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Abstract. Carbonaceous particles, such as soot, make up a notable fraction of atmospheric particulate matter and contribute 

substantially to anthropogenic climate forcing, air pollution, and human health. Thermal-optical analysis (TOA) is one of the 

most widespread methods used to speciate carbonaceous particles and divides total carbon (TC) into the operationally defined 

quantities of organic carbon (OC; carbon evolved during slow heating in an inert atmosphere) and elemental carbon (EC). 

While multiple studies have identified fundamental scientific reasons for uncertainty in distinguishing OC and EC, far fewer 15 

studies have reported on interlaboratory reproducibility. Moreover, existing reproducibility studies have focused on complex 

atmospheric samples. The real-time instruments used for regulatory measurements of aircraft engine non-volatile particulate 

matter (nvPM) mass emissions are required to be calibrated to the mass of EC determined by TOA of the filter-sampled 

emissions of a diffusion flame source. However, significant differences have been observed in the calibration factor for the 

same instrument based on EC content determined by different calibration laboratories. Here, we report on the reproducibility 20 

of TC, EC, and OC quantified using the same TOA protocol, instrument model (Sunset 5L), and software settings (auto split-

point: Calc405) across five different laboratories and instrument operators. Six unique data sets were obtained, with one 

laboratory operating two instruments. Samples were collected downstream of an aircraft engine after treatment with a catalytic 

stripper to remove volatiles. We compared laboratory-reported uncertainties with actual variability in the data set, the 

difference of which (dark uncertainty) was substantial. Interlaboratory (dark) contributions increase uncertainties by a factor 25 

of 1.2 – 1.6 relative to the laboratory-reported uncertainties, even for these relatively simple samples (combustion particles 

downstream of a stripper), resulting in uncertainties of 26% (k = 2) for EC. Uncertainties were a little larger for EC than for 

OC. These results indicate that current TOA uncertainties are underestimated and should be adjusted upwards to reflect these 

interlaboratory differences.  
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1 Introduction 30 

Carbonaceous particles contribute to both natural and anthropogenic climate forcing, air pollution, and human health impacts. 

The aviation industry remains a notable source of these particles, and air transportation continues to expand. Unlike CO2, 

particulate matter (PM) emissions from the aviation industry contain larger uncertainties, as is their effect on contrails and 

cloud formation (Righi et al., 2021). For aircraft engine emissions, thermal-optical analysis (TOA) is currently the reference 

standard for measuring the mass concentration of non-volatile particulate matter (nvPM) emitted by aircraft engines (SAE, 35 

2018; Lobo et al., 2015b; Lobo et al., 2020).  

In TOA, the total carbon (TC) mass on collected on a quartz filter is measured in two parts. First, the total carbon mass 

evolved from a sample during controlled heating in an inert environment is considered organic carbon (OC), while the 

remainder, heated in an oxidizing environment, is considered EC, after correction for pyrolysis (Birch and Cary, 1996). If the 

mass fraction of carbon in OC (40–80%; (Turpin and Lim, 2001; Bae et al., 2006)) or in EC (90–98%; (Figueiredo et al., 1999; 40 

Singh and Vander Wal, 2020; Corbin et al., 2020)) is known, these quantities can then be used to estimate the total mass of 

carbonaceous particles on the filter.  

It is well known that the widely variable properties of carbonaceous materials leads to significant uncertainties in the 

separation of TC into OC and EC using TOA (Watson et al., 2005; Lack et al., 2014). In particular, inorganic carbonates may 

generate spurious signals; soot may partly vaporize at the OC stage; materials such as tarballs or highly-oxidized organics may 45 

generate EC signals; and inorganic compounds may catalyze the formation of EC or confound the optical quantification of 

pyrolysis (Corbin et al., 2020). It is also well known that different temperature ramp protocols lead to differences in the OC/EC 

ratio reported by TOA (e.g. Bautista et al., 2015; Schauer et al., 2003; Cavalli et al., 2010; Brown et al., 2017; Cheng et al., 

2010; Giannoni et al., 2016; Wu et al., 2016; Cheng et al., 2012).  

