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Abstract. The Southern Ocean (SO) provides a unique natural laboratory for studying cloud formation 10 
and cloud-aerosol interactions with minimal anthropogenic influence. The Southern Ocean Clouds, 11 
Radiation, Aerosol Transport Experimental Study (SOCRATES), was an aircraft-based campaign 12 
conducted from January 15 to February 28, 2018, off the coast of Hobart, Tasmania. During 13 
SOCRATES, the NSF/NCAR GV research aircraft, equipped with in-situ probes and remote sensors, 14 
observed aerosol, cloud and precipitation properties, and provided detailed vertical structure of clouds 15 
over the SO, particularly for the low-level clouds (below 3 km). The HIAPER Cloud Radar (HCR) and 16 
in-situ cloud and drizzle probes (CDP and 2DS) measurements were used to provide comprehensive 17 
statistical and phase-relevant macrophysical properties for the low-level clouds sampled by the 15 18 
research flights during SOCRATES. A new method based on HCR reflectivity and spectrum width 19 
gradient was developed to estimate cloud boundaries (cloud-base and -top heights) and classify cloud 20 
types based on their top and base heights. Low-level clouds were found to be the most prevalent, with 21 
an almost 90% occurrence frequency. A new phase determination method was also developed to 22 
identify the single-layered low-level clouds as liquid, ice, and mixed-phases, with occurrence 23 
frequencies of 45.4%, 32.5%, and 22.2%, respectively. Low-level clouds over the SO have significantly 24 
higher SLW concentrations, with liquid being most prevalent at higher temperatures, ice phase 25 
dominating at lower temperatures, and mixed phase being least common due to its thermodynamic 26 
instability. Regarding their vertical distributions, the liquid phase occurs most frequently in the lower 27 
mid-cloud range (from 500 m to 1 km), the mixed phase dominates at cloud bases lower than 1 km but 28 
is well distributed along the vertical cloud layer, while the ice phase is prevalent from the middle to 29 
upper cloud levels (1-3 km). The higher occurrence of the mixed phase at the cloud base could be 30 
attributed to large drizzle-sized drops and/or ice particles. 31 

1 Introduction  32 
Southern Ocean (SO) clouds impact the radiation budget over the region in a significant manner (Kay 33 
et al., 2012; McCoy et al., 2014) which the global climate models cannot simulate accurately (Bodas-34 
Salcedo et al., 2016; Cesana & Chepfer, 2013; Kay et al., 2016; Trenberth & Fasullo, 2010; Wang et 35 
al., 2018), which tends to underestimate the shortwave fluxes, also producing lower cloud fraction and 36 
less supercooled liquid water than observed (D'Alessandro et al. 2021). The SO represents a remote, 37 
pristine, and pre-industrial environment (Hamilton et al., 2014; Uetake et al., 2020; Humphries et al., 38 
2021) and provides a unique natural laboratory to understand cloud formation and microphysical 39 
properties, cloud-aerosol interactions with minimal anthropogenic influences (McCoy et al., 2015; Xi 40 
et al., 2022).  41 
     The low-level SO clouds feature a predominantly high concentration of supercooled liquid water 42 
(SLW, almost 80% of low-level clouds contain SLW over a temperature range of -40 to 0oC, Hu et al., 43 
2010). Their cloud macrophysical and microphysical properties are different from subtropical marine 44 
boundary layer (MBL) clouds which contain almost all liquid clouds (Dong et al., 2014; Wu et al., 45 
2020; Zhao et al., 2020) and from the Arctic mixed-phase clouds with a top layer of liquid and bottom 46 
layer of ice clouds (Qiu et al., 2015). Understanding the dominant cloud phase and phase-related spatial 47 
homogeneity of the low-level SO clouds is crucial to expanding our current understanding of the region 48 
along with developing better parametrization for the increased accuracy of the global climate model 49 
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predictions (Zhao et al, 2023; Liu et al 2023; etc.). Identifying the cloud phase is crucial to accurately 50 
retrieving cloud macrophysical and microphysical properties because most algorithms are tuned for 51 
specific cloud phases over different climatic regions (Shupe, 2007). Incorrect parametrization of low-52 
level clouds is a key climate uncertainty and bias; and causes wide intermodel variation (~50%) (Klein 53 
et al., 2017) as liquid-to-ice conversion of cloud particles reduces albedo at the top of the atmosphere 54 
(TOA) (Xi et al., 2022).  55 
     Several studies exist on classifying cloud-type, cloud phase and hydrometeor-type detection over 56 
the SO region (e.g., Xi et al., 2022; Desai et al., 2023; D’Alessandro et al., 2021, 2019; Romatschke & 57 
Vivekanandan., 2023; Atlas et al., 2021; Schima et al., 2022; Zaremba et al., 2020) and Arctic clouds 58 
(e.g. Shupe 2007; Korelov & Milbrandt, 2022). They utilized a suite of in-situ, radar-lidar and machine-59 
learning approaches to predict cloud phase or cloud-hydrometeor types along with their relevant macro- 60 
and micro-physical properties but reported a significant difference in phase retrieval results and phase 61 
transition processes based on the nature of the campaign and instrumentation. These studies have 62 
various performances depending on their retrieval methods and assumptions during retrievals. Xi et al. 63 
(2022) used the W-Band radar measurements and microwave radiometer retrieved cloud liquid water 64 
path (LWP) to estimate cloud phase and macrophysical properties over the SO (North of 60o and South 65 
of 60o latitude) for clouds sampled during the ship-based the Measurements of Aerosols, Radiation, and 66 
Clouds over the Southern Ocean (MARCUS, Xi et al., 2022; Marcovecchio et al., 2023; McFarquhar 67 
et al., 2016, 2021) campaign and estimated a greater frequency of mixed-phase clouds followed by ice 68 
and liquid clouds. Ship-based measurements during the MARCUS can provide accurate cloud 69 
boundaries and their vertical distributions. Wang & Sassen (2001) presented algorithms for retrieving 70 
cloud macrophysical properties, such as boundary, thickness, phase, type, and precipitation, using a 71 
combination of ground-based lidar, millimeter-wave radar, IR radiometer, and MWR measurements at 72 
the ARM SGP CART site in Northern Oklahoma. Further, Shupe (2007) provided an array of ground-73 
based Lidar-Radar threshold values to estimate cloud hydrometeor phase including aerosols, liquid, 74 
mix, ice, drizzle and rain designed for the study of Arctic clouds. Compared to the ground-based 75 
measurements, the aircraft in situ measurements, however, can provide more reliable datasets without 76 
the issues of retrieval methods and assumptions because aircraft can fly in greater proximity to the cloud 77 
boundaries and even inside the cloud layers. Also, the onboard radar and lidar suffer less attenuation 78 
than the ground-based remote sensors (Ewald et al., 2021).  79 
     The Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) 80 
aircraft field campaign provided a valuable dataset to investigate the MBL clouds over the SO. The 81 
SOCRATES was an aircraft-based campaign that used the National Science Foundation (NSF)/National 82 
Center for Atmospheric Research (NCAR) Gulfstream-V (GV) research aircrafts based out of the coast 83 
of Hobart, Tasmania (42-62°S and from 133°-163°W) from 15 January to 28 February 2018, targeting 84 
cold sector boundary layer clouds and airborne sampling of in-, below- and above-cloud transects 85 
obtaining both time series and vertical cloud information using an array of in-situ cloud and drizzle 86 
sampling probes and radar-lidar instruments, mostly spanning a period of midnight to early morning 87 
for each flight track on subsequent days. The in-situ probes and remote sensors (cloud lidar and radar) 88 
onboard the aircraft flown during the SOCRATES campaign provide a direct observation of 89 
precipitation, cloud particles, and aerosols below, inside and above the cloud layers sampled, along 90 
with vertical profiles, for a better characterization of the MBL structure and free troposphere. 91 
D’Alessandro (2021) used the suite of in-situ cloud and drizzle sampling probes (CDP & 2DS) onboard 92 
the NCAR-GV aircraft during SOCRATES to estimate cloud phase heterogeneity and frequency 93 
distributions predicting significant SLW and ice phase concentrations using a multinomial logistical 94 
regression model (MLR). Romatschke and Vivekanandan. (2023) used a fuzzy logic scheme to classify 95 
cloud hydrometeor type as a time-height profile using an array of cloud radar-lidar derived values. 96 
     According to Wang et al. (2012), integrating in-situ sampling capabilities with remote sensing 97 
measurements offers significant advantages for studying atmospheric processes. In this context, the 98 
integrated 2-dimensional cloud profiles obtained through remote sensing of microphysical processes 99 

https://doi.org/10.5194/amt-2024-124
Preprint. Discussion started: 5 August 2024
c© Author(s) 2024. CC BY 4.0 License.



