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Abstract.

The accurate characterization of offshore wind resources is crucial for the efficient design and operation of wind energy

projects. However, the scarcity of in situ observation in marine environments requires exploration of alternative approaches. For

this reason, this study presents a comprehensive comparison between wind profiles derived from the Advanced Scatterometer

(ASCAT) satellite observations and the ERA5 reanalysis dataset against ship-based lidar measurements in the Northern Baltic5

Sea. In order to extrapolate ASCAT observations to wind turbine relevant heights, a long-term correction approach has been

implemented. Due to the sensitivity of this method to the accurate characterization of the atmospheric stability, two different

approaches were assessed to characterize the stability conditions, showing a great robustness of the methodology employed and

leading to noticeable differences only in specific coastal locations. The comparison reveals a close agreement between ASCAT

and ERA5 beyond 40 km distance from the coast. Specifically, ASCAT tends to overestimate the mean wind speed derived10

from lidar measurements, while ERA5 exhibits a consistent underestimation. In terms of vertical accuracy, ERA5 displays a

consistent bias of approximately 0.5 m s-1 along the profile, whereas ASCAT exhibits a smaller bias within the lower 200 m

of the profile. These findings underline the potential and limitations of ASCAT-derived wind profiles and ERA5 for offshore

wind characterization.

1 Introduction15

Offshore wind energy has experienced significant growth in recent years, and this trend is expected to continue in the coming

decade. Forecasts indicate that the world’s installed capacity for this technology will increase from 63 GW in 2022 (Interna-

tional Renewable Energy Agency, 2023) to around 370 GW by the end of 2031 (Global Wind Energy Council, 2022). This

rapid development of offshore wind farms, coupled with the maturing of floating technology as an alternative to fixed-bottom

turbines (Wind Europe, 2021), is accelerating the demand for accurate wind observations in coastal and far offshore areas.20

Nevertheless, in situ wind observations at turbine-relevant heights in the marine environment are sparse in both time and space

due to the constructional limitations and the high installation and operational costs of the traditionally employed meteorological

masts (met masts).
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Floating lidar systems offer a cost-efficient alternative to offshore met masts (Clifton et al., 2015), thanks to their robustness

and reliability (Gottschall et al., 2017; Carbon Trust, 2018), and the potential to increase the flexibility and lower the costs25

of offshore measurement campaigns. Profiling lidar systems installed in cruising ships, in particular, are capable of providing

reliable wind profile measurements over extensive regions. Although the adoption of this technology as an industry standard

requires overcoming specific challenges, such as validating these measurements against reference data and quantifying the

associated uncertainty (Rubio and Gottschall, 2022), the extensive spatial coverage of ship-based lidar has demonstrated its

applicability in various wind-energy relevant activities. In Wolken-Möhlmann and Gottschall (2014), ship-based lidar mea-30

surements were used to measure offshore wind farm wakes. In Witha et al. (2019a); Gottschall et al. (2018); Savazzi et al.

(2022), ship-borne measurements were used for validating numerical models datasets and in Pichugina et al. (2017); Rubio

et al. (2022) for characterizing low-level jets in different offshore regions.

Numerical weather prediction models are commonly used by the industry to obtain wind information in offshore regions

where in situ measurements are unavailable. These models provide long-term wind time series at several vertical levels within35

the boundary layer and with an extensive spatial coverage. However, while numerical models have demonstrated good perfor-

mance in shallow-water offshore regions compared to in situ measurements (Witha et al., 2019b), they often fail to describe

the spatial and temporal variability of wind with sufficient accuracy and detail. This limitation arises from factors such as the

inaccurate parameterization of the model variables or the insufficient temporal and spatial resolution of the models’ output

data. Furthermore, the lack of in situ measurements in deeper offshore regions hinders the validation of these datasets, leading40

to increased uncertainties in derived wind statistics for such locations.

To overcome the limitations of in situ measurements and numerical models, satellite remote sensing devices have emerged

as a potential alternative for characterizing ocean winds and climate over large areas, capturing the wind variability with a

temporal coverage of over 15 years. For this reason, several studies have focused on characterizing offshore wind resources

using satellite measurements (Remmers et al., 2019; Ahsbahs et al., 2020; Hasager et al., 2020). One of the most well-known45

satellite-based instruments used for wind energy purposes is the Advanced Scatterometer (ASCAT), mounted onboard the

European Space Agency´s MetOp series of polar orbiting satellites. ASCAT provides global ocean wind measurements with

a resolution down to 12.5 km. However, the application of satellite measurements for wind energy purposes has been limited

by three main factors. First, the limited temporal resolution of polar-orbiting satellites restricts wind measurements to a few

fixed times per day, rendering these products unable to fully capture the diurnal wind speed variability. Second, satellite50

measurements are provided at 10 m above the sea surface, requiring the implementation of extrapolation methods to derive

wind information at turbine operating heights. Lastly, the trustworthiness of satellite retrievals remains a knowledge gap, due

to the lack of available in situ datasets for validation especially in deep water regions.

The Baltic Sea is an area of great interests for offshore wind development due to its strong and consistent wind resource,

relatively shallow water depths, and proximity to large population centres. However, it is a complex and dynamic environment,55

characterized by strong land-sea interactions and atmospheric processes that generate significant wind speed and direction

gradients, as well as specific mesoscale phenomena such as sea breezes or low-level jets (Smedman et al., 1997). Consequently,

the Baltic Sea has been extensively studied in the previous literature aiming to accurately characterize the available wind
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resource in the region. In Svensson (2018), numerical models and different types of measurements were used to characterize

mesoscale processes. In Hasager et al. (2011); Karagali et al. (2014); Badger et al. (2016); Karagali et al. (2018), wind resource60

statistics were derived from satellite measurements. In Hatfield et al. (2022), ship-based lidar measurements were extrapolated

down to 10 m and compared against observations from FINO2 met mast and ASCAT, as well as against the New European

Wind Atlas (NEWA) mesoscale simulations.

