

source rainfall fields after reanalysis and adjustment. 285 

8. The long-term accumulations of the combined precipitation fields (e.g., monthly) can be 286 

calculated from the daily accumulations prepared in the above manner. 287 

 288 
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 289 

 290 

Figure 3. The algorithm for determining quality-controlled daily, monthly, and other precipitation accumulations. 291 

 292 

Fig. 4 shows an example of daily rainfall accumulations obtained operationally and after 293 

reanalysis. The differences between the two fields are generally not large, but locally they can be quite 294 

significant – a fragment from the computational domain is selected to highlight them. Larger differences 295 

between them are apparent in cases where some rain gauge data have been removed as a result of manual 296 

QC (during which they were found to be clearly erroneous) and which was not recognised by operational 297 

control. It is likely that in the 10-min accumulations the measurement errors were not so noticeable as 298 

to consider these values to be completely erroneous. The removal of each such value also affects the 299 

values in a certain vicinity of the rain gauge’s location due to changes in the field of interpolated gauges, 300 

relevant QI field and consequently in the RainGRS field. In addition, some of the differences between 301 

the two fields are due to the varying performance of the data combination algorithm (Sect. 3.1) on daily 302 

accumulations when compared to 10-min ones. 303 

 304 
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 305 

 306 

Figure 4. Fields of daily precipitation accumulations, before and after reanalysis: (a) 𝐺𝑅𝑆𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒  and (b) 307 

𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠. Fragment of Poland’s computational domain (325 km x 425 km), 11 December 2022. 308 

 309 

5. Verification 310 

 311 

5.1. Methodology of the verification 312 

 313 

In order to verify any precipitation field estimate, a precipitation field reference that can be 314 

considered as a “ground truth” is needed. Lysimeters are regarded as one of the most accurate point 315 

precipitation measurement techniques, but Hellmann-type manual rain gauges have similar reliability 316 

(Hoffmann et al., 2016). IMGW does not have at its disposal a network of lysimeters, however, it does 317 

have a relatively dense network of manual Hellmann type rain gauges, therefore these were considered 318 

to provide the most accurate technique of point measurement of precipitation available in IMGW. Thus, 319 

the results obtained in the present study were verified on them. 320 

However, it should be borne in mind that the data from the manual rain gauges are not 321 

independent, as they have previously been used for adjustment of the RainGRS Clim data. Thus, the 322 

basic quantity verified in this Section is not the final precipitation estimates produced after adjustment 323 

to the manual rain gauge data, but the estimates after quality control and reanalysis, i.e., 𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠. 324 

However, the verification of the final reanalyses 𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙.+𝑎𝑑𝑗. also provides interesting information, 325 

though one should be careful especially with criteria directly related to the estimated values, such as 326 

BIAS or RMSE, rather than, for example, their correlation with the reference field. 327 
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The period from January 2021 to December 2022 was analysed. For each of these 24 months, the 328 

statistics of the monthly precipitation estimates BIAS, RRSE, RMSE, and CC were calculated, taking 329 

the accumulations from the manual rain gauges as reference: 330 

 331 

‒ statistical bias:  332 

BIAS =
1

𝑛
∑ (𝐹𝑖 − 𝑂𝑖)
𝑛
𝑖=1      (4) 333 

‒ root mean square error:  334 

RMSE = √
1

𝑛
∑ (𝐹𝑖 − 𝑂𝑖)

2𝑛
𝑖=1      (5) 335 

‒ root relative square error:  336 

  RRSE =
√∑ (𝐹𝑖−𝑂𝑖)

2𝑛
𝑖=1

√∑ (𝑂𝑖−𝑂)
2𝑛

𝑖=1

      (6) 337 

‒ Pearson correlation coefficient:  338 

CC =
∑ (𝐹𝑖−𝐹)
𝑛
𝑖=1 (𝑂𝑖−𝑂)

√∑ (𝑂𝑖−𝑂)
2𝑛

𝑖=1 ∑ (𝐹𝑖−𝐹)
2𝑛

𝑖=1

     (7) 339 

 340 

where 𝐹𝑖 is the assessed value, 𝑂𝑖 is the reference value (from manual rain gauges), 𝑖 is the pixel number, 341 