3 
 

complement the detailed size-resolved distributions captured by in-situ cloud measurements. Therefore, 100 
solely relying on either in-situ or remote sensing measurements can lead to certain disagreements in 101 
cloud profile as the sampling probes can only detect cloud particles at the flying altitude while the 102 
remote sensing profiles can provide vertically resolved cloud profile but with an offset of around 100-103 
200 meters. The lidars have a smaller operating wavelength compared to radar and provides well-104 
resolved vertical profiles for detecting aerosols, optically thin clouds and cloud boundaries, (Wang et 105 
al., 2012, 2009; McGill et al., 2002) but its signals are easily attenuated by optically thick clouds, such 106 
as liquid clouds (Sassen., 1991) as observed over the SO. Therefore, we exclusively used radar 107 
measurements to estimate cloud boundaries and cloud phase for optically thick clouds in this study. 108 
Furthermore, we also tune the High Spectral Resolution Lidar (HSRL) measured Particle 109 
Depolarization Ratio (PLDR) thresholds based on the phase estimation method presented in this study. 110 
This adjustment was seen necessary because the existing PLDR thresholds presented in Sassen (1991), 111 
Intrieri (2002), and Shupe (2007) were developed for Arctic clouds, which differ significantly from the 112 
low-level clouds over the Southern Ocean (SO). 113 

      In this study, we aim to use a combination of both in-situ and radar-based measurements during 114 
SOCRATES to develop a new method to classify the MBL cloud phase and determine cloud boundaries 115 
over the SO for low-level clouds. The newly developed classification method can be used to help answer 116 
the following scientific questions:  117 

1. What are the dominant cloud types, their associated cloud phase, base and top heights, and their 118 
vertical distribution? 119 

2. What are the phase-specific macrophysical properties for SO low-level clouds sampled during 120 
the SOCRATES campaign? 121 

     The paper is organized in the following manner: data and methods are introduced in Section 2. The 122 
statistical results for all cloud properties during the SOCRATES campaign are presented in Section 3. 123 
Cloud phase-specific results and comparisons with other algorithms for the low-level clouds are 124 
discussed in Section 4, and finally, Conclusions and Summary are given in Section 5. 125 

2 Data and methods 126 

2.1 SOCRATES aircraft campaign 127 

The Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) aircraft 128 
field campaign was conducted over the SO with a total of 15 research flights from 15 January to 28 129 
February 2018 (McFarquhar et al., 2021). During SOCRATES field campaign, the Cloud Droplet Probe 130 
(CDP) and 2-dimensional stereo- particle imaging probe (2DS) were utilized to measure cloud and 131 
drizzle microphysical properties, respectively. Additionally, HCR and HSRL were installed on the RV 132 
aircraft to detect cloud structure, phase and boundaries (McFarquhar et al., 2021). HSRL particle linear 133 
depolarization ratios (PLDR) were widely used as a screening tool for cloud phase determination with 134 
liquid clouds having PLDR less than 0.11, mixed-phase clouds falling between 0.11 and 0.15, and ice 135 
clouds having PLDRs greater than 0.15 (Shupe et al., 2005; Xi et al., 2022). The 2DS in-situ 136 
measurements serve as an additional screening to eliminate the ice particles (D>200 µm). More 137 
instrumental details about the SOCRATES campaign can be found in McFarquhar et al. (2021).  138 
     The suite of in-situ probes and radar-lidar instruments onboard the SOCRATES aircraft is listed in 139 
Table 1, along with their detection limits and uncertainties. The particle size distribution and number 140 
concentration were retrieved from the CDP and 2DS microphysical probe measurements and merged 141 
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to create one continuous dataset with size bins from 2 to 40 µm corresponding to cloud droplets and 40 142 
µm above for drizzle particles (to 1280 µm), at a 1 Hz temporal resolution for each research-flight. 143 
Reflectivity (dBZ), Doppler Velocity (Vd) (m/s), and Spectrum Width (WID) (m/s) were retrieved from 144 
the original 2 Hz temporal resolution of the HCR radar measurements and were averaged to match the 145 
1 Hz frequency resolution of the in-situ probes and further interpolated to fixed radar-heights at a range 146 
gate of 19.2 meters. The same treatment was done for the HSRL-retrieved Backscatter Coefficient β 147 
(m-1sr-1) and Particle Linear Depolarization Ratio (PLDR) (unitless). The HSRL (lidar) signal is highly 148 
sensitive to greater cloud droplet concentrations and can be attenuated within a few hundred meters in 149 
liquid cloud layers (Ewald et al., 2021; Sassen, 1991). Thus, it is not used for phase or boundary 150 
estimation in optically thicker MBL clouds discussed in this paper. The atmospheric temperature (°C) 151 
for the cloud samples was retrieved from the 2-dimensional ERA5 reanalysis product, which is available 152 
in the HCR-HSRL merged dataset at the EOL data archive. This dataset matches the vertical and 153 
temporal resolution of the HCR-HSRL data (NCAR/EOL HCR Team., 2023). Temperatures below -40 154 
oC are not considered during further analysis as they represent homogenous freezing temperatures 155 
(majorly all ice) and most mixed phases exist only over the range of -40 to 0 oC (e.g., Shupe et al., 156 
2007). The dataset is further filtered to keep only the nadir or zenith pointing direction of the HCR-157 
HSRL merged dataset, all the in-transition or rotational pointing directions (which were not equal to 158 
±90 degrees) were removed. The 2DS particle morphology or habit imagery data (Wu and McFarquhar., 159 
2019) was also retrieved and visualized using the Illinois/ Oklahoma Optical Probe Processing Software 160 
(XPMS2D, UIOOPS, McFarquhar et al., 2018). 161 

Table 1. Measurements from specific instruments used in this study and their relevant properties. 162 

In-Situ 
Probes 
for Bulk 
Cloud 
Sampling 

INSTRUMENT MEASUREMENT Size 
Range/Resolution Uncertainties REFERENCES 

Cloud Droplet 
Probe (CDP) 

Size distribution and 
concentration of 
hydrometeors with a 
diameter between 2-
50 µm 

2-50 µm  
Cannot resolve non-
spherical particles 
accurately 

Lance et al., 2010 

Two-
Dimensional, 
Stereo, Particle 
Imaging Probe 
(2D-S)  

Size distribution and 
concentration of 
hydrometeors with a 
diameter between 10 
to 1280 µm range 

10-µm  
 
D>40 µm for all 
particles 
 
D> 200 µm for ice 

Cannot resolve for 
particle sizes D <50 
µm, also ice particle 
detection is certain 
only for D>200 µm. 

Lawson et al., 2006; 2008 

Baker et al., 2009 

Wu and McFarquhar., 
2019 

Radar-
Lidar 
remote 
sensors 

HIAPER Cloud 
Radar (HCR) 

Reflectivity, 
Doppler Velocity, 
Spectral Width, 
Linear 
Depolarization Ratio 
(LDR), etc. 

~19 m in vertical 
resolution 

Frequency: 94.40 
GHz 

Attenuates for larger 
particle sizes 

NCAR/EOL HCR Team., 
2014  

Romatschke et al., 2021 

Vivekanandan et al., 2015 

High Spectral 
Resolution Lidar 
(HSRL) 

Backscatter 
Coefficient, Particle 
Linear 
Depolarization Ratio 
(PLDR), Extinction 
Coefficient, etc. 

