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Abstract.The Advanced Geostationary Radiation Imager (AGRI) onboard the FY-4A geostationary satellite provides high 

spatiotemporal resolution visible reflectance data since 12 March 2018. Data assimilation experiments under the framework of 

observing system simulation experiments have shown great potential of these data to improve the forecasting skills of 

numerical weather prediction (NWP) models. To assimilate the AGRI visible reflectance observations, it is important to 

evaluate the data quality and to correct the biases contained in these data. In this study, the FY-4A/AGRI channel 2 (0.55 μm - 20 

0.75 μm) reflectance data were evaluated by the equivalents derived from the short-term forecasts of the China Meteorological 

Administration Mesoscale Model (CMA-MESO) using the Radiative Transfer for TOVS (RTTOV, v 12.3). It is shown that the 

observation minus background (O – B) statistics could be used to reveal the abrupt changes related to the measurement 

calibration processes. The mean differences of O - B statistics are negatively biased. Potential causes include the NWP model 

errors, the unresolved aerosol processes, the forward-operator errors, etc. The relative biases of O-B computed for cloud-free 25 

and cloudy pixels were used to correct the systematic differences in different conditions. After applying the bias correction 

method, the biases and standard deviations of O-B departure were reduced. The bias correction based on ensemble forecasts is 

more robust than deterministic forecasts due to the advantages of the former in dealing with cloud simulation errors. The 

findings demonstrate that analyzing the O-B departure is effective to monitor the performance of FY-4A/AGRI visible 

measurements and to correct the associated biases, which facilitates the assimilation of these data in conventional data 30 

assimilation applications. 
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1. Introduction 

The Advanced Geostationary Radiation Imager (AGRI) is one of the main payloads onboard the FY-4A, the first of the 

new-generation Chinese geostationary meteorological satellites lunched on 11 December 2016 (Yang et al., 2017). 

FY-4A/AGRI contains seven shortwave channels and seven infrared channels. The FY4A/AGRI data have been widely used 35 

for retrieving cloud optical thickness (Chen et al., 2020), total precipitable water (Liu et al., 2022), and aerosol optical depth 

(AOD) (Ding et al., 2022). In addition, the FY-4A infrared radiance data were assimilated into Numerical Weather Prediction 

(NWP) models, and positive impact on the forecasts of Typhoon cases (Zhang et al., 2022) and Heavy rainfall events (Xu et al., 

2023) was reported. The FY-4A/AGRI visible radiance data were also assimilated into NWP models in an observation system 

simulation experiment (OSSE) framework, and the results revealed positive impact on cloud variables and some slightly 40 

positive impact on non-cloud variables in the vicinity of cloudy regions (Zhou et al., 2022; Zhou et al., 2023).  

The AGRI, with minor improvements by including an extra infrared channel, was also equipped to FY-4B lunched on 3 

June, 2021, which is the second of the new-generation Chinese geostationary meteorological satellites. FY-4A and FY-4B are 

located at 104.7°E and 133.0 °E separately. The two satellites cover a large part of the East Asian and Western Pacific, 

providing rich visible and infrared radiance data that are highly valuable for data assimilation applications.  45 

Data assimilation of AGRI data in real cases demands accurate analysis of observation errors, including the biases and the 

Probability density Distribution Function (PDF) of the observation errors. On one hand, conventional data assimilation 

methods assume that the observations are unbiased and the PDF of the observation errors conforms to a Gaussian function 

(Geer and Bauer, 2011; Bonavita et al., 2016; Li et al., 2022). On the other hand, the magnitude of the observation errors 

influences the data assimilation results by tuning the weights given to each observation. Several methods were involved to 50 

characterize the observation errors of satellite data and an inter-comparison method between the satellite observations and the 

equivalents derived from the forecasts of NWP models using forward operators receives general popularity (Auligné et al., 

2007; Zou et al., 2016; Lu et al., 2020; Noh et al., 2023). The inter-comparison method was applied to characterize the error 

statistics of FY-4A/AGRI infrared channels under cloud-free and cloudy conditions (e.g. Geng et al., 2018; Xu et al., 2023). To 

the best of our knowledge, the method has not yet been applied to characterize the error characteristics of FY-4A/AGRI visible 55 

reflectance data within any data assimilation systems. 

