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Abstract.

The Earth Cloud Aerosol and Radiation Explorer (EarthCARE) is a joint Japanese-European satellite observation mission for
understanding the interaction between cloud, aerosol, and radiation processes and improving the accuracy of climate change
predictions. The EarthCARE satellite was equipped with four sensors, a 355 nm high-spectral-resolution lidar with
depolarization measurement capability (ATLID) as well as a cloud profiling radar, a multi-spectral imager, and a broadband
radiometer, to observe the global distribution of clouds, aerosols, and radiation. In this study, we have developed algorithms
to produce ATLID Level 2 acrosol products using ATLID Level 1 data. The algorithms estimated the following four products:
(1) Layer identifiers such as aerosols, clouds, clear-skies, or surfaces were estimated by the combined use of vertically variable
criteria and spatial continuity methods developed for the CALIOP (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observation) analysis. (2) Aerosol optical properties such as extinction coefficient, backscatter coefficient, depolarization
ratio, and lidar ratio at 355 nm were optimized to ATLID L1 data by the method of maximum likelihood. (3) Six aerosol types,
namely smoke, pollution, marine, pristine, dusty-mixture, and dust were identified based on a two-dimensional diagram of the
lidar ratio and depolarization ratio at 355 nm developed by cluster-analysis using the AERONET (AErosol RObotic NETwork)
dataset with ground-based lidar data. (4) The planetary boundary layer height was determined using the improved wavelet
covariance transform method for the ATLID analysis. The performance of various algorithms was evaluated using pseudo
ATLID Level 1 data generated by Joint-Simulator (Joint Simulator for Satellite Sensors), which incorporates aerosol and cloud
distributions simulated by numerical models. Results from applying the algorithms to the pseudo ATLID Level 1 data with
realistic signal noise added for aerosol or cloud predominant cases revealed: (1) misidentification of aerosol and cloud layers
was relatively low, approximately 10%; (2) the retrieval errors of aerosol optical properties were 0.08x107+ 1.12x107 m!sr
(2 + 34% in relative error) for backscatter coefficient and 0.01 + 0.07 (4 = 27% in relative error) for depolarization ratio; (3)
aerosol type classification was generally performed well. These results indicate that the algorithm’s capability to provide
valuable insights into the global distribution of aerosols and clouds, facilitating assessments of their climate impact through

atmospheric radiation processes.
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1 Introduction

Global measurements of the optical properties of atmospheric particles , encompassing acrosols and clouds, play a pivotal
role in evaluating their climatic effects through atmospheric radiation processes. Zhang et al. (2022) analyzed the simulation
results of the Coupled Model Intercomparison Project Phase 6 (CMIP6) global models and indicated that 20% of radiative
effect uncertainty for anthropogenic aerosols was associated with aerosol vertical distribution under clear-sky condition. In
addition, the presence of highly light-absorbing aerosols such as black carbon above or below the cloud layer can prodoundly
the radiative transfer process of the upper atmosphere (Takemura et al., 2002; Oikawa et al. 2013, 2018). The Cloud-Aerosol
Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, equipped with the two-wavelength (1064, 532nm)
polarization Mie-scattering lidar CALIOP (Cloud-Aerosol Lldar with Orthogonal Polarization), has globally measured
aerosols and cloud vertical distributions over the long term from 2006 to 2023 (Winker et al. 2010). This role will transition
to ATLID (Atmospheric Lidar) (Heiliere et al. 2017; do Carmo et al. 2021), the 355nm high-spectral resolution lidar (HSRL)
with polarization measurement function onboard the EarthCARE satellite (Earth Cloud Aerosol and Radiation Explorer).
EarthCARE is a joint Japan-Europe satellite observation mission by JAXA (Japan Aerospace Exploration Agency), NICT
(National Institute of Information and Communications Technology), and ESA (European Space Agency), which aims to
conduct comprehensive global observations of clouds, acrosols, and atmospheric radiation (Wehr et al. 2023). The EarthCARE
satellite features a 94 GHz cloud radar (CPR) with doppler measurement capability (Nakatsuka et al. 2023), a multiwavelength
imager (MSI), comprising seven channels in the visible to infrared wavelength range (Wallace et al. 2016), and a broadband
radiometer (BBR) designed for measuring shortwave and longwave radiation (Wallace et al. 2016). The scientific objectives
emcompass (1) observing the global vertical distributions of natural and anthropogenic aerosols and their interaction with
clouds; (2) observing global cloud distributions, cloud-precipitation interactions, and vertical motion characteristics within
clouds; (3) evaluating the vertical profiles of radiative heating and cooling of the atmosphere (Illingworth et al. 2015; Okamoto
et al. 2024a).

ATLID, a HSRL, can independently measure backscattered light from atmospheric particles (Mie signal) and backscattered
light from atmospheric molecules (Rayleigh signal) separately, distinguishing it from CALIOP, a Mie-scattering lidar. This
unique feature allows for the independent extraction of the vertical distributions of the extinction coefficient and backscattering
coefficients of atmospheric particles by analyzing these two signals. Moreover, ATLID conducts polarization measurements,
enabling the extraction of the co-polar component, parallel to the laser polarization (co-polar component), the cross-polar
component (perpendicular to the laser polarization) of the Mie signal at a wavelength of 355 nm, and the Rayleigh signal.
Signal calibrations are performed on these measured signals, resulting in calibrated attenuated backscatter coefficients.