Wavelength: 532 
nm 

Sensitive to 
optically thin cloud 
layers 

NCAR/EOL HSRL Team., 
2012 

Eloranta., 2005 

 163 

 164 
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2.2 Estimation of cloud boundaries 165 

There are multiple existing methods of estimating cloud base and top heights, for example, using 166 
thresholds for lidar returned power, depolarization, or backscatter (e.g., Intrieri et al., 2002; Kang et al., 167 
2021, 2024) or thresholding in-situ measured vertically resolved liquid water path (LWP) or liquid 168 
water content (LWC) and cloud droplet number concentration. For this study, the cloud base was 169 
estimated as the lowest height (from the sea surface) where the HCR Spectrum Width (WID) Gradient 170 
is the lowest in value (or highest negative gradient). The lowest WID gradient indicates the change from 171 
a precipitation layer to the cloud layer where the gradient of spectrum width decreases sharply. The 172 
cloud-base height (Hbase) was also estimated using the HSRL backscatter coefficient threshold, but this 173 
cloud-base height was found to be around 400 m higher than that derived from HCR spectrum width 174 
gradient. Higher spectrum width around the cloud base indicates a greater turbulence and wider range 175 
of particle velocities observed which correlate to potentially stronger turbulence, and likely drizzle or 176 
precipitation. This argument is further improved by the aircraft in situ measured microphysical 177 
properties.  178 
     The cloud-top height (Htop) is measured as the highest height (from the cloud base) where prominent 179 
HCR reflectivity (dBZ >-50) is observed following the method of Kang et al. (2024). Finally, cloud 180 
thickness (ΔH) is estimated as the difference between cloud-top and -base heights, ΔH = Htop – Hbase. 181 
For double-layered clouds, each single-layer cloud-base and -top heights were identified separately but 182 
are not reported in this study as only single-layered cloud types were used for further analysis. The 183 
accuracy of the estimated cloud-top and -base heights for the low clouds have been verified by mapping 184 
them on the radar detected cloud profile (Fig. 1.) and will be discussed in following sections. This 185 
method of estimating Htop and Hbase can be used to find cloud boundaries in the absence of a readily 186 
available radiosonde or dropsonde measured cloud heights dataset.  187 
     A case study for the retrieved cloud boundaries using the HCR reflectivity and spectrum width 188 
gradient is illustrated in Fig. 1(a-d). Using the spectrum width gradient for estimating cloud-base 189 
heights allows finding cloud and drizzle base above the precipitating layer with minimal errors 190 
compared to lidar HSRL-Backscatter values which attenuate faster for thicker cloud layers. Boundary 191 
estimation was carried out for each sublayer separately for double-layered clouds (not shown). Isolated 192 
cloud transects less than 50 meters in vertical height and 10 seconds in temporal width (which appear 193 
as small, isolated dots or patches of reflectivity or spectrum width profiles in the following plot) are 194 
ignored as noise. 195 
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 196 

Figure 1. (a) HCR Reflectivity (dBZ) profile for the entire flight track for RF01 from 23:30 UTC 197 
(15 Jan 2018) to 05:30 UTC (16 Jan 2018). The solid black line in (a) indicates the flight altitude 198 
in meters. The two red boxes in (a) are the subsection for which the cloud-top and -base heights 199 
are displayed (b), (c), and (d). The left panels represent the cloud profiles when the flight was 200 
flying above the cloud top and radar pointed nadir, while the right panel shows a zenith-pointing 201 
radar cross-section with the flight flying below the cloud base. (b), (c), and (d) are the profiles of 202 
HCR reflectivity, spectrum width (WID) and Doppler Velocity (Vd) with the cloud tops (black 203 
squares) and cloud bases (red squares).  204 

Table 2. Cloud classification using Base and Top heights. 205 

CLOUD TYPE CLASSIFICATION METHOD 

LOW (low-level clouds) Htop ≤ 3km, in a single layer 

MID (middle level) Hbase > 3km and Htop ≤ 6km, in a single layer 

HGH (high clouds) Hbase > 6km, in a single layer 

MOL (mid-over-low) Hbase < 3km and Htop ≤ 6km, may not be single layer 

HOM (high-over-middle) 3km<Hbase<6km, and Htop>6km, may not be single layer 

HML (high-over mid and low) Hbase<3km, and Htop ≥ 6km, extend over the whole tropospheric 
layer 
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2.3 Classification of Cloud type 206 

After estimating the cloud-base, -top heights, and cloud thickness (Hbase, Htop, ΔH), the cloud types are 207 
categorized following a classification method described by Xi et al., 2010, and summarized in Table 2. 208 
A single layer means that there is no other cloud layer above or below the classified cloud layer for the 209 
time series. 210 
      Based on this classification method, a significant number of LOW (Htop ≤3km) clouds were 211 
identified followed by MOL (Hbase < 3km, Htop ≤6km) and MID (Hbase > 3km, Htop ≤6km). Some HGH 212 
(Hbase > 6km), HOM (3km<Hbase<6km, and Htop>6km), and HML (Hbase<3km, and Htop ≥ 6km) cloud 213 
types were also identified but almost insignificant or negligible in number relative to LOW, MID, and 214 
MOL types. Only a couple of flights had single or double-layered clouds with Hbase and/or Htop > 6km, 215 
which were ignored to optimize for statistical deviation and minimize errors. Notice that these results 216 
are due to the selected cloud cases during the flight, which may not represent all the true cloud types.     217 
     Cloud phase estimation was only carried out for the single-layered LOW cloud type, which was the 218 
predominant cloud type during the SOCRATES field campaign. The statistical results for the 219 
predominant cloud types of LOW, MID and MOL are further discussed in Section 3. 220 

2.4 In-Cloud Conditions 221 

The cloud-droplet number concentration and particle size from the merged CDP+2DS dataset is used 222 
to calculate a continuous liquid water content (LWC) in g/m3 for cloud and drizzle particles, using the 223 
equation (Kang et al., 2021; Zheng et al., 2024) as follows: 224 

LWC =  !
"
	𝜋	𝜌# ∑ 𝑟$"

{&}
{$()} . 𝑁$,      (1) 225 

where ⍴w is the density of liquid water, ri is the particle radius measured as droplet size distribution 226 
from the CDP+2DS particle size bins, and Ni is the number concentration (#/cm3) per bin. The LWC 227 
values are further used to compute the liquid water path (LWP) in g/m2 as a function of cloud thickness 228 
(ΔH) (Oh et al., 2018), as follows: 229 

LWP = ∑ 𝐿𝑊𝐶* . 𝛥𝐻*
{&}
{*(	)} .  (2) 230 

The in-cloud conditions were constrained to keep cloud samples only containing LWC greater than 231 
0.001 g/m3, to remove noise or uncertainty in measurements. CDP number concentration less than 1 232 
cm-3 corresponds to ice phase observations in particles with size less than 50 µm, and greater than or 233 
equal to 1 cm-3 corresponds to the liquid phase (D’Alessandro et al., 2021). Hence, choosing LWC 234 
threshold is based on the decision to ensure a significant cloud density and cloud number concentration, 235 
and remove clear-sky conditions or noise from aerosols. The number concentration of ice particles with 236 
diameters greater than 200 µm is very low (Zheng et al., 2024), as shown in Fig. 2, indicating that most 237 
ice phase particles occur below the 2DS-defined threshold of 200 µm for ice particle size distribution 238 
(Wu and McFarquhar, 2019).  239 
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 240 
Figure 2. Cloud and Drizzle (CDP+2DS) size distributions aggregated for the 15 research flights 241 
during SOCRATES. The dashed line at Dp = 40 µm denotes the separation from cloud to drizzle 242 
droplets. 243 