The key assumption of the inter-comparison method is that the model equivalents do not generate systematic biases and 

thus can be deemed as reference. The accuracy of the model equivalents depends on many factors involving the NWP model 

and the forward operator (Janjić et al., 2017). A NWP model faces challenges to generate realistic representative atmosphere 

state variables due to its inherent limitations such as the inadequacies of microphysical schemes, the uncertainties of the initial 60 

conditions (ICs) and lateral boundary conditions (LBCs), etc. The NWP model errors could be alleviated either by assimilating 

synthetic observations by improved data assimilation methods, or by temporally averaging several instants over a long period 
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of time (Scheck et al., 2018), or by ensemble forecasts which involve several microphysics combinations or different ICs and 

LBCs (Li et al., 2015). In addition, a forward operator inevitably suffers from errors due to the uncertainties of cloud optical 

properties (Zhou et al., 2018), aerosol-cloud interactions (Geiss et al., 2021), etc. To save computational cost, 65 

three-dimensional (3D) radiative processes were usually simplified into one-dimensional (1D) processes (e.g., the independent 

column approximation, IPA), which is another source of forward-operator errors. The main factors which contribute to the 

simulation errors of the reflectance equivalents should be properly assessed to increase the robustness of the inter-comparison 

results. 

In this study, the FY-4A/AGRI channel 2 reflectance data were evaluated by comparing the observations and the 70 

equivalents derived from the forecasts of the China Meteorological Administration Mesoscale Model (CMA-MESO) using the 

Radiative Transfer for TOVS (RTTOV, v 12.3). CMA-MESO is warm-started by assimilating comprehensive observations 

and thus provides high-quality background state variables. The main purpose of this study is to address the following two 

questions. First, is analyzing the observations minus background equivalents (O-B departure, hereafter) an effective way to 

monitor the performance of FY-4A/AGRI visible instrument? Second, what are the characteristics of the biases of O-B 75 

departure and how to correct them? In viewing of these two questions, the remaining part of this manuscript is organized as 

follows. Data and method are introduced in Section 2. The statistics of the O-B departure and the influences of some main 

factors are presented in Section 3. A bias correction method is promoted in Section 4. Conclusions are summarized in Section 

5. 

2. Data and method 80 

2.1 Simulated CMA-MESO visible reflectance 

Simulated visible reflectance was generated from 3-h forecasts of the CMA-MESO model with a horizontal grid spacing of 

0.03°×0.03°. The CMA-MESO forecasts cover the period from 1 September 2020 to 29 September 2020 at 06:00 UTC. 

Therefore, the CMA-MESO forecasts were initialized from the analyses at 03:00 UTC, which were generated by assimilating 

the cloud motion wind retrieved from FY-2G and Himawari-8 satellite observations, the Global Navigation Satellite System 85 

(GNSS) radio occultation (RO) data, the FY-4A/AGRI clear-sky infrared radiances, etc (Shen et al., 2020). The comprehensive 

observations were assimilated by a three-dimensional variational (3DVar) data assimilation system.  