𝑛 is the number of pixels, a 𝐹 and 𝑂 are the mean values of 𝐹𝑖 and 𝑂𝑖. 342 

 343 

5.2. Monthly statistics 344 

 345 
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 346 

 347 

Figure 5. Values of monthly characteristics: (a) BIAS, (b) RRSE, (c) RMSE, (d) CC, for precipitation estimates 348 

𝐺𝑅𝑆𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒 , 𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠, and 𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙.+𝑎𝑑𝑗. for consecutive months, using point data from manual rain 349 

gauges as reference. Data for 2021 and 2022. 350 

 351 

Figure 5 shows how the values of the four statistics BIAS, RRSE, RMSE, and CC, change in the 352 

following months, i.e. depending on the seasonal precipitation characteristics. 353 

The most evident phenomenon visible in the BIAS graph is large underestimation of monthly 354 

precipitation accumulations, especially in winter months (December – February) that can reach up to 20 355 

mm (Fig. 5a), which in Poland means several dozen percent of monthly accumulations. This is a result 356 

of the fact that the precipitation measurements from both rain gauges and radars are underestimated in 357 

IMGW due to the use of specific types of measuring devices, as mentioned in Sections 2.2 and 2.3. 358 

Additionally, in winter the reason for these errors is the difficulty in radar measurements that occurs 359 

during snowfall from lower clouds than in other seasons and causes most of this precipitation to become 360 

invisible to radar as a result of overshooting the precipitation by the radar beam. 361 

Reanalysis and quality control on daily accumulations leads to a reduction of BIAS by a few mm 362 

per month, mainly in the winter months. This is mostly due to the clearly better performance of the 363 

algorithm for the combination of rain gauge and radar data, which copes better with low precipitation 364 

on longer accumulations. After adjustment to observations from manual rain gauges it is possible to deal 365 

with the problem of underestimation of the precipitation field – the BIAS is then practically eliminated, 366 
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and is visible only to a small extent, mainly in winter. But even then, it is reduced several times, to 367 

approximately -7 mm per month (Fig. 5a). In warmer seasons the observed BIAS values are relatively 368 

smaller, though August 2021 is a clear outlier. Such large errors in this month, visible not only in BIAS 369 

but also in RMSE, are due to the fact that this month was characterised by extremely high precipitation: 370 

the monthly total for a large part of southern Poland was over 300 mm, while in this region the multi-371 

year average precipitation in August is about 100 mm. High precipitation accumulations are 372 

automatically associated with an increase in the values of statistics of an absolute nature, so that they 373 

are not visible in the values of relative statistics such as RRSE and CC.   374 

The RRSE annual cycle (Fig. 5b) also shows the largest estimation errors in winter. The error is 375 

rather high in winter, at about 1.3 – 1.4 for  𝐺𝑅𝑆𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒, and the reanalysis improved the reliability of 376 

the precipitation estimate, resulting in a decrease of the RRSE to a value of about 1.1 – 1.2. For the other 377 

months, the error is lower, at about 0.5 for 𝐺𝑅𝑆𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒, and the reanalysis improved the reliability of 378 

the estimate to a lesser extent, as the RRSE decreased by about 0.1. 379 

High values of RMSE (Fig. 5c) are observed in winter, when they reach 27-29 mm for 380 

𝐺𝑅𝑆𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒, but unlike RRSE, they also occur in the summer months, which is related to the frequent 381 

occurrence of intense convective precipitation during this season. They do not induce a similar increase 382 

in RRSE values, because this statistic is relative as the result of dividing the RMSE by the standard 383 

deviation from the reference value (Eq. 6). Reanalysis reduces RMSE values in winter by about 5 mm 384 

per month, slightly less in the other seasons, and adjustment to manual rain gauges reduces them to 385 

values of about 5-10 mm per month independently of the season. 386 

The correlation coefficient CC (Fig. 5d) is more sensitive to the existence of relationship between 387 

evaluated and reference data than the other statistics, which are based on the comparison of estimated 388 

and reference values. The CC values also indicate the lowest reliability of the precipitation estimates in 389 

winter, when the coefficient equals about 0.65 and improves to about 0.75 after reanalysis. The reason 390 

for these low values can also be explained by the low variability of the precipitation accumulations over 391 

this period, which results in a low correlation with the manual rain gauge measurements. In other 392 

seasons, especially in the summer months, the CC values are much higher, as they reach approximately 393 