     There is a small offset in the calculated LWP because LWC is derived from in-situ cloud (CDP) 244 
microphysical properties while cloud thickness is derived from the HCR and HSRL measurements. 245 
However, the difference was insignificant when these results were compared to the average LWP values 246 
observed over the SO by previous studies like Xi et al. (2022) and Mace et al. (2021). Future work 247 
could be done on finding the LWC and LWP as a function of the cloud vertical height profiles matched 248 
to the HCR-HSRL profiles, following the methods mentioned in Vivekanandan et al. (2020). Ice water 249 
content (IWC) in g/m3 was also retrieved from the 2DS dataset for particle sizes ≥ 200 µm. The 2-250 
dimensional HCR-HSRL parameters were further constrained for the cloud base and top heights for the 251 
classified cloud types in the vertical dimension and for the LWC threshold in the time dimension. The 252 
2-dimensional air temperature (oC) from ERA5 was filtered to extract the cloud-base and -top 253 
temperatures. The aircraft-measured air temperature is not used in this study as it only measures 254 
temperature at the fixed flying altitude of the aircraft.  255 

3 Statistical results for prominent cloud types 256 

The most prominent cloud types identified using the cloud boundary estimation discussed in the Section 257 
2.3, such as LOW, MID, and MOL, which are consistent of ~ 85-90% occurring frequencies in total 258 
from the 15 research flights during SOCRATES. Figure 3 summarizes the occurrence frequencies of 259 
the classified single-layered LOW, MID, and MOL clouds along with their vertical structures or the 260 
thickness (in km). Multilayered clouds were not considered for this classification due to their negligible 261 
occurrence frequencies compared to the single-layered clouds. LOW clouds are the most observed 262 
cloud type (~90%) compared to the other two cloud types (less than 10%), due to the nature of sampling 263 
and targeted cloud sector of the SOCRATES campaign. Most of the research flights flew below 6-7 km 264 
over the SO studying MBL clouds with greater amount of SLW (Schima et al., 2022).   265 
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 266 
Figure 3. (a) The occurrence frequencies of single-layered LOW, MID, and MOL clouds, b) the 267 
average thickness for each cloud type.  268 

     Figure 4 visualizes the LWP frequencies for each cloud type averaged from the 15 research flights 269 
along with the constrained LWP frequency which shows the percentage occurrence of LWP above the 270 
threshold of 10 g/m2 for each cloud type. Amongst the 15 flights, the maximum average LWP is 271 
observed for MOL clouds at around 370 g/m2 followed by LOW at 208 g/m2 and very low for MID 272 
clouds at around 65.8 g/m2. The overall statistical results for the LOW, MID, and MOL classified 273 
cloud types are summarized in Table 3.  274 

 275 
Figure 4. a) Averaged LWP for each cloud type from the 15 research flights. b) Constrained LWP 276 
occurrence frequencies for LWPs greater than 10 g/m2 which is the threshold for classifying liquid 277 
and mix phase from ice-phase cloud transects. Percentages for LWP>10 g/m2 are approximately 278 
66%, 36% and 75% for LOW, MID and MOL clouds, respectively. 279 

 280 

 281 

 282 

 283 

 284 
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Table 3. Mean, standard deviation, minimum and maximum ranges for the estimated cloud base 285 
and top heights along with the calculated LWP values for each single-layered cloud type. 286 

 LOW MID MOL 
Hbase ± SD 
Min, Max (km) 

1.01 ± 0.6 
0.13, 2.97 

4.16 ± 0.80 
3.01, 5.97 

1.56 ± 0.93 
0.11, 2.99 

Htop ± SD 
Min, Max (km) 

1.57 ± 0.58 
0.15, 2.99 

4.79 ± 0.84 
3.03, 5.99 

4.18 ± 1.04 
3.01, 5.99 

LWP (mean) ± SD 
Max (g/m2) 

96.7 ± 187 
2732 

27.9±73 
963 

109.48 ± 208 
2121 

4 Low cloud phase retrieval results and discussions 287 

As shown in Figure 3, LOW clouds are dominant cloud type (~90%) observed during SOCRATES. In 288 
this section, we discuss how to determine LOW cloud phase. The estimated cloud base and top heights, 289 
along with other radar-lidar and in-situ variables, were aggregated using the median to a temporal 290 
resolution of 10 seconds (0.1 Hz). This aggregation was constrained to the cloud boundaries and single-291 
layered low-level cloud types to ensure a more continuous data distribution and to minimize outliers, 292 
thereby improving statistical consistency before phase determination. 293 
 294 
4.1 Determination of Cloud Phase 295 

Figure 5 describes the flow-chart of determining cloud phase for the classified low-level clouds (LOW) 296 
with cloud-top heights below 3 km after constraining for the in-cloud conditions (LWC>0.001 g/m3). 297 
The phase partitioning method described in this section is used simultaneously as combined filters to 298 
classify the cloud phase as a 2-dimensional phase profile of liquid, mix and ice phase. LWP threshold 299 
was estimated after constructing probability density function (PDF) plots for the classified LOW, MID, 300 
MOL, HGH, and HOM clouds which returned a peak of less than 10 g/m2 in LWP values for the HGH 301 
and HOM clouds which are prevalently ice-dominated clouds. There are significant overlaps between 302 
the LWP PDFs for classified cloud types, which results in some inconsistencies and uncertainties. For 303 
example, LOW clouds also display a peak in LWP values less than 10 g/m2 but simultaneously also 304 
show consistently greater frequency for LWP values even greater than 200 g/m2. Whereas the LWP 305 
frequencies for other cloud types diminish to zero after 15 or 20 g/m2. The LWP value of ~10 g/m2 also 306 
lies around the uncertainty value for LWP measurement over SO (Kang et al., 2021). While LWP values 307 
for LOW, MID and MOL cloud types are significantly higher, most of the LWPs for HGH and HOM 308 
clouds are below 10 g/m2. Therefore, we use LWP=10 g/m2 as a threshold to determine cloud phases 309 
where cloud samples with LWP < 10 g/m2 is classified as ice clouds, while LWP >= 10 g/m2 as mixed-310 
phase or liquid clouds.    311 
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 312 
Figure 5. Flow chart depicting the phase classification of single-layered LOW clouds during 313 
SOCRATES. Spectrum Width (WID), Doppler Velocities (Vd) and reflectivity (dBZ) are 314 
measured by HCR radar, and Liquid Water Path (LWP) is calculated from in-situ measurements. 315 
Temperature is provided from ERA5 reanalysis air temperature product matched to the HCR-316 
HSRL merged dataset. 317 