The physics configurations of CMA-MEAO include the Single–Moment 6–class microphysical scheme (Hong and Lim, 

2006), the Meso-SAS (Simplified Arakawa-Schubert) Cumulus Parameterization option (Zhang et al., 2017), and the Yonsei 

University (YSU) planetary boundary layer scheme (Hong and Lim, 2006; Hu et al., 2013), the Unified Noah land surface 90 

scheme (Tewari et al., 2004), the Rapid Radiative Transfer Model for Global Climate Models (RRTMG) longwave and 

shortwave radiation schemes (Iacono et al., 2008). The model configurations generate non-cloud variables (water vapor 
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mixing ratio, temperature, etc) and cloud variables including the mixing ratio of five cloud hydrometeors (cloud droplet, rain, 

ice, snow, and graupel) and cloud cover. To facilitate the radiative transfer simulations, the effective radius of cloud liquid 

droplets was calculated following Thompson et al. (2004) and Yao et al. (2018). 95 

The mixing ratios of cloud hydrometeors were used to identify whether a column is cloudy or cloud-free. The column was 

assumed to be cloud-free when the cloud water path (CWP, the vertically integrated cloud mixing ratio of the five 

hydrometeors) is less than 0.01 kg m
-2

. Otherwise, the column was assumed to be cloudy. The cloud masks were used for the 

bias correction for cloud-free and cloudy pixels, separately. 

The 3-h forecasts of CMA-MESO were processed into the format of the RTTOV input files. The solar and satellite zenith 100 

angles and azimuth angles were provided by the FY-4A synchronous observation geometry (GEO) data gridded at 4km × 4km 

resolution, which were interpolated to the location of the CMA-MESO simulations. The liquid and ice cloud optical properties 

in RTTOV were parameterized by the “Deff” scheme (Mayer and Kylling, 2005) and the Baran et al. (2014) scheme, 

respectively. The layer-to-space transmittance was computed by the v9 predictors on 54 levels (Matricardi, 2008). The surface 

Bidirectional Reflectance Distribution Function (BRDF) was drawn from the land surface atlases (Vidot and Borbás, 2014; 105 

Vidot et al., 2018) or calculated by the JONSWAP model for the sea surface (Hasselmann et al., 1973). The radiative transfer 

processes were solved by the Discrete Ordinate Method (DOM). 

2.2 FY-4A/AGRI observations 

To generate spatially matched pairs of observations and backgrounds, the FY-4A/AGRI full-disk channel 2 reflectance data 

gridded at 1 km×1 km resolution were horizontally averaged to the CMA-MESO locations. The horizontal averaging was 110 

performed by the following two procedures. Firstly, centering at a given CMA-MESO grid point and find all the pixels 

(matched pixels hereafter) in the FY-4A/AGRI visible imagery within ±0.015° both in the zonal and meridional directions. 

Secondly, averaging the reflectances of all these matched pixels to generate a reflectance that is spatially matched to the 

CMA-MESO grid. Repeating the two steps for all CMA-MESO grid points generated an observed imagery gridded at 

0.03°×0.03°. In addition, the maximum allowable time differences between the FY-4A observations and CMA-MESO 115 

forecasts are within 15 minutes to ensure temporal match. 

The FY-4A cloud mask (CLM) product was used to indicate whether a pixel of observed imagery is cloudy or cloud-free. 

The CLM product is gridded at 4 km×4 km resolution. Unlike the GEO data which provides continuous data, CLM product 

contains discrete values. Therefore, the 4 km×4 km CLM data were matched to the CMA-MESO location by the least-distance 

matching that was performed by finding the pixel of the CLM data which has the least distance with the CMA-MESO grid.  120 

After applying the above processes to the FY-4A observations, the FY-4A visible reflectance data and CLM data were 

spatially matched to the CMA-MESO simulations, which facilities the analysis of O-B statistics. Figure 1 shows an example of 
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the FY-4A/AGRI observations matched to the CMA-MESO locations, including the visible reflectance of channel 2, cloud 

mask, solar zenith angle, solar azimuth angle, satellite zenith angle, and satellite azimuth angle. 

 125 

Figure 1: FY-4A/AGRI observations at 06:00 UTC on 15 September 2020, which were matched to the CMA-MESO locations. (a) 

Reflectance at 0.65 μm; (b) Cloud mask; (c) Solar zenith angle; (d) Solar azimuth angle; (e) Satellite zenith angle; (f) Satellite 

azimuth angle. 