0.8 – 0.9 for both operational and reanalysed estimates. The adjustment to the manual rain gauges 394 

increases the correlations to approximately 0.9 – 0.95. 395 

In March 2022, there was a noticeable deviation from the typical annual pattern described above 396 

for the CC coefficient. This was due to the exceptionally dry period that occurred at that time in the 397 

whole country, particularly in northern Poland. Typically, monthly precipitation accumulation for 398 

March is around 30-40 mm in Poland, but in 2022 it was significantly lower, and in the northern part of 399 

the country it was often even zero. In this case, the correlation coefficient usually increases, so that in 400 

this particular month, the correlation value for 𝐺𝑅𝑆𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒 was as high as 0.90, rising to 0.93 after 401 

reanalysis. Another unexpected value of the CC coefficient was observed in May 2022, when the 402 

correlation is around 0.7, which was improved by reanalysis and adjustment, after which the CC 403 
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increased to around 0.95. The reason for this effect was probably a Legionowo radar replacement at that 404 

time, because this radar covers a large part of the domain where other radars do not reach. 405 

In general, the reliability of monthly estimates of precipitation field accumulation is clearly 406 

dependent on the season. Two evident phenomena can be observed here: in winter (November – 407 

February), high values of BIAS, RRSE, and RMSE are noticeable at the same time as low values of CC, 408 

as indicated in the above analysis. In summer (July – August), the situation is different, as convective, 409 

thunderstorm precipitation is often observed during this time, so the intensity of precipitation is higher, 410 

and monthly accumulations are much higher, which is also reflected in the RMSE values, while the 411 

correlation (CC) with the reference data is then significantly higher.  412 

Table 2 summarises statistics for two selected months from 2022: January for winter and August 413 

for summer. The table shows the values of quality metrics for the three multi-source precipitation fields: 414 

operationally generated (𝐺𝑅𝑆𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒), after reanalysis (𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠), and after adjustment of this 415 

reanalysed precipitation field (𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙.+𝑎𝑑𝑗.), with manual rain gauge observations as a reference. All 416 

statistics are worse for winter than for summer, however, reanalysis as well as adjustment worked much 417 

more effectively in winter. Precipitation reanalysis, involving merging individual rainfall fields on daily 418 

(instead of 10-min) accumulations, along with the associated more effective data quality control, results 419 

in a clear improvement in all quality statistics in winter (January 2022), e.g. RMSE by almost 4.5 mm 420 

and CC by 0.1. In summer (August 2022), however, this impact is much smaller, and amounts to less 421 

than 0.6 mm and 0.02, respectively, but BIAS slightly increased. The further improvement, which results 422 

from adjustment to data from manual rain gauges, is much more evident – in winter it is more than 13.5 423 

mm in RMSE and 0.16 in CC, and in summer more than 11.8 mm and 0.04, respectively. 424 

 425 

Table 2. Values of quality metrics for merged daily precipitation fields: before reanalysis (𝐺𝑅𝑆𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒), after 426 

reanalysis (𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠), and after reanalysis and adjustment (𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙.+𝑎𝑑𝑗.), using point data from manual 427 

rain gauges as reference. Months: (a) January 2022, (b) August 2022. 428 

 429 

(a) January 2022 430 

Metric BIAS (mm) RMSE (mm) RRSE (--) CC (--) 

𝐺𝑅𝑆𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒  -23.72 29.04 1.32 0.66 

𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 -19.83 24.63 1.12 0.76 

𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙.+𝑎𝑑𝑗. -7.06 11.06 0.50 0.92 

 431 

(b) August 2022 432 

Metric BIAS (mm) RMSE (mm) RRSE (--) CC (--) 

𝐺𝑅𝑆𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒  -8.04 19.18 0.40 0.93 

𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 -9.35 18.60 0.38 0.95 
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𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙.+𝑎𝑑𝑗. -0.03 7.77 0.16 0.99 

 433 

Concluding, for all the statistics used here, the improvement in the quality of monthly 434 

accumulation of estimated precipitation fields 𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 i 𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙.+𝑎𝑑𝑗. relative to operational 435 

fields 𝐺𝑅𝑆𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒 is clearly visible. The differences between the statistics of 𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙.+𝑎𝑑𝑗. and 436 

