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Abstract. Accurately determining Aerosol Optical Depth (AOD) across various altitudes with sufficient spatial and temporal 

resolution is crucial for effective aerosol monitoring, given the significant variations over time and space. While ground-based 

observations provide detailed vertical profiles, satellite data are crucial for addressing spatial and temporal gaps. This study 

utilizes profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and data from the Spinning Enhanced 

Visible and Infrared Imager (SEVIRI) to estimate vertical AOD values at 1.5, 3, 5, and 10 km layers. These estimations are 10 

achieved with spatial and temporal resolutions of 3 km × 3 km and 15 minutes, respectively, over Europe. We employed 

machine learning models—XGBoost (XGB) and Random Forest (RF)—trained on SEVIRI data from 2017 to 2019 for the 

estimations. Validation using CALIOP AOD retrievals in 2020 confirmed the reliability of our findings, emphasizing the 

importance of wind speed (Ws) and wind direction (Wd) in improving AOD estimation accuracy. A comparison between 

seasonal and annual models revealed slight variations in accuracy, leading to the selection of annual models as the preferred 15 

approach for estimating SEVIRI AOD profiles. Among the annual models, the RF model demonstrated superior performance 

over the XGB model at higher layers, yielding more reliable AOD estimations. Further validation using data from EARLINET 

stations across Europe in 2020 indicated that the XGB model achieved better agreement with EARLINET AOD profiles, with 

R² values of 0.81, 0.77, 0.71, and 0.56, and RMSE values of 0.03, 0.01, 0.02, and 0.005, respectively. 

Keywords: AOD Vertical Profile, SEVIRI, Geostationary satellite, CALIOP, EARLINET, Machine Learning. 20 

1 Introduction 

Researchers acknowledge that aerosols significantly contribute to air pollution, climate change, and alterations in solar and 

thermal infrared radiation absorption and scattering (Hyslop, 2009; Pope et al., 2019; Li et al., 2022). Understanding their 

behaviour is crucial for refining atmospheric models and monitoring techniques. Aerosol Optical Depth (AOD) serves as a 

parameter for quantitatively estimating both the aerosol concentration and its optical properties. Recent researches highlight 25 

the pivotal role of aerosol vertical profiles in AOD retrieval uncertainties (Wang et al., 2018, Rogozovsky et al., 2021; Gupta 

et al., 2021; Rogozovsky et al., 2023). Moreover, understanding the vertical layering of aerosol properties enhances insights 
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into aerosol transport mechanisms, aids in source identification, elucidates atmospheric dynamics, and improves the accuracy 

of models tracking long-range aerosol transport (Chen et al., 2023). Consequently, continuous monitoring of the large-scale 

three-dimensional properties of aerosols in the atmosphere remains imperative. 30 

Vertical AOD retrieval can be conducted through ground-based observations or inferred from remote sensing data. Ground-

based LiDAR networks, such as the European Aerosol Research Lidar Network (EARLINET), provide detailed insights into 

various aerosol properties by offering vertical profiles of aerosol optical properties (Bösenberg et al., 2001, 2003). While these 

observations offer detailed vertical information, their sparse nature necessitates supplementation with satellite observations. 

Satellite remote sensing emerges as the primary method for capturing temporal and spatial variations in aerosol profiles 35 

globally. While passive satellite remote sensing significantly enhances spatial coverage for aerosol monitoring, it lacks the 

detailed resolution of aerosol vertical layers provided by active techniques (Hsu et al., 2004; Levy et al., 2013). Spaceborne 

LiDAR systems, such as the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the Cloud-Aerosol Lidar 

and Infrared Pathfinder Satellite Observation (CALIPSO) satellite launched in 2006, offer distributions of aerosols and clouds, 

along with their geometrical and optical properties. The CALIOP instrument represents the world's first operational satellite-40 

based cloud and aerosol LiDAR (Winker et al., 2004, 2006), providing high-resolution global aerosol vertical profile data that 

facilitate vertical distribution studies (Winker et al., 2007). However, the CALIOP sensor encounters challenges in achieving 

adequate spatial and temporal coverage, with limitations in daily and global resolution (16-day temporal resolution and 5 km 

profile distance). 

To address the limitations related to the inadequate spatial and temporal coverage of CALIOP, recent studies by Pashayi et al. 45 

(2023, 2024) have introduced Seasonal and Seasonal-Independent models. These models seek to investigate the relationship 

between MODIS observations, MAIAC, and CALIOP AOD for Vertical Layering of MAIAC AOD product at a spatial-

temporal resolution corresponding to the MAIAC product, with a focus on the Persian Gulf region. The researchers 

subsequently analyse their findings using CALIOP AOD retrievals across distinct vertical layers. Despite promising outcomes, 

the temporal variability and transient lifespan of aerosols, particularly within vertical layers, pose challenges to the 50 

effectiveness of estimated AOD products in these studies. This limitation stems from the utilization of MODIS products aboard 

polar-orbiting satellites, which pass over a region approximately once a day during daylight hours, thus inadequately 

supporting aerosol monitoring at high temporal resolution (Wei et al., 2020). 

Geostationary satellites provide observations with significantly high temporal resolutions (Wei et al., 2020). In recent years, 

numerous geostationary satellite sensors with enhanced radiometric, spectral, and spatial resolutions have been deployed to 55 

monitor global aerosol loading with temporal resolutions of less than an hour. Notable examples of these geostationary sensors 

include Himawari-8, equipped with the Advanced Himawari Imager (AHI, Da, 2015); the Advanced Baseline Imager (ABI, 

Kalluri et al., 2015) aboard the Geostationary Operational Environmental Satellite (GOES); and the Meteosat geostationary 

satellites, equipped with the Spinning Enhanced Visible and Infrared Imager (SEVIRI, Pasternak et al., 1994) instrument. 

These advancements facilitate observations with high temporal resolution, substantially enhancing aerosol monitoring 60 

capabilities across various regions (Schmit et al., 2018; Zhang et al., 2019; Ge et al., 2019; Tang et al., 2019; Zawadzka-Manko 
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et al., 2020; Witthuhn et al., 2020; Kocaman et al., 2022; Ceamanos et al., 2023). Specifically, SEVIRI offers suitable temporal 

and spatial resolutions, presenting a valuable opportunity to expand aerosol datasets for Europe (Stebel et al., 2021; Nicolae 

et al., 2021). 