      In addition to the LWP threshold, the profile of atmospheric temperature provides another threshold 318 
for determining LOW cloud phase. where temperature is greater than 0 oC is classified as liquid while 319 
for temperature between -40 to 0 oC is further analyzed for categorizing between liquid, mixed and ice. 320 
As shown in Fig. 5, if LWPs are equal or greater than 10 g/m2 and T is higher than 0 oC, then the cloud 321 
samples are classified as liquid clouds. For ice clouds, it is as simple as classifying liquid clouds where 322 
the cloud samples are defined ice clouds when both LWP < 10 g/m2 and T < 0 oC, whereas it becomes 323 
more complicated for mixed-phase clouds. For the cloud samples with T > 0oC and reflectivity < -15 324 
dBZ are considered as liquid cloud droplets because most of drizzle drops have higher reflectivity (> -325 
15 dBZ, Wu et al., 2020). Low WIDs correspond to homogenous single-phase of cloud hydrometeors 326 
while a broad range of WIDs suggest multiple phases and/or significant turbulence and wind shear 327 
(Shupe., 2007). The regions with both low WID and Vd (< 0.5 m/s, weak turbulence) are classified as 328 
liquid phase with dominant small liquid cloud droplets and SLW. The cloud samples are classified as 329 
mixed-phase clouds when both Doppler spectrum width (WID) and Doppler velocity (Vd) values are 330 
greater than 0.5 m/s (downdraft) which represent a greater variability of velocity, greater turbulence in 331 
cloud droplets and variable size distribution including large ice or drizzle-sized particles. The cloud 332 
samples with either WID > 0.5 m/s and Vd < 0.5 m/s (or WID < 0.5 m/s and Vd > 0.5 m/s) i.e. regions 333 
of high WID but low Vd (updrafts) or low WID and high Vd (downdrafts) are re-classified into mixed 334 
phase if the reflectivity (dBZ) > -15 and liquid phase if the reflectivity (dBZ) < -15. Radar reflectivity 335 
is a function of the sixth moment of the particle size (Wang et al., 2009) hence small and uniform liquid 336 
cloud droplets exhibit significantly lower reflectivity while mixed-phase clouds normally exhibit higher 337 
reflectivity values with a higher in-homogenous particle size distribution and greater density variability. 338 
Furthermore, the cloud samples with reflectivity > 5 dBZ represent precipitation (rain or snow 339 
depending on the temperature) and hence these samples are omitted in this study. Furthermore, the 340 
cloud samples with reflectivity > 5 dBZ represent precipitation (rain or snow depending on the 341 
temperature) and hence these samples are omitted in this study.          342 
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      The estimation of WID, Vd, and dBZ thresholds was determined by the average values observed for 343 
each cloud layer based on the tropospheric height and at the estimated cloud base. These values were 344 
aggregated by prioritizing regions with more measurements over those with less ones, along with 345 
considering the cloud density at each layer, further comparing with existing studies, such as Xi et al. 346 
(2022) and Shupe (2007). Although these constraints were specifically tuned for clouds sampled during 347 
the SOCRATES campaign, we expect them to be broadly applicable to MBL clouds over the Southern 348 
Ocean.  349 
       To further demonstrate our phase classification methodology using T, LWP, WID, Vd, and the 350 
reflectivity (dBZ) as shown in Fig. 5, we present the bivariate histograms of liquid, mixed-phase and 351 
ice clouds in Fig. 6. Figure 6a illustrates the liquid cloud droplets, drizzle and rain drops based on radar 352 
reflectivity (-15 dBZ and 5 dBZ) and Doppler velocity (Vd<0.5 m/s) at higher temperatures (T>0 oC). 353 
As shown in Fig. 6a, drizzle drops are dominant in the liquid clouds at T>0 oC, with higher radar 354 
reflectivity and Doppler velocity. Marcovecchio et al., 2024 found that there is a higher drizzle 355 
frequency rate (71.8%) over SO using the ship-based radar-lidar measurements during the Measurement 356 
of Aerosols, Radiation, and CloUds over the Southern Ocean (MARCUS) field campaign than the 357 
ground-based radar-lidar measurements at the ARM East North Atlantic (ENA) site (45.1%). Figures 358 
6b-6c present the classification of mixed-phase and liquid clouds where WID ≥ 0.5 or < 0.5 m/s, with 359 
T < 0 oC and LWP ≥ 10 g/m2, using Vd and dBZ thresholds, where higher dBZ (>-15) corresponds to 360 
mixed while lower dBZ (<-15) and lower Vd (<0.5 m/s) corresponds to liquid phase. Liquid droplets 361 
due to their smaller size and uniform homogenous distribution exhibit lower dBZ, and lower Vd 362 
(updraft). Higher WID in liquid droplets mostly represent regions of turbulence and wind shear.   The 363 
2D pattern in Fig. 6c mimics that of Figure 6a, indicating that liquid clouds with more drizzle and 364 
mixed-phase clouds are dominant for LOW clouds over SO. There is a linear relationship between cloud 365 
reflectivity (dBZ) and Doppler velocity (Vd) for ice clouds, similar to liquid and mixed-phase clouds, 366 
except for Fig. 6b. Figure 6(d) represents regions classified as ice based on lower temperatures (T<0 367 
oC) and LWP < 10 g/m2. The results of Figs. 6c and 6d suggest that the ice particle size distributions 368 
are not as broader as expected even though their particle sizes are much larger with higher radar 369 
reflectivity and Doppler velocity. The threshold of very high reflectivity, dBZ > 5 represents regions of 370 
precipitation (rain or snow) and is not considered in the final phase classification.  371 
      The phase classification methodology illustrated in Figs. 5 and 6(a-d) are used together 372 
simultaneously for estimating the liquid, mixed and ice phases for the low-level clouds in this study. 373 
The described method using radar-retrieved and in-situ measurements in this study was compared with 374 
the similar thresholding values defined in previous studies (Xi et al., 2022; Romatschke & 375 
Vivekanandan., 2023; Desai et al., 2023; Wu et al., 2020; Shupe., 2007) for coherence and consistency 376 
in the phase retrieval methodology. There could be some cases where the specified Vd and the WID 377 
threshold yield in a mix or liquid-phase conditions even if the true dominant phase is ice at that level 378 
(Shupe, 2007).  379 
      A 2-dimensional cloud phase is determined as a time-height dimensional profile for the valid cloud 380 
segments based on the discussed phase estimation method. Furthermore, the 2D phase profile is used 381 
to find a 1-dimensional dominant phase profile along the time dimension, where the dominant phase is 382 
determined by finding the sample that has the highest sample count along any vertical transect. For 383 
example, if at any time interval the sample count of a particular phase (say Liquid) is greater than the 384 
sample count of the other two phases (Ice and Mix) along the vertical transect, then liquid is the 385 
dominant phase at that time interval, i.e. the phase with the majority sample count at a vertical column 386 
is the dominant phase at that instance. Furthermore, if the sample count of ice is equal to liquid along 387 
any vertical transect, then the dominant phase at that time interval is mixed phase. This 1-dimensional 388 
dominant phase with a temporal resolution of 10 seconds phase partitioning will be used to determine 389 
the phase-specific cloud macrophysical results in the next section.  390 
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 391 
Figure 6. (a-d) The bivariate histograms of radar reflectivity (dBZ) and Doppler velocity (Vd) for 392 
different spectrum widths (WID), LWPs and Temperatures (T) to demonstrate the classified 393 
liquid, ice and mixed phase cloud samples. The colorbar shows the sample count in each bin in a 394 
logarithmic scale and the dashed lines represent the threshold values for the phase classification. 395 
It is to be noted that the categories rain, drizzle, and snow are not taken into consideration in this 396 
study.  397 
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4.2 Cloud Phase Determination Results 398 

The liquid-phase clouds are firstly determined where both temperature (T) is greater than 0 oC and cloud 399 
LWP is greater than 10 g/m2, while when T is lower than 0 oC and cloud LWP is greater than 10 g/m2, 400 
the SLW clouds are determined when both WID and Vd are less than 0.5 m/s. Large ice particles are 401 
much heavier than small liquid cloud droplets with a broader spectrum width and greater fall speeds 402 
(Xi et al., 2022). The dependence on a linear LWP calculation as per the phase algorithm in this study 403 
adds some difficulty in resolving the exact hydrometeor phase in a vertical column. For instance, there 404 
could be cloud layers with an ice-phase top and liquid or mix-dominated base, but the LWP constraint 405 
considers the whole column to be ice-phase if the LWP < 10 g/m2. A significant number of mixed-406 
phase cloud samples were found at the cloud base due to broader WID and larger Vd values, which 407 
could be attributed to the presence of either larger drizzle drops or ice particles.  408 
      These estimated phase retrievals are illustrated in Fig. 7(a-h) from one selected case, which was 409 
chosen arbitrarily to offer visual clarity in phase profiles. The cloud phase presented in Fig. 7g is the 2-410 
dimensional phase retrieval method but may be not highly depictive of the actual cloud phase, whereas 411 
Fig. 7h is the dominant cloud phase for each vertical transect retrieved from the 2D phase data where a 412 
phase is considered dominant if its sample count is greater than the other two in the same vertical 413 
column. This dominant cloud phase inferred from this 2D data along the vertical axis returns reasonably 414 
accurate findings compared to other phase detection studies over the SO. Note that the cloud phase is 415 
not available for very low LWC values due to the constraint used for in-cloud conditions. 416 
 417 
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 418 
Figure 7. A case study for flight RF09 during SOCRATES illustrating the phase-detection 419 
algorithm in this study. (a) The HCR Reflectivity (dBZ) with the flight altitude in meters (black 420 
line), (b) Spectrum Width (WID), and (c) Doppler Velocity (Vd) profiles. (d) and (e) represent the 421 
HSRL (lidar) Particle Depolarization Ratio (PLDR) and Backscatter Coefficient (β). (f) 422 
represents the LWP, LWC, IWC values for each determined phase in (d). (g) and (h) represent 423 
the determined 2-D and dominant cloud phase. The time series is in decimal points where 27 424 
hours is 3:00 UTC. 425 

https://doi.org/10.5194/amt-2024-124
Preprint. Discussion started: 5 August 2024
c© Author(s) 2024. CC BY 4.0 License.