𝐺𝑅𝑆𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒 are much larger. This is mainly due to the fact that, in the absence of any other possibility, 437 

the verification was carried out using data from manual rain gauges as a reference, and here they are 438 

dependent data, as they are used during the generation of the final 𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙.+𝑎𝑑𝑗. (see point 7 in the 439 

data processing scheme in Section 4.2). 440 

 441 

 442 

 443 

Figure 6. Plots of the dependence of monthly precipitation estimate values, from left: 𝐺𝑅𝑆𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒 , 𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠  444 

and 𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙.+𝑎𝑑𝑗. on values measured with manual rain gauges, along with trend lines. Months: (a) January 445 

2022, (b) August 2022. 446 

 447 

Fig. 6 shows graphs of the relationship between the estimated fields of monthly accumulated 448 

RainGRS precipitation calculated operationally (generated in real-time), after reanalysis and after 449 

adjustment of this reanalysed precipitation field, and monthly accumulations observed by manual rain 450 
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gauges, for the same two months for which the values of statistics are summarised in Table 2. The graphs 451 

show precipitation values at locations of manual rain gauges. The correlation for the 𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 452 

estimate compared to 𝐺𝑅𝑆𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒 improved, although only slightly. This conformity, measured by the 453 

distance between the trend line (red) and the one-to-one line (dashed), clearly improved in winter, but 454 

declined slightly in summer. The conformity with manual rain gauges for the 𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙.+𝑎𝑑𝑗. estimate 455 

is clearly greater than that for the 𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠, but it should be borne in mind that the data from manual 456 

rain gauges are not fully independent. Nevertheless, this comparison gives some information about the 457 

effectiveness of the final step in generating precipitation field estimates with the RainGRS Clim system. 458 

 459 

6. Example of a climatological estimate of monthly precipitation accumulation 460 

 461 

 462 

 463 

Figure 7. Fields of monthly precipitation accumulations: (a) 𝐺𝑅𝑆𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒 , (b) 𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠, and (c) 464 

𝐺𝑅𝑆𝑟𝑒𝑎𝑛𝑎𝑙.+𝑎𝑑𝑗.. Domain of Poland, April 2021. 465 

 466 

In Fig. 7 we can see an example of estimates of monthly precipitation accumulations for the 467 

domain of Poland, 900 km x 800 km (see Fig. 2). From the left there are estimates: operational, after the 468 

reanalysis, and after reanalysis and adjustment to manual rain gauges data. In general, values of the 469 

estimated precipitation increased after the reanalysis as a result of the more effective performance of the 470 

merging algorithm on longer accumulations. After the adjustment to manual rain gauges, the further, 471 

much higher increase of the precipitation values is because radar-based precipitation estimates are 472 

underestimated in the case of Polish weather radars. Moreover, it should be taken into account that rain 473 

gauges also underestimate rainfall, because they are mostly tipping bucket devices (Segovia-Cardozo et 474 

al., 2021). 475 

The area of underestimated precipitation in the centre of Poland marked with “1” in Fig. 7 is the 476 

place where the distance to the closest radar site is longest – more than 200 km, where the radar beam 477 

passes over part of the precipitation (overshoots). Moreover, the telemetric rain gauge network is rather 478 

sparse here. Adjustment to manual rain gauges has made it possible to correct this underestimation. 479 

The area denoted “2” in Fig. 7 indicates the region where there are no radars, even from 480 

neighbouring countries. Reanalysis partially improves it by complementing the lack of data with 481 
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satellite-based precipitation, but not wholly effectively due to the higher uncertainty of the satellite 482 

estimates. 483 

 484 

7. Conclusions 485 

 486 

The following general conclusions can be drawn about the proposed methodology for the 487 

generation of long-term precipitation estimates by the RainGRS Clim system: 488 

1. Based on an analysis of available precipitation data, it was assumed that the most reliable 489 

precipitation measurement technique is a network of manual rain gauges. In particular, it was 490 

assumed that these measurements are unbiased. Since their daily accumulations are available 491 

with a long delay due to their transfer and manual quality control, they cannot be used in real 492 

time, but they can be used effectively to perform adjustment of reanalyses (see Sections 5.2 493 

and 5.3). 494 

2. The second major limitation of manual rain gauges is that they only provide point observations. 495 

However, the relatively high density of this measurement network in Poland (Fig. 1) makes 496 

them very useful in the adjustment of other precipitation field estimates. 497 

3. With daily accumulations, which, due to the time step of manual rain gauge measurements, 498 

are the basic accumulations in the algorithm for generating climatological precipitation 499 

estimates described in Section 4.2, it becomes possible to perform much more effective quality 500 

control, particularly in terms of removing various types of artifacts in weather radar data. 501 