Multichannel lidar observations using a combination of polarization measurements, Rayleigh/Mie separation measurements,
and/or various wavelength measurements, including those of ATLID, CALIOP, and ground-based lidar measurements,
facilitate simultaneous understanding of various optical and microphysical properties of atmospheric particles. This includes

the identification of major atmospheric layers such as aerosol or cloud layers (Okamoto et al. 2008; Vaughan et al. 2009; Liu
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et al. 2009; Hagihara et al. 2010) and the identification of aerosol and cloud types such as marine, dust, warm water, or 2-D
ice (Omar et al. 2009; Yoshida et al., 2010; Illingworth et al. 2015; Okamoto et al. 2019). The size distribution and refractive
index of total aerosols can be estimated using extinction coefficients and backscatter coefficients at two wavelengths (355 nm
and 532 nm) observed by the Raman lidar and HSRL (e.g., Miiller et al. 2014). The extinction coefficients of some major
aerosol components (such as mineral dust and black carbon) have been estimated (Nishizawa et al. 2017; Kudo et al. 2023).
Understanding of the climate impact of aerosols, necessitates not only comprehending the optical and microphysical properties
of total aerosols but also those of individual aerosol components. For example, aerosols with strong light absorption properties
(e.g., black carbon) have been reported to influence cloud formation and global atmospheric and water circulations in large
fields (Menon et al. 2002; Koren et al. 2004). In addition, the top height of the planetary boundary layer (PBL) has been
detected by various methods such as the gradient method (Lammert and Bosenberg, 2006), the wavelet covariance transform
(WCT) method (Brooks, 2003), or other methods (e.g., the standard deviation method by Menut et al., 1999). Since aerosols
emitted from the surface are trapped within the PBL because of the temperature inversion between the PBL and free
troposphere, its top height, by which the transition point of the aerosol concentration gap is characterized, is an important
parameter for understanding climate and air quality.

The EarthCARE mission generates Level 1 (L1) products, which are physical quantities derived after calibrating the
measurements of each instrument, and Level 2 (L2) products, consisting of geophysical variables related to clouds, aerosols,
etc, utilising L1 data either independenally or in combination (Eisinger et al. 2024). Each sensor development organization
(JAXA and NICT for CPR, and ESA for others) generates the L1 product, and the L2 product is generated by individual
agencies. For example, L2 products using ATLID, such as layer identifiers, particle (aerosol, cloud) type identifiers, and optical
properties, such as extinction coefficient, backscatter coefficient, and depolarization ratio, and cloud top height, are estimated
from the ESA (Irbah et al. 2023; Donovan et al. 2023, 2024; Zadelhoff et al. 2023; Wandinger et al. 2023). Synergy products
are also generated by combining L1 data from the other instruments. JAXA also provides various ATLID standalone and
synergistic products, while similar to ESA products, are produced using different independent retrieval methods developed
independently.

To determine the globally vertical distribution of optical properties of aerosols and clouds needed to assess their climatic
effects, we have developed atmospheric particle retrieval algorithms to generate JAXA L2 products using ATLID L1 data. In
this study, we focus on the retrieval algorithms and products related to aerosols, whereas the description of cloud property
estimation is planned for separate papers. Section 2 describes the products retrieved using the algorithms and their flows.
Section 3 describes the algorithms developed to retrieve the individual products. Section 4 presents the products estimated
using the simulated input data (ATLID L1 data) and the performance of the various algorithms. In Section 5, we summarize

and discuss the prospects.
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2 Algorithm flow and products

Figure 1 illustrates the products and flow of the algorithms. First, to improve signal quality, the algorithm reduces the signal
noise using a discrete wavelet transform (DWT) (Fang and Huang, 2004). In this study, two types of Daubechies wavelets
(support numbers 2 (D2) and 4 (D4)) are employed. Noise reduction is performed iteratively with D2, followed by D4, and
then the noise reduction using D2 is applied again, followed by D4 and so on (D2=>D4=>D2=>D4=>D2...). A simulation
analysis with added random noise indicated that the applying the DWT method could improve the signal-to-noise ratio (SNR)
by a factor of two or more. Therefore, this method was adopted in the present study.

To further enhance the SNR, we integrate the data horizontally after applying the DWT method to the minimum horizontal
resolution (~0.3 km) data from ATLID L1. This integration yields data at a 1 km horizontal resolution (ATLID L1(1) in Figure
1). Additionally, a moving average of this 1 km horizontal resolution data with a width of 10 km was produced (ATLID L1
(1*) in Figure 1). Consequently, the algorithm uses the three L1 data created (ATLID L1 (0.3), (1), and (1%) in Figure 1), with
an altitude resolution of 0.1 km, akin to the original data, as input data when estimating each product. A quality check (QC)

involving the SNR is performed on each of the generated data.
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Figure 1. ATLID L2 products and the flow of algorithms.