3. O-B statistics and main contributing factors 

3.1 The bias of O-B departure 130 

The one-month temporal variation of the mean differences of O-B revealed that the O-B departure was positively biased (Fig. 

2). The O-B departure was collaboratively influenced by many factors. Since these factors may interact with other, it is difficult 

to draw a definitive conclusion whether the observations were overestimated or the background equivalents were 

underestimated or the both. Nevertheless, the abrupt change of the bias from September 9
th

 to 10
th

 was more likely caused by 
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the measurement errors rather than the background errors since no quick-developing weather system was reported during this 135 

period of time. In fact, the calibration correction coefficients of FY-4A/AGRI channel 2 were updated by the National Satellite 

Meteorological Center of CMA at 02:00 UTC on 9 September 2020 

(http://gsics.nsmc.org.cn/portal/cn/event/AGRI.html?satellite=FY4A). The finding answers the first question that analyzing 

the O-B departure is an effective way to monitor the performance of the FY-4A visible instruments. 

 140 

Figure 2: The temporal variation of the mean differences of O-B departure for cloud-free, cloudy and all pixels. 

3.2 Influences of the NWP forecasts 

Since the visible reflectance is particularly sensitive to cloud properties, the statistics of O-B departure is determined to a large 

extent by the forecasts of NWP models. To illustrate this, the deterministic forecast (3-h lead time) at 06:00 UTC on 15 

September 2020 was compared with an ensemble forecast which includes 7 ensemble members, with each ensemble member 145 

corresponding to a lead time of 3 h, 6 h, 9 h, 12 h, 15h, 18 h, and 21 h, respectively. The deterministic forecast and the ensemble 

forecast were utilized to derive the equivalent reflectance and ensemble mean reflectance, denoted by B and B̅, respectively. 

The results indicated distinct differences between B and B̅ (Fig. 3) and between the statistics of O-B and O-B̅. As is shown in 

Fig. 1(a) and Fig. 3, the underestimation of cloud cover in the deterministic forecast was alleviated in the ensemble forecast. 

This is not surprising, as it can be expected that an ensemble forecast should have advantages over a deterministic forecast in 150 

dealing with cloud displacement errors and in simulating cloud microphysical properties. 
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Figure 3: Cloud water path and the reflectance derived from a deterministic forecast and an ensemble forecast at 06:00 UTC on 15 

September 2020. (a) Cloud water path for the deterministic forecast; (b) Reflectance derived from deterministic forecast; (c) 

Ensemble mean of the cloud water path for the ensemble forecast including seven ensemble members; (d) Ensemble mean of the 155 

reflectance derived from the ensemble forecast including seven ensemble members. 

3.3 Influences of unresolved aerosol processes 

The aerosol processes cannot be properly resolved by the CMA-MESO model. However in real cases, aerosols have significant 

impact on the observed reflectance, which is the theoretical basis for the remote sensing of AOD by satellite measurements. To 

evaluate the impact of aerosols on the top-of-atmosphere (TOA) reflectance, a sensitivity study was performed by RTTOV 160 

with varying aerosol optical properties based on the 3-h forecast of CMA-MESO at 06:00 UTC on 15 September 2020. The 

aerosols were assumed to decrease with height in an Exponential function with a scale height of 2.0 km. The optical properties 

of aerosols were configured with those of the dust aerosol of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 

Observation (CALIPSO) (Omar et al., 2009). The optical properties of the dust aerosol at the center wavelength of 

FY-4A/AGRI channel 2 were calculated by logarithmic interpolation of the optical properties at 0.532 μm and 1.064 μm 165 

provided by Zhou et al. (2017). The logarithmic interpolation was also used to supply the AOD out of the reference 

wavelengths in the SBDART radiative transfer model (Ricchiazzi et al., 1998).  

