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Original Referee comments are in italic  

manuscript text is indented, with added text underlined and removed text crossed 

out. 

Our responses are in regular font. 

 

Thank you very much for your thorough review and insightful comments on our 

manuscript. We appreciate the time and effort you have dedicated to evaluating our 

work and your constructive feedback. Your suggestions have been invaluable in helping 

us improve the quality and clarity of our manuscript. Below, you will find our point-

by-point responses to your comments, along with the revisions made to the manuscript. 

 

Easily fixed issues: 

Pu et al 2021 

The new reference to Pu et al. 2021 (L29) is about snow darkening and melting as a 

consequence of it. As such it is not suitable as reference for “importance of snowflake 

shapes for our understanding of atmospheric science. 

Thank you for your advice. We have removed this reference in the revised manuscript. 

Fig 2 

The beams extending from the four cameras in Fig 2 are confusing. They are not 

mentioned neither in the sentence (L104) referring to Fig 2, nor in the caption of Fig 

2. Fig 2 shows also the high-speed camera Cam3, apparently with a conical beam 

extending from it. That camera is not mentioned in L104. For clarity, I would add labels 

in Fig 2 pointing to the three telecentric lenses, the high-speed camera or lens, and the 

LED light beams. If you still want to keep the additional beams extending from the 

lenses, then I would mention them somehow in the caption. 



Thank you for your advice. We have added labels in Fig 2 and also referred to them in 

the caption and in L104. 

The three telecentric lenses and LED lighting beams of 3D-PPI are illustrated in Fig. 

2. 

The four cameras, lenses, and LED lights, including the additional beams of 3D-PPI,  

are illustrated in Fig. 2. 

 

Figure 2. The two views of three telecentric lenses and LED light beams. 

Figure 2. The two views of four cameras and lenses, including the additional beams 

extending from the lenses and the LED light beams.  

 

Three dimensions of OV  

The sentence in L104-106 has several issues and should be rephrased. The “three 

dimensions … is a x b x d” is grammatically and mathematically wrong. The three 

dimensions are a, b, and d, not a x b x d. The previous issue is better fixed with using 

the appropriate term instead of “interior rectangle”. I think “cuboid” would be correct 

here (OV of one camera is a cuboid defined by the three dimensions …) 

Thank you for your advice. We have revised this part: 

To clarify, the three dimensions of observation volume (OV) of one high-resolution 

camera is a × b × d (170mm × 125mm × 88mm), which represent the length, width, 

and depth of field of view respectively. 

To clarify, the observation volume (OV) of one high-resolution camera is a cuboid 

defined by the three dimensions: a, b, and d (170mm, 125mm and 88mm), which 

represent the length, width, and depth of field of view respectively. 

Da vs Dp  

Thank you for adopting this way of showing results of ceramic spheres. Remove 

sentence L209-210 which doesn’t apply anymore. 



Thank you for your advice. We have removed this sentence in the revised manuscript. 

Size-dependent OV 

The new Eq (10) to calculate the effective OV as a function of snowflake size seems 

wrong to me. At each border or edge only D/2 needs to be removed. If a particle of size 

D is at least D/2 away from the border (distance between particle centre and border), 

then it will not touch it. So: Vi = (a-Di)(b-Di)*d 

Thank you for your comments, we have modified the formula as you suggested. 

Further discussions 

REVISED Sec. 3.2 Estimation of pixel resolution (previously 

Calibration of image binarization) and NEW Sec. 3.3 Calibration of 

image binarization 

For me the estimation of pixel resolution comes too early (before image processing) 

and requires image binarization (so that that is done twice). Image binarization is 

optimized, not calibrated. In your response you try to justify why spherical targets are 

better than planar micrometer scales, where there would be an issue with orienting 

them perfectly. The disadvantage of the spherical targets is the necessity to do a manual 

binarization in addition to the adaptive thresholding. The apparent size of spherical 

objects depends on any binarization. I believe that this is introduces a larger 

uncertainty than what would be related to imperfect alignment of a micrometer slide. 