Six different products (FM (Feature Mask), AOP (Aerosol Optical Properties), COP (Cloud Optical Properties), ATM
(Aerosol Target Mask), CTM (Cloud Target Mask), PBLH (Planetary Boundary Layer Height) in Fig. 1) are created from the
ATLID L1 data. First, the algorithm identifies which component of atmospheric molecules, aerosols, or cloud particles is
predominantly present at each altitude, and outputs its identifier (FM). Additionally, the surface, subsurface, and fully
attenuated layers are identified here. Secondly, the particle optical properties (POP), that is, the extinction coefficient (o),
backscatter coefficient (f,), depolarization ratio (8,), and lidar ratio (Sp) at 355nm, are retrieved from the ATLID L1 data.
Whether the derived POP are of aerosol or cloud origin is determined according to the FM product (AOP or COP). Aerosol
(ATM) and cloud (CTM) particle types are also identified at each altitude. The PBLH is then estimated. The product derived
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from original 0.3 km data is only the FM because of the low SNR. To account for cloud heterogeneity and the low SNR of the
aerosol layers, the cloud products (COP and CTM) and PBLH are derived from the 1 km horizontal resolution data. The aerosol
and cloud products (AOP, ATM, COP, and CTM) and PBLH are created from the 1" km horizontal resolution data. In the
following section, products and algorithms related to acrosols (i.e., FM, AOP, ATM, PBLH) are mainly described. To estimate
these products, the optical properties of atmospheric molecules, such as extinction and backscatter coefficients (MOP in Figure
1) are required. Here, the EarthCARE auxiliary product, containing a subset of meteorological fields from an ECMWF forecast

model (Eisinger et al. 2023) is used to compute the molecular optical propertes.

3 Algorithms
3.1 Layer identification (Feature mask)

The algorithm was developed based on retrieval methods developed using the CALIOP and ground-based lidar data
(Okamoto et al. 2007 and 2008; Hagihara et al. 2010; Shimizu et al. 2004). The algorithm classifies the atmospheric layer into
molecules (clear-sky), aerosol particles, or cloud particles, as well as the surface, subsurface, and layers, where the signal is
fully attenuated under optically thick layers, such as clouds (Vaughan et al 2009). The co-polar (Bammco) and cross-polar
(Bat.m,er) components of the Mie attenuated backscatter coefficient and Rayleigh attenuated backscatter coefficient (Pam.r) are

given as ATLID L1 products and are described by the following equations with atmospheric parameters:

Batnco = Bp.co(@exp {2 [T (a, (2') + am(2")) d2'}, (1a)
Batnmer = Bpor (Dexp{=2 [T (@, (2') + am(2") ) d2'}, (1b)
Barne = Bn(2)exp {2 [F7P (e, (2) + a(2")) d2'}. (lc)
Bp.co(2) = Bp(2) ﬁp() (1d)
Brer@ = B (D75 s (10)
By(z) = 22 0

Sp(2)’
where, a,, Sp, and 8, are the extinction coefficient, lidar ratio, and linear depolarization ratio of particles (aerosols and clouds),
respectively; Bp.co and Bpcr are the co-polar and cross-polar components of the particular backscatter coefficient, respectively;
om and Bm are the molecular extinction coefficient and the molecular backscatter coefficient, respectively; Z is the altitude;
and Zarwp is the altitude of ATLID. The Mie-attenuated backscatter coefficient (Bamm) is defined as the sum of the co-polar
and cross-polar components (i.€., Bamm = PamnMco T Patnmer). We use Bammand Pamr as the diagnostic parameters. The particle

backscatter coefficient (B, =Bp,cotPp.cr) calculated from the following equation is also used as the diagnostic parameter :

BP (Z) = ﬁm (Z).Batn,M (Z)/ﬁatn,R (Z) )
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First, a diagnosis is made on the 0.3 km horizontal resolution data in each layer sequentially from the upper layer to the
lower layer according to the following criteria.

(a) If the SNRs of Bamm and Bamr are lower than the threshold (SNRy) or data is missing, no diagnosis is made in that layer
(classified as “Invalid”).

(b) If the SNR of PBamr is greater than the SNRy, and the SNR of Bamm is lower than SNRy, the layer is classified as “Clear-
sky.”

(c) The SNR of Bam,m is greather than the SNRy, the layer is classified as “Aerosol,” “Cloud,” or “Surface.

In this study, the value of SNRy, is set to 3.

For the layer diagnosed as “Aerosol,” “Cloud,” or Surface,” the following further diagnoses are made. For the surface detection,
the two criteria are imposed: (1) the Pamm is above the threshold value which is set based on actual ATLID observed data, and
(2) the relevant layer is below +500 m with respect to the altitude of the Digital Elevation Model (DEM) surface altitude from
the EarthCARE auxiliary data, to prevent misdetection due to clouds with large backscatter coefficieints. If the above criteria
are met, the layer is marked as "Surface," The layer below the surface is classified as “Sub-surface.”

For the cloud detection, two procedures are performed based on the cloud-mask scheme developed for the CALIOP and
shipborne lidar measurements (Hagihara et al. 2010 and Okamoto et al. 2008). First, the cloud layer is detected using the
following vertical variable criteria.

Batnm > 0.5B¢n €xp(—27y,) {1 — tanh(z — z.)},  (3a)

Bp > 0.58. {1 —tanh(z — z.)}. (3b)
where, T is the molecular optical thickness up to an altitude (z) from the altitude of the ATLID. z is given as 5 km, and
Be.n=102% (~5.6x10°) [m'sr"']. The validity of these threshold values was discussed in detail by Hagihara et al. (2010) and
Okamoto et al. (2008). Statistical analyses of cloud and aerosol backscatter coefficient data over several years from long-term
ground-based observations by HSRL (Jin et al. 2020) and Raman lidar (Nishizawa et al. 2017) also supported the value of Be. .
If the SNR of Bamr of the target layer is greater than SNRy,, the Equation 3(b) is used as the criteria; otherwise, Equation 3(a),
is used. The advantage of using Pp as a diagnostic parameter is that it can eliminate attenuation due to clouds/aerosols from
the ATLID to the target layer. However, the calculation of the Bp requires Bamr in addition to Bawm.m, which has a disadvantage
in that it cannot be diagnosed if the SNR of Bawm r is insufficient. Therefore, a hybrid method is used, where Bamm is used if Bp
cannot be used as a diagnostic parameter. After identifying the cloud layer using these critetia, a continuity test is performed
to suppress misdetection due to signal noise (Hagihara et al. 2010). The continuity test is conducted on a 5-bin horizontal and
3-bin vertical window centered on the diagnostic layer, in accordance with the continuity test method used by Hagihara et al.
(2010). If more than half (i.e. more than 8 bins) of the total 15 bins are clouds, the target layer is determined to be a “Cloud”.
However, if the number of cloud bins was less than half of the total, but at least one of the cloud bins was included, the target