The impact of dust aerosols on TOA reflectance is demonstrated by Fig. 4. The results indicate that the impact of aerosols 

on the TOA reflectance is highly dependent on AOD and CWP (As a general approximation, CWP is positively related to the 

TOA reflectance). Under cloud-free conditions, the presence of dust aerosols tends to increase the TOA reflectance due to the 170 

fact that dust aerosols scatter some photons to the satellite sensors. With the increase of CWP, the impact of dust aerosols tends 

to generate negative bias on the TOA reflectance. A potential explanation is that dust aerosols absorb some photons from the 

incoming path to clouds and from the outgoing path to satellite. The two-fold impact of aerosols was also reported by Geiss et 

https://doi.org/10.5194/amt-2024-12
Preprint. Discussion started: 4 April 2024
c© Author(s) 2024. CC BY 4.0 License.



8 

al (2021). The impact of aerosols was also influenced by aerosol types and aerosol vertical distribution structures (not shown 

for simplicity). 175 

 

Figure 4: The impact of dust aerosols on the TOA reflectance. 𝐫𝐧𝐨𝐧 denotes the reflectance simulated by RTTOV based on cloud 

profiles derived from the 3-h forecast at 06:00 UTC on 15 September 2020.  𝐫𝐚𝐞𝐫 denotes the reflectance based on cloud profiles and 

dust aerosols. 

3.4 Influences due to forward-operator errors  180 

The forward-operator errors include errors due to numerical discretization when solving the radiative transfer equations, errors 

in cloud optical properties, etc. The impact of cloud optical properties was illustrated by a sensitivity study performed by 

RTTOV configured with the SSEC/Baum ice scheme (Baum et al., 2011) based on the 3-h forecast of CMA-MESO at 06:00 

UTC on 15 September 2020. The results indicate that the TOA reflectance simulated by SSEC/Baum ice scheme was 

underestimated compared with that simulated by the ice scheme of Baran et al (2014) (Fig. 5), which imply the uncertainties in 185 

the cloud optical properties of RTTOV. 

 
Figure 5: The impact of ice cloud schemes on the TOA reflectance. 𝐫𝐫𝐞𝐟 denotes the reflectance simulated by RTTOV configured 

with the ice scheme of Baran et al. (2015).  𝐫𝐢𝐜𝐞 denotes the simulations based on the SSEC/Baum ice scheme. 

As is mentioned above, 3D radiative effects also contribute to the forward-operator errors and they could be alleviated by 190 

increasing the model grid spacing (Várnai and Marshak, 2001; Zinner et al., 2006) or simply by horizontally averaging of the 
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pixels (Kostka et al., 2014). However, small-scale properties could not be properly resolved with large grid spacing or could be 

cancelled out for the observations averaged over n × n pixels (n denotes the number of pixels involved). In view of this, the 

horizontal averaging was not performed to the 0.03°×0.03° forecasts or the observations. 

4. Bias correction 195 

As is shown in Section 3, there are some systematic biases in the O-B departure. In cycled data assimilation of satellite infrared 

and microwave data, the equivalents derived from the first-guess state variables are used as a reference to correct the 

observations. Some well-designed predictors such as the average cloud impact (Harnisch et al., 2016) or the NWP model state 

variables (Noh et al., 2023) were regressed to the O-B departure and the systematic differences were corrected based on the 

regression.  200 

Compared with the infrared and microwave radiance observations, the visible reflectance is much more sensitive to cloud 

variables, regardless of the type of cloud hydrometeors or the vertical location of clouds. However, the infrared radiance data 

are mostly sensitive to cloud top and the microphysical properties therein (Li et al., 2022) or to the clouds which are above the 

peaks of the weighting functions of the infrared channels (Harnisch et al., 2016). The microwave radiance data are insensitive 

to small cloud hydrometeors and were usually used to restraint large particles such as rain drops (Wang et al., 2021). In 205 

addition, the visible reflectance is less sensitive to temperature or humidity compared with the infrared and microwave 

radiances. Since the NWP model errors are particularly evident in cloudy conditions (Mathiesen and Kliessl, 2011) and the 

predictor-based bias correction is largely determined by the equivalents derived from NWP forecasts, the robustness of the 

predictor-based bias correction method should be reduced when applied to the visible bands.  