The retrieval of AOD values typically entails two primary approaches: physically based methods (Seidel et al., 2012; Lipponen 65 

et al., 2018; Amini et al., 2021; Mehta et al., 2022) and data mining techniques (Radosavljevic et al., 2010; She et al., 2020; 

Chen et al., 2022). Physically based methods rely on established principles of aerosol behaviour, utilizing models derived from 

physical laws to estimate AOD values. However, these methods encounter limitations due to uncertainties in inputs and the 

complex nature of particle phenomena. In contrast, data mining techniques offer a promising alternative by harnessing large 

datasets and employing machine learning algorithms to discern patterns and relationships within complex aerosol systems. 70 

In this study, our objective is to introduce a model for enhancing the temporal resolution of AOD profile products over Europe 

continent by integrating SEVIRI-based information with CALIOP aerosol profile products. To achieve this, we develop a 

machine learning (ML) model capable of retrieving sub-hourly (approximately every 15 minutes) vertical AOD values with a 

spatial resolution of 3 km × 3 km. Leveraging two well-established ML models—XGBoost (XGB) and Random Forest (RF)—

previously demonstrated effective in similar studies, these algorithms serve as the foundation for training layering models and 75 

assessing their seasonal independence using numerical datasets. Importantly, previous studies (Zhang et al., 2021; Lebo, 2014; 

Marinescu et al., 2017) have demonstrated that aerosols situated in the mid-troposphere (at altitudes ranging from 3 to 10 

kilometres) significantly influence cloud characteristics (Lebo, 2014), while those in the lower troposphere have a pronounced 

effect on mixed-phase precipitation (Marinescu et al., 2017). Consequently, our focus is on developing region-specific models 

to estimate AOD values across the 1.5, 3, 5, and 10 km layers for each pixel of the SEVIRI dataset, thus notably improving 80 

the spatial-temporal resolution of AOD in these layers. Furthermore, the existence of EARLINET stations across Europe aims 

to validate the estimated AOD values. We organized the rest of the paper as follows: Section 2 provides a comprehensive 

overview of the dataset employed, while Section 3 details the necessary pre-processing steps and retrieval methodology. 

Subsequently, Section 4 delves into the discussion of the vertically retrieved AOD results, followed by conclusions outlined 

in Section 5. 85 

2 Study Area and Data Source 

2.1 Study Area 

The study area encompasses a significant portion of Europe, spanning from 35°N to 71°N and -7°E to 70°E, covering 

approximately 10.18 million square kilometres. Despite its relatively small land area, Europe exhibits a diverse geographical 

landscape and complex atmospheric dynamics. Urban centers in Europe face persistent air pollution issues due to industrial 90 

activities and vehicular emissions, compounded by the effects of climate change. Various aerosol types, originating from 

industrial processes, transportation, biomass burning, and natural events significantly impact air quality, weather patterns, and 

climate dynamics across the continent. Long-range transport of aerosols, particularly from sources in Africa such as Saharan 
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dust storms, underscores the interconnectedness of atmospheric processes across continents and emphasizes the necessity of 

international cooperation in addressing air pollution and environmental challenges. 95 

2.2 Data Source 

2.2.1 SEVIRI 

The Meteosat Second Generation (MSG) constitutes a series of four satellites managed by the Exploitation of Meteorological 

Satellites (EUMETSAT) and has been operational since 2004. Originally designated as MSG1 to MSG4, these satellites were 

subsequently rebranded as Meteosat-8 to Meteosat-11, respectively. The primary instrument onboard these satellites is the 100 

Spinning Enhanced Visible and Infrared Imager (SEVIRI), a radiometer equipped with 11 spectral channels spanning the 

visible to the infrared spectrum. SEVIRI provides a spatial resolution of 3 km at the sub-satellite point, with a high-resolution 

visible (HRV) channel offering a spatial resolution of 1 km at nadir. Strategically centered at various wavelengths, the thermal 

channels of SEVIRI include 6.2 and 7.3 µm (targeting strong water vapor absorption), 8.7, 10.8, and 12.0 µm (window 

channels), as well as 9.7 µm (for ozone absorption) and 13.4 µm (for carbon dioxide absorption). This operational system 105 

delivers full-disk Earth data, while the rapid scan service focuses on observing the upper part of the Earth's disk, covering 

Europe and North Africa, with a repetition time of 15 minutes (Schmetz et al., 2002; Zawadzka et al., 2014). In our study, we 

primarily utilize SEVIRI data from Meteosat-11, the fourth and final flight unit of the MSG program, which was launched on 

July 15, 2015.  Meteosat-11 currently operates in geostationary orbit, positioned at 36,000 km above the equator. Its coverage 

extends over Europe, Africa, and the Indian Ocean, spanning from -81 to 81 degrees longitude and -79 to 79 degrees latitude. 110 

Figure 1 provides a visualization of the coverage area of SEVIRI. 

 

Figure 1. The area covered by the SEVIRI instrument (https://data.eumetsat.int/data/map/EO:EUM:DAT:MSG:HRSEVIRI). 
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2.2.2 CALIOP 

The CALIOP instrument plays a pivotal role in the CALIPSO satellite, launched in April 2006 with the primary objective of 115 

reliably delivering high-resolution vertical profiles of global aerosol properties via an active sensing technique. Functioning 

as a polarization-sensitive LiDAR, CALIOP measures the depolarization ratio, serving as a degree of particle irregularity. 

CALIOP is specifically designed to observe aerosol optical properties during both the day and night, focusing on vertical layers 

at wavelengths of 532 and 1064 nm. Its Level 2 algorithm not only provides information on aerosol optical characteristics like 

particle depolarization ratio and color ratio but also retrieves extinction coefficients. Notably, CALIOP data offer a temporal 120 

resolution of approximately 16 days, capturing insights into aerosol dynamics over time. Sampling occurs at intervals of 333 

m along the orbital track, maintaining a vertical resolution of 60 m from altitudes of -0.5 to 20 km and 180 m from 20 to 30 

km within the vertical profile (Winker et al., 2004, 2006, and 2007). For this study, we employed CALIOP level 2 Version 4.2 

aerosol profile products, featuring a horizontal resolution of 5 km and a vertical resolution of 60 m up to an altitude of 20.2 

km. These data, spanning from 2017 to 2019, were utilized to estimate the profiles of AOD at layers of 1.5, 3, 5, and 10 km 125 

(denoted as 𝐴𝑂𝐷1.5, 𝐴𝑂𝐷3, 𝐴𝑂𝐷5, and 𝐴𝑂𝐷10) within the defined study region. 

2.2.3 MODIS land cover data 

In this research, we leveraged land cover data spanning 2017 to 2019, with a spatial resolution of 1 km, sourced from the 

global MODIS products (MCD12Q1 V6) covering Europe. These data, derived from both Terra and Aqua satellites, provide 

comprehensive land cover types annually from 2001. The dataset encompasses six classification schemes, elucidated in the 130 

downloadable User Guide available at https://ladsweb.modaps.eosdis.nasa.gov/. Each MCD12Q1 Version 6 Hierarchical Data 

Format 4 (HDF4) file comprises layers for Land Cover Type 1-5, Land Cover Property 1-3, Land Cover Property Assessment 

1-3, Land Cover Quality Control (QC), and a Land Water Mask (Sulla-Menashe and Friedl, 2018). Our study specifically 

focuses on the first classification scheme, the Annual International Geosphere-Biosphere Program (IGBP) classification. 