The objective of this paper is to assess the accuracy of ASCAT-derived wind speed profiles in the nearshore and offshore

locations of the Northern Baltic Sea by conducting a comprehensive comparison against ship-based lidar measurements. Ad-65

ditionally, the numerical model output data from the ECMWF Reanalysis 5th generation (ERA5) is included in this analysis to

evaluate and highlight the different wind profiles obtained through the application of the different datasets. To accomplish this

comparison, we employ the long-term stability correction approach presented in Kelly and Gryning (2010) and implemented

in Badger et al. (2016) to derive wind profiles from the ASCAT 10 m measurements. For this, we utilize the stability infor-

mation from ERA5 and compare two different collocating methods to evaluate the potential influence of the limited temporal70

resolution of satellite overpasses in the ASCAT extrapolated profiles. Furthermore, we introduce a novel collocation strategy

for comparing ASCAT-derived and ERA5 profiles against the ship-mounted lidar observations, which has not been previously

reported. To the authors’ knowledge, this study represents the first comprehensive comparison of ASCAT wind profiles extrap-

olated to wind turbine operational heights against non-stationary in situ measurements, covering a wide horizontal extent that

extends from nearshore to offshore locations. Therefore, this work may contribute significantly to a better understanding of the75

reliability and accuracy of satellite measurements for offshore wind characterization at wind energy relevant heights.

The paper is structured as follows. Section 2 presents the ship-based lidar measurement campaign, as well as the ERA5

and ASCAT datasets used in this study, along with the implemented data processing methods. This section also provides

a detailed description of the long-term stability correction method used for ASCAT wind extrapolation and the collocation

procedure employed for the comparison of the three datasets. Section 3 contains the main results obtained in this investigation.80

Discussion of these findings and main extracted conclusions are included in Sections 4 and 5, respectively.

2 Data and Methods

This section describes the three datasets used throughout this work. In addition, the methodology used for processing the

different datasets is detailed, as well as the methodology to extrapolate ASCAT winds and for their comparison against the

ship-based lidar measurements.85

2.1 Ship-based lidar measurements

The ship-based lidar observations used in this study were acquired through the execution of a novel ship-based lidar mea-

surement campaign designed and conducted by the Fraunhofer Institute for Wind Energy Systems IWES (Germany). In this

campaign, a wind lidar profiler was installed on-board the ferry ship Stena Gothica, operated by the company Stena Line, along

the regular route between the harbours of Nynäshamn (Sweden) and Hanko (Finland) in the Northern Baltic Sea. Figure 1a90
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shows the average route of Stena Gothica ferry; only small deviations from this route took place during the execution of the

campaign. The ship covers this route on a daily basis, travelling from one harbour to the other within one day, and travelling

back the following day. Additionally, the frequency distribution of the ship location versus the hour of the day is presented in

Fig. 1b. As can be observed, the ship typically remains at the harbours during the central hours of the day (from 7:00 to 17:00

UTC), while it travels from one harbour to the other between the evening and the early morning. The consistent relationship95

between the time of the day and the ship´s location is a particular aspect of these sort of campaigns, already observed in similar

experiments such as the NEWA Ferry Lidar Experiment (Gottschall et al., 2018; Rubio et al., 2022).

17 18 19 20 21 22 23
longitude [° E]

Stena Gothica mean route

la
tit

ud
e 

[°
 N

]

57.5

58

58.5

59

59.5

60

60.5

no
rm

al
iz

ed
 fr

eq
ue

nc
y 

[-
]

longitude [° E]

(a) (b)

Figure 1. On the left panel, the mean route of the Stena Gothica ferry ship during the execution of the campaign. On the right, 2D histogram

of the location of the ship depending on the hour of the day and the longitude of its position.

The campaign took place from 28 June 2022 to 21 February 2023 and as in Gottschall et al. (2018), the Fraunhofer IWES´s

in-house developed ship-based lidar system was used. This is composed by a vertical profiling Doppler lidar WindCube WLS7

v2, from the manufacturer Vaisala, configured to measure at twelve different height levels ranging from 60 to 270 m above sea100

level (ASL). Apart from the lidar device, the integrated ship-based lidar system includes a motion recording unit to track the

vessel motions and positions (attitude and heading reference sensor and a satellite compass) and a meteorological station to

record the main meteorological parameters, including temperature, pressure, relative humidity, and precipitation.

As in previous ship-based lidar campaigns, a ship-motion compensation algorithm was implemented in order to take the

motions effects out of the measurements. For this, the motion information recorded by the system is used in combination105

with the wind lidar measurements, using a simplified motion correction algorithm (Wolken-Möhlmann and Gottschall, 2014).

This algorithm considers the translational ship velocity and orientation, ignoring vessel tilting due to its negligible influence

on the results. Additionally, lidar measurements with carrier-to-noise ratio (CNR) values below -23 dB were rejected from

the final database, following the manufacturer´s recommendation to strike a balance between data availability and accuracy.

Subsequently, lidar measurements and motion information (i.e. ship coordinates) were averaged into 10-minute mean values.110
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Figure 2 provides some insights into the measured data during the campaign. In the first panel, the longitude binned wind

speed can be observed, along with the normalized frequency of 10-minute average recordings at each longitude bin. The

lowest wind speed corresponds to the longitude bin encompassing the Swedish harbour, with an average velocity of around

6.6 m s-1. This specific location, Nynäshamn harbour, can be considered onshore due to its intricate topography, characterized

by numerous small islands and hills that slow down the wind flow. In contrast, the remaining locations are characterized as115

offshore sites, presenting mean wind speeds above 8.5 m s-1, with the highest mean speed observed at the Hanko harbour.
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Figure 2. Summary of lidar measurements. (a) Mean wind speed per longitude (green line) and normalized number of 10-min counts per

longitude (bars). (b) Wind speed daily cycle (green line) and mean distance to shore per hour (bars). (c) Mean wind speed profile (green line)

and mean availability during the campaign time extent per measurement height ASL (grey line).

Figure 2b illustrates the wind speed daily cycle (represented by the solid line) and the mean distance to the shore per hour

(represented by the bars). The minimum wind speeds occur during the central hours of the day, coinciding with the period when

the ship is mainly located at the two harbours. Despite Hanko harbour typically presents stronger wind speeds, the considerably

lower wind velocities measured at Nynäshamn and the higher frequency of observations at this site (refer to Fig. 2a) result in a120

noticeable fall in the average wind speed during these hours. In contrast, the highest wind speeds are observed during the night

and the early morning, when the ship is typically in transit between the two harbours.

Finally, Fig. 2c shows the mean wind speed along the measured wind profile (represented by a green line) together with the

total availability profile of the lidar over the campaign (represented by a grey line). As can be observed, there is a pronounced

increase of the mean wind speed with height, going from 7.6 m s-1 at 60 m height to 10.4 m s-1 at the top measurement125

height. The availability profile show maximum values above 90 % within the range of 80 to 130 m ASL range. Beyond 130

m, the availability drops rapidly with the height as a consequence of the very clean air and the low concentration of aerosols in

the region and period of study. The decrease availability at the lower levels is explained by the lidar device’s focus distance of

around 120 m ASL. Moving further below or beyond this distance results in lower CNR values and consequently, measurements

are filtered out of the dataset when CNR falls below the -23 dB threshold.130
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Therefore, the ship-based lidar measurements provide valuable information about the spatio-temporal variability of wind

speed in the Northern Baltic Sea region. The data captured the unique characteristics of the study area, including the influence

of the different locations and the diurnal wind speed patterns associated with the ship’s travel between the harbours.