4. Algorithms for merging rain gauge, weather radar, and satellite data perform much more 502 

effectively for daily totals than for 10-min totals. This is mainly due to the fact that longer 503 

accumulations of precipitation are more consistent, as in this case time inconsistencies 504 

between different measurement techniques play a much smaller role. In addition, with longer 505 

accumulations, errors of a random nature are more averaged out (see Section 4.1). 506 

5. The results presented in the paper show that after reanalysis, estimates of precipitation field 507 

are of higher reliability than operationally generated estimates. Adjustment of the data after 508 

reanalysis to data from manual rain gauges resulted in a further, much higher quality 509 

improvement (Sections 5.2 and 5.3). However, it should be kept in mind that the final estimates 510 

are obtained using data from manual rain gauges, so the results of the verification performed 511 

on these data, which in this case are partially dependent, should be treated with caution. 512 

6. Having estimates of precipitation accumulated over longer time intervals in RainGRS Clim, 513 

such as monthly intervals, creates the possibility of applying them to climatological analyses. 514 

They provide valuable information, especially when high spatial resolution of precipitation 515 

data is important. 516 

 517 



20 
 

Code availability. The data processing codes are protected through the economic property rights to the software 518 

and are not available for distribution. The codes used for processing follow the methodologies and equations 519 

described herein. 520 

 521 

Data availability. The data used in this paper are available upon request. 522 

 523 

Author contributions. AJ, KO, JS, and MP designed algorithms of the RainGRS Clim system. MP, KO, and AK 524 

developed the software code and performed the simulations. JS, KO, AJ, AK, and MP prepared the paper. JS made 525 

figures. 526 

 527 

Competing interests. The contact author has declared that none of the authors has any competing interests. 528 

 529 

References 530 

 531 

Bonaccorso, B., Brigandì, G., and Aronica, G. T.: Regional sub-hourly extreme rainfall estimates in 532 

Sicily under a scale invariance framework, Water Resources Management, 34, 4363-4380, 533 

https://doi.org/10.1007/s11269-020-02667-5, 2020. 534 

Burcea, S., Cică, R., and Bojariu, R.: Radar-derived convective storms’ climatology for the Prut River 535 

basin: 2003–2017, Natural Hazards and Earth System Sciences, 19, 1305-1318, 536 

https://doi.org/10.5194/nhess-19-1305-2019, 2019. 537 

Chan, S. C., Kendon, E. J., Roberts, N. M., Fowler, H. J., and Blenkinsop, S.: The characteristics of 538 

summer sub-hourly rainfall over the southern UK in a high-resolution convective permitting 539 

model, Environmental Research Letters, 11, 094024, https://doi.org/10.1088/1748-540 

9326/11/9/094024, 2016. 541 

Fabry, F., Meunier, V., Treserras, B. P., Cournoyer, A., and Nelson, B.: On the Climatological Use of 542 

Radar Data Mosaics: Possibilities and Challenges, Bulletin of the American Meteorological 543 

Society, 98, 2135-2148, https://doi.org/10.1175/BAMS-D-15-00256.1, 2017. 544 

Hamidi, A., Devineni, N., Booth, J. F., Hosten, A., Ferraro, R. R., and Khanbilvardi, R.: Classifying 545 

urban rainfall extremes using weather radar data: An application to the greater New York area, 546 

Journal of Hydrometeorology, 18, 611-623, https://doi.org/10.1175/JHM-D-16-0193.1, 2017 547 

Hänsler, A. and Weiler, M.: Enhancing the usability of weather radar data for the statistical analysis of 548 

extreme precipitation events, Hydrology and Earth System Sciences, 26, 5069–5084, 549 

https://doi.org/10.5194/hess-26-5069-2022, 2022. 550 

Hoffmann, M., Schwartengräber, R., Wessolek, W., and Peters, A.: Comparison of simple rain gauge 551 

measurements with precision lysimeter data, Atmospheric Research, 174-175, 120-123, 552 

https://doi.org/10.1016/j.atmosres.2016.01.016, 2016. 553 



21 
 

Imhoff, R., Brauer, C., van Heeringen, K.-J., Leijnse, H., Overeem, A., Weerts, A., and Uijlenhoet, R.: 554 