2.2.4 Meteorological data 135 

Meteorological data were acquired from the European Centre for Medium-Range Weather Forecasts (ECMWF) dataset, 

accessible at (https://cds.climate.copernicus.eu/). ECMWF has been actively operational in real-time seasonal forecast systems 

since 1997, providing access to standard meteorological data. This dataset comprises two distinct sets of data (Copernicus 

Climate Change Service, Climate Data Store, (2021)). Firstly, version 2 of the Integrated Global Radiosonde Archive (IGRA) 

from 1978 integrates global radio sounding containing temperature, humidity, and wind data from various sources. The dataset 140 

is presented in the form of a global grid with a conventional grid resolution of 0.25° × 0.25°. Compared with previous-

generation products, the temporal resolution has been increased from 6 hours to 1 hour, enabling the study of diurnal variations 

in the troposphere. Secondly, the Radio Sounding HARMonization (RHARM) homogenized dataset offers adjusted values for 

temperature, relative humidity, and wind. RHARM effectively eliminates systematic effects such as variations in measurement 
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sensors, biases induced by solar radiation, calibration drifts, station relocations, and other factors, across 700 IGRA radiosonde 145 

stations and ship-based radio soundings. RHARM includes twice-daily (0000 and 1200 UTC) radiosonde data at mandatory 

and standard levels, featuring essential parameters like air temperature (T, K), air pressure (P, Pa), wind speed (Ws, m/s), and 

wind direction (Wd, degrees from north). For this study, the global grid dataset is utilized over the European continent from 

2017 to 2019, as depicted in Fig. 2. 

 150 

Figure 2. Map depicting the ECMWF stations for meteorological data measurements (Durre et al., 2016). 

2.2.5 EARLINET 

EARLINET, established in the year 2000 (Bösenberg et al., 2001, 2003), originated as a research project funded by the 

European Commission within the framework of the Fifth Framework Program. The primary objective of EARLINET is to 

generate profiles of aerosol optical properties, thereby constructing an expansive, quantitative, and statistically robust database 155 

for the continental-scale distribution of aerosols. This initiative aims to enhance network operations, facilitate research on 

aerosol-related processes, validate satellite sensor data, advance model development and validation, integrate aerosol data into 

operational models, and compile a comprehensive climatology of aerosol distribution. Currently, the network comprises 30 

active stations, with the majority equipped with Raman LiDAR featuring depolarization channels. These Raman LiDAR -

operating EARLINET stations typically provide profiles of aerosol extinction and backscatter coefficients without relying on 160 

significant assumptions. Figure 3 illustrates the distribution of EARLINET stations over the study area. 
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Figure 3. Map depicting currently active EARLINET stations (https://data.earlinet.org/earlinet/). The red stars indicate the 

geographical distribution of EARLINET LiDAR stations used in this study. 

3 Methodology 165 

In this paper, our primary objective is to establish a robust relationship between the input variables—SEVIRI band 

measurements, meteorological data, and land cover products—and the vertical AOD profiles at 1.5, 3, 5, and 10 km layers. To 

identify this relationship, we use CALIOP AOD retrievals at these layers as reference data. Our proposed model framework 

for estimating AOD at the at the mentioned four distinct layers encompasses several sequential steps: data collection, 

preprocessing, partitioning, regression, and analysis of the performance of each regression model to ascertain the most accurate 170 

one, as illustrated in Fig. 4. 

The process commences with data collection, detailed in the preceding section. Subsequently, preprocessing of both input and 

output data becomes imperative to ensure their suitability for subsequent analysis. The dataset is then partitioned into two 

subsets: training and testing, a pivotal step in ML aimed at assessing model performance and mitigating over fitting. Following 

data partitioning, various ML model structures are proposed and developed to capture the intricate relationships within the 175 

dataset. This phase entails selecting appropriate algorithms and architectures tailored to the specific task of AOD estimation. 

Finally, the performance of each model is meticulously evaluated using predefined metrics to pinpoint the most accurate and 
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reliable model for AOD estimation across the desired vertical layers. In the subsequent sections, we will delve into a detailed 

examination of each step. 

 180 

Figure 4. Research framework for developing ML models to estimate SEVIRI AOD profiles. 
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3.1 Pre-Processing 

To ensure a robust model for estimating AOD values at suitable 3D resolutions, this study integrates data from various sources, 

including satellites and ground-based observations. To address spatial-temporal sampling disparities, we employ a co-location 

approach where data from multiple sources, such as satellites and ground-based observations, are matched within a ±30 minutes 185 

timeframe and within a 3 km radius of the study area (Kittaka et al., 2011; Redemann et al., 2012; Han et al., 2017; Liu et al., 

2018a). This method harmonizes disparate datasets, enhancing the reliability and comprehensiveness of our analysis. The 

subsequent preprocessing stages necessary for data refinement and analysis are elaborated upon in the following subsections. 

3.1.1 SEVIRI 

Utilizing SEVIRI data necessitates a critical preprocessing step involving co-referencing and applying geometric corrections. 190 

The Data Tailor tool, accessible at https://www.eumetsat.int/data-tailor, serves as a valuable spatial resource introduced in 

recent years. It simplifies the definition of coordinate systems, image systems, cutting ranges, expected output types, and 

requisite file extensions for the output data. Estimating AOD values requires the conversion of radiance to reflectance for the 

SEVIRI reflective bands (VIS06, VIS08, and NIR16), and equivalent brightness temperature for the remaining eight bands. 

To achieve this, we computed the Bidirectional Reflectance Factor (BRF) for the SEVIRI warm channels using Equation (1) 195 

proposed by the European Organization for the Exploitation of Meteorological Satellites (2012): 

𝑟𝜆𝑖 =   
𝜋 .𝑅𝜆𝑖

 .  𝑑2(𝑡)

𝐼𝜆𝑖
 .  𝑐𝑜𝑠(𝜃(𝑡,𝑥))

 ,           (1) 

where 𝑖 denotes the channel number (1 = VIS06, 2 = VIS08, 3 = NIR16, 4 = HRV), 𝑟𝜆𝑖  represents the Bidirectional Reflectance 

Factor (BRF) for channel 𝜆𝑖, 𝑅𝜆𝑖 stands for the measured radiance in mW·𝑚−2·𝑠𝑟−1·(𝑐𝑚−1)−1, d(t) signifies the Sun-Earth 

distance in Astronomical Unit (AU) at time 𝑡 , 𝐼𝜆𝑖  signifies the band solar irradiance for channel 𝜆𝑖  at 1 AU in 200 

mW·𝑚−2·𝑠𝑟−1·(𝑐𝑚−1)−1, and 𝜃(𝑡, 𝑥) denotes the Solar Zenith Angle in radians at time 𝑡 and location 𝑥. The equivalent 

brightness temperature (𝑇𝑏) of a satellite observation is defined as the temperature of a black body emitting the same amount 

of radiation. Therefore, the brightness temperature follows the form of Equation (2). 