layer was designated as "Unknown."
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For 0.3 km and 1 km resolution products, the “Clear-sky” or “Aerosol” layer are not diagnosed separately from the SNR’s
point of view, and together they are classified as “Clear-sky or aerosol” The “Fully attenuated” layer is diagnosed when no
surface is detected; the layers below the lowest layer of “Clear-sky or aerosol” or “Cloud” are classified as “Fully attenuated.”

Next, a diagnosis is made on the 1 km horizontal resolution data. Diagnostics similar to those performed on the 0.3 km
horizontal data are performed; the layer types of "Cloud," "Clear-sky or aerosol," "Surface," " Sub-surface," "Fully attenuated,"
"Invalid," or “Unknown” are identified. The following method is used to identify the cloud layers. The 1 km horizontal
resolution data is calculated by averaging several horizontal layers (~4 bins) of the 0.3 km horizontal resolution data. This
improves the SNR, but it also causes dulling of the signal at the cloud edges, which leads to cloud layer misidentification. To
suppress this, we use the FM product estimated using the 0.3 km horizontal resolution data (i.e., FM(0.3)); if more than half
of the total number of the layers of the FM (0.3) product in the target layer for the 1 km horizontal resolution data is identified
as “Cloud,” the target layer for the 1 km horizontal resolution data is determined to be “Cloud” (Hagihara et al. 2010). However,
if the number of cloud layers is less than half of the total, but at least one of the cloud layers is included, the target layer is
designated as "Unknown." In addition, the possibility of identifying optically thin clouds or aerosols compared to the 0.3 km
data, especially at high altitudes, also arises because of the improved SNR by the horizontal averaging. Equations 4a and 4b
are then applied to the 1 km horizontal resolution data with the addition of a criterion for high altitude to Equations 3a and 3b.

Batnm > 0.56.tn exp(—21,,) {1 — tanh(z — z.)} + 0.5, 12 €xp(—27,,) {1 + tanh(z — z.)},  (4a)

Bp > 0.5B. ¢x{1 — tanh(z — z.)} + 0.58, (p,{1 + tanh(z — z.)}. (4b)
Be.m2 is the threshold for identifying the layer that may be a cloud at high altitudes and is set based on actual ATLID data. If
the criteria is satisfied, the layer is marked as "Unknown," and if not, it is marked as "Aerosol or clear-sky” if the threshold is
unsatisfied.

Finally, a diagnosis is made on the 1 km horizontal resolution data. Diagnostics similar to those performed on the 1 km
horizontal resolution data are performed; the layer types of "Cloud," "Aerosol," “Clear-sky,” "Surface," "Sub-surface," "Fully
attenuated," "Invalid," or “Unknown” are identified. Unlike the FM for the 1 km (and 0.3 km) horizontal resolution data, the
layer diagnosed as “Aerosol or clear-sky” is classified into the “Aerosol” when the Bamm is greater than SNRy, or “Clear-sky”

when the Bam.m is lower than SNRy.

3.2 Aerosol optical properties

As shown in Equations la-1c, the POP ay, By, 05, and Sp can be directly derived using the L1 data of Bam.m,co, Bamn.Mer, and
Bam.r. The POP in the aerosol layer identified by the FM are classified as AOP. On the other hand, L1 data with a sufficient
SN are needed to derive parameters with sufficient accuracy, especially for extinction coefficient retrieval (e.g., Liu et al.
1999]. The DWT method and moving average are applied to the L1 data, but the SNR is not sufficiently small. Therefore, we

simultaneously estimated the vertical profiles of the POP from the L1 data by the method of maximum likelihood with a priori
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smoothness constraints for the vertical profiles of the POP. The state vector x, which comprises of o, (z;), 6,(z;), and S, (z;)

at altitudes z;, is optimized to the L1 data by minimizing the following cost function:

f(x) _ Z { (BatnMco(Zl) B;r&nM co) ln(Bgirll.M,co(zi)_nglr.lM,co)}z
= i

w2 .
Watn.M,co (zp)

+Zl’ {ln( Z'EnsM cr(zl) Batil M cr) ln(Batn M, cr(zl) Batn M cr)}z

w2
atn.M,cr(Zl)

+Zl{ (ZP;MR(ZL) BatlnMR) (BatnMR( - ﬁamMR)}Z

atn.M,R(Zl)
2
g et et
ap
2
In(Sp(zy) )=In( —Sp(zi+1)
g s ()
Sp
o . 2
ey {ln(sp(za)—‘l”r%(—bp @is1))} ’ 5)
P

where z; is i-th altitude, “obs” indicates the measurements, “cal” indicates the values calculated from x by Equations 1a-
1f, where z; is i-th altitude, “obs” indicates the measurements, “cal” indicates the values calculated from x by Equations 1a-