Some more detailed comments below: 

Image processing is described in separate sections (3 and 4): The image binarization 

(now described in the new Sect 3.3) is for me not a “calibration” as the title of the 

subsection suggests (but the determination of optimal binarization). I would consider 

image binarization as one of the steps in image processing. Subsection 4.1 is now called 

“Image processing” and describes the steps of noise removal and segmentation. It 

would be a clearer structure to first describe the complete image processing and only 

then results (pixel resolution) and algorithms that use this image processing. Sect 3.3 

should be part of image processing (Sect 4.1). 

For doing the above, you would need to do the binarization only once (with adaptive 

thresholding). Now it is done twice: In Sect. 3.2, Dp is “counted manually” to 

determine pixel resolution, which means that a manual binarization is done. Then, in 

Sect 3.3, binarization is done again with adaptive thresholding. The “optimal” 

sensitivity coefficient c is effectively the coefficient where adaptive thresholding 

approximates closest the manual binarization from Sect 3.2. (It is understandable and 



fine that you will not change from your spheres to anything else now. But consider the 

following: 

It would be more transparent to find “manually” the best sensitivity coefficient c (i.e. 

decide visually what looks to be a good binarization) and make this part of the 

description of image processing. Then the estimation of pixel resolution could be done 

with images processed according to that image processing. That would also avoid 

having twice similar analyses (related to 6b and 7c/d). 

Thank you for your comments and advice.  

Firstly, we have removed the section “3.2 pixel resolution estimation ” for the following 

reasons. We have completed an accurate estimation of the pixel resolution by shooting 

standard calibration plates including micrometer slide (shown in Figure 1), which yields 

a value of 41.6µm∙px−1. As you say, estimating camera resolution using spheres relies 

on image binarization and manual processing, and the estimated pixel resolution will 

not necessarily be more accurate than the 41.6 µm∙px−1 given by the manufacturer. 

Secondly, we removed the section “3.3 calibration of image binarization ” and the 

content about image binarization were added to section “4.1 Image Processing”. 

Thirdly, we photographed the ceramic spheres after image processing. Further image 

processing such as binarization was performed and the errors was calculated. 

Fourthly, the previous method of determining the sensitivity coefficient C seems to be 

a bit complicated and not very meaningful. It is indeed a simple and effective method 

to find the optimal C through visual assessment. We have revised this part as your 

advice: 

 

The sensitivity coefficient C is crucial; it adjusts how the local mean is used to set 

the threshold. A smaller C favors classifying pixels as foreground, while a larger C 

favors background classification. We have manually adjusted the sensitivity 

coefficient C to determine the optimal value of 0.4. This process involved visually 

assessing the binarization outcomes for various C values to identify which value best 

distinguishes between foreground objects and background.  



 

Figure 1. The images of standard calibration plates. 

 

 

MTF method to determine the depth of field 

I appreciate the details on how you determined the depth of field and that you checked 

and corrected it.  

There are two things I didn’t understand though:  

• What are “different spatial frequencies”? This is probably a minor thing or me not 

understanding. 

Thank you for your comments. To clarify, spatial frequency describes the rate that a 

stimulus changes across space. For images recorded in this manuscript, high - frequency 

components in an image refers to the sharp edges, fine textures and other detailed 

information, while low - frequency components refer to large, smooth areas and overall 

contours.  

When using the Modulation Transfer Function (MTF) to determine the depth of field 

(DOF), we consider different spatial frequencies because a lens's imaging ability for 

different levels of detail varies with the object distance. Higher spatial frequencies 

reflect the lens's ability to resolve fine details, and lower spatial frequencies represent 

its performance in depicting large - scale features. 

Reference: 

(https://evidentscientific.com/en/microscope-resource/knowledge-hub/anatomy/mtfintro) 

Ashoor, M. and Khorshidi, A.: Modeling modulation transfer function based on analytical 

functions in imaging systems, The European Physical Journal Plus, 138, 

https://doi.org/10.1140/epjp/s13360-023-03884-8, 2023. 

• How are snowflakes below the MTF threshold “deemed fuzzy and considered outside 

the depth of field”? You claim that, consequently, your “algorithm effectively excludes 

these particles from identification”. How does this work? Snowflakes are 



detected/identified if they are binarized as a connected region of more than 20 pixels. 

What is the relation to the MTF threshold? 