In view of the analyses above, the systematic biases in O-B was simply corrected by the first-order approximation method 210 

promoted by Harnisch et al (2016), i.e., the mean differences of O-B, denoted by O − B̅̅ ̅̅ ̅̅ ̅̅  where the bar denotes the 

domain-averaged value. It is noted that the first-order approximation of the O-B was depicted by (O − B̅̅ ̅̅ ̅̅ ̅̅ )/O̅ rather than O − B̅̅ ̅̅ ̅̅ ̅̅  

to avoid generating reflectance beyond the 0~1 range during the bias correction. Therefore, the corrected reflectance is 

calculated by Eq. (1), 

O′ = O(1 − γ)                                                                                      (1) 215 

where γ denotes the bias correction coefficient. 

(O − B̅̅ ̅̅ ̅̅ ̅̅ )/O̅ is denoted by μclr (or μcld) for the pixels which are cloud-free (or cloudy) for both the observations and the 

derived equivalents. To correct the biases in observations according to Eq. (1), γ was set to μclr (or μcld) for the pixels which 

were masked to be cloud-free (or cloudy) in the observed imagery. For pixels with uncertain cloud mask in the observed 

imagery, γ was set to (μclr + μcld)/2.  220 
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The bias correction was tested by three selected cases on September 1
st
, 15

th
, and 17

th
, 2020. The three cases cover the 

observations before and after the update of the calibration coefficients on 9 September 2020. Quantitative analysis of the O-B 

statistics indicates that the bias correction method is effective in reducing the means and standard deviations of O-B (Tables 1 

and 2). In general, the discrepancies between O and B were mainly revealed in cloudy conditions. The bias-corrected visible 

imagery (Fig. 6(b1-b3)) maintains the general spatial distribution characteristics of the raw imagery (Fig. 1a). For the bias 225 

correction based on a deterministic forecast, the right-side tail of the PDF of O-B shrank, while opposite impact was introduced 

to the left side of the PDF (Fig. 7). The results imply that despite of the general positive impact, the bias correction based on a 

deterministic forecast is mostly effective in correcting the biases when the observations are overestimated. The reason is that 

the bias correction method is designed to extend μcld in cloudy pixels for both O and B to the cloudy pixels only for O. Such 

extension was accompanied with cloud simulation errors, e.g., the pixel with thick cloud in O could correspond to a pixel with 230 

thin cloud or clear sky in B.  

Table 1:The mean differences of the observations minus equivalents. The comparison takes into account observations with and 

without bias correction, and the equivalents derived from deterministic forecasts and ensemble forecasts. 

Forecasts deterministic forecast ensemble forecast 

cloud mask clear cloudy all clear cloudy all 

09-01 

uncorrected -0.0088 0.0617 0.0409 -0.0115 0.0719 0.0458 

corrected -0.0101 0.0447 0.0288 -0.0049 0.0202 0.0119 

09-15 

uncorrected 0.0075 0.0864 0.0600 0.0049 0.0988 0.0662 

corrected -0.0129 0.0316 0.0169 -0.0076 0.0140 0.0051 

09-17 

uncorrected 0.0045 0.0795 0.0540 0.0005 0.0969 0.0629 

corrected -0.0117 0.0378 0.0211 -0.0075 0.0183 0.0073 

Table 2: The standard deviations of the observations minus equivalents. The comparison takes into account observations with and 

without bias correction, and the equivalents derived from deterministic forecasts and ensemble forecasts. 235 