1f, WagnM,co/cr/r 18 Measurement uncertainties, W, /8,/5p is weight for determine the strength of the smoothness constraint,
and “min” indicates the possible minimum value of the measurements. The measurements uncertaintis Waen m,co/cr/R 1€

calculated from the signal noises such as shot noise, dark noise, and CCD read-out noise which are evaluated befor the lauch

of the EarthCARE satellite. The values of Wy, /8,/s, aT€ given by 1.0 in this study. A logarithmic transformation is applied to

the measured and calculated values because the transformation reduces the differences of the dynamic ranges of each term in
Eq. (5) and enables a fast and stable minimiation of f(x) (Kudo et al., 2016). However, the L1 data may have negative
values due to large SN, and the logarithmic transformation cannot be applied to negative values. Therefore, we subtracted
the possible minimum values from the measured and calculated values. The fourth, fifth, and sixth terms in Equation 5 are
the smoothness constraints for the vertical profiles of a, (2;), 8,(z;), and S, (z;). The smoothness of the vertical profiles is
obtained by minimizing the differences of the values at two adjacent altitudes.

The minimization of f(x) is conducted by the iteration of In(x;;,) = In(x;) + yAx; in In(x) space. The vector Ax; at the
i-th step is determined by the Gauss-Newton method, and the scalar y is determined by a line search method with Armijo rule
(Nocedal and Wright, 2006). The convergence criterion for the iteration is that the difference between f(x;) and f(x;41)
should be smaller than a given threshold.

In the actual analysis using the ATLID data, the optical properties of clouds and aerosols are simultaneously estimated using

the developed POP retrieval algorithm. To estimate the optical properties of optically thick scatterers such as clouds, it is
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essential to compute L1 data considering multiple scattering. The multiple scattering has been considered in CALIPSO and
ground-based lidar analysis by introducing n-factor (e.g., Chen et al. 2002, Young 2013, Cairo et al. 2021), and thus the n-
factor will be introduced into this algorithm to estimate the optical properties of clouds. Sato et al. (2018) developed a practical
model to determine the time-dependent lidar attenuated backscatter coefficient, in which an analytical expression for the high-
order phase function was implemented to reduce computational cost; furthermore, Sato et al. (2019) developed a vectorized
physical model (VPM) which is a physical model extended with a polarization function, to analyze the observed depolarization
ratio due to multiple scattering from water clouds. The introduction of these physical models is a promising as a more advanced

and accurate approach in estimating COP, considering multiple scattering from clouds.

3.3 Aerosol type classification (Target mask)

The algorithm uses the derived FM and AOP products. The algorithm classifies aerosol type for each layer that the FM
scheme identifies as “Aerosol.” The algorithm uses differences in the light absorption and polarization properties of aerosol
types; S, strongly reflects the light absorption of aerosols, while d, strongly reflects the polarization of aerosols. Therefore, it
is necessary to determine the aerosol types and their optical models. The optical properties and size distributions of aerosols
are observed by the AErosol RObotic NETwork (AERONET) sun/sky photometer, and AERONET observation sites are
located worldwide on all continents (e.g. Holben et al. 1998; Giles et al. 2019). In the retrieval of aerosol extinction in
CALIPSO version 2 and 3 products, S, of three aerosol types calculated by using size distributions and refractive indices of
the clusters grouped by the cluster analysis of the AERONET dataset were used (Omar et al. 2005; Omar et al. 2009). Based
on this assumption, we also perform a cluster analysis of the aerosol optical properties estimated from the AERONET data
and determined the aerosol optical properties at 355 nm. In this study, aerosol particles are classified as six aerosol types
(“Smoke,” “Pollution,” “Marine,” “Pristine,” “Dust,” and “Dusty mixture”) with “Unknown” in Figure 2.
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Figure 2. Lidar ratio — depolarization ratio diagram for classifying aerosol types.

The optical properties of the four aerosol types (smoke, pollution, marine, and pristine) are determined using cluster analysis
of the AERONET level 2 product for years of 1992 to 2012. We perform a cluster analysis of the AERONET southern Africa
sites for smoke type, that of Chinese sites for pollution type, and that of island sites for marine and pristine types. First, 8, and
Sa at 355, 532, and 1064 nm, which are usually observed by the HSRL and Raman lidar measurements, are calculated using
the refractive indices at 440, 675, 870, and 1020 nm, size distributions of fine and coarse modes, and the sphericity of scattering
light derived from the AERONET inversion algorithm (Dubovik et al., 2006) for each AERONET data sample. The refractive
indices at 532 nm are interpolated and those at 355 and 1064 nm are extrapolated using those of AERONET product from 440
to 1020 nm. The non-spherical particle shape is assumed to be the AERONET spheroid model (Dubovik et al., 2006). Next,
we adopt the fuzzy c-means method (Dunn, 1973; Bezdek, 1981) to conduct a cluster analysis. This method is based on
minimizing the following objective function:

J = 2 Xke 9hllx — il (6)
where g is the degree of membership of x; to the k-th cluster, x; is the observed data, ¢ is the center of the k-th cluster.
Partitioning is conducted through an iterative optimization of the J with updates of gi and ¢;. Based on this cluster analysis,
the center of cluster ¢y is assumed to be the representative value of the selected cluster parameter. We select 12 parameters
used in the cluster analysis to classify the aerosol properties. These parameters are 8, and S, at 355, 532, and 1064 nm and the
imaginary part of the refractive index and fine mode fraction (FMF) to the total (fine+coarse) AOT at 440, 675, and 870 nm.
Finally, we define the characteristic results of the cluster as the optical properties of the aerosol type.