2.2 ASCAT

The Advanced Scatterometer (ASCAT) is a space-borne remote sensing instrument which measures radar backscatter from135

the Earth’s surface in the microwave frequency range (Martin, 2014). ASCAT was launched by the European Space Agency’s

(ESA) onboard the Meteorological Operation (MetOp) satellites, developed and operated by the European Organization for

the Exploitation of Meteorological Satellites (EUMETSAT) (Verhoef and Stoffelen, 2019). MetOp-A was the first launched

satellite in October 2006, followed by MetOp-B in September 2012 and by MetOp-C in November 2018. ASCAT has an

effective swath width of 512.5 km with a nadir gap of 700 km, resulting in a temporal resolution of 1 to 3 overpasses daily140

considering both the ascending and the descending trajectories, depending on the time period and location (latitude). The

number of ASCAT overpasses in the Northern Baltic Sea region during the execution of the measurement campaign is presented

in Fig. 3a, whereas the diurnal distribution of the overpasses is shown in Fig. 3b.
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Figure 3. (a) Number of ASCAT overpasses during the duration of the campaign. (b) Normalized frequency of ASCAT overpasses per hour

of the day.

The ASCAT scatterometer is an active microwave radar that measures the backscatter power from transmitted pulses op-

erating in the C-band frequency of 5.255 GHz. These measurements are unaffected by cloud cover and rain. The received145

backscatter is related to the surface roughness of the observed area, being zero when having completely smooth surfaces and

simultaneously increasing with the roughness. This backscatter signal is used to calculate the normalized radar cross-section

(NRCS, σ0), defined as the ratio of the received and the transmitted power, that depends on the radar settings, the atmospheric

attenuation, and the ocean surface characteristics (Chelton et al., 2001). From NRCS and through the application of an empiri-
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cally derived geophysical model function (GMF), the sea surface winds are calculated. These empirical models are calibrated150

using in situ measurements of wind speed from buoys and other sources, and are validated using independent measurements

from other satellite instruments and numerical models (Hersbach et al., 2007; Hersbach, 2008; Verspeek et al., 2012). The

current GMF used by ASCAT is the CMOD7 (Stoffelen et al., 2017), which was developed by the ESA specifically for its use

with C-band scatterometers.

ASCAT provides wind speed and direction measurements at 10 m above the sea surface, with a global coverage and available155

spatial resolutions of 12.5 km and 25 km (de Kloe et al., 2017). For this study, the higher spatial resolution data has been

selected, since it has shown better performance in previous studies when validated against in situ measurements (Verhoef and

Stoffelen, 2013; Carvalho et al., 2017). This dataset is processed and distributed by EUMETSAT Ocean and Sea Ice (OSI)

Satellite Application Facility (SAF) and by the Advanced Retransmission Service (EARS). Both of these are implemented at

the Koninklijk Nederlands Meteorologisch Instituut (KNMI) and were downloaded for this study using the Copernicus Marine160

Data Service (CMS) (product id: WIND_GLO_WIND_L3_NRT_OBSERVATIONS_012_002).

The implemented data process for the ASCAT measurements is the following. Firstly, a coordinate transformation was

applied to transfer ASCAT coordinate points from the bottom left corner of each grid box to the centre of the box. Subsequently,

a quality check was conducted by filtering out data based on the quality flags provided directly by the CMS (E.U. Copernicus

Marine Service Information (CMEMS). Marine Data Store (MDS)). To address the issue of coastal contamination and mitigate165

the influence of excessively high mean wind speed values in ASCAT grid cells near the coast (Stoffelen et al., 2008; Lindsley

et al., 2016), an interquartile range (IQR) outlier detection method was employed. This method identifies grid boxes with

significantly higher values of wind speed and masks them out from the analysis. By applying the IQR outlier detection, the

impact of coastal contamination on the wind speed data is minimized, leading to more accurate and reliable results in nearshore

areas.170

2.3 ERA5

ERA5 (ECMWF Reanalysis 5th generation) is the latest global atmospheric reanalysis produced by the European Centre for

Medium-Range Weather Forecasts (ECMWF) (Hersbach et al., 2020). ERA5 replaces the previous reanalysis ERA-Interim

(Dee et al., 2011) and it is based on the latest version of the Integrated Forecasting System (IFS) model IFS Cycle 41r2.

ERA5 provides hourly estimates of a wide range of atmospheric, land surface and oceanic variables with a 0.25° x 0.25°175

latitude-longitude grid resolution, covering the period from 1950 to present. Additionally, ERA5 used 137 model (pressure)

levels extending from the surface level to the top of the atmosphere at 0.01 hPa or around 80 km height. ERA5 is produced

using an assimilation scheme based on the four-dimensional variational (4D-Var) system (Bonavita et al., 2016). This method

integrates modelled data from the IFS with observational data from a range of sources such as satellites, radiosondes, and

aircrafts widespread across the world.180

For this study, the u and v wind components were downloaded for the 10 lowest model levels to calculate the horizontal wind

speed and direction. Additionally, the surface sensible heat flux, temperature of air at 2 m above the surface, and friction velocity

parameters were also downloaded for deriving the atmospheric stability information required for ASCAT winds extrapolation
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(see Section 2.4). Furthermore, the ERA5 data were re-gridded to match the ASCAT wind speed maps resolution (0.125°

latitude and longitude) using bilinear interpolation.185

2.4 Satellite long-term extrapolation

One of the main limitations for the application of satellite remote sensing measurements in the field of wind energy is that they

provide wind information only at surface level. Consequently, vertical extrapolation methods need to be implemented to obtain

wind information at wind turbine hub heights. Several methodologies to vertical satellite extrapolation have been explored in

previous literature. Capps and Zender (2009, 2010) used 10-m wind measurements from QuickSCAT to estimate the global190

wind power potential at various vertical levels. For this, the Monin-Obukhov similarity theory (MOST) was implemented

for the atmospheric stability correction of the vertical wind profile, using data from a global ocean-surface heat flux product

and reanalysis data. Doubrawa et al. (2015) employed the equivalent neutral winds from QuickSCAT and SAR along with a

neutral logarithmic profile to calculate a wind atlas in the Great Lakes region. Badger et al. (2016) and Hasager et al. (2020)

extrapolated SAR and ASCAT surface winds using the long-term stability correction presented in Kelly and Gryning (2010),195

which is based on a probabilistic adaptation of the MOST-based wind profile. Finally, Hatfield et al. (2023) developed a

machine-learning model to extrapolate ASCAT winds to wind turbine operating heights, employing 12 years of satellite wind

observations in conjunction with near-surface atmospheric measurements at FINO3, and comparing the output wind profiles

against in situ measurements and numerical model data.