16 
 

      Higher IWC values correspond to ice phase particles greater than 200 µm in size. It is noticeable 426 
that the ice phase also exists for very low or negligible IWC values which correlates to very small-sized 427 
ice particles. The cloud transects where the dominant phase is liquid but also has a significant amount 428 
of mixed phase around the cloud base is mostly indicative of drizzle or precipitation-size particles.   429 
       Inspecting the 2DS particle probe imagery (not shown in this paper) reveals that liquid cloud 430 
droplets are mostly present in the form of spherical shape, and large ice particles have irregular shape, 431 
while small ice particles cannot be resolved very well using the 2DS probes. The 2DS images 432 
demonstrate that liquid cloud droplets are dominant at the upper levels of cloud layer, while a mixture 433 
of liquid cloud droplets and ice particles exists at the lower levels. Large ice particles (Dp > 50 µm) are 434 
easily identified by 2DS images, while it is challenging to distinguish small ice particles with cloud 435 
droplets from 2DS imagery. D’Alessandro et al. (2021) developed a phase-determination method by 436 
visually inspecting the 2DS particle imagery for particles of size greater than 50 µm and feeding this 437 
training data to a multinomial logistic regression (MLR) model to classify them as liquid, mix or ice 438 
phase. For the particles of size smaller than 50 µm, they were classified using a simple CDP number 439 
concentration thresholding method: Nc < 1 cm-3 corresponds to ice phase and Nc > 1 cm-3 represents 440 
liquid phase. 441 
     Table 4a lists the comparison of the phase determination using the MLR method (D’Alessandro et 442 
al., 2022; 2021) and this study. With a total of 2335 overlapping samples, there are 45.7%, 26.2% and 443 
28.0% of classified liquid, mixed-phase and ice clouds from this study, while they are 80.4%, 11.6% 444 
and 7.9% from the MLR method. This comparison indicates that more liquid, but less mixed-phase and 445 
ice cloud are identified by the MLR method than our results for the overlapping samples. Of the three 446 
categories, there are a total of 995 samples of liquid clouds are identified by both the MLR method and 447 
our study at the same timestamps, which accounts for 93.3% of classified liquid clouds from this study 448 
and 53.0% of classified liquid clouds from the MLR method. The overlaps in ice and mixed-phase 449 
clouds from these two methods are much less than their liquid cloud counterparts. The 162 (140) 450 
overlapping samples for ice (mix) correspond to 87% (51%) of classified ice (mix) cloud samples from 451 
MLR method and 24.7% (22.83%) of classified ice (mix) samples detected by this study. Note that 452 
these percentages are just based on the matched dataset samples and do not represent the entire dataset 453 
for both MLR, and the dominant cloud phase determined by this study. 454 
      To further evaluate the cloud phase partitioning method, we compare the classified phases from this 455 
study with the MLR method and Shupe et al. (2005) and Intrieri et al. (2002) method for the classified 456 
low-level cloud samples for the 15 research flights during SOCRATES. Shupe et al. (2005) and Intrieri 457 
et al. (2002) used the lidar median PLDR (particle depolarization ratio) values to classify liquid (PLDR 458 
< 0.11), mix (0.11 < PLDR <0.15) and ice (PLDR>0.15), respectively. As expected, the percentages 459 
determined by this study in Table 4b are similar to the results in Table 4a, the percentage of liquid 460 
clouds classified by this study is ~10 to 20% lower, but ~10 to 15% higher in mixed-phased clouds 461 
compared to those classified from both the methods of MLR and Shupe et al. (2005). The ice clouds 462 
classified from this study are ~15% higher than those detected by MLR but ~10% lower than those 463 
classified using Shupe. (2005) and Intrieri. (2002) method. This comparison is very reasonable given 464 
that our method is developed from aircraft in measurements and radar-measurements over SO, while 465 
the method developed by Intrieri et al., 2002 and Shupe et al., 2005 were based on the ground-based 466 
lidar measurements over Arctic regions and MLR uses a machine learning algorithm trained over the 467 
in-situ cloud and drizzle droplet measurements (CDP+2DS). The other reason for the difference lies in 468 
the in-cloud constraints (LWC>0.001 g/m3 to define in-cloud samples) used in our method which were 469 
not used for the other two methods. Furthermore, MLR also reported a significantly high number of 470 
unclassified cloud samples (~56%) for aircraft-measured in-situ temperatures above freezing point 471 
(>0oC) which were not included in this phase-percentage calculation for low clouds using MLR (Table 472 
4(b) column 2).  473 
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      If we treat the results classified in this study as a reference, the lidar median PLDR values to classify 474 
liquid, mixed and ice clouds may need to be tuned slightly for SO low clouds. The existing PLDR 475 
thresholds (<0.11 for liquid, 0.11-0.15 for mixed, and >0.15 for ice phase clouds) as defined by Sassen 476 
(1991), Intrieri (2002), and Shupe (2007), were originally established for Arctic clouds, which are 477 
characteristically different from the MBL clouds over the Southern Ocean (SO). Using the classified 478 
results in this study as a reference, we tune the existing HSRL PLDR thresholds for SO low-level clouds 479 
and have the updated thresholds of PLDR < 0.09 for liquid phase, 0.09-0.18 for mixed phase, and >0.18 480 
for ice phase clouds. This adjustment was based on a simple analysis of the low cloud samples measured 481 
simultaneously by both radar and lidar. Further scrutiny may be necessary to estimate the accuracy of 482 
these thresholds for low-level clouds over SO, and this could be a focus for future research. 483 

Table (4a). Comparison of the phase determination between MLR method cloud phase product 484 
(D’Alessandro et al., 2022) and this study matched at the same temporal resolution (10 secs). 485 
Presented number are raw sample counts.  486 

MLR Method/ This Study Ice (this study) Mix Phase (this study) Liquid (this study) 
Ice (MLR) 162 16 8 
Mixed Phase (MLR) 67 140 64 
Liquid (MLR) 426 457 995 

 487 
Table (4b). The cloud phase partitioning for each phase-type determined using this method 488 
(dominant phase) compared with the MLR method and Shupe (2005), Intrieri (2002) method for 489 
the classified low cloud samples during SOCRATES. The data is aggregated to a 10 second sample 490 
interval. The unclassified cloud samples in the MLR cloud phase product are not included in the 491 
sample % calculation in column 2, and the in-cloud constraint (LWC>0.001 g/m3) is not included 492 
for phase detected by MLR (column 2) and Shupe (2005), Intrieri (2002) (column 3). 493 

 This Study MLR Method Shupe et al., 2005; 
Intrieri et al., 2002 
Method 

Liquid % 45.4 71.7 52.3 
Mix % 22.2 10.3 5.5 
Ice % 32.5 18.0 42.2 

      As previously mentioned, it's important to note that these three classification methods are different. 494 
The MLR method determines cloud phase based on tuning a MLR (multinomial logistic regression) 495 
model to cloud hydrometeors sampled using the in-situ probes (CDP+2DS) onboard the NCAR/GV 496 
aircraft during SOCRATES, while we used both in-situ and radar measurements in this study. The 497 
HSRL lidar method is purely dependent on the PLDR thresholds. The HSRL lidar detects a smaller 498 
fraction of the cloud fraction compared to the HCR radar, as lidar is highly attenuated for thicker cloud 499 
layers whereas HCR radar can offer a well-resolved cloud profile. Consequently, the radar and lidar do 500 
not provide measurements for the exact same cloud layers, with an overlap region of only about 8%. 501 
Therefore, while the comparison between these three methods is not entirely straightforward, it provides 502 
a reasonable rough estimation for comparing the phase estimations across a linear time dimension. 503 