𝑇𝑏 =  
𝐶2 𝑣𝑐

𝛼 𝑙𝑜𝑔 𝐶1 𝑣𝑐
3 𝑅  ⁄ +1 

− 
𝛽

𝛼
,           (2) 

Using the observed radiances 𝑅̅ (in 𝑚𝑊𝑚−2𝑠𝑟−1(𝑐𝑚−1)−1) and radiation constants 𝐶1 = 2ℎc² and 𝐶2 = ℎ𝑐/𝑘, where 𝑐, ℎ, and 205 

𝑘 represent the speed of light, Planck's constant, and the Boltzmann constant respectively, the regression coefficients 𝑣𝑐, α, 

and β are determined through non-linear regression analysis. This analysis is conducted on a pre-calculated lookup table 

generated for the various SEVIRI channels, as delineated in Table 1 (Tjemkes et al., 2012).  
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Table 1.  Values for the regression parameters. 

Channel No. Channel ID 𝑣𝑐  , 𝑐𝑚
−1 𝛼 𝛽, K 

4 IR 3.9 2567.330 0.9956 3.410 

5 WV 6.2 1598.103 0.9962 2.218 

6 WV 7.3 1362.081 0.9991 0.478 

7 IR 8.7 1149.069 0.9996 0.179 

8 IR 9.7 1034.343 0.9999 0.060 

9 IR 10.8 930.647 0.9983 0.625 

10 IR 12.0 839.660 0.9988 0.397 

11 IR 13.4 752.387 0.9981 0.578 

3.1.2 CALIOP 

In this study, to mitigate the impact of cloud contamination and retrieval errors on CALIOP AOD retrieval, our screening 210 

methods closely follow the guidelines established by Winker et al., 2013. We employ various quality filters to identify and 

filter aerosol pixels, including CAD scores, extinction QC flags, and uncertainty values. Specifically, we utilize a CAD score 

range outside [-100, -20] to address uncertainties in cloud-aerosol discrimination, ensuring the selection of cloud-free pixels 

with high confidence. Additionally, we apply extinction quality control flags with values 0 and 1 to filter extinction retrievals 

with high confidence. This includes constrained retrievals utilizing transmittance measurements and unconstrained retrievals 215 

where the initial LiDAR ratio remains unchanged in iterations. Furthermore, we exclusively consider daytime profiles in this 

study. Uncertainty flags associated with extinction coefficients are employed for data screening. Range bins with an uncertainty 

flag value of 99.9 𝑘𝑚−1are excluded from the analysis, following the methodology outlined by Winker et al., 2013. 

3.1.3 Land Cover Product 

Considering that the original MCD12Q1 product is stored in a HDF and utilizes the sinusoidal projection, several data pre-220 

processing steps are required. These steps encompass format conversion, reprojection, resampling, image mosaicking, and 

sub-area masking. To execute these tasks, we employ the pyModis Free and Open-Source Python-based library. This tool 

enables the conversion of MODIS HDF data format into Geotiff format and facilitates the conversion of data projection from 

SIN to WGS84/UTM. Additionally, it facilitates image mosaicking and sub setting. Moreover, to enable comparison between 

the MCD12Q1 and SEVIRI datasets, the spatial resolution of MCD12Q1 is resampled at 3 km using the nearest neighbor 225 

resampling method. This method preserves the gray values of the original image, unlike bilinear interpolation or cubic 

convolution interpolation methods, which may alter them. 
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3.2 ML Models and parameter Tuning 

In this study, our primary objective is to develop a ML model to estimate SEVIRI AOD values at various altitudes—1.5 km, 

3 km, 5 km, and 10 km—using CALIOP's vertical profiles across the European continent. We employ two distinct ML 230 

algorithms, RF and XGBoost, to train layering models. Both RF and XGBoost adopt an ensemble approach, which involves 

constructing and aggregating multiple decision trees (Breiman, 2001; Chen and Guestrin, 2016). In RF, each tree is built using 

a bootstrap sample of the data, with nodes determined by the best subset of randomly selected predictors (Breiman, 2001). 

These trees are then averaged to obtain a final ensemble prediction. Conversely, XGBoost implements the gradient boosting 

method, where trees are interdependent as newly trained trees are constructed based on previous trees, incorporating their 235 

ability to predict the residuals of prior trees (Chen and Guestrin, 2016). In both RF and XGBoost, all trained trees are combined 

to make the final prediction.  

We systematically explored various parameter combinations for each ML model. Parameters such as the number of decision 

trees (N_estimators), the number of variables considered for splitting at each node (max_features), and the maximum depth of 

each decision tree (max_depth) for RF, as well as parameters including the number of gradient boosting rounds or decision 240 

trees (n_estimators), minimum sum of instance weight (Min_sample split), maximum depth of each decision tree (max_depth), 

and minimum number of samples required to be at a leaf node (Min_sample leaf) for XGBoost, were optimized using a grid 

search algorithm. This algorithm exhaustively searches through a specified subset of the hyperparameter space. We set up a 

grid of possible values for each hyperparameter to be tuned, as illustrated in the "Specific Search Range" column in Table 2. 

For each combination of hyperparameters in the grid, the algorithm trains the model using the training data and evaluates its 245 

performance through cross-validation. The performance of each hyperparameter combination is measured using several 

specified evaluation metrics. Finally, the combination of hyperparameters that results in the best performance on the validation 

set is selected, as shown in the "Optimum Value" column in Table 2. This optimal set of parameters is then used to train the 

final model on the entire training dataset. For a comprehensive overview of the optimized parameters, refer to Table 2. 

Table 2. The control parameter for tuning the ML models. 

Model Parameter Specific search range Optimum value 

RF 

n_estimators 50 to 150 150 

max_features [auto, sqrt, log2] sqrt 

max_depth [5,10,20] 20 

bootstrap [True, False] False 

XGBoost 

n_estimators 50 to 500 100 

max_depth [5,10,20] 20 

Min_sample split 0.1 to 1 0.3 

Min_sample leaf 3 to 10 8 
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3.3 Model Training and Evaluation 250 

Data partitioning is a pivotal aspect of training and comprehensively assessing the performance of ML algorithms. Two widely 

adopted techniques for this purpose are Hold-Out and Cross-validation. Hold-Out involves dividing the dataset into training 

and testing sets using an 80-20 split, ensuring independent model evaluation. On the other hand, Cross-validation, often 

referred to as 'k-fold,' randomly partitions the data into 'k' groups, thereby enhancing generalization (Yadav and Shukla, 2016). 

In this study, we employed a combination of both techniques to evaluate the reliability and stability of the models across spatial 255 

and temporal domains. Initially, the dataset underwent division using Hold-Out into an 80% training set and a 20% testing set. 