In this study, we employ the approach used by Badger et al. (2016) and Hasager et al. (2020) to calculate the extrapolated200

ASCAT wind profiles. This method involves a long-term correction of atmospheric stability effects, obtained from the numer-

ical model dataset ERA5, along with an adaptation of the MOST to vertically extrapolate the satellite wind measurements.

The long-term stability correction derived from this methodology can exhibit positive or negative values depending on the

considered height, as it combines both stable and unstable terms. Conversely, when applying stability correction factors to

instantaneous wind speed measurements, the stable or unstable terms are applied separately.205

Compared to the approach of instantaneous stability correction, the long-term stability correction enables to circumvent

the computation of wind speeds under stability conditions and heights that fall out of the validity range of the MOST model.

MOST is specifically designed to describe turbulent fluxes within the surface layer (Lange et al., 2004; Högström et al., 2006),

and it has limitations when analysing data on an instantaneous basis, particularly under stable conditions. The long-term

adaptation of MOST can effectively be applied up to turbine operating heights, since the long-term stability correction falls210

within the range where MOST is applicable. In neutral and unstable conditions, MOST can be successfully employed within

the lower 200 meters of the vertical profile (Peña et al., 2008). Furthermore, and although previous literature highlighted the

good performance of data-based extrapolation methods (Optis et al., 2021; de Montera et al., 2022; Hatfield et al., 2023), the

limited time extension of the measurement campaign results in an insufficient amount of data to implement these approaches in

this study. Otherwise, a relevant drawback of the long-term correction is that the information provided by the individual wind215

speed samples is neglected, disguising the potential influence of particular mesoscale effects that modify the average wind

profile.
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The implementation of the long-term correction approach is described below. This is individually executed for each of the

ASCAT grid points by using the stability information from the ERA5 corresponding location. As a result of this process, one

ASCAT-derived mean profile is calculated for each grid point.220

The atmospheric stability can be directly accounted for by estimated the Obukhov length L parameter, calculated as:

L =− Tu3
∗

κgw′θ′v
(1)

where T is the air temperature, u∗ is the friction velocity, κ is the von Kármán constant (≈0.4), g the Earth´s gravitational

acceleration, w′θ′v the kinetic virtual heat flux, where w′ is the vertical component of the wind speed, and θ′v is the virtual

potential temperature. The temporal means are denoted by overbars, while fluctuations around the mean value are indicated225

by primes. Accurate measurements of heat and momentum fluxes require three-dimensional observations from high-frequency

sonic anemometers. However, since we wish to develop an extrapolation method independent from in situ measurements,

the mean temperature and heat fluxes in Eq. (1) are replaced by the ERA5 parameters air temperature at 2 m and surface

sensible heat flux, respectively. Additionally, friction velocity values from ERA5 are also utilized. Positive values of the inverse

Obukhov length 1/L denote stable atmospheric conditions, negative values indicate unstable conditions, and values around 0230

indicate near-neutral stratification.

According to the formulation described in Kelly and Gryning (2010), the probability density function P of 1/L can be

estimated as:

P (L−1) = n±
C±
σ±

exp
[
−(C±|1/L|/σ±)2/3

]

Γ[1 +3/2]
(2)

where the subscripts + and - indicate the stable and unstable portions of the distribution, respectively; n± are the fractions of235

occurrence of each portion, C± are semi-empirical constants, and σ± are the scale of variations in 1/L, based on the long-term

standard deviation of the surface heat flux and the average of the cube of the friction velocity, as indicated in the equation

below:

σ± =
g

⟨T ⟩

√
⟨(w′θ′v −⟨w′θ′v⟩±)2⟩

⟨u3∗⟩
(3)

As for Eq. (1), we replace the mean temperature and heat fluxes with the corresponding parameters provided by ERA5.240

In this study, the values for the C± constants have been set to 6 and 4 for the stable and unstable portions, respectively.

Although previous studies focused on different datasets have used other values (e.g. both set to 3 in Badger et al. (2016); and

C+ = 5 and C− = 12 in Optis et al. (2021)), the selected values in this study were specifically chosen to ensure the derivation

of a representative probability density function of the atmospheric stability across all the ASCAT grid boxes along the entire

ship route. Furthermore, identical values of C± were applied to all ASCAT grid points.245
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Finally, the long-term stability correction of the mean long-term wind profile at a specific height z is calculated as:

Ψ∗m =−n+
3σ+

C+
b′z + n−f− (4)

where b′ is calculated as

b′ =
b

Γ[1 +3/2]
(5)

with b = 4.7 coming from the standard MOST formulation for stable conditions Ψm = bz/L (Stull, 1988). Analogously,250

f− is derived from the standard MOST formulation for unstable conditions (see (Kelly and Gryning, 2010) for the exact

formulation of f−).

To evaluate the potential influence of the discretized temporal frequency of ASCAT overpasses, and therefore, the effect

of the available stability information in the derivation of the long-term stability correction factor, two different approaches

have been compared. First, for the so-called collocated approach, only ERA5 stability information collocated in time with255

the ASCAT overpasses is considered. For the second approach, all ERA5 stability information from the whole duration of

the campaign is used. The normalized probability density functions of atmospheric stability (1/L) derived from ERA5 at two

different locations along the ship route is shown in Fig. 4, together with the theoretical distribution calculated from Eq. (2) for

the two considered approaches.