Less well studied are the uncertainties in TOA across multiple laboratories. Interlaboratory studies allow for an assessment 50 

of measurement reproducibility (changing laboratories, instruments, and operators), rather than simply repeatability (e.g., 

replicate measurements performed by the same operator). Here, the few reproducibility studies that exist have often focussed 

on atmospheric aerosols or surrogates thereof. Schmid et al. (2001) analyzed urban air pollution samples from Berlin, Germany, 

using 9 different protocols obtained in 17 different laboratories. They reported 7%, 9%, and 11% standard deviation between 

their TC measurements. Schauer et al. (2003) evaluated EC and OC reproducibility for filter samples of Asian and North 55 

American air pollution, as well as secondary organic aerosol, reporting 4–13% reproducibility for OC and 6–21% for EC. They 

additionally evaluated the reproducibility of the EC/OC division (split point) for various other samples, focussing on this ratio 

after identifying it as a major source of uncertainty. Ten Brink et al. (2004) sampled rural air pollution in Germany and analyzed 

the filters in four different laboratories, reporting less than 10% variability in TC and EC. Finally, in a pan-European study, 

Panteliadis et al. (2015)  gathered results from 17 different laboratories to determine a reproducibility of 12–15% for TC, and 60 

20–26% for EC, while Brown et al. (2017) reported a combined uncertainty of < 13 % for a reproducibility study between four 
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laboratories. The known technical shortcomings of TOA instruments cannot explain the magnitude of these uncertainties 

(Boparai et al., 2008). 

We note that neither Schmid et al. (2001), Ten Brink et al. (2004), nor Panteliadis et al. (2015) presented a detailed statistical 

analysis of OC concentrations, and reported up to a factor of two difference between OC measured by different protocols. This 65 

is related to the fact that the accurate quantification of OC in atmospheric samples is extremely difficult, due to the potential 

vaporization and/or adsorption of volatile organic compounds during and after sampling, especially for low filter loadings, and 

even when attempting to measure these artifacts (discussed below). This difficulty is one of the reasons that emissions testing 

protocols typically specify the removal of volatile OC by devices such as catalytic strippers, which remove all volatiles 

(typically at 350 °C) prior to filter collection. Consequently, any carbon measured as OC on downstream filters must either 70 

represent pyrolysis products or contamination. Importantly, Corbin et al. (2020) showed that once gas-phase contamination is 

accounted for, the remaining OC is also measured by in-situ (filter-free) techniques, and is therefore not a sampling or TOA 

artifact.  

Overall, despite a very significant body of work on the fundamentals and statistical uncertainties behind TOA 

measurements, there have been few studies where the sample was (i) non-volatile, (ii) taken from the same or identical filter, 75 

and (iii) of known composition. Here, we present an intercomparison study where the same filters were punched six times for 

analysis by five different laboratories, after sampling aircraft engine exhaust denuded at 350 °C. Identical instruments and 

protocols were used. Our study provides a general estimate of the dark uncertainty (differences between laboratories that would 

be hidden, or dark, in measurements by a single laboratory) of TOA analyses from similar emissions tests, and a lower limit 

for the TOA reproducibility in atmospheric studies where additional uncertainties are introduced.  80 

2 Methods 

2.1 Experimental protocol 

Sampling was performed in accordance with SAE ARP6320A (SAE, 2018), with the experimental setup shown schematically 

in Figure 1. Emissions were collected from the exhaust of a  helicopter turboshaft engine (Olfert et al., 2017) using a single 

point sample probe. The sample stream was mixed with heated dilution air before passing through a catalytic stripper (Catalytic 85 