A climatological benchmark for operational radar rainfall bias reduction, Hydrology and Earth 555 

System Sciences, 25, 4061–4080, https://doi.org/10.5194/hess-25-4061-2021, 2021. 556 

Jurczyk, A., Szturc, J., and Ośródka, K.: Quality-based compositing of weather radar QPE estimates, 557 

Meteorological Applications, 27, e1812, https://doi.org/10.1002/met.1812, 2020a. 558 

Jurczyk, A., Szturc, J., Otop, I., Ośródka, K., and Struzik, P.: Quality-based combination of multi-source 559 

precipitation data, Remote Sensing, 12, 1709, https://doi.org/10.3390/rs12111709, 2020b. 560 

Klok, E. J. and Klein Tank, A. M. G.: Updated and extended European dataset of daily climate 561 

observation, International Journal of Climatology, 29, 1182–1191, 562 

https://doi.org/10.1002/joc.1779, 2009. 563 

Lengfeld, K., Kirstetter, P.-E., Fowler, H. J., Yu, J., Becker, B., Flamig, Z., and Gourley, J.: Use of radar 564 

data for characterizing extreme precipitation at fine scales and short durations, Environmental 565 

Research Letters, 15, 085003, https://doi.org/10.1088/1748-9326/ab98b4, 2020. 566 

Marra, F., Armon, M., and Morin, E.: Coastal and orographic effects on extreme precipitation revealed 567 

by weather radar observations, Hydrology and Earth System Sciences, 26, 1439-1458, 568 

https://doi.org/10.5194/hess-26-1439-2022, 2022. 569 

Morbidelli, R., Saltalippi, C., Flammini, A., Corradini, C., Wilkinson, S. M., and Fowler, H. J.: Influence 570 

of temporal data aggregation on trend estimation for intense rainfall, Advances in Water 571 

Resources, 122, 304-316, https://doi.org/10.1016/j.advwatres.2018.10.027, 2018. 572 

Neuper, M. and Ehret, U.: Quantitative precipitation estimation with weather radar using a data- and 573 

information-based approach, Hydrology and Earth System Sciences, 23, 3711-3733, 574 

https://doi.org/10.5194/hess-23-3711-2019, 2019. 575 

Ochoa-Rodriguez, S., Wang, L.-P., Willems, P., and Onof, C.: A review of radar‐rain gauge data 576 

merging methods and their potential for urban hydrological applications, Water Resources 577 

Research, 55, 6356–6391, https://doi.org/10.1029/2018WR023332, 2019. 578 

Ośródka K., Szturc J., and Jurczyk A.: Chain of data quality algorithms for 3-D single-polarization radar 579 

reflectivity (RADVOL-QC system), Meteorological Applications, 21, 256–270, 580 

https://doi.org/10.1002/met.1323, 2014. 581 

Ośródka, K. and Szturc, J.: Improvement in algorithms for quality control of weather radar data 582 

(RADVOL-QC system), Atmospheric Measurement Techniques, 15, 261-277, 583 

https://doi.org/10.5194/amt-15-261-2022, 2022. 584 

Ośródka, K., Otop, I., and Szturc, J.: Automatic quality control of telemetric rain gauge data providing 585 

quantitative quality information (RainGaugeQC), Atmospheric Measurement Techniques, 15, 586 

5581-5597, https://doi.org/10.5194/amt-15-5581-2022, 2022. 587 

Overeem, A., van den Besselaar, E., van der Schrier, G., Meirink, J. F., van der Plas, E., and Leijnse, 588 

H.: EURADCLIM: the European climatological high-resolution gauge-adjusted radar 589 



22 
 

precipitation dataset, Earth System Science Data, 15, 1441–1464, https://doi.org/10.5194/essd-590 

15-1441-2023, 2023 591 

Park, S., Berenguer, M., and Sempere-Torres, D.: Long-term analysis of gauge-adjusted radar rainfall 592 

accumulations at European scale, Journal of Hydrology, 573, 768–777, 593 

https://doi.org/10.1016/j.jhydrol.2019.03.093, 2019. 594 

Piscitelli, F. M., Ruiz, J. J., Negri, P., and Salio, P.: A multiyear radar-based climatology of supercell 595 

thunderstorms in central-eastern Argentina, Atmospheric Research, 277, 106283, 596 

https://doi.org/10.1016/j.atmosres.2022.106283, 2022. 597 

Saltikoff, E., Friedrich, K., Soderholm, J., Lengfeld, K., Nelson, B., Becker, A., Hollmann, R., Urban, 598 