As observed, considering the stability information from the full campaign results in a better theoretical distribution compared260

to the collocated approach. Although the difference is minimal at the harbour site, it is more pronounced at the offshore location,

where a significant underestimation of unstable stability occurrence is observed. The harbour site presents a rather symmetric

distribution around zero, meaning that both unstable and stable atmospheric conditions are equally represented. However, the

offshore site exhibits a higher occurrence of unstable conditions, compared to the stable side of the curve. Section 3.1 presents

additional results on this matter and evaluates the differences in the obtained ASCAT wind profiles between the two approaches.265

Finally, the extrapolated wind speed at any desired height z can be calculated from Eq. (6) by introducing the long-term

stability correction Ψ∗m obtained from Eq. (4):

U(z) =
⟨u∗⟩
κ

[
ln

(
z

⟨z0⟩

)
−Ψ∗m

]
(6)

2.5 Collocation procedure

The comparison of gridded datasets (ERA5 and ASCAT) against the non-stationary measurements from the ship-based lidar270

system requires the implementation of a collocation methodology to ensure a fair comparison. Previous studies have already

conducted comparison between gridded data and ship-based lidar measurements (Witha et al., 2019b; Hatfield et al., 2022;

Rubio et al., 2022). However, unlike previous literature that focuses on time-space collocated comparisons, in this study, ship-

based lidar measurements are compared against the mean wind profiles calculated for each of the grid points from the gridded
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Figure 4. Normalized probability density functions of inverse Obukhov length 1/L from ERA5 and theoretical distributions calculated from

Eq. (2). Results are shown for two grid points, one offshore site (panels (c) and (d)) and one location near Nynäshamn harbour (panels (a)

and (b)). The coordinates of these sites are indicated in panels (a) and (c), respectively.

datasets. Consequently, a novel methodology for collocating and comparing the mean gridded and lidar-measured wind profiles275

has been developed and is briefly introduced in this section.

After applying the coordinate transformation and re-gridding procedures explained is Sections 2.2 and 2.3, both datasets

are gridded with an identical discretization, featuring a horizontal resolution of 0.125° x 0.125° and the grid points located at

the centre of the grid boxes, as shown in Fig. 5. For each grid box, the ERA5 mean profile is calculated for the period of the

measurement campaign, while the mean ASCAT profile is obtained using the procedure described in Section 2.4. To obtain280

the mean lidar profiles for comparison, the 10-minute average ship position information is utilized to identify all the 10-minute

lidar measurements captured within each grid box. Subsequently, the mean lidar profile for each grid point is calculated by

averaging all the 10-minute measurements detected in the corresponding grid box.This enables the comparison of all ERA5

and ASCAT grid boxes with their respective mean wind profiles against the collocated "gridded" lidar mean profile. It should
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be noted that grid boxes with less than 24 hours of lidar data available (equivalent to 144 10-minute samples) are excluded285

from the comparison. The procedure is summarized in Fig. 5, where example ship coordinates are depicted as coloured dots,

corresponding to the colour of the grid box used for deriving the mean profile.

19.0

59.0

Ship coordinate

longitude [° E]

la
tit

ud
e 

[°
 N

]

Figure 5. Collocation procedure sketch illustrating the comparison of lidar-measured wind profiles against ERA5 and ASCAT profiles. The

grey grid represents the ASCAT and ERA5 grid boxes after the coordinate transformation of ASCAT and the ERA5 re-gridding procedure.

For each coloured grid box, all lidar measurements performed within that area (depicted as dots of the corresponding colour) are averaged to

calculate the corresponding lidar profile.

3 Results

The main results of this study are presented in this section. Firstly, the influence of the approach employed to derive the long-

term stability correction in the extrapolated ASCAT profiles is assessed. Later, a comparative analysis between the ERA5 and290

ASCAT winds is conducted within the Northern Baltic Sea region. Afterwards, wind speed profiles obtained from ASCAT and

ERA5 are compared against the lidar measured profiles to investigate their performance at different vertical and horizontal

constraints.

In order to validate the wind profiles derived from ASCAT and ERA5 against the lidar in different locations, these com-

parisons are performed at the six different locations indicated in Fig. 6. The selection of these locations aims to represent the295

different wind conditions along the route, including locations at the two harbours, from a short distance to the shore as well as

far offshore sites.
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Figure 6. Six locations used for the comparison of the datasets. The approximate distance to the nearest shore is indicated, in km, below of

each site.

3.1 Influence of stability information in ASCAT profiles

As explained in Section 2.4, two different approaches have been considered for the characterization of the stability from ERA5

parameters and the corresponding derivation of the long-term stability correction. This section investigates the effects of both300

approaches in the obtained ASCAT wind profiles.

Figure 7 illustrates the difference in wind speed at a height of 100 m obtained from the collocated approach compared to the

full campaign approach. The wind speed discrepancy remains minimal across the vast majority of the study area, particularly

along the area covered by the ship track. Within most of the sea area, the collocated approach displays slightly lower mean wind

speeds, with notable differences reported in areas near the shore and reaching a maximum wind speed bias of approximately305

0.4 m s-1. Notably, the region surrounding the Swedish harbour of Nynäshamn exhibits the greatest difference in wind speed.

The underestimation associated with the collocated approach can be attributed to three primary factors. First, the coastal

contamination of near shore areas leads to the removal of some ASCAT overpasses for data quality reasons, leading to a

reduced number of ASCAT observations in this areas. Consequently, the insufficient number of valid wind speed measurements

obtained from the collocated approach introduces a biased representation of the prevailing stability conditions during the310

campaign period. Secondly, the temporal discretization of ASCAT overpasses, which occur at roughly the same time each day,
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influences the resulting main stability distribution "seen" by the collocated approach. This is illustrated in Fig. 8, depicting the

daily cycle of the mean stability (1/L) at the six locations presented in Fig. 6. As can be observed, the collocated approach

yields a more unstable distribution of the stability conditions near the Nynäshamn harbour (red line) due to the pronounced

instability in the morning. This results in a lower wind speed compared to the full campaign approach, as can be derived from315

Eq. 4. In contrast, the other locations do not exhibit such pronounced daily stability cycles, and therefore, smaller differences

are reported between the two approaches. Finally, as mentioned in Section 2.4, the same values of the semi-empirical constant

C± are assumed for the entire region, instead of using a site-specific definition of these constants. Therefore, the suitability of

the selected values may not be optimal for certain locations, leading to an anomalous theoretical representation of the empirical

atmospheric distribution.320
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Figure 7. Mean wind speed difference at 100 m height between the collocated and full campaign approaches.

Both strategies for calculating the stability correction factor and the corresponding wind profiles demonstrate a high level

of agreement, except for some nearshore locations. This highlights the robustness of the employed methodology and indicates

that the dataset size allows for an accurate characterization of atmospheric stability conditions during the campaign and along

the entire ship track. Given the similarity of the wind profiles obtained using both approaches, and for the sake of clarity and

conciseness, the upcoming sections will only consider the full campaign approach. This approach is expected to provide more325

representative wind profiles along the complete ship route.
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Figure 8. Daily cycle of the stability parameter (1/L) at the six evaluated locations. The orange shadows indicate the time periods when

ASCAT overpasses are available and therefore, considered for the stability characterization in the collocation approach.