Subsequently, a 10-fold cross-validation was conducted on the 80% training data, with eight groups randomly chosen for 

training and two for model validation. 

During the training phase of our ML models, we leveraged datasets spanning diverse temporal periods and geographical 

regions where both SEVIRI and CALIOP data were accessible. However, following this training phase, the algorithms function 260 

autonomously, relying solely on SEVIRI data as their input. This advancement enables us to estimate AOD values at four 

specified vertical layers within each pixel of the SEVIRI dataset, based on a single SEVIRI observation along with its 

associated meteorological data and land cover data, covering the entire study area. 

Evaluation of the AOD Profiling models involved statistical metrics such as the coefficient of determination (𝑅2), Pearson 

correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE). The selection of the optimal 265 

model was based on higher 𝑅2and R values, along with lower RMSE and MAE scores. Additionally, we conducted a validation 

analysis of AOD Profiling with EARLINET AOD profiles on a continental scale to ascertain the model's performance. 

4 Results and Discussion 

In this paper, our primary aim is to develop a ML model capable of retrieving AOD across four distinct vertical layers: 1.5, 3, 

5, and 10 km. To accomplish this, we utilized two well-established ML models, XGB and RF, previously employed in related 270 

studies. These models were trained on SEVIRI data spanning the European continent from 2017 to 2019. Our objective was 

to estimate sub-hourly AOD values, approximately every 15 minutes, at a spatial resolution of 3 km × 3 km.  

To explore the relationship between AOD and potential predictor variables, we conducted a correlation analysis experiment 

utilizing the Pearson Correlation Coefficient (PCC, Benesty et al., 2009). Furthermore, we evaluated the influence of land 

cover and meteorological data as input variables for the ML models in estimating AOD profiles from SEVIRI data, with a 275 

specific focus on identifying the most optimal model. Moreover, we conducted training and testing of the ML models across 

various temporal scales, including annual and seasonal analyses. Subsequently, we assessed the performance of each model 

using independent satellite and ground-based AOD profiles, employing evaluation metrics such as R², R, MAE, and RMSE. 

In the subsequent sections, we will provide a comprehensive review of the results derived from the aforementioned 

assessments. 280 
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4.1 Validation of Estimated AOD with Satellite Retrieval AOD 

4.1.1 Feature Importance 

According to established radiative transfer theory (Tsang et al., 1984; Zege et al., 1991), the spectral signal captured by a 

satellite sensor at the top of the atmosphere (TOA) is intricately shaped by various factors, including the composition, size 

distribution, and altitude of aerosols, as well as atmospheric molecules such as water vapor (WV). These factors directly 285 

influence the estimation of AOD values. Hence, SEVIRI reflectance and brightness temperature across bands 1 to 11 were 

identified as critical features for our analysis. The relationship between AOD and all candidate features was investigated 

through a correlation analysis experiment, as illustrated in Fig. 5, employing the PCC as the selected filter. The findings 

underscored that the majority of selected features in this study exhibited significance levels exceeding 1%. 

Spatial features, Latitude and Longitude, alongside day, consistently demonstrate high importance to estimate the AOD values 290 

across all vertical layers. Lon is the most significant feature in all four cases, with importance ranging from approximately 

19.42% to 23.92%. Lat also shows substantial importance, with values between 17.32% and 22.92%. For all four heights, the 

top three features remain consistent, albeit in different orders: lon, lat, and day. Although the relative importance of these 

features slightly decreases with height, they remain dominant. Month, year, and various spectral bands (𝐵1  to 𝐵11) also 

contribute, ranging from 1.63% to 3.86%, to the model. This alignment with previous studies (Kaufman et al., 1997; Hyer et 295 

al., 2011; Chen et al., 2022) underscores the robustness of our findings. The importance of these secondary features varies 

slightly with the height of the AOD layer. For instance, the importance of the month feature is highest at 10 km (5.25%) and 

lowest at 1.5 km (3.73%). Additionally, meteorological data such as Pressure (P), Temperature (T), Wind Speed (Ws), and 

Wind Direction (Wd) have relatively low importance across all heights, with contributions below 2% in most cases. Land 

Cover (LC) is consistently the least important feature in all scenarios. Given the relative importance of meteorological data (P, 300 

T, Wd, and Ws) and LC, along with the significant influence of SEVIRI TOA measurements (𝐵1 to 𝐵11), these were retained 

as input features for our AOD profile retrieval model based on machine learning techniques. 
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Figure 5. The Importance of input features in the retrieval of SEVIRI AOD profiles, as determined by the Pearson 

Correlation Coefficient (PCC). 305 

4.1.2 Impact of Meteorological data and Land cover 

As previously noted, LC, T, P, Ws, and Wd are key features in AOD estimation. To further understand their impact on ML 

model performance in SEVIRI AOD profiling, we conducted 16 cases of experiments with varied feature combinations, 

validated using CALIOP AOD retrievals. Our analysis, depicted in Fig. 6 and supplementary Tables S1-S2, is summarized 

using statistical metrics like R², R, RMSE, and MAE.  310 

Our findings indicate that, for most cases across annual and seasonal datasets, adding features beyond 𝐵𝑖  has negligible impact 

on the 1.5 km layer. However, integrating T and P features, as seen in cases 3, 4, and 9, notably enhances AOD accuracy at 3, 

5, and 10 km altitudes. This improvement is attributed to P reflecting changes in aerosol vertical layers, influencing aerosol 

diffusion capacity, while T is closely linked to atmospheric aerosol distribution by altering air movement dynamics. 

Additionally, our results highlight the superior performance of Case 5, employing Ws and Wd as input wind dynamics features. 315 

Incorporating these features significantly enhances R² values across models, with substantial increases ranging from 14 to 89 

and 5 to 99 observed in R², and decreases ranging from 3.1 to 1 and 3.5 to 0.2 in RMSE for both XGB and RF models from 

Case 1 to Case 5 in the 10 km layer. These statistical values underscore the crucial role of wind speed and wind direction in 

influencing the spatial and temporal properties of atmospheric aerosols, particularly in the 10 km layer. 

In comparison to P and T, wind dynamics features exhibit a greater impact on SEVIRI AOD estimation performance, 320 

particularly in the 5 and 10 km layers. This is attributed to aerosols' capacity for long-range transport within the atmosphere 

facilitated by wind-driven advection, particularly in these layers (Nicolae et al., 2019; Georgoulias et al., 2016; Ortiz-Amezcua 

et al., 2017; Granados-Muñoz et al., 2016). Conversely, LC emerges as an influential confounding feature at 3, 5, and 10 km 

layers in most models, resulting in a notable reduction in R². This phenomenon arises from the fact that the vertical distribution 

of aerosols across different atmospheric layers over Europa is more heavily influenced by continental and regional transport 325 

patterns, atmospheric stability, and meteorological conditions than localized land cover characteristics (Zhao et al., 2019). 