Instruments CS15). Flow was split to pass through a pair of Dekati diluters (DI-1000, operated with HEPA filtered compressed 

air) and a pair of cyclones, each with a 1.0 μm cutoff at 50 LPM, before being directed through a sampling manifold. Samples 

were distributed from the manifold to a suite of instruments, including other instruments for online mass quantification (e.g., 

as in Corbin et al. (2020)) and TOA. Particles for TOA were collected on quartz filters in stainless steel filter holders. The 

quartz filters were then sealed in Analyslide Petri dishes (28145-473) and kept at room temperature until analysis.  90 
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Figure 1. Schematic of the experimental setup where emissions from a helicopter turboshaft engine transit to filter holders used for 

thermal-optical analysis (TOA). Cyclones had a 1.0 μm cutoff at 50 LPM, with the actual sample flow rate for each cyclone being 56 95 
LPM. MFC stands for mass flow controller, while HEPA refers to a HEPA filter. Dual diluter/cyclone system is consistent with 

(SAE, 2018). Inset at the top, right depicts the punch positions on the filter. Note that the angular position of the punches on the 

filter was not constrained.   

 

Samples were composed of 20 filters, with five each sampling at approximately 50, 100, 250, and 500 µg/m3 (based on 100 

measurements made by a AVL Micro Soot Sensor on a separate parallel line connected to the sampling manifold). Sampling 

times were adjusted to keep filter loadings approximately constant. The engine was operated at the same condition in all of the 

cases, except the 500 µg/m3. For that highest sample loading, a higher engine RPM was required to generate sufficient nvPM 

mass concentration. Five laboratories which were compliant with ISO 17025 (demonstrating competence) for TOA were 

selected for this intercomparison. Each of the laboratories was instructed to take one (or two, in the case of one laboratory) 105 

punches from each of the twenty filters. Seven punches were possible on each filter with an allowance of one spare punch per 

filter in addition to one (or two) per laboratory, arranged in a ring of six with one central punch as shown in the inset to Figure 

1. Punch positions on each sample were implicitly randomized by not otherwise providing further instruction to the 

laboratories. While this introduces a slight risk in the case of uneven filter loading, symmetry in the sampler and random filter 

orientations would minimize such risks in all but the center punch. Moreover, the darkness of most filters was visually 110 

homogeneous. We therefore treat inter-filter variability as negligible in our analysis below, which is supported by observations. 

The protocol for aircraft engine emissions, a refinement based upon NIOSH 5040 (SAE, 2018; Lobo et al., 2015a) with the 

final oxidizing temperature step at a higher temperature of 930 C and a longer duration to ensure complete oxidation of the 

particles was used to perform the analysis, with the EC/OC split determined automatically by the instrument software (Sunset, 

Calc405). The protocol and sample data are shown in Figure 2.  115 
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Figure 2. Sample TOA thermogram alongside the thermal protocol for aircraft engine emissions (SAE, 2018; Lobo et al., 2015a), 

sample temperature, and laser transmission measurement. HeOx corresponds to 2% oxygen in He. FID is a flame ionization detector. 

The methane spike corresponds to the introduction of methane that is used for calibration after analysis.  120 

 

Of the six sets of measurements considered, two belonged to a single laboratory and analyst, and are denoted in subsequent 

figures and discussion as Laboratory 1A and 1B. The remaining laboratories contributed a single set of data and are numbered 

in ascending order in terms of the average EC measurement across all the filters. (Two of the laboratories were commercial 

service providers and did not contribute scientifically to the work.) 125 

 

2.2 Statistical treatment 

Results are analyzed using a hierarchical random effects model (e.g., as in Melanson et al. (2018)). In this framework, 

measurements, yij, are modeled as a combination of effects:  

ij i ij ijy lc + += 
  (1) 

where i and j denote the ith filter and jth laboratory. Thus, ci is a filter-specific consensus value, that represents the expected 130 

value of a quantity. The lij is the effect for the jth laboratory, which represents a systematic shift or mean bias in the 

measurements measured by that laboratory for the ith filter. Thus, lij will be realized as a positive value if a laboratory has a 

bias above the consensus value and vice versa. If there is no such bias in a laboratory, lij will be realized as zero. The remaining 

term, εij, represents the additional random error in the individual measurements reported by each laboratory, i.e., the mismatch 

between the expected laboratory bias and the actual measurement. A given laboratory reported their measurements, denoted 135 

as yij, and the their uncertainty, denoted as uε,ij. The uncertainty values reported by the different laboratories are automatically 

generated by Sunset’s analysis software, which is a combination of the limit of detection of the instrument (0.2 µg/cm2) and a 

percentage based upon statistical analysis of duplicate filter punches (±5%). This model is shown schematically in Figure 3.  
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 140 
Figure 3. Schematic demonstrating the hierarchical random effects model used in the present analysis. Data is fictional, intended 

for demonstration only.  