3.2 ASCAT-derived vs ERA5 wind speeds

The offshore mean wind speeds based on ASCAT and ERA5 in the Northern Baltic Sea region at 10 m and 100 m heights

are compared in Fig. 9. For an easier comparison, only grid points where ASCAT data is available are included and the same

colour scale is used for the four plots.330

Both datasets consistently show higher wind speeds at 100 m than at 10 m height. The overall mean wind speeds at 10 m are

7.6 m s-1 and 7.2 m s-1 for ASCAT and ERA5, respectively. At 100 m, these values increase to 9.3 m s-1 for ASCAT and 8.7 m

s-1 for ERA5. When looking at the spatial variation shown by the two datasets at 10 m, ERA5 exhibits higher mean wind speeds

in the areas farthest from the shore at 10 m, with a progressive decrease as the coast is approached. However, and although

ASCAT also shows higher wind speeds in the middle of the basin, the closest areas to the shore still present considerably higher335

values of wind speed compared to ERA5. The reason for this is that, despite the filtering process for the ASCAT dataset, the

coastal contamination still affects ASCAT measurements, leading to excessively high mean values in nearshore areas.

The effect of coastal contamination in the ASCAT map is particularly visible in the 100 m height map, where the highest

mean wind speeds are located along the perimeter of the region with available data. The stronger impact of coastal contamina-

tion at 100 m can be attributed to the inaccurate characterization of stability conditions by ERA5 in nearshore locations due to340

its coarse horizontal resolution and limited ability to resolve fine-scale atmospheric features in these regions.
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Figure 9. Mean wind speed for the campaign period at 10 m (upper panels) and 100 m (bottom panels) for ASCAT (left panels) and ERA5

(right panels).

Figure 10a illustrates the disparity in wind speed between ASCAT and ERA5 at 10 m and 100 m, plotted as a function

of the distance to the shore (calculated from the centre of each grid box). Additionally, probability distribution of the wind

speed difference for the two datasets at the aforementioned heights is presented in Fig. 10b. As can be observed, there is a

clear correlation between the distance to shore and the agreement of ASCAT and ERA5 observable at both heights. Generally,345

ASCAT overestimates ERA5 in the majority of the grid points, with this overestimation being higher closer to the coast and for

the 100 m level rather than 10 m level. This discrepancy in the nearshore areas can be explained by the combination of too high

wind speeds retrieved by ASCAT due to coastal contamination and ERA5’s inability to properly resolve the coastal atmospheric

phenomena and its coarse horizontal resolution that leads to the omission of the flow phenomena variations causes by the small
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islands present in this coastal regions. When moving further offshore (more than around 40 km), this overestimation stabilizes,350

converging to more consistent estimates away from the influence of land and coastal effects and reaching mean difference

values of around 0.2 m s-1 and 0.4 m s-1 at 10 m and 100 m height, respectively,
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Figure 10. (a) Wind speed difference at 10 and 100 m for ASCAT minus ERA5 at 10 and 100 m as a function of the distance to the shore. (b)

Probability density distribution of the wind speed difference at 10 and 100 m for ASCAT minus ERA5. The dashed lines mark the maximum

of each of the distribution.

As observed in Fig. 10b, the 10 m height error density distribution is approximately centred at the zero bias point, whereas

the distribution at 100 m is slightly positively biased, highlighting the consistent overestimation of wind speed from ASCAT at

this height. Nonetheless, the majority of grid points exhibit wind speed differences below ±1 m s-1. As previously discussed,355

wind speed differences above this threshold correspond to those to near-shore grid points. A similar error distribution was

observed in Hasager et al. (2020), when comparing ASCAT and the Weather Research and Forecast (WRF) model over the

European seas.

3.3 Comparison against ship-based lidar measurements

The overall mean profiles obtained for each of the employed datasets and averaged along the entire ship route are presented360

in Fig. 11a. Additionally, the mean wind profiles are shown for each of the six locations defined in Fig. 6. The non-stability

corrected logarithmic profiles are included for comparison (i.e. term Ψ∗m from Eq. (4) set to zero).

As can be observed, the accuracy of the overall mean profiles depends on the height and dataset considered. Compared to the

lidar data, ERA5 consistently underestimates the wind speed by approximately 0.5 m s-1 throughout the entire profile, which

aligns with the findings of Rubio et al. (2022). Conversely, the overall mean profile bias of the ASCAT profile is constantly365

positive (ASCAT overestimation), with magnitude depending on the considered height. Both ERA5 and lidar profiles exhibit

a similar shear within the height range covered by the lidar measurement, ranging from 8.4 m s-1 to 9.6 m s-1 in the case of
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Figure 11. (a) Mean profiles for the three datasets averaged along the whole ship route. The vertical levels with available data/measurements

are indicated with circular markers for each dataset. (b - g) Mean profiles for the three datasets at the six evaluated positions. In every panel,

the logarithmic profile (non-stability corrected) is indicated by the black dashed line.

ERA5 and from 8.7 m s-1 to 10.0 m s-1 in the case of the lidar. In contrast, the ASCAT profile struggles to characterize the

shear outside the surface layer, with wind speeds ranging from 8.9 m s-1 at 60 m height to 10.5 m s-1 at 270 m. The ASCAT

bias becomes increasingly pronounced above 200 m height, and above this threshold, the logarithmic profile outperforms the370

stability corrected profile. This is due to the fact that these heights are well beyond the range of applicability of the extrapolation

methodology employed (Kelly and Gryning, 2010).

Although the ASCAT wind profiles on average appear to outperform ERA5 in terms of overall accuracy, Figs. 11b-g reveal

that the superiority of the datasets varies depending on the considered location. In the case of the harbour locations, ERA5

significantly outperforms ASCAT profiles, which exhibit excessively high wind values even at 10 m height, highlighting the375

influence of coastal contamination at these sites. Additionally, it is striking to observe the substantial deviation of the ASCAT

stability corrected profiles from the logarithmic profiles, particularly at heights above 50-100 m, as a consequence of a stability

distribution that is not representative enough of these specific sites. For the remaining locations, both datasets demonstrate

excellent and comparable agreement with the lidar wind profile.