Our model validation using CALIOP AOD retrievals underscores the reliability of our findings, particularly regarding the 

significance of Ws and Wd in improving AOD estimation accuracy. The consistency of these results across different modeling 

approaches (RF and XGB, Annual and Seasonal) emphasizes the significance of Ws and Wd in AOD estimation at both 5 km 

and 10 km layers. Consequently, we prioritize Ws and Wd, along with Bi, as the preferred input features for our models due 330 

to their demonstrated impact on improving AOD estimation accuracy. 
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Figure 6. The impacts of input features on the retrieval of SEVIRI AOD profiles, represented as 𝑅2 metrics, for the RF and 

XGB models. Each row displays the results for the annual period and the four seasons (Winter, Spring, Summer, and 

Autumn). The four colors in each bar plot indicate the 𝑅2 values for AOD at 1.5, 3, 5, and 10 km layers. 335 

4.1.3 Validation of Seasonal Modeling 

Given the significant variations in both aerosol distribution and meteorological conditions across seasons, we aimed to 

investigate whether tailoring our proposed modeling approach to different seasons could enhance the precision of AOD profile 

retrievals. Following the methodology outlined in Section 3, we partitioned the sample dataset, derived from 2017 to 2019 

data, into four segments based on seasonal distinctions: Winter (January, February, and March), Spring (April, May, and June), 340 

Summer (July, August, and September), and Autumn (October, November, and December), as detailed in Table 3. 

Subsequently, we trained individual ML models on these seasonal datasets. Additionally, an annual model was constructed 

using the entire dataset spanning 2017 to 2019. For this analysis, we separately estimated SEVIRI AOD profiles for the year 

2020 using both the seasonal and annual models. The accuracy of these estimations was then assessed using CALIOP AOD 

retrievals. Detailed seasonal validation findings, including R² and RMSE metrics, are delineated in Table 4, complemented by 345 

supplementary insights and further details on R and MAE available in Table S3. 

Table 3. Number of Samples Used to ML models training in this Study. 

Period All Winter Spring Summer Autumn 

2017-2019 343489 82752 87358 99750 73629 

The XGB model exhibited acceptable performance across different seasons, with R² (RMSE) values for the 1.5 km layer as 

follows: 0.930 (0.040 mg/m³) for spring, 0.918 (0.036 mg/m³) for summer, 0.918 (0.046 mg/m³) for autumn, and 0.932 (0.046 

mg/m³) for winter. Notably, the RF model showed improvement, boasting R² values of 0.987, 0.992, 0.994, and 0.994, and 

corresponding RMSE values of 0.017, 0.011, 0.012, and 0.013 mg/m³ for spring, summer, autumn, and winter, respectively. 350 

Similarly, both the XGB and RF models demonstrated satisfactory performance across other layers, with R² ranging from 0.84 

to 0.99, 0.82 to 0.98, and 0.78 to 0.98 for the 3 km, 5 km, and 10 km layers, respectively. Clearly, the performances of models 

tend to decrease in the upper layers compared to the 1.5 km layer. Due to the prevalent types and sizes of existing aerosols 

throughout most of the year, with aerosol distribution in Europe predominantly concentrated within the 1.5 and 3 km 

atmospheric layers. Consequently, R² and R metrics demonstrate higher values in these layers compared to the 5 and 10 km 355 

layers. Conversely, RMSE and MAE metrics are elevated at the 1.5 and 3 km layers but lower at the 5 and 10 km layers. This 

pattern arises from the typically higher aerosol concentrations occurring in the lower atmospheric layers, juxtaposed with lower 

AOD values observed in the 5 and 10 km layers. 

Table 4. Seasonal performance of proposed AOD profiling ML models. 
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 Targets Metrics Annually Winter Spring Summer Autumn 

XGB 

𝐴𝑂𝐷1.5 
𝑅2 0.928 0.932 0.930 0.918 0.918 

RMSE 0.042 0.046 0.040 0.036 0.046 

𝐴𝑂𝐷3 
𝑅2 0.908 0.865 0.913 0.921 0.843 

RMSE 0.021 0.025 0.024 0.018 0.024 

𝐴𝑂𝐷5 
𝑅2 0.905 0.823 0.894 0.887 0.851 

RMSE 0.015 0.022 0.018 0.016 0.018 

𝐴𝑂𝐷10 
𝑅2 0.818 0.782 0.892 0.784 0.788 

RMSE 0.015 0.012 0.010 0.016 0.016 

RF 

𝐴𝑂𝐷1.5 
𝑅2 0.991 0.994 0.987 0.992 0.994 

RMSE 0.015 0.013 0.017 0.011 0.012 

𝐴𝑂𝐷3 
𝑅2 0.971 0.982 0.980 0.949 0.976 

RMSE 0.012 0.009 0.012 0.015 0.009 

𝐴𝑂𝐷5 
𝑅2 0.983 0.986 0.982 0.956 0.979 

RMSE 0.006 0.006 0.008 0.010 0.007 

𝐴𝑂𝐷10 
𝑅2 0.996 0.976 0.988 0.988 0.975 

RMSE 0.002 0.004 0.003 0.004 0.006 

However, the XGB Annually model exhibited the RMSE values (0.042 mg/m³, 0.021 mg/m³, 0.015 mg/m³, and 0.015 mg/m³) 

and the R² values (0.928, 0.908, 0.905, and 0.818). Similarly, the RF Annually model demonstrated significant results, 360 

achieving R² values of 0.991, 0.971, 0.983, and 0.996, along with RMSE values of 0.015 mg/m³, 0.012 mg/m³, 0.006 mg/m³, 

and 0.002 mg/m³, respectively. In conclusion, the effectiveness of AOD profiling models exhibits slight variations in accuracy 

across seasons compared to annual models. Therefore, we considered the annual models as the desired models to estimate 

AOD profiles of SEVIRI. 

4.1.4 Comparison of the models 365 

Figure 7 presents scatterplots illustrating AOD profiles estimated using the proposed annual RF (Fig. 7a-d) and XGB (Fig. 7e-

h) models at a wavelength of 530 nm, compared with CALIOP-retrieved AOD profiles over Europe in 2020. Each subplot 

includes the number of points and mentioned metrics i.e. R², R, RMSE, MAE, Bias, and linear regression equations to facilitate 

clear and thorough analysis.  