 

Here, these effects (bias and random errors) are perceived as random variables, holding some distribution (i.e., a Bayesian 

representation), with the terms above representing realizations of these random variables for a specific set of measurements. 145 

Thus, the set of lij for the ith filter represents the biases across the laboratories, such that the corresponding standard deviation 

of this set, σl,i, represents dark (Thompson and Ellison, 2011), interlaboratory uncertainties and in our study is an assessment 

of reproducibility for a given filter. If the laboratories measured identical values, σl,i = 0 and the measurements are considered 

entirely reproducible. Note that the standard deviation of the set of lij for the jth laboratory across the filters, i.e., {σl,j}, 

represents the equivalent experiment if performed by a single laboratory. This quantity would be a measure of variations in 150 

loading combined with variability within a given laboratory (without including interlaboratory variability).  

The distribution of these various quantities was determined using a Markov Chain Monte Carlo (MCMC) approach, similar 

to the method presented by Melanson et al. (2018). MCMC seeks to find the range of inputs, in this case the magnitude of 

various effects and dark uncertainties, that would cause the distribution of the outputs, namely the observed measurements. 

Here, we assume that the laboratory effects are normally distributed,  155 

( )2

l,~ 0, iijl
, (2) 

where “~” denotes distributed as, 𝒩(μ, σ2) denotes a normal distribution with a mean μ and a variance σ2, and ul,i
2 is the 

variance of the set of measurements, yij, across the laboratories for the ith filter. We also assume that the measurement errors 

are unbiased (i.e., have a mean of zero) and are normally distributed, with a standard deviation corresponding to that reported 

by each laboratory:  
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( )2

ε,~ 0, jij iu
. (3) 

MCMC uses this as an input and estimates the consensus value, the value of lij for each laboratory, and the value of σl,i for 160 

each filter. To restrict the solution space and improve convergence with this Bayesian approach, we also apply priors (encoding 

approximate information known before the statistical analysis) to these quantities, which are summarized in Table 1. To 

minimize the impact of the burn-in period of the MCMC, the set of lij were initiated about yij. A total of 25,000 samples were 

generated, after thinning the MCMC data by a factor of 20 (to avoid short range correlation in the samples) spread across four 

independent chains. MCMC samples were realized using the Just Another Gibbs Sampler (JAGS) code (Hornik et al., 2003). 165 

Visual inspection of the samples indicated that the chains had converged. Further increasing the number of samples did not 

have an impact on the statistical outcomes.  

 

Table 1. Table of quantities related to the statistical treatment, including those on which likelihood and priors are directly stated. 

Note that measurements, yij, are the input to the MCMC procedure and are thus not sampled.   170 

Quantity Effect symbol Variance Quantities sampled Likelihood Prior 

Filter consensus value ci σc,i
2 Effect - ci ~ 𝒩(c̅i, c̅i

2) 

Laboratory effect (bias) lij σl,ij
2 Effect 

Variance 

lij ~ 𝒩(0, σl,i
2) 

- 

ci + lij ~ 𝒩(yij, uε,ij
2) 

σl,i ~ t(1, 0, σl,i
2)† 

Measurement error εij uε,ij
2 - εij ~ 𝒩(0, uε,ij

2) - 

Measurement yij - (fixed) - - - 

† t(df, μ, σ2) denotes a non-standardized Student's t distribution where df, μ, and σ2 are the degrees of freedom, mean, and 

variance, respectively. The variant here corresponds to the half Cauchy distribution, where df = 1 and μ = 0.  