Forecasts deterministic forecast ensemble forecast 

cloud mask clear cloudy all clear cloudy all 

09-01 

uncorrected 0.0690 0.1878 0.1658 0.0532 0.1461 0.1315 

corrected 0.0690 0.1845 0.1621 0.0534 0.1326 0.1165 

09-15 

uncorrected 0.0661 0.2158 0.1862 0.0532 0.1751 0.1540 

corrected 0.0656 0.2029 0.1736 0.0523 0.1486 0.1273 

09-17 

uncorrected 0.0680 0.2086 0.1819 0.0568 0.1680 0.1511 

corrected 0.0670 0.2015 0.1741 0.0558 0.1491 0.1296 
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Figure 6: The observed and bias-corrected reflectance at 06:00 UTC on 1 September 2020 (a1-a3), 15 September 2020 (b1-b3), and 

17 September 2020 (c1-c3). From left to right, the three columns correspond to the observed reflectance, the bias-corrected 

reflectance based on a deterministic forecast, and the bias-corrected reflectance based on an ensemble forecast. 

The ensemble forecast is believed to be an effective way to mitigate cloud simulation errors and their subsequent negative 240 

impact on the bias correction. To correct the biases based on ensemble forecasts, μclr and μcld were set to (O − B̅̅̅ ̅̅ ̅̅ ̅̅ )/O̅ for the 

pixels which are masked to be cloud-free and cloudy both for O and B̅. Better results were revealed in the statistics of O-B̅ 

(Tables 1 and 2) and in the left side of the PDF than the bias correction based on the deterministic forecast (Fig. 7). Therefore, 

ensemble forecasts increase the robustness of the bias correction method based on the domain-averaged relative differences 

between observations and equivalents.  245 
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Figure7: The probability density distribution function of O-B departure of visible reflectance. From left to right, the columns 

correspond to the results for 1 September 2020, 15 September 2020, and 17 September 2020, respectively. From top to bottom, the 

rows correspond to the results for cloud-free, cloudy, and all pixels. 

The pseudocode for the bias correction method based on the equivalents derived from ensemble forecasts was 250 

illustrated by the following: 

 𝜇𝑐𝑙𝑟 ←
∑ (𝑂𝑘

𝑐𝑙𝑟−𝐵𝑘
𝑐𝑙𝑟̅̅ ̅̅ ̅̅

)
𝑁𝑐𝑙𝑟
𝑘=1

∑ (𝑂𝑘
𝑐𝑙𝑟)

𝑁𝑐𝑙𝑟
𝑘=1

 ###𝑁𝑐𝑙𝑟: the number of cloud-free pixels for both O and B̅ 

𝜇𝑐𝑙𝑑 ←
∑ (𝑂𝑘

𝑐𝑙𝑑−𝐵𝑘
𝑐𝑙𝑑̅̅ ̅̅ ̅̅ ̅

)
𝑁𝑐𝑙𝑑
𝑘=1

∑ (𝑂𝑘
𝑐𝑙𝑑)

𝑁𝑐𝑙𝑑
𝑘=1

 ###𝑁𝑐𝑙𝑑 : the number of cloudy pixels for both O and B̅  

𝜇𝑢𝑐𝑡 = (𝜇𝑐𝑙𝑟 + 𝜇𝑐𝑙𝑑)/2 

for m = 1: 𝑁𝑜𝑏𝑠 do ## 𝑁𝑜𝑏𝑠 denotes the number pixels in O  

if cld_mask(m) == 3 then ### for cloud-free pixels 255 

                𝑜𝑚
′ ← 𝑜𝑚(1 − 𝜇𝑐𝑙𝑟) 

else if cld_mask(m) == 0 then ### for cloudy pixels 

                𝑜𝑚
′ ← 𝑜𝑚(1 − 𝜇𝑐𝑙𝑑) 

else: 

                𝑜𝑚
′ ← 𝑜𝑚(1 − 𝜇𝑢𝑐𝑡) 

end if 

end for 
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5. Conclusions 260 

In this study, the FY-4A/AGRI channel 2 visible reflectance data in September 2020 were evaluated by the equivalents derived 

from the forecasts of the CMA-MESO model using RTTOV radiative transfer model. The temporal variation of the 

observation minus background (O-B) statistics was evaluated, and main error sources were analyzed. In addition, a bias 

correction method was developed to ensure that the FY-4A/AGRI observation was unbiased and the PDF of the observation 

errors is subject to a Gaussian function, which will facilitate the data assimilation application of FY-4A/AGRI reflectance data. 265 

The main findings are summarized below. 