Both models exhibit a strong correlation between the estimated values and retrievals. However, the RF model demonstrates 370 

slightly superior performance, with R² (R) values of 0.991, 0.971, 0.981, and 0.995 (0.995, 0.986, 0.991, and 0.998) for the 

1.5, 3, 5, and 10 km layers, respectively. In comparison, the XGB model shows lower R² (R) values of 0.928, 0.908, 0.905, 
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and 0.818 (0.994, 0.988, 0.982, and 0.951) for the same layers. While this model demonstrates superior accuracy in estimating 

AOD within the 1.5 km layer compared to the other layers (3 km, 5 km, and 10 km), the RF model exhibits even greater 

proficiency in the upper layers, showcasing a notable discrepancy in performance when contrasted with XGB. Notably, the 375 

disparity in accuracy between the two models is more pronounced in the upper layers (3 km, 5 km, and 10 km) compared to 

the 1.5 km layer. This suggests that while both models offer reasonably accurate estimations of AOD in the 1.5 km layer, the 

RF model excels in capturing the nuances of AOD variability in the upper layers. 

Overall, the minimal variation in R², R, RMSE, and MAE across the models suggests comparable estimation capabilities. 

However, a detailed analysis reveals the superior accuracy of the RF model in capturing AOD values, as evidenced by the 380 

slope values in Fig. 7e-h. In contrast, the slope values in Fig. 7a-d indicate that the XGB model tends to slightly underestimate 

higher AOD values. In summary, while both models demonstrate proficiency, the RF model outperforms the XGB model, 

particularly in its accuracy for higher altitude layers, thereby providing more reliable AOD estimations. 
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Figure 7. Scatterplots comparing the estimated SEVIRI AOD profiles derived from the proposed ML models with the 385 

CALIOP AOD profiles for the year 2020. The red line represents the linear fit between the two datasets. 

4.2 Validation of Estimated AOD with Ground LiDAR Retrievals 

To further validate our top-performing models, Annual XGB and RF, we conducted an extensive analysis using data from 

eight EARLINET stations across Europe in 2020. We focused on pixels within a 3 km radius around each station, centering 

our comparison and validation on the 550 nm estimated SEVIRI AOD profiles. Figure 8 visually presents the comparison 390 

between the estimated SEVIRI and retrieved EARLINET AOD profiles, utilizing a linear regression and metrics including R², 

R, RMSE, MAE, and Bias. The figure includes four scatterplots of AOD results at 1.5 km, 3 km, 5 km, and 10 km for each 

model. The XGB model shows better agreement with EARLINET AOD profiles, with R² values of 0.81, 0.77, 0.71, and 0.56, 

and RMSE values of 0.03, 0.01, 0.02, and 0.005, respectively. Conversely, the RF model exhibits lower correlation, with R² 

values of 0.78, 0.12, 0.43, and 0.07, and RMSE values of 0.028, 0.024, 0.022, and 0.008.  395 

The models were trained using CALIOP data, making them expected to perform effectively when validated with data from the 

same source. However, significant differences between RF and XGB in feature importance ranking and extraction results 

(Strobl et al., 2007; Zamani Joharestani et al., 2019) suggest that the RF model may have captured specific characteristics of 

the CALIOP dataset, contributing to its superior performance in this context. This implies that the RF model might be biased 

towards the specific patterns and noise characteristics present in the CALIOP training data, leading to decreased performance 400 

when applied to the EARLINET data. In contrast, the XGB model appears to generalize to the distinct characteristics of the 

EARLINET data. This can be attributed to XGB's ensemble nature and its ability to reduce bias through boosting, enabling it 

to handle complex and diverse datasets more effectively (Ahmed et al., 2023). This adaptability allows the XGB model to 

perform more accurately with the EARLINET data, resulting in higher R² values despite the differences from the training data. 

In summary, the study demonstrates the superior performance of the XGB model over the RF model in retrieving AOD profiles 405 

from the EARLINET data. 

When comparing the R² metrics of XGB AODs across different layers, it was found that XGB AODs exhibited lower R² values 

with EARLINET at the 10 km layer but showed significant improvement at the 1.5, 3, and 5 km layers, with R² values of 0.81, 

0.76, and 0.71, respectively. This indicates a stronger correlation between XGB AOD estimations and EARLINET retrievals 

in these layers compared to the 10 km layer, which had an R² value of 0.56. This trend is consistent with other evaluation 410 

metrics. Closely scrutinizing Fig. 8, it becomes apparent that specific points revealing notable discrepancies between 

EARLINET and XGB AOD profiles are indicated by red rectangles in the subplots. To determine the root cause of these 

outliers, the data were color-coded based on AOD values, revealing that the majority of outliers occurred when EARLINET 

retrieved low AOD values in each layer. At these points, the XGB model tends to overestimate. This tendency contributed to 

a low R² value (0.56) in the linear regression for the 10 km layer, as this layer contains small AOD values (0-0.05). 415 

https://doi.org/10.5194/amt-2024-105
Preprint. Discussion started: 1 August 2024
c© Author(s) 2024. CC BY 4.0 License.



21 

 

Furthermore, the slope of the regression line for XGB model exceeds 1, indicating a consistent underestimation of EARLINET 

AOD values at the 1.5km layer. In contrast, the slopes for the other layers fall within the range of 0.8 to 0.9. This observation 

implies that for every unit increase in estimated values, the EARLINET AOD values increase by less than one unit, suggesting 

a tendency for the estimated values to overestimate the EARLINET AOD in the remaining layers. 
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 420 

Figure 8. Scatterplots comparing the estimated SEVIRI AOD profiles derived from the proposed ML models with the 

EARLINET AOD profiles across 8 specified stations in Europe for the year 2020. The red line represents the linear fit 
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between the two datasets. Note that the scales of the subplots vary due to the different ranges of AOD values at the various 

vertical layers (1.5, 3, 5, and 10 km). 

The statistical analysis of EARLINET AOD profiles at the eight specified stations, alongside estimated SEVIRI AOD profiles, 425 

is comprehensively presented in Table 5. The number of analyzed pairs (N) varies across stations, ranging from 12 at HPB to 

387 at ATZ, providing robust validation of SEVIRI AOD profiles with EARLINET AOD profiles. Metrics such as RMSE, 

MAE, and Bias offer valuable insights into model performance at each station. A detailed analysis of the data reveals that the 

values of these metrics across the four layers are not consistently identical. Discrepancies between the XGB-estimated and 

retrieved EARLINET AOD values are evident in different layers for each station, as illustrated in Table 5. 430 

Performance varies significantly across stations and layers, with notable discrepancies observed at ATZ (Greece), particularly 

at the 1.5 km layer, which exhibits the highest RMSE of 3.1 × 10−2 mg/m³. The substantial Bias at this station indicates that 

the model tends to consistently overestimate the AOD at this altitude. Conversely, performance improves at 3 km and 5 km, 

with RMSE values of 1.5 × 10−2 mg/m³ and 1.8 × 10−2 mg/m³, respectively. At this station, the model demonstrates the best 

performance at the 10 km layer, with an RMSE of 0.6 × 10−2 mg/m³, compared to the other layers. These variations are likely 435 

due to frequent forest fires in Greece, as most smoke from these fires remains in the lower layers of the atmosphere (Nicolae 

et al., 2019). In contrast, the XGB model generally performs well at the SAL, HPB, and LLE stations, where both RMSE and 

Bias are minimal. The RMSE at the 1.5 km layer, ranging from 1.1 × 10−2 mg/m³ to 2.2 × 10−2 mg/m³ at the IPR, WAW, 

INO, and THE stations, alongside the low RMSE and Bias values across other layers, demonstrates good overall model 

performance at these stations. A closer examination reveals that RMSE and Bias metrics are often elevated at the 1.5 km and 440 

3 km layers but lower at the 5 km and 10 km layers. This pattern arises from the typically higher aerosol concentrations in the 

lower atmospheric layers, compared with lower AOD values retrieved in the 5 km and 10 km layers. 