 

Outlier results were identified at the outset using a generalized extreme Studentized deviate (GESD) test with a threshold 

factor of 0.15 on a per filter basis.  175 

This model is applied for each of the twenty filters separately, allowing for a filter-specific consensus value, and is then 

repeated for each of EC, OC, and TC. Inter-filter (or between-group) uncertainties are post-processed from the MCMC results.  

3 Results 

3.1 EC, OC, and TC 

Figure 4 shows a sample of the results for EC for 5 of the 20 filters, corresponding to the 100 µg/m3 mass concentration case. 180 

In Figure 4, laboratories are ordered according to the median EC measured over all 20 filters. This order is roughly respected 

across all of the filters. Results are generally consistent with the remaining 15 filters, not shown, though filter-to-filter 

differences in some cases exceeded the range shown in this subset. Uncertainties did not show any structure with mass 
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concentration or the measured value for EC, OC, or TC. Uncertainties, alongside their decomposition into their respective 

components, are reported in Table 2. 185 

 

 
Figure 4. Sample results across a range of filters. Circles correspond to laboratory-reported data. Wide, coloured bars correspond 

to laboratory-reported uncertainties, uε,ij, while whiskers correspond to both laboratory-reported and interlaboratory (dark) 

uncertainties, combined in quadrature as (uε,ij
2 + σl,i

2)1/2. Horizontal, solid lines correspond to the consensus value for a given filter, 190 
while black dashed lines correspond to uncertainty intervals (k = 2) in this consensus value. Dotted grey lines add the dark, 

interlaboratory uncertainties for a given filter to these uncertainties (reproducibility). Results shown are for elemental carbon and 

the 100 µg/m3 case. Vertical axes are identical across all of the panels.  

 

Figure 5 shows a decomposition of the different kinds of intra-filter uncertainties present in the measurements, averaged 195 

over all of the filters and laboratories and presented as a proportion of the observed variance. For each filter, uncertainties are 

typically dominated by the uncertainties reported by the laboratory, uε,ij, which are relatively consistent across all of the 

measurements. Some exceptions existed for individual filters, namely filters 3 and 14 for EC and filter 16 for OC. These filters 

coincide with cases where the overall variance is larger and represent a minority of cases. Despite this observation, dark, 

interlaboratory uncertainties are still significant, expanding reported intralaboratory uncertainties by factors of 1.59, 1.24, and 200 

1.20 for EC, OC, and TC, respectively (shown visually in Figure 5). Table 2 indicates that inter-filter variability adds to these 

intra-filter uncertainties, where OC is dominated by intra-filter uncertainties, while EC and TC are dominated by inter-filter 

variability.  
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Figure 5. Breakdown of the intra-filter variance in the TOA measurements for the uncertainties in the consensus value, σc; dark 

(interlaboratory) uncertainties, σl,i; and uncertainties reported by the laboratory, uε,ij, stated as a proportion of the overall intra-

filter variance, such that all span 0 – 100 %. See Table 2 for the numerical values of the uncertainties. Percentages in the dark bar 

correspond to the required increase in uncertainties over the lab-reported values to account for dark uncertainties.  210 

 

 

Table 2. Breakdown of uncertainties in the TOA measurements, stated as uncertainties relative to the nominal value of EC, OC, and 

TC (k = 2). Total uncertainties, σtot, are a combination of the intra- (uε,ij) and inter-filter (σf) uncertainties (in quadrature: σtot
2

 = uε,ij
2
 

+ σf
2). Intra-filter uncertainties correspond to the sum of the corresponding rows (also in quadrature). The bottom row, σl,j, 215 

corresponds to the uncertainties that would be reported by a single lab based on hypothetical replicate measurements of multiple 

similar filters, and is estimated from the MCMC calculations. This quantity is not included in the overall total, as this would double 

count uncertainties present on other rows (specifically, σf).  