A statistical analysis of the wind speed deviation between ASCAT and ERA5 with regards to the lidar observations (∆UASCAT =380

UASCAT−Ulidar and ∆UERA5 = UERA5−Ulidar) is presented in Fig. 12 in the form of a box plot. Each box plot is calculated con-
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sidering the wind speed difference for all the grid boxes with lidar data along the whole route of the ship. The black line

corresponds to the median, the coloured box marks the 25th and 75th percentile, and the whiskers indicate the data extremes

calculated as 1.5 times the interquartile range. Outliers outside the whiskers are hidden to maintain clarity and readability.The

continuous lines represent the root mean square error (RMSE) of the wind speed difference between the gridded dataset and385

the lidar.

wind speed difference [m s-1] wind speed difference [m s-1]

(a) (b)

Figure 12. Box plots of the wind speed difference from ASCAT (a) and ERA5 (b) minus the lidar. The coloured boxes extend from the first

to the third quartiles of the data and the medians are indicated by black lines. The whiskers extend to the data extremes, defined as a distance

of 1.5 times the interquartile range (IQR) above and below the upper and lower quartiles, respectively. The solid lines indicate the RMSE

between the gridded datasets and the lidar.

Both datasets show a similar absolute median in the central part of the profile, with median values of around ±0.2 m s-1

in the height range between 90 to 150 m height. However, ERA5 consistently underestimates the wind speed throughout the

entire profile, while ASCAT overestimates it at all heights, with the overestimation increasing rapidly above 150 m. Within the

upper part of the profile, ERA5 appears to outperform ASCAT, which presents median values rapidly growing with height. The390

RMSE analysis reveals similar results for both datasets, with values around 1 m s-1 along the profile. Nevertheless, while the

RMSE progressively increases for ERA5, it remains nearly constant up to 190 m for ASCAT and then rapidly increases with

height. The smaller size of the ASCAT boxes in Fig. 12 indicates a narrower spread of wind speed differences compared to

ERA5. However, the longer whiskers suggest a wider range of values beyond the central 50 % of the data, indicating a higher

occurrence of outliers associated with excessively high wind speeds near the shore locations.395

In order to evaluate the accuracy of ASCAT and ERA5 wind profiles across the different areas covered by the ship route,

Fig. 13 illustrates the wind speed differences between these datasets and the lidar profiles for all the grid boxes along the ship

track. As can be observed, both datasets show a better performance in regions located further away from the shore, which is
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evident from the concentration of outliers (points falling outside the confidence intervals) in these areas. This observation holds

true for all three presented elevation levels, with only minor variations in the trend. Notably, the western area of the ship route400

exhibits the widest errors for both ASCAT and ERA5, with maximum differences exceeding 3 m s-1 at all elevation levels. This

indicates that wind speed estimation in this region is particularly challenging for both datasets due to the intricate topography

in the area.
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Figure 13. Wind speed bias (∆UASCAT = UASCAT−Ulidar and ∆UERA5 = UERA5−Ulidar) along the different grid boxes depending on their

longitude coordinate at 60 m (a), 150 m (b), and 220 m (c) height. The mean biases along the whole ship route are represented by solid lines

and the 95 % confidence interval is indicated by the shadowed areas.

The mean differences vary depending on the dataset and the elevation considered, highlighting the different shear resemble

obtained from each of the datasets and their different representation of the wind profiles. ERA5 shows a smaller mean difference405

of -0.25 m s-1 at 60 m, while reaching a maximum value of -0.5 m s-1 at 220 m. In the case of ASCAT, the smaller mean

difference happens at the intermediate height level, whereas the highes difference can be find also at 220 m height.

It can be noticed that, although ERA5 usually underestimates the wind speed, this is more pronounced at higher elevations

and in the eastern part of the ship track. In contrast, ASCAT mainly overestimates compared to the lidat measurements.

A final quantification of the accuracy of the gridded datasets compared to the lidar measurements is presented in Fig. 14.410

Here, the normalized root mean squared error (nRMSE) across all lidar measurement heights is calculated for each compared

grid box. The calculation of the nRMSE is expressed in the equations below for ASCAT and ERA5:

nRMSEASCAT =

√
1
n

∑n
i=1(UASCAT,i−Ulidar,i)2

Ūlidar
(7)

nRMSEERA5 =

√
1
n

∑n
i=1(UERA5,i−Ulidar,i)2

Ūlidar
(8)
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where n represents the 12 measurements levels of the lidar, U corresponds to the wind speed at the i-th height for each415

dataset, and Ūlidar is the mean lidar speed averaged across the entire profile.

As can be observed, both datasets present a good agreement in the area of the basin and higher errors in the near shore

longitudes. When comparing the two datasets, ERA5 shows a smaller nRMSE in the majority of the studied region, except

in the Eastern area near the harbour in Hanko. When comparing the bias and nRMSE shown by the two datasets, the average

absolute bias across the entire region is smaller for ASCAT compared to ERA5 at the three heights considered (see Fig. 13).420

Differently, as can be observed in Fig. 14, most of the locations reveal a smaller nRMSE for ERA5 than for ASCAT. This

suggest a higher precision of ERA5, consistently underestimating the observed wind profiles. In contrast, ASCAT´s errors

exhibit a higher variability - while most grid points overestimate the profiles, few points present a pronounced underestimation.

Additionally, as seen in Fig. 12, including higher heights in the consideration for calculating the nRMSE heavily penalizes the

performance of the satellite profiles.425

longitude [° E]

Figure 14. Normalized root mean squared error calculated along the whole profiles for each of the grid boxes. The solid lines represent the

binned mean nRMSE calculated using longitude bins of 1°.

4 Discussion

The objective of this study has been to evaluate the accuracy of ASCAT-derived wind speed profiles for the characterization of

offshore wind resources at turbine operating heights in the Northern Baltic Sea. Initially, ASCAT winds were compared against

the ERA5 reanalysis dataset, the latter frequently serving as a fallback for offshore wind characterization in the absence of in
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situ measurements. Subsequently, the analysis incorporated a comparison of both gridded datasets against in situ observations430

obtained from an novel ship-based lidar campaign.

To extrapolate ASCAT wind data, the long-term stability correction methodology formulated by Kelly and Gryning (2010)

was employed. This methodology uses the mean ASCAT values for the campaign duration at 10 m altitude in conjunction with

atmospheric stability information derived from ERA5. It is noteworthy that previous studies (Optis et al., 2021) have indicated

that machine learning-based techniques for extrapolating satellite winds could surpass the long-term correction method em-435

ployed herein. However, the limited amount of data available over the campaign period hinders the implementation of such

data-driven approaches.