The discrepancies between the estimated and retrieved profiles could stem from the different measurement techniques 

employed by satellite and ground-based systems. EARLINET utilizes ground-based LiDAR systems to capture backscattered 

light from aerosols within the atmosphere by looking upward, whereas satellite measurements are performed from above, 445 

looking down. In this configuration, the lower atmospheric layers attenuate the LiDAR signal, resulting in reduced power to 

penetrate the upper layers. This attenuation can complicate the detection of aerosols in the upper layers (Grigas et al., 2015; 

Nicolae et al., 2019). Furthermore, these limitations may be attributed to the constraints associated with the utilization of 

CALIOP AODs, particularly their reduced precision in low aerosol concentration scenarios. This reduced precision arises from 

the low signal-to-noise ratio under clean weather conditions, which is often insufficient to accurately detect weak aerosol 450 

layers on the aerosol extinction vertical profile. Because both transmitted and scattered light must traverse this portion of the 

atmosphere, highly diffuse and/or tenuous scattering aerosol layers below the CALIOP detection threshold are ignored in 

CALIOP's estimates of column AOD. Consequently, weak aerosol layers that are not detected would not be retrieved, leading 

to decreased retrieved AODs under clean weather conditions (Liu et al., 2018a, b). 
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Finally, the efficacy of the XGB model is clearly demonstrated by its ability to reliably estimate SEVIRI AOD profiles 455 

compared to EARLINET retrieved AOD profiles across various European regions. 

Table 5. Station based statistics analysis of XGB estimated SEVIRI vs. retrieved EARLINET AOD profiles. 

Station ID location N Layer MAE × 10−2 RMSE × 10−2 Bias × 10−2 

INO Romania 13 

𝐴𝑂𝐷1.5 1.6 1.8 1.3 

𝐴𝑂𝐷3 0.5 0.55 0.3 

𝐴𝑂𝐷5 1.01 2.2 1.8 

𝐴𝑂𝐷10 0.4 0.6 0.2 

IPR Italy 257 

𝐴𝑂𝐷1.5 1.5 2.2 1.0 

𝐴𝑂𝐷3 0.8 1.1 0.6 

𝐴𝑂𝐷5 0.9 1.6 0.5 

𝐴𝑂𝐷10 0.3 0.5 0.2 

ATZ Greece 387 

𝐴𝑂𝐷1.5 2.1 3.1 1.4 

𝐴𝑂𝐷3 1 1.5 0.8 

𝐴𝑂𝐷5 1.03 1.8 0.7 

𝐴𝑂𝐷10 0.3 0.6 0.3 

SAL Italy 13 

𝐴𝑂𝐷1.5 0.05 0.05 0.05 

𝐴𝑂𝐷3 0.04 0.05 0.03 

𝐴𝑂𝐷5 0.008 0.01 0.008 

𝐴𝑂𝐷10 0.04 0.04 0.04 

THE Greece 50 

𝐴𝑂𝐷1.5 1.1 1.7 0.9 

𝐴𝑂𝐷3 0.8 1.3 0.4 

𝐴𝑂𝐷5 0.5 0.7 0.4 

𝐴𝑂𝐷10 0.3 0.5 0.3 

WAW Poland 28 

𝐴𝑂𝐷1.5 0.3 0.4 0.3 

𝐴𝑂𝐷3 0.06 0.1 0.06 

𝐴𝑂𝐷5 0.05 0.07 0.05 

𝐴𝑂𝐷10 0.05 0.05 0.05 

HPB Germany 12 

𝐴𝑂𝐷1.5 0.08 0.1 0.07 

𝐴𝑂𝐷3 0.06 0.07 0.06 

𝐴𝑂𝐷5 0.02 0.02 0.02 

𝐴𝑂𝐷10 0.02 0.03 0.02 

LLE France 39 

𝐴𝑂𝐷1.5 0.2 0.3 0.2 

𝐴𝑂𝐷3 0.08 0.1 0.08 
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𝐴𝑂𝐷5 0.03 0.04 0.03 

𝐴𝑂𝐷10 0.04 0.04 0.04 

5 Conclusion 

This study develops a model that integrates satellite TOA reflectance data from the SEVIRI satellite, meteorological data, and 

land cover data to estimate vertical AOD across distinct layers of 1.5, 3, 5, and 10 km. Utilizing CALIOP AOD profiles as 

reference data, models employing RF and XGB were trained on a dataset spanning 2017 to 2019. Subsequently, SEVIRI AOD 460 

profiles for 2020 over Europe were estimated and compared with CALIOP and EARLINET AOD products, leading following 

insight. 

Both RF and XGB models demonstrate commendable accuracy in sub-hourly (approximately 15-minute intervals) SEVIRI 

AOD profile estimation when validated using CALIOP AOD data. However, the RF model exhibits slightly superior 

performance, with R² values ranging from 0.971 to 0.995 across the different layers. In comparison, the XGB model 465 

outperforms the RF model when compared to EARLINET retrieval AOD profiles, with R² values ranging from 0.561 to 0.810 

across the layers. Additionally, the inclusion of meteorological data (T, P, Ws, and Wd) alongside LC data during model 

training enhances the performance of the proposed frameworks. These features, often overlooked in physical AOD retrieval 

methods relying solely on atmospheric radiation transfer models, significantly contribute to refining SEVIRI AOD profile 

estimates. Notably, wind speed and direction emerge as the most influential meteorological data, leading to increased R² values 470 

and reduced RMSE across all estimated SEVIRI AOD profiles. 

In conclusion the XGB model can estimate detailed sub-hourly 3x3 km² SEVIRI AOD profiles, providing valuable insights 

into aerosol properties. Although our study focuses on Europe and validates the model using ground-based LiDAR data, future 

research should broaden its application to establish a more generalized approach for AOD retrieval, considering the utilization 

of an ensemble of geostationary meteorological satellites simultaneously. Additionally, our current model utilized a restricted 475 

set of features, overlooking significant factors that influence AOD values, such as precipitation, NDVI, and land use. 

Enhancing the model's performance by integrating these additional features is a primary focus of future research.  
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