Thank you for your comments. In our previous response, we mentioned that the depth 

of field of the lens was determined by calculating the MTF function. Due to its high 

accuracy, this MTF method is commonly employed by lens manufacturers to determine 

the depth of field. MTF is time-consuming and not suitable for rapidly processing a 

large number of snowflake images to exclude those deemed fuzzy that are out of focus. 

In the revised manuscript, we have explained how we exclude deemed fuzzy 

snowflakes outside the depth of field by calculating the variance of the Laplacian: 

 

Secondly, combine regions into a single region of interest (ROI) when the distance 

between the closest points of connected regions in a single image is detected to be 

less than 0.5 mm apart. This step is necessary because a single particle may 

sometimes be perceived as two separate particles due to its position near the edge of 

the image processing threshold. Thirdly, discard the blurred particles outside the 

depth of field. To avoid detecting the particles completely out of focus, in the 

greyscale image before binarization, the mean grey value of the ROI region must be 

at least 20 greater than the mean grey value of the image and the variance of the 

Laplacian of the ROI grey value must be at least 10. Fourthly, discard the particles 

at the edge of the image. If the connected region of a particle contains points located 

at the edges of the image, the particle is considered not to be fully captured, and it 

should be discarded. 

Description of image binarization Sec. 3.3 

I appreciate the added details about the binarization method (adaptive thresholding). 

However, I have some questions and see a few issues: 

• Could you cite some description of this method in the literature? Without that I think 

that I need some more information. 

Thank you for your advice. We apologize for our oversight. We have added literature 

in the revised manuscript. 

Bataineh, B., Abdullah, S. N. H. S., and Omar, K.: An adaptive local binarization method 

for document images based on a novel thresholding method and dynamic windows, Pattern 

Recognit. Lett., 32, 1805-1813, https://doi.org/10.1016/j.patrec.2011.08.001, 2011. 

• L221 and Eq (6): what is the “local mean µ(u,v)”? Mean of what? How is it 

calculated? What is the specified neighborhood? How is that adjusted by the sensitivity 

coefficient C?  

Thank you for your comments. The local mean μ(u,v) refers to the average brightness 

of pixels within a specified neighborhood around the pixel (u,v). This neighborhood 

can be defined in various ways, such as a fixed-size window or a dynamically sized 



region based on the local image characteristics. The specific method of calculation 

depends on the implementation, but typically involves averaging the brightness values 

of the pixels within the chosen neighborhood. 

• MRE defined by Eq (7): this seems to be the average of the two means of the absolute 

relative errors. Being based on absolute values it is always positive.  

Later you refer to the “MRE of Dmax” (L243) and “MRE of Deq” (L244). 

According to Eq (7) there is only one MRE, which is based on both Dmax and Deq.  

Then, you also refer to “relative errors” of Dmax and Deq. These are not absolute 

values but positive or negative. From Fig 7 I assume that they are determined as 

(Dmaxi-Dai)/Dai, which is different from what Eq (7) would suggest ((Dai-

Dmaxi)/Dai).  

If the worst relative error is -7% then it is strictly speaking wrong to call that the 

“maximum relative error”, which would be +2% in case of Deq (Fig 7f).  

Thank you for your comments. We apologize for the confusion caused by the addition 

of Eq (7) in the last response. We have removed the Eq (7) in the revised manuscript. 

Therefore, in the revised manuscript there is no MRE, only “relative errors”, which are 

not absolute values but positive or negative.  

Thank you for your advice. The “maximum error” is indeed inappropriate and we have 

changed it to “worst error”. 

• The definition of Dmax (L231) is different from the definition of Dmax later used in 

Sect. 5.2 (L397). The definition in L397 is the one I would expect here. I would call 

Dmax “maximum dimension” not “maximum size” as doen in Sect 5.2. 

Thank you for your comments. We apologize for our mistakes. To avoid redundancy, 

we have revised the notation in L397 by renaming Dmax to DVmax. The corresponding 

content in Fig. 14 has also been updated accordingly. Additionally, we have revised the 

definitions of both variables, as detailed below: 

L231: the Dmax is the distance between the two farthest points of the particle profile 

the diameter of the smallest enclosing circle 

L397: maximum size Dmax (diameter of the smallest enclosing circle)    

maximum dimension DVmax (distance between the two farthest points on the 

surface of the particle)    

Pixel noise (L274-275)  

Referring to detected regions with less than 20 connected pixels as “pixel noise (no 

larger than 20 pixels)” is now clearer than “small noises” previously. It implies that 

all regions with less than 20 connected pixels are indeed noise, i.e. not related to actual 

snowflakes. I am not sure this is true in general. Could these “noise” features be caused 



by snowflakes that are outside the depth of field, or by small snowflakes that are too 

small to be detected by 3D-PPI? So, rather than and/or in addition to “prevent these 

noises from being mistakenly detected as small snowflakes” it should say “exclude 

features of small snowflakes that cannot be detected from analysis”? 