B., Heistermann, M., and Tassone, C.: An overview of using weather radar for climatological 599 

studies: Successes, challenges, and potential, Bulletin of the American Meteorological Society, 600 

100, 1739-1752, https://doi.org/10.1175/BAMS-D-18-0166.1, 2019a. 601 

Saltikoff, E., Haase, G., Delobbe, L., Gaussiat, N., Martet, M., Idziorek, D., Leijnse, H., Novák, P., 602 

Lukach, M., and Stephan, K.: OPERA the radar project, Atmosphere, 10, 320, 603 

https://doi.org/10.3390/atmos10060320, 2019b. 604 

Segovia-Cardozo, D.A., Rodríguez-Sinobas, L., Díez-Herrero, A., Zubelzu, S., and Canales-Ide, F.: 605 

Understanding the mechanical biases of tipping-bucket rain gauges: A semi-analytical calibration 606 

approach, Water, 13, 2285, https://doi.org/10.3390/w13162285, 2021. 607 

Sokol, Z., Szturc, J., Orellana-Alvear, J., Popová, J., Jurczyk, A., and Célleri, R.: The role of weather 608 

radar in rainfall estimation and its application in meteorological and hydrological modelling – A 609 

review, Remote Sensing, 13, 351, https://doi.org/10.3390/rs13030351, 2021. 610 

Szturc, J., Jurczyk, A., Ośródka, K., Wyszogrodzki, A., and Giszterowicz, M.: Precipitation estimation 611 

and nowcasting at IMGW-PIB (SEiNO system), Meteorology Hydrology and Water 612 

Management, 6, 3-12, https://doi.org/10.26491/mhwm/76120, 2018. 613 

Tapiador, F. J.; Marcos, C.; Sancho, J. M.: The convective rainfall rate from cloud physical properties 614 

algorithm for Metaset Second-Generation satellites: Microphysical basis and intercomparisons 615 

using an object-based method, Remote Sensing, 11, 527, https://doi.org/10.3390/rs11050527, 616 

2019. 617 

Villalobos-Herrera, R., Blenkinsop, S., Guerreiro, S. B., O’Hara, T., and Fowler, H. J.: Sub-hourly 618 

resolution quality control of rain gauge data significantly improves regional sub-daily return level 619 

estimates, Quarterly Journal of the Royal Meteorological Society, 148, 3252-3271, 620 

https://doi.org/10.1002/qj.4357, 2022. 621 

Voormansik, T., Müürsepp, T., and Post, P.: Climatology of Convective Storms in Estonia from Radar 622 

Data and Severe Convective Environments, Remote Sensing, 13, 2178. https:// 623 

doi.org/10.3390/rs13112178, 2021. 624 

https://doi.org/10.1002/qj.4357


23 
 

Wagner, A., Seltmann, J., and Kunstmann, H.: Joint statistical correction of clutters, spokes and beam 625 

height for a radar derived precipitation climatology in southern Germany, Hydrology and Earth 626 

System Sciences, 16, 4101–4117, https://doi.org/10.5194/hess-16-4101-2012, 2012. 627 

Wang, K.-H., Chu, T., Yang, M.-D., and Chen, M.-C.: Geostatistical based models for the spatial 628 

adjustment of radar rainfall data in typhoon events at a high-elevation river watershed. Remote 629 

Sensing, 12, 1427, https://doi.org/10.3390/rs12091427, 2020. 630 

Wetchayont, P., Ekkawatpanit, C., Rueangrit, S., and Manduang, J.: Improvements in rainfall estimation 631 

over Bangkok, Thailand by merging satellite, radar, and gauge rainfall datasets with the 632 

geostatistical method, Big Earth Data [preprint], 7, 251-257, 633 

https://doi.org/10.1080/20964471.2023.2171581, 2023. 634 

WMO-No. 305: Guide on the Global Data-processing System, World Meteorological Organization, 635 

Geneva, 199 pp., ISBN 978-92-63-13305-2, 636 

https://library.wmo.int/index.php?lvl=notice_display&id=6832#.Y1AI4uTP2Uk, 1993. 637 

 638 