 504 

 505 
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4.3 Cloud characteristics for each determined cloud phase  506 

Table 5 lists the summarized macrophysical cloud properties for each classified phase, based on the 1-507 
dimensional dominant phase from all 15 research flights during SOCRATES. The statistical results 508 
listed in Table 5 include sample counts (and percentages) along with mean and standard deviation for 509 
cloud-base and -top temperatures (Tbase and Ttop) and heights (Hbase and Htop), cloud thickness (ΔH) and 510 
LWP.   511 
 512 
Table 5. Summaries of cloud macrophysical properties for each determined cloud phase  513 

Phase Samples Tbase (oC) Ttop (oC) Hbase (km) Htop (km) ΔH (km) LWP (g/m2) 
Ice 1043 

(~32.5%) 
-3.5±4.6 -6.0±4.8 1.12±0.63 1.59±0.61 0.47 2.7±2.6 

Mixed- 
phase 

712 
(~22.2%) 

-2.1±4.3 -8.2±4.8 0.74±0.53 1.65±0.60 0.91 200.5±267 

Liquid 1458 
(~45.4%) 

-1.2±4.9 -3.9±5.4 0.90±0.54 1.34±0.59 0.44 89.7±100 

 514 
4.3.1 Cloud-base and -top temperatures (Tbase and Ttop) 515 

Low clouds generally exhibit higher temperature trends than the recorded aircraft temperature at the 516 
actual flying levels because of the difference in tropospheric altitude of the flight and the actual cloud 517 
boundaries. The ERA5 air temperature is used to extract the temperature at the cloud base and cloud 518 
height altitudes. Figure 8(a) shows the occurrence probabilities of the estimated cloud phases against 519 
the ERA5 air temperature for the entire cloud transect, highlighting that all the cloud phases have the 520 
highest occurrence in the range of -5 to -2.5 oC, while no ice and mixed phase exist at temperatures 521 
greater than 0 oC, 100% liquid-phase concentration is observed at T >0 oC. The frequency distributions 522 
in Fig. 8 (b-c) show that all Ttop samples from three phases increase monotonically from -20 oC, peak 523 
at -7.5 and -5 oC for mix and ice respectively, and -2.5 oC for liquid-phase, and quickly vanish after 0 524 
oC except for liquid samples. The frequency distributions of Tbase samples from three phases almost 525 
mimic their Ttop counterparts but with different peaks: The maximum frequency of liquid and ice phase 526 
occurs at -2.5 oC, while mixed-phase Tbase remains at 0 oC. The different peaks in Tbase samples from 527 
three phases have reflected in their mean Hbase where the mean ice-phase Hbase is 1.12 km, higher than 528 
other two Hbase (0.74 and 0.90 km). Tbase and Ttop for liquid phase have the highest frequency at near -1 529 
oC. Ice and mixed-phase cloud temperatures show similar trends with most samples around lower 530 
temperatures.   Interestingly the peaked Tbase of mixed-phase clouds occurs at 0 oC because most of the 531 
mixed phase cloud samples occur around the cloud base where their temperatures are higher than cloud-532 
top ones. It should also be noted that this analysis considers only the dominant phase for each layer 533 
(Fig. 8b-c), but the 2-dimensional phase is exclusively liquid for temperatures greater than 0 oC (Fig. 534 
8a) as discussed in the phase determination method. 535 
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 536 
Figure 8. Probability distribution of the entire cloud layer temperature (T) from ERA5 air 537 
temperature, cloud-top (Ttop) and cloud-base (Tbase) temperatures for each determined phase 538 

4.3.2 Profiles of determined cloud phase and radar observations  539 

Figure 9 shows the vertical distributions of classified liquid, mixed-phase and ice cloud samples, as 540 
well as the total samples of LOW clouds from 0 to 3 km (retrieved from the 2-dimensional cloud phase 541 
profile). As mentioned above, liquid clouds are dominant, and its occurrence has the highest frequency 542 
around 0.75 – 1.2 km. The ice cloud occurrence follows the trend of liquid clouds with the higher 543 
frequencies at the levels of 0.75-1.5 km. Differing to liquid and ice clouds, the mixed-phase occurrence 544 
is evenly distributed in the cloud layer with higher sample counts from 0.5 km to 1.5 km. It should be 545 
noted that the sample counts of all three phases diminish to 0 at around 150 m which is where the 546 
estimated cloud base lies for low clouds in this study. 547 

 548 
Figure 9. Profiles of the cloud samples for each determined cloud phase along with the total 549 
sample number (black line).     550 

      To further investigate the vertical distribution of classified liquid, mixed-phase, and ice clouds in 551 
LOW clouds during SOCRATES, we plot the normalized vertical distributions of HCR reflectivity 552 
(dBZ), Doppler Velocity (m/s) and Spectrum Width (m/s) in Fig. 10 (Contoured Frequency Altitude 553 
Diagram, CFAD).  554 
      Figures 10a-10c show the CFADs of determined liquid cloud samples where most of radar 555 
reflectivity dBZ values range from -35 to -25 with the median values of ~-25 dBZ, except for lower 556 
bottom regions of the cloud (normalized height, Hi < 0.2).. The nearly constant median values with 557 
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height, and moderate dBZ, Vd and WID, indicate the liquid cloud microphysical properties vary slightly 558 
within cloud layer with a moderate range of cloud droplets. The maximum occurrences of Vd and WID 559 
for liquid clouds are ~ 0.0 m/s and 0.2 m/s. Much higher Vd and WID at the low bottom regions indicate 560 
that there are some large drizzle drops with a broader size distribution, however the number 561 
concentrations of these large drizzle drops are not higher enough to significantly contribute radar 562 
reflectivity. Based on the aircraft in situ measurements during SOCRATES (Zheng et al. 2024), the 563 
cloud droplet and drizzle radii near cloud base are one order of magnitude difference (7 µm vs. 70 µm), 564 
whereas their number concentrations are four orders of magnitude difference (100 cm-3 vs. 10-1 cm-3). 565 
These lower number concentrations may attribute to the lower reflectivity near cloud base in Fig. 10a. 566 
Another possible reason to explain the contradicted relationship between radar reflectivity and Vd/WID 567 
is not enough liquid samples at the lower bottom regions, which can’t be ruled out.  568 
      Compared to the CFADs of liquid cloud samples, the mixed-phase clouds have a broader and higher 569 
radar reflectivity dBZ values with the maximum frequencies occur at ~ -10 dBZ around mid-cloud layer, 570 
presumably due to their larger particle size and irregular shape or morphology. Correspondingly, their 571 
median values are also much large (-15 ~ -10 dBZ), except for the lower bottom regions (Hi < 0.2). The 572 
CFADs of Vd for mixed-phase clouds mimic the shape of liquid cloud samples but with higher 573 
maximum occurrence at ~0.5 m/s and their median values increase monotonically from cloud top (~ 574 
0.6 m/s) to cloud base (~1.3 m/s), indicating that cloud droplets or ice particles increase from cloud top 575 
to cloud base, much faster at the lower bottom regions. Consequently, there are more large drizzle drops 576 
or ice particles near cloud base with significant downwelling movement and the prevalence of a broader 577 
size distribution of particles. Surprisingly, the CFADs of WID for mixed-phase clouds are similar to 578 
those of liquid clouds, but not as broader as liquid clouds at the lower bottom regions. These results 579 
suggest that the well-mixed cloud droplets/drizzles and ice particles at the lower bottom regions make 580 
particle size broader and larger WID values, but they are not as broader and higher WID as liquid clouds 581 
where more both cloud droplets and drizzle drops co-exist near cloud base.  582 
      For ice clouds, their CFADs of Vd are similar to those of liquid clouds, however, their CFADs of 583 
radar reflectivity and WID significantly differ to those of liquid and mixed-phase clouds. Most of radar 584 
reflectivity dBZ values range from -45 to -25 at the upper regions of cloud layer with the median values 585 
of ~-30 dBZ. Surprisingly, these ice particles with lower radar dBZ values have a much higher WID 586 
value, up to 0.8 m/s, and lower Vd values (~ 0-0.2 m/s). These results indicate that most ice particles 587 
for SO low clouds have small particles but with a broader size distribution. The CFADs of ice clouds 588 
at the upper regions of cloud layer are consistent to those CFADs of liquid and mixed-phase clouds at 589 
the lower bottom regions, suggesting that the lower dBZ regions where small cloud droplets or ice 590 
particles are dominant can have a broader size distribution for SO low clouds.  591 
  592 
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 593 
Figure 10. Normalized vertical distributions of radar reflectivity (dBZ), Doppler velocity Vd (m/s) 594 
and spectrum width (m/s) for the classified liquid (a-b), mixed (d-f), and ice (g-i) clouds. during 595 
SOCRATES. Height normalization is determined by Hi= 𝑯-𝑯𝒃𝒂𝒔𝒆