Uncertainty component Symbol 

Coefficient of variation* [%] 

EC OC TC 

Intra-lab. (lab-reported) uε,ij 12.6 14.2 13.2 

Inter-lab. (dark) σl,i 9.6 7.0 5.8 

Consensus σc,i 6.4 6.8 5.6 

Intra-filter† (reproducibility) σintra 17.0 17.4 15.4 

Inter-filter σf 20.8 9.4 14.8 

Total σtot 26.8 19.6 21.4 

Inter-filter, in-lab. (repeatability) σl,j 22.8 16.0 15.6 

† Intra-filter uncertainties are taken as average values of the variance over all of the filters. This same averaging is then propagated to the 

total uncertainties. *Coefficient of variation are stated using mean EC, OC, and TC measurements of 8.1, 4.7, and 12.9 μg/cm2.   220 

 

 

Figure 6 complements Figure 5 with a plot of the measurements for each laboratory across the filters, with the filters sorted 

in ascending order for each of EC, OC, and TC, such that the filter order differs between the panels. Results for EC and TC 
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exhibit substantial structure across the different filters, where a laboratory that measured a value below average generally did 225 

so for all of the filters. Trends for TC were similar, which is not surprising since EC concentrations were typically double OC 

concentrations. In other words, the laboratories showed structured biases for these two quantities. Structural trends were less 

evident for OC, which is more scattered about the central trend.  

This structure becomes particularly relevant when considering repeats within a given laboratory (intralaboratory) for 

uncertainty analysis. Repeatability in TC is similar to the combined uncertainties reported by Conrad and Johnson (2019), in 230 

that work across a range of conditions. Ideally, if a measurement approach is entirely reproducible, variability in repeat 

measurements, σl,j, will capture all of the variability. However, since repeats cannot capture interlaboratory reproducibility, 

repeat measurements performed by the same laboratory result in underestimated intra-filter uncertainties, as shown in the final 

row of Table 2.  

These structural trends may give insight into the physical causes of these uncertainties. For example, minor biases in 235 

calibration would lead to the observed structural errors, while random operator error would not. Other potential sources of 

error (e.g., in terms of FID response) have been discussed in detail elsewhere (Boparai et al., 2008). In this data, Laboratory 5 

produced EC and TC values consistently above the other laboratories, and Laboratory 1 (in both the 1A and 1B samples)  

produced EC and TC values consistently below the other laboratories.  

For these aviation particulate emissions samples, overall uncertainties in EC, OC, and TC are around 20% (26.8%, 19.6%, 240 

and 21.4%, respectively, k = 2) of the nominal values for the full set of measurements. The overall EC uncertainty is consistent 

with the results of Panteliadis et al. (2015) which were evaluated on ambient atmospheric PM samples. 
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Figure 6. Laboratory measurements across the different filters, showing the structured uncertainties. In each case, filters are re-245 
sorted such that the consensus values for each filter are monotonically increasing for each of the quantities. As such, the order of 

filters is not the same across the panels. Upper panels show the consensus values for the different filters. Bottom panels show 

measurements from each laboratory normalized by those consensus values. Breaks in lines correspond to results that were not 

available. Vertical scales are the same in the lower panels. Error bars are excluded for clarity but would offer some overlap between 

the laboratories.  250 

 

3.2 Analysis across EC, OC, and TC values 

Little to no correlation was observed between EC and OC measured by the different laboratories (R = 0.11), while TC was 

dominated by, and thus highly correlated with, the EC contributions (R = 0.94). Combining this with the fact that the measured 

EC showed structural bias across the laboratories, it is logical that this is equally reflected in TC results. OC and TC were 255 

poorly correlated (R = 0.43), given that the TC incorporates but is not dominated by OC. The low level of correlation between 

EC and OC indicates that the split point is unlikely to be the leading driver of variabilities in the results, as this would result 

in a negative correlation between EC and OC, where more of the total carbon is attributed to one of the two components at the 

cost of the other.  