The cluster, which is fine-mode dominated and light-absorbing aerosol, derived from the cluster analysis of the observations
of AERONET sites located from 25°S to 35°S and 0°E to 40°E, which cover the source regions of African biomass burning
aerosols, is assumed as the smoke type. The cluster, which is fine-mode dominated and light-absorbing aerosol, derived from
the cluster analysis of the observations of AERONET sites located from 20°N to 40°N and 100°E to 125°E, which cover the
source regions of Asian air pollution, is assumed as the pollution type. The marine and pristine types are derived from the
cluster analysis of the observations of AERONET island sites far from aerosol source regions, where the marine type has the
largest particle size with single scattering albedo (SSA) of 0.98 and the pristine type has a smaller particle size than the marine
type, with the SSA of 0.98.

The difference in 3, and S, of non-spherical dust particles between observations and theoretical calculations remain large
(Tesche et al., 2019), so that 3, and S, of the dust type at 355 nm are referred to as the averaged values of the Raman lidar
observations in Morocco (Freudenthaler et al., 2009; Tesche et al., 2009), Germany (Wiegner et al., 2011), and Tajikistan
(Hofer et al., 2017). 8, 0of 0.24 £ 0.02 and S, of 47 = 8 sr for transported dust (Haarig et al., 2022) are also within the range of
the dust type of the ATM. The dusty mixture type is defined as a mixture of dust and smoke in ratios of 0.65 and 0.35,

respectively. Aerosol particles with high depolarization ratios and low lidar ratios are rarely observed; therefore, the unknown
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aerosol type is defined as aerosols with 8, > 0.12 and S, < 21 sr, which are determined by the values of the intersection of the
border line between dust and pristine types and that between marine and pristine types, as shown in Figure 2.

The ATM consists of the major tropospheric aerosol types and the optical properties of the ATM are used in the radiative
transfer calculation to estimate aerosol radiative effect (Yamauchi et al., 2024). For example, volcanic ash and stratospheric
aerosols, which are not included in the ATM, are misclassified as one of the aerosol types of the ATM. This misclassification
is one of the uncertainties of the estimated aerosol radiative effect. However, this uncertainty is smaller than the other
uncertainties in the estimation of aerosol radiative effect, because the proportions of the volcanic ash and stratospheric aerosols
are considerably small in the total aerosol amounts.

In the actual analysis using ATLID data, cloud types are classified together with aerosol types. Multiple cloud particle types
such as warm water, supercooled water, two-dimensional ice, and three-dimensional ice, can be identified by applying a two-
dimensional diagrammatic method of signal attenuation (or extinction coefficient) and depolarization ratio developed for

CALIOP cloud type classification (Yoshida et al. 2010; Okamoto et al. 2024b).

3.4 Planetary boundary layer height

We adopted the WCT method because the WCT method is less affected by noise (Qu et al., 2017), and is promising for the
spaceborne lidar (Kim et al., 2021). For the PBLH detection, lidar signals at wavelength of 532 or 1064 nm are mostly used;
however, the ATLID wavelength is 355 nm. Due to relatively larger Rayleigh scattering at 355 nm (approximately five times
larger than that at 532 nm), the proportion of Mie scattering by aerosols in the PBL in lidar backscatter becomes relatively
smaller. In other words, the difference in 355 nm backscatter signals for aerosol-rich PBL and aerosol-poor free troposphere
(FT) can be smaller. The larger Rayleigh scattering at 355nm also produces greater signal attenuation, resulting in the lower
signal difference between the PBL and the FT. It should be noted that the signal attenuation due to Rayleigh scattering near
the top of the PBL is generally larger for spaceborne lidar observations than for ground-based lidar observations. Thus, the
detection of PBLH by spaceborne lidar observation at 355nm is more challenging than in the past, even when the WCT method
is applied (Kim et al., 2021). In this study, instead of using attenuated backscatter signals as the input of the WCT method, the
backscattering ratio (BR), which can be calculated as the ratio of Mie-attenuated backscatter to Rayleigh-attenuated backscatter
from the ATLID L1 data (i.e., BR = Bamm/ Bamnr), is used to remove the effect of signal attenuation. Also, Rayleigh scattering
component is eliminated by calculating BR minus 1 (i.e., BR’ = BR — 1) to highlight aerosol scattering intensity in the PBL.

The BR’ and FM are used as input data. Here, the target altitude (height above the surface) is set in between zmin and zmax,
which are 0.1 and 5 km, respectively. If the target point is classified as a cloud in the FM at the target altitude, it is excluded
from the PBLH detection. Then WCT is the calculated using the following equation:

WCT(a,b) =2 [imx pR @) (?) dz. )

where a and b are the dilation and the centered location of the Haar function %, which is defined as:
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In Equation 7, BR’ is normalized to 1.0 for the height from the surface to 1 km to reduce the dependency of aerosol
concentrations. When the WCT exceeds a threshold value, the first WCT peak from zmi, is determined as the PBLH. The
threshold and dilation width are determined from a simulated BR' profile based on ground-based HSRL data (Jin et al., 2020)
with random noise according to the errors in the ATLID attenuated backscatter reported by do Carmo et al., (2021), and are

set to 0.2 and 1.0 km, respectively.