Thank you for your comments. As you pointed out, these so - called "pixel noises" 

could indeed be small snowflakes or snowflakes outside the depth of field (We have 

already mentioned the snowflakes outside the depth of field in the revised manuscript.) 

Given their small size, it is extremely difficult to extract the features of these tiny 

regions. Thus, we excluded them from the analysis. We have revised the sentence as 

your advice: 

Thirdly, discard the particles with an area smaller than 20 pixels (Equivalent to 0.035 

mm2, Dmax is about 0.2mm), which enables the removal of pixel noise or small 

snowflakes (no larger than 20 pixels) from the image, to prevent these noises from 

being mistakenly detected as small snowflakes exclude features of small snowflakes 

that cannot be detected from analysis. 

2-mm gap criterion 

Your new criterion for joining regions is better than the previous one. It, however, still 

allows that small regions would be joined across a gap that can be larger than these 

regions. A 20-pixel region has about 14 to 5 pixels across, and a 2-mm gap corresponds 

to almost 50 pixels. I.e., two 5-pixel regions could be joined even if they are separated 

by a about ten times larger gap. I think two such regions should rather be excluded. 

Would they indeed be belonging to the same snowflake, then that would mean that a 

large part of this snowflake would have been missed (not been detected by binarization) 

likely due to being out of depth of field. 

Thank you for your comments. We fully recognize that our previous criterion for 

joining regions might not be reasonable, which could lead to the situation that you 

described. After careful consideration, we have raised the standard for combining. Now, 

only connected regions with an area larger than 20 pixels and a distance of less than 0.5 

mm between their closest points will be combined. As a result, we have reordered the 

sentences in the manuscript by first discarding connected regions with an area larger 

than 20 pixels, and then combine regions into a single particle when the distance 

between the closest points of connected regions in a single image is detected to be less 

than 0.5 mm apart. This adjustment allows us to preserve only the shape features of the 

main part of the particles and effectively avoids the problem that you mentioned. We 

have revised the sentence in the manuscript: 

(ⅱ) Particle detection. Firstly, detect the connected regions in binarized images. 

Secondly, combine regions into a single particle when the distance between the 

closest points of connected regions with an area larger than 20 pixels in a single 

image is detected to be less than 0.5 mm apart. This step is necessary because a 

single particle may sometimes be perceived as two separate particles due to its 



position near the edge of the image processing threshold. Thirdly, discard the 

particles with an area smaller than 20 pixels (Equivalent to 0.035 mm2, Dmax is 

about 0.2mm), which enables the removal of pixel noise or small snowflakes (no 

larger than 20 pixels)  from the image, to exclude features of small snowflakes that 

cannot be detected from analysis. 

(ⅱ) Particle detection. Firstly, in binarized images, detect the connected regions with an 

area larger than 20 pixels (Equivalent to 0.035 mm2, Dmax is about 0.2mm), which 

enables the removal of pixel noise or small snowflakes (no larger than 20 pixels)  from 

the image, to exclude features of small snowflakes that cannot be detected from the 

analysis. Secondly, combine regions into a single region of interest (ROI) when the 

distance between the closest points of connected regions in a single image is detected 

to be less than 0.5 mm apart. This step is necessary because a single particle may 

sometimes be perceived as two separate particles due to its position near the edge of 

the image processing threshold. This method enhances the accuracy of foreground 

particle detection, particularly in images with complex backgrounds and uneven 

illumination. Thirdly, discard the blurred particles outside the depth of field. To avoid 

detecting the particles completely out of focus, in the greyscale image before 

binarization, the mean grey value of the ROI region must be at least 20 greater than the 

mean grey value of the image and the variance of the Laplacian of the ROI grey value 

must be at least 10.  

 

 

 