Compared with B, O was positively biased. The temporal variation characteristics of biases revealed an abrupt change on 

9 September 2020, when the calibration correction coefficient of FY-4A/AGRI channel 2 was updated by the National Satellite 

Meteorological Center. The findings indicate that the reflectance derived from the CMA-MESO forecasts was capable of 

monitoring the performance of the FY-4A visible instruments, which was the normal routine for monitoring the infrared and 270 

microwave instruments in National Satellite Meteorological Center of China and other satellite instrument monitoring systems 

(Lu et al., 2020). 

Apart from the measurement errors, the influences of forward-operator errors and NWP model errors were assessed by 

sensitivity studies. The forward-operator errors were especially evident for cloudy pixels since RTTOV suffers uncertainties in 

cloud optical properties. The impact of aerosols on O was not considered in B because CMA-MESO is unable to resolve 275 

aerosol processes currently. Sensitivity studies indicate that neglecting aerosols tends to decrease the TOA reflectance in 

cloud-free conditions. In cloudy conditions, the impact of aerosols was complicated by aerosol type and aerosol vertical 

distribution. 

Despite that O-B was collaboratively determined by many factors, systematic differences between O and B were revealed, 

which facilitates the bias correction in data assimilation applications. The goal of the bias correction in data assimilation is to 280 

minimize the differences between O and B. Unlike the bias correction of infrared and microwave radiance data based on some 

well-designed predictors, the biases in visible reflectance data were simply corrected by the domain-averaged relative 

differences of O-B. The main reason is that the predictor-based bias correction could introduce extra errors in the background 

to the observations since the visible equivalents are largely influenced by uncertainties in background which are particularly 

evident in cloudy regions. Validation of the bias correction method indicated that the biases and uncertainties of O-B were 285 

decreased after applying the bias correction method. Since ensemble forecasts have great advantages over deterministic 

forecasts in reducing cloud simulation errors, the Gaussian distribution of PDF of O-B was better respected based on the 

equivalents derived from an ensemble forecast. Therefore, it is recommended to generate the reflectance equivalents from 

ensemble forecasts when correcting the biases in visible reflectance data.  
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It is noted that the equivalents derived from a deterministic forecast or an ensemble forecast are inevitably associated with 290 

simulation errors both in the NWP models and forward operators. Since it is impossible to eliminate all sources of errors, the 

bias correction method should be particularly effective when the simulation errors are eradicated. Nevertheless, the simulation 

errors could be mitigated by more accurate forward operators (e.g. forward operators which accounts for three-dimensional 

radiative effects) and more representative background state variables (e.g., short-term forecasts based on advanced data 

assimilation method, ensemble forecasts which involve multiple microphysical configurations, etc). Extending the 295 

above-mentioned methods to data assimilation applications is ongoing. 

Code availability. Version 12.3 of RTTOV source code is publicly available at 

https://nwp-saf.eumetsat.int/site/software/rttov/rttov-v12/ (last access: 5 March 2019). 

Data availability. The CMA-MESO short-term forecasts data in 2020 were provided by the CMA Earth System Modeling and 

Prediction Centre (CEMC). The FY-4A/AGRI 1km×1km full-disk reflectance data, the 4km × 4km geometry (GEO) data and 300 

cloud mask products are obtained from the National Satellite Meteorological Center (NSMC) at 

http://satellite.nsmc.org.cn/PortalSite/Data/DataView.aspx?currentculture=zh-CN. The datasets are also available upon 

request from Yongbo Zhou (yongbo.zhou@nuist.edu.cn). 
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