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Dear editor and reviewer,

Thank you for giving us the opportunity to address the comments provided by the
anonymous reviewers. We have made every effort to respond thoroughly to their
feedback. Attached is a response letter with our responses highlighted in blue. The
revised manuscript also uses blue text to indicate the changes made. In some answers,
this blue text is highlighted if there is more than one answer.

We would also like to express our gratitude to the anonymous reviewers for their valuable
comments and suggestions. We appreciate the time and effort they have invested in
improving our work. We firmly believe that this manuscript is now suitable for publication
and an excellent contribution to share with the broader research community.



Reviewer’s comments (Anonymous Referee #1, 31 Oct 2024)

This paper requires major edits to be considered for publication. The introduction and
related works sections are extremely weak and do not set up a solid foundation for the
work the authors hope to achieve with their gradient boosted calibration of low-cost ozone
sensors. The many figures and tables regarding feature selection are not well explained.
The ML model generation and final model outputs, especially the gradient boosted model,
seem sound, but the authors neglect to include the results of the testing data, which is a
better indicator of whether the models are overfitting and better demonstrates how these
models would perform in the field as compared to the training statistics, which are the
focus of the article. The grammar throughout needs improvement, and there are many
instances where subscript is needed (including in figures). Overall, additional literature
review and context will lay a stronger foundation for the model building, and careful
revision of which figures and tables are really necessary along with added information on
the training dataset of the model (which speaks to overfitting and real-world applicability)
will greatly improve the paper.

Response 1: First of all, we would like to sincerely thank you for your thoughtful review
and comments, which have greatly contributed to improving our work.

In the following sections, we will address all your comments, queries, and suggestions.

The introduction section does not provide sufficient context. First, the authors list a few
vague sentences about air quality in general. For example, line 15: “exceeds the limit
values of the recommended safety guidelines’- what guidelines? Limits for what
pollutants?

Response 2: We have improved this paragraph and placed the Air Quality Guideline
(AQG) reference next to this sentence. Also, we have included the information from this
guideline related to ground-level ozone in the text, with a target of 100 pg/m3 during 8
hours in average. These changes are introduced in the second and third paragraphs of
the new version, as follows:

AQ has a direct impact on both human health and the environment (Manisalidis et al. (2020)). According to World Health

15  Organization (WHO) (H. Adair-Rohani (2024)), 99% of the world’s population breathes air that exceeds the limit values of

the recommended safety Air Quality Guideline (AQG) (Organization et al. (2021)). This guideline specifies recommended

levels for these pollutants for both short-term and long-term exposure. It is regularly reviewed and updated to incorporate the

latest scientific evidence on the health effects of air pollution. This helps governments and authorities establish and implement
policies to protect human health from the adverse effects of air pollution.

20 Among these pollutants, we focus on O3, a highly oxidizing gaseous pollutant, that has very reactive properties and is

harmful at high levels. Notice that in this AQG with regard to O3, the target is to achieve a concentration of 100 pg/m3

measured on average of daily maximum 8 hours. Continued exposure to levels above those recommended by this AQG

For your information, the whole table from this AQG (not included in the manuscript) is:



Poliutant Averaging time Interim target AQG level

1 2 3 4
PM,_ pgim*  Annual 35 25 15 10 5
24-hour* 75 50 375 25 15
PM, pg/m*  Annual 70 50 30 20 15
2d-hour* 150 00 75 50 45
0, ug/m? Poak season® 100 70 - - 80
B-hour* 160 120 = - 100
NO,, pg/m? Annual 40 30 20 - 10
24-hour 120 50 - - 25
S0, pg/m”* 2d-hour* 125 50 = = 40
C©O, mg/m* 24-houre 7 - - - 4

* 0Oth percentile [Le. 3-4 excesdance days per year).
& Awerege of dally masimum B-hour mean O, concentration in the sin conseculine months with the highest six-month
FURRENG-aveisge Ou concenlration.

A brief description of how ozone is formed is given, but no specifics on the region of
interest or what these health effects and consequences.

Response 3: To explain the effects of ozone on our health, we have included the following
explanation next to the O3 details, in the third paragraph of the new version (lines 22-26
of the revised version):

measured on average of daily maximum 8 hours. Continued exposure to levels above those recommended by this AQG
may lead to respiratory irritation, lung inflammation, aggravation of respiratory diseases such as asthma or bronchitis,

cell damage and may have associated effects on the cardiovascular system. Those at the highest risk include children,

25 older adults, people with respiratory or heart conditions, and individuals who spend significant time outdoors (Garcia
et al. (2021))]

This information is extracted from the study by Garcia, M. A., Villanueva, J., Pardo, N.,
Perez, I. A., and Sanchez, M. L.: “Analysis of ozone concentrations between 2002-2020
in urban air in Northern Spain”, Atmosphere, 12, 1495, 2021.

The authors mention that low-cost sensors have lower accuracy — why? What are the
issues surrounding them?

Response 4: Thank you for your comment. In order to clarify this issue, we have improved
the explanation about the accuracy of low-cost sensors, based on the following criteria: a)
sensor technology, b) calibration, c) environmental sensitivity, d) limited range and
sensitivity, e) materials and build quality, f) sensor cross-sensitivity, g) maintenance and
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lifespan. These details about low-cost sensors are also found in several references that
have been included in the new version of the manuscript as follows (lines 32-39):

ing to Annex III-B of the European (Directive 2008/50/EC (2008)). And Low-Cost Sensor (LCS) are becoming increasingly
important, an interesting alternative, but they do not have good accuracy (Borrego et al. (2016)) in comparison with the offi-
cial equipment, due to limitations in their sensing technology, lack of frequent calibration, sensitivity to environmental
35 factors, cross-sensitive issues, use of less durable materials and the absence of rigorous certification processes. While
official equipment uses advanced technologies and is subject to strict standards of accuracy and reliability, LCS are de-
signed to offer basic monitoring at a low price, which involves sacrifices in accuracy and durability. So, in this context it
is a challenge to estimate the official measurements from these LCS with a reduced error (Garcia et al. (