Unlike the absolute values for EC, OC, and TC, the EC/OC ratio is expected to be similar across all of the filters, regardless 260 

of loading and is a widely used quantity for characterizing the particles emitted. For the EC/OC ratio, simple propagation of 

errors yields (Sipkens et al., 2023; Jcgm, 2008):  
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(4) 

As noted above, EC and OC are not significantly correlated for these measurements, such that the covariance term can be 

neglected. This produces a relatively uniform estimate of ± 0.43 (k = 2) for the variance in the EC/OC ratio across all of the 

measurements, around 25% of the nominal value. If only laboratory-reported uncertainties are considered, this reduces to ± 265 

0.33 (k = 2), resulting in an underestimation in the variance of the EC/OC ratio by a factor of 0.65. Inter-filter variability was 

significant, adding ± 0.39 (k = 2) in addition to the laboratory-stated uncertainty. Overall, uncertainties in the EC/OC ratio are 

roughly evenly distributed in their source between contributions from the EC measurements, the OC measurements, and filter-

to-filter variability, resulting in and EC/OC ratio of 1.74 ± 0.58 (k = 2) for the full set of measurements, such that the uncertainty 

in the EC/OC ratio is ~ 33 % of the nominal value. Note that this is larger than the uncertainties in the individual EC and OC 270 

measurements, as it incorporates uncertainties in both EC and OC at the same time. Again, as noted above, repeat 

measurements over different filters taken within the same laboratory, σl,j, would result in an underestimation of the overall 

uncertainties, as it is impossible for a single laboratory to determine its own reproducibility.  

In this data, Laboratory 5 produced an EC/OC value consistently above the other laboratories, a consequence of measuring 

higher than average EC in combination with a generally lower than average OC. There was also some trend in EC/OC with 275 

mass concentration and sampling time, for all laboratories, indicated by the generally increasing filter number on the x-axis of 

Figure 7. This results from a similar slight increase in EC and a slight decrease in OC as the sampling period decreases. Since 

this effect was minor, our preceding discussion summarized the data using the means of EC, OC, TC, EC/OC ratio.  
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 280 
Figure 7. Variability in the EC/OC ratio over the measurements. Uncertainty interval corresponds to the average propagated intra-

filter uncertainties at a level of k = 2. Upper panel shows consensus EC/OC values against which the filters are sorted. Bottom panel 

shows measurements from each laboratory normalized by those consensus values. 

4 Conclusions 

This work investigated the dark, interlaboratory uncertainties associated with thermal-optical analysis (TOA) applied to aircraft 285 

engine particulate emissions. These conditions represent optimal samples for TOA, in that they are primarily composed of 

combustion particles that are stripped of their volatile components. Nevertheless, uncertainties are poorly captured by existing 

estimates for these measurements, in all cases except perhaps for measurements of OC. Generally, uncertainties need to be 

expanded by a factor of 1.2 for OC and TC and a factor of 1.6 for EC to account for dark, interlaboratory uncertainties. 

Uncertainties are not expected to be related to the split point, due to a lack of correlation between EC and OC (where a reduction 290 

in OC results in an increase in EC). 

EC and TC measurements are also highly correlated with the laboratory (i.e., reflected by a fixed bias), with some 

laboratories consistently measuring results above and some below the average. These structured laboratory biases suggest a 

potential link to laboratory-specific calibration that affects the EC (and, by extension, the TC) measurement. Replicates, that 

is repeat measurements by a single laboratory, are unlikely to properly capture these uncertainties, given structure between 295 

laboratories. Fortunately, this could be accounted for by combining uncertainty procedures implemented by laboratories with 

expanded uncertainties to include an interlaboratory contributions, as noted in this work. For data sets comparable to ours (i.e., 

PM dominated by soot, treated to remove volatile organic carbon, and containing negligible elemental impurities), net 
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uncertainties of 26% (k = 2) for EC, 20% for OC and TC (k = 2), and 33% (k = 2) for the EC/OC ratio are expected, which 

accounts for an expansion of the uncertainty bounds to account for reproducibility. This expanded uncertainty should be used 300 

in future measurements with this test method.   

The treatment in this work does not directly question the interpretation of OC and EC concentrations reported by TOA, nor 

does this work evaluate the accuracy of the TOA TC concentration (e.g., by indicating traceability to an SI unit). Rather, this 

work addresses metrological reproducibility of the TOA method by comparing results from the same sample, measured by 

different laboratories and analysts.  305 
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