One of the main constraints of the long-term extrapolation technique is the requisite for a substantive characterization of

the atmospheric stability throughout the comparison period. Consequently, an examination was conducted to assess the im-

pact of stability information on ASCAT profile derivation by considering two distinct strategies: collocated and full campaign440

approaches. The methodology revealed a remarkable congruence between these two approaches across most of the area exam-

ined, thus underscoring the robustness of the methodology. However, coastal areas exhibited higher discrepancies, where the

collocated approach displayed underestimations of wind speed reaching up to 0.4 m s-1. This divergence can be attributed to the

limited availability of valid wind speed measurements in the collocated approach, the constraints of considering atmospheric

conditions solely during morning and evening hours, and the generic definition of the empirical constants C± required for the445

calculation of the theoretical stability distributions at each site. Different studies have applied different values of these constant

according to the observed stability conditions (Kelly and Gryning, 2010; Badger et al., 2016; Optis et al., 2021). Therefore,

further efforts need to be done in order to define a reliable and standard methodology facilitating the definition of the optimal

value of these constants according to the specific stability conditions of the site under evaluation.

The comparison between ASCAT and ERA5 winds revealed a good agreement between the two datasets. However, signifi-450

cant disparities are evident in near-shore grid points. These discrepancies can be attributed to the intrinsic challenges that both

datasets encounter in accurately capturing wind patterns within regions characterized by complex topography. For ERA5, lim-

itations in simulating coastal atmospheric dynamics, such as land-sea breezes and low-level jets, as well as its relatively coarse

resolution, prevent the accurate representation of flow effects induced by small islands and rocky islets, prolific in coastal

regions considered in this study (Dörenkämper et al., 2015; Gualtieri, 2021). In contrast, satellite measurements proximate to455

shorelines are susceptible to coastal contamination, occasioned by different factors such as waves breaking and surface slicks

(Johannessen, 2005; Kudryavtsev, 2005), and resulting in anomalously high wind measurements. A comparative analysis of

mean wind speeds further offshore revealed improved congruity in grid cells situated beyond 40 km from the coastline, with

biases stabilizing at approximately 0.2 m s-1 and 0.4 m s-1 at 10 m and 100 m altitudes, respectively. The application of high-

resolution satellite technologies, such as synthetic aperture radar (SAR), could enhance the resolution of coastal wind speed460

gradients thanks to their finer horizontal resolution (de Montera et al., 2022).

The discrepancies of the two datasets are also highlighted in the coastal regions when compared against the ship-based lidar

measurements. Both show highest bias in the longitudes corresponding to the harbour locations, this is, in longitudes further

west from 18.5° E and further east from 22.5° E, characterized by a more complex topography. Excluding these nearshore
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locations, the mean nRMSE along the whole profiles is reduced from 0.07 to 0.05 in the case of ASCAT, and from 0.06 to465

0.03 for ERA5. Analogous observations were documented by Takeyama et al. (2019), wherein a comparison of ASCAT data

and Weather Research and Forecasting (WRF) simulations against in situ measurements in the vicinity of the Japanese coast

evinced significantly reduced errors beyond 25 km from the shore.

When comparing the mean profiles of the three datasets, ASCAT exhibited a closer similarity to the lidar wind profile

than ERA5. This was particularly pronounced at altitudes ranging from 100 to 150 m. Conversely, ERA5 manifested superior470

performance in capturing wind shear across the profile, exhibiting a more consistent bias relative to lidar measurements. This

is consistent with results from previous work in the Southern Baltic Sea (Rubio et al., 2022). The differences between ERA5

and lidar profiles can be elucidated by the different temporal and spatial scales resolved by these datasets, as the lidar is able

to resolve short-term wind variability that may lead to higher mean speeds along the profile. When looking into different

locations, the notorious overestimation suffered by ASCAT is evident, with notable errors already at the lower elevations, and475

a pronounced amplification in errors as altitude increases. Particularly beyond 190 m, both the bias and RMSE increase rapidly

with height. In contrast to the MOST stability correction approach, the long-term correction approach can be deployed above

the surface layer. The findings of this study indicate a good performance within the lower 200 m of the atmosphere. However, it

must be noticed that the scope of the application depends on the specific atmospheric stability conditions of the location under

scrutiny, as well as the period of comparison.480

One distinct aspect of the ship-based lidar campaign conducted onboard a ferry ship is the near-constant correlation between

the ship’s position and the time of day. Therefore, and similarly to the discretized temporal resolution of ASCAT observations,

the derivation of a complete diurnal wind speed cycle from these measurements at the specific areas covered by the vessel route

is not feasible. Consequently, the mean values derived from lidar measurements may exhibit biases that vary depending on the

time slots during which measurements were acquired at particular locations.485

Finally, it is imperative to highlight that although the disparities in wind speeds between ASCAT and ERA5 relative to lidar

are generally small in far-offshore regions, their cumulative impact over a large-scale wind energy project can still have relevant

implications for energy production estimates and financial assessments. Therefore, continued efforts to refine both satellite-

based measurements and numerical models are essential to enhance the accuracy of wind resource assessments for offshore

wind energy applications. The diverse characteristics and insights into wind patterns derived from satellite-derived observa-490

tions, numerical models, and ship-based lidar measurements suggest that an integrative approach, harnessing the collective

strengths of these datasets, could yield substantial gains in the accuracy and reliability of offshore wind statistics derivation.

To this end, several studies have made inroads by generating wind atlases in other regions through the combination of these

datasets (Doubrawa et al., 2015). However, the assimilation of non-stationary measurements and the incorporation of more

sophisticated extrapolation methodologies, such as long-term stability correction, could bring further benefits.495
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5 Conclusions

Satellite-borne scatterometers and numerical models are two potential alternatives for the characterization of offshore wind

maps. The long-term stability correction employed in this study demonstrated a strong performance for extrapolating ASCAT

winds, yielding to a good agreement compared to the in situ measurements from the ship-based lidar measurements, despite

the relatively constrained temporal window of the study.500

The fundamental difference of this study from previous literature is the comparison of mean ASCAT extrapolated wind

against lidar measurements, encompassing an expansive geographical area, within an increased vertical extension, and through

the application of a novel collocating technique. This bring valuable revelations concerning the prospective applicability of

ASCAT observations within varying spatial constraints as well as their feasibility at elevated turbine operational altitudes.

Moreover, the findings highlight certain inherent challenges when intercomparing datasets with different temporal and spatial505

characteristics. Such differences may culminate in potential biases amongst datasets, attributed to, for instance, the temporal

windows within which measurements are accessible.

Overall, ASCAT derived wind profiles are a valuable asset for portraying offshore wind conditions at turbine operation

heights, manifesting a level of accuracy similar to numerical model outputs. However, further research is needed to expand

the analysis to other regions and environmental conditions, as well as to assess ASCAT applicability for long-term wind510

characterization.
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