𝑯𝒕𝒐𝒑-	𝑯𝒃𝒂𝒔𝒆
, where the cloud top is 596 

denoted as 1 and base as 0. The median values are represented using the black dashed lines and 597 
the white lines in Vd denote 0 m/s. The colorbar denotes the occurrence frequency (%).       598 

      Vd and WID are codependent variables as Vd indicates the motion of the hydrometeor samples 599 
moving away or towards the radar, however WID is indicative of the spread or variability in the velocity 600 
distribution. For an example, a positive (negative) Vd represent a downdraft (updraft) motion, but a high 601 
(low) WID indicates a significant variability in the velocities, including greater (lower) turbulence and 602 
wind shear, which can be interpreted as a broader (narrower) size distribution. The regions with high 603 
WID but low Vd can be explained as that the average velocity of the cloud particles within the radar's 604 
sampling volume is low, but with a significant spread or variability in their individual velocities due to 605 
significant turbulence, wind shear, or different particles sizes. Conversely, a high Vd but a small WID 606 
suggests the either large drizzle drops, or ice particles are moving (downward) rapidly but uniformly 607 
with a narrow size distribution.  608 
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      The CFAD plots in Fig. 10(a-i) display noticeable skewness. Generally, the frequency plots are 609 
skewed to the right, but in Fig. 10(d), the dBZ frequency for mixed-phase samples is skewed to the left 610 
due to the higher reflectivity values observed for mixed-phase clouds. Moreover, the median values 611 
(black dashed lines in Fig. 10) are significantly shifted towards higher values of WID and Vd near the 612 
cloud base, while they shift towards lower values in dBZ for liquid and mixed phase clouds in Fig. 10(a 613 
and d). This phenomenon can be attributed to the majority of cloud droplets exhibiting lower reflectivity 614 
yet significantly higher values for spectrum width and Doppler velocity at the estimated cloud base. 615 
Contributing factors include lower sample counts, and increased turbulence or wind shear contributing 616 
to evaporation of particles around the estimated cloud base. Additionally, this observation also results 617 
from the nature of cloud sampling during SOCRATES as demonstrated in Fig. 7(a-c), which introduces 618 
greater volatility in recorded datasets due to the proximity of the aircraft to the cloud layers compared 619 
to ground-based or satellite remote sensing.   620 

5 Summary and Conclusions 621 

This study developed a phase detection method using HCR radar and in-situ measurements to determine 622 
the cloud phase over the Southern Ocean for low-level clouds sampled during the 15 research flights of 623 
the SOCRATES campaign. The macrophysical properties and statistical results for the different types 624 
of clouds and their correspondingly classified phases were discussed. Finally, the vertical distribution 625 
for each phase-specific radar retrieved parameters was presented. Comparisons of this study with 626 
existing literature were also discussed. The following conclusions were finally drawn: 627 
1. A new method based on radar reflectivity and spectrum width gradient was developed to estimate 628 

cloud boundaries and classify cloud types as LOW, MID, and MOL based on the estimated cloud-629 
top and -base heights. LOW-type clouds with Hbase and Htop below 3km were found to be the most 630 
prevalent with almost 90% occurrence frequency. Liquid Water Path was calculated for each cloud 631 
type using the estimated cloud heights and a merged CDP+2DS LWC measurement, with an 632 
uncertainty of around 10 g/m2. Average LWP values for LOW, MOL and MID clouds are 96.7 g/m2, 633 
109.48 g/m2, and 27.9 g/m2, respectively.  634 

2. A phase determination method was developed to classify the single-layered low-level (LOW) 635 
clouds as liquid, mixed, and ice phases with the occurrence frequencies of 45.4%, 22.2% and 32.5%, 636 
respectively. Comparison with the MLR phase detection method by D’Alessandro et al. (2021), and 637 
Shupe et al. (2005) and Intrieri et al. (2002) method which used lidar PLDR thresholds, showed 638 
that the percentage of liquid clouds classified by this study is ~10 to 20% lower, but ~10 to 15% 639 
higher in mixed-phased than the results from other two methods, while the classified ice clouds 640 
from this study are ~15% higher than those detected by MLR but ~10% lower than those classified 641 
using Shupe. This comparison is quite reasonable, as our method is derived from aircraft 642 
measurements and radar observations over SO while the methods developed by Intrieri et al. (2002) 643 
and Shupe et al. (2005) were based on ground-based lidar measurements in Arctic regions. 644 
Additionally, the MLR method employs a machine learning algorithm trained on in-situ cloud and 645 
drizzle droplet measurements (CDP+2DS). Using the classified results in this study as a reference, 646 
we tune the existing HSRL PLDR thresholds for SO low-level clouds and have the updated 647 
thresholds of PLDR < 0.09 for liquid phase, 0.09-0.18 for mixed phase, and >0.18 for ice phase 648 
clouds. 649 

3. For the low-level clouds from 0 to 3 km, the mixed-phase cloud dominates near cloud base (<1 km) 650 
but are well distributed along the vertical cloud layer which could be attributed to large drizzle 651 
drops or ice particles. The ice-phase clouds are prevalent from the mid to top cloud level (1-3km), 652 
while most of the liquid-phase clouds are located in the lower mid-cloud range (from 500 m to 1 653 
km).   654 
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4. The normalized vertical profiles (CFADs) of radar reflectivity, Doppler velocity (Vd) and spectrum 655 
(WID) for each determined cloud phase show that the liquid and ice clouds have the lowest 656 
reflectivity values, with median reflectivities of around -30 to -25 dBZ, while mixed-phase clouds 657 
have a higher median reflectivity of around -15 to -10 dBZ due to large drizzle drops or ice particles. 658 
Higher Doppler velocity and Spectrum Width at the cloud base indicate greater drizzle or particle 659 
concentrations with significant downwelling movement and the prevalence of a wider size 660 
distribution of particles. The CFADs of ice clouds at the upper regions of cloud layer, lower dBZ 661 
values but larger WID values, are consistent to the CFADs of liquid and mixed-phase clouds at the 662 
lower bottom regions. These results indicate that small cloud droplets or ice particles (lower dBZ) 663 
for SO LOW clouds can have a broader size distribution (large WID).  664 

       In conclusion, the results presented in this study provide comprehensive statistical and phase-665 
relevant macrophysical properties for the low-level clouds sampled during the SOCRATES campaign, 666 
along with presenting new methods to estimate cloud boundaries and determine the dominant cloud 667 
phase. These results would improve the current understanding of the low-level Southern Ocean cloud 668 
properties and further aid in improving model simulations and better representation of the climate. 669 
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