4 Results and Discussion

To demonstrate the products and the performance of the algorithms, the ATLID L1 data (i.e., Equations la-1c) simulated
using the Joint Simulator for Satellite Sensors (Joint-Simulator) (Hashino et al. 2013, Satoh et al. 2016, Row et al. 2023) were
used. Cloud (and precipitation) distributions simulated using the Nonhydorstatic Icosahedral Atmospheric Model (NICAM,;
Satoh et al., 2014) and acrosol distributions simulated using NICAM Spectral Radiation Transport Model for Aerosol Species
(NICAM-SPRINTARS; Takemura et al., 2000) were used as the input data. Signal noises such as shot noise, dark noise, and
CCD read-out noise expected from the ATLID system were evaluated and added as gaussian random noise.

The ATLID L1 data for the cloud-predominant case simulated along the satellite path using Joint-Simulator are shown in
Figure 3. The cloud and aerosol fields used for the signal simulation are also shown in Figure 4. Clouds are present from the
surface to the altitude of 15 km. The SNR of the Mie co-polar- and cross-polar attenuated backscatter coefficients for the cloud
layers are generally greater than 5 for 0.3 km horizontal resolution data; the SNR for 1 km horizontal resolution data is
approximately twice than that for 0.3 km horizontal resolution data. The FM algorithm (Section 3.1) was applied to the
simulated L1 data (Figure 5). To assess the effect of signal noise on the estimates, the algorithm was applied to L1 data with
or without signal noise, and the agreement between them was evaluated. The results for the 0.3 km and 1 km horizontal
resolution data showed generally good agreement for each layer type, such as “cloud” and “clear-sky or aerosol.” For the 0.3
km horizontal resolution data, the total number of layers for the cloud type was 226,000, of which the number of
misidentification was 24,000, corresponding to a 11% relative error. For the 1 km horizontal resolution data, the
misidentification of the cloud layers was 9%. For the clear-sky or aerosol type, the misidentification reached to 41% for the
0.3 km horizontal resolution data; however, it improved to 5% for the 1 km horizontal resolution data. Many misidentification

were noted at the edges of the cloud layers, highlighting the need for improvement is this aspect in future studies.
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Figure 5. Feature mask products estimated for data with/without signal noise for cloud predominant scenes (Figure 3) and its

true or false values. The upper/lower figures show the results for the 0.3/1 km horizontal resolution data.

The results of the aerosol layer identification are shown in Figure 7. Here, we used the the L1 data simulated for the aerosol-
predominant case, where the dust layer is widely suspended over an altitude range of 3-20 km (Figure 6), and the FM algorithm
was applied to the L1 data with or without noise. The results for the data with signal noise are generally in good agreement
with those for the data without signal noise. The total number of aerosol layers was approximately 280,000 and the number of
misidentified layers was 30,000, resulting in 11% misidentification. As in the cloud-predominant case (Figure 5), much of the
misidentification occurred at the edges of the aerosol layers, which is also an aspect that can be improved for aerosol

identification.
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Figure 7. Feature mask products estimated for data with/without signal noise for aerosol predominant cases (Figure 6) and its

true or false values.

The results of the AOP retrieval are shown in Figure 8. The AOP retrieval algorithm was applied to the aerosol-predominant
380 case, as shown in Figure 6. The SNRs of the L1 data for the dust layer generally ranged from 5 to 20 for 1" km horizontal
resolution data. The estimated backscatter coefficients and depolarization ratios generally agreed well with the actual values,

which were the aerosol optical properties used in the L1 simulation. The mean of retrieved aerosol backscatter coefficient was
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3.26 x 107 m!sr'!. The true value was 3.18 x 10”7 m*'sr'! and the mean error (ME: retrieval — truth) was 0.08 x 107 m!sr’!,
corresponding to a relative error of 2%. The root mean square error (RMSE) was 1.12 x 107 m!sr"}, corresponding to a relative
error of 34%. For the depolarization ratio, the means for the retrievals and true values were 0.27 and 0.26, respectively; ME =
0.01 (4%) and RMSE = 0.07 (27%). The figure also shows that the extinction coefficient and lidar ratio were more strongly
affected by the signal noise than the backscatter coefficient and depolarization ratio. For the extinction coefficient, the means
for the retrieval and true values were 1.32 x 10 m™ and 1.35 x 10~ m’!, respectively; ME = -0.03 m™' (2%) and RMSE = 1.05
x 10 m! (78%). For the lidar ratio, the means of the retrieval and true values were 41 sr'!, respectively; ME = 0 sr™!' (0%) and
RMSE = 25 sr'! (61%). As with the backscatter coefficient and depolarization ratio, there was no significant bias error (ME)
for the extinction coefficient and lidar ratio; however, the variation (RMSE) was relatively large owing to signal noise. Notably,
the aerosol concentration used in this analysis was relatively low (i.e., 1.35 x 10> m™! on an average), and the RMSE value of
the extinction coefficient is not large (i.e., 1.05 x 10> m™"). For cases with higher aerosol concentrations, it can be expected
that the relative error of the extinction coefficient and the RMSE of the lidar ratio decrease with an increase in the SNR of the

Mie-attenuated backscatter coefficient (e.g., Nishizawa et al. 2017).
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Figure 8. Extinction coefficient, backscatter coefficient, depolarization ratio, and lidar ratio of aerosols estimated for aerosol

predominant cases (Figure 6) and its relative error.
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The results of the aerosol-type classification are shown in Figure 9. The algorithm was applied to the L1 data with and
without signal noise for the aerosol-predominant case, as shown in Figure 6. For the dust layer, there appeared some
misclassification (e.g., Dusty-mixture and Unknown); however, there was a fair amount of agreement. The total number of
layers classified as Dust type was approximately 225,000 and the number of misidentified layers was 84,000, resulting in a
37% misidentification. In addition, aerosol layers classified as Pristine type were also found below an altitude of 4 km; the
total number of pristine layers was approximately 13,000 and the number of misidentified layers was 9,700, resulting in 74%
misidentification. Since aerosol typing was classified using a two-dimensional diagram of the lidar and depolarization ratios
(Figure 2), aerosol type misclassification is directly reflected by the errors in the lidar ratio and depolarization ratio. The error
in the lidar ratio is considerably larger than that in the depolarization ratio (about 25 sr in RMSE). Therefore, the retrieved
lidar ratios for the dust layer fall outside the range of the two-dimensional diagram for “dust”, resulting in cases of
misclassification as dusty-mixture or unknown. Similarly, pristine is misclassified as pollution or marine due to the errors in
the lidar ratio. Thus, accurate estimation of the lidar ratio as well as depolarization ratio is required for aerosol type
classification. For cases with higher acrosol concentrations, it can be expected that the misclassification of aerosol types

decreases with an decrease of the retrieval error of the lidar ratio, as discussed in the AOP retrieval (Section 4).
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Figure 9. Aerosol target mask products estimated for data with/without signal noise for aerosol predominant scenes (Figure 6)

and its true or false values.

Figure 10 shows an example of the PBLH detection for the L1 data simulated using Joint-Simulator, where the PBLH was
approximately 2.1 km. The WCT was calculated using a Haar function with a dilation width of 1.0 km, and a WCT peak
exceeding a threshold of 0.2, derived at 2.1 km. When signal noise was added to the L1 data (dotted line in Figure 10), another
WCT peak at ~1 km appeared because of signal fluctuation; however, the peak was below the threshold. In this case, the
estimated PBLH with noise agreed well with that without noise. In actual observations, the PBLH detection may be difficult
for cases of noisy data, low aerosol concentrations, and the existence of residual layers at night because the gap of BR’ for the

PBL and free troposphere may be small.
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Figure 10. Vertical profiles of (left) backscattering ratio (BR) minus 1 for the simulated ATLID L1 data, (center) Haar function,

and (right) wavelet covariance transform (WCT).

5 Conclusion

We developed algorithms to produce JAXA ATLID L2 products for aerosols and clouds using ATLID L1 data. The
algorithms retrieve the following products: (1) feature mask; (2) particle optical properties such as extinction coefficient,
backscatter coefficient, depolarization ratio, and lidar ratio at 355 nm; (3) target mask; and (4) planetary boundary layer height.
The performance of the algorithms was demonstrated using pseudo-ATLID L1 data with realistic signal noise, which were
calculated according to the ATLID specification for the aerosol or cloud dominated cases by Joint-Simulator.

The main findings of this simulation study are as follows: (1) the misidentification of the aerosol and cloud layers by the
feature mask algorithm was relatively low (approximately 10%). (2) The retrieval errors of the AOP were 0.08 x 107+ 1.12 x
107 m s (2 + 34% relative error) for the backscatter coefficient and 0.01 + 0.07 (4 £ 27% relative error) for the depolarization
ratio of aerosols; the relative errors of the extinction coefficient and lidar ratio were worse than those of the backscatter
coefficient and depolarization ratio. (3) The aerosol-type classification generally performed well, with 37% misclassifications
for the dust type, although there were more misclassifications for the pristine type. These misidentifications were mainly due
to errors in the estimation of the lidar ratios. Accurate estimation of the lidar ratio as well as depolarization ratio is essential
for aerosol type classification. (4) PBLH retrieval using the WCT method with ATLID L1 data was feasible. These results
indicate that the algorithm’s capability to provide valuable insights into the global distribution of aerosols and clouds,
facilitating assessments of their climate impact through atmospheric radiation processes.

The validation of these aerosol and cloud products is essential, and JAXA and ESA will conduct validation using various
platforms, such as airborne, shipborne, and ground-based measurements, and various observation instruments, including lidars.
The validation studies include assuarance of the product accuracy and the improvement of the L2 algorithms mentioned above,
including the verification and improvement of various assumptions (e.g., optical models of aerosols and clouds) and the criteria

used in the algorithms.
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To understand the climatic effects of aerosols, it is essential to understand the properties of individual acrosol components
as well as the properties of total aerosols such as the JAXA ATLID L2 products described above. Therefore, we are currently
developing an algorithm to estimate the extinction coefficients of dust, sea salt, carbonaceous (light-absorbing particles), and
water-soluble aerosols at 355nm using the difference in the depolarization and light absorption properties of each aerosol
component from the L2 products and ATLID L1 data. We are also currently developing an ATLID-MSI synergy algorithm to
retrieve the vertical mean mode-radii of dust and fine-mode aerosols, and the extinction coefficients of the abovementioned
four aerosol components. These algorithms are being developed based on the aerosol component retrieval algorithms that have
been developed for the analysis of CALIOP and ground-based lidar data. (Kudo et al. 2023; Nishizawa et al. 2007, 2008, 2011,
2017). The aerosol component products derived by these algorithms using ATLID and MSI data are planned to be released as
JAXA’s L2 products and are expected to enhance the scientific value of the EarthCARE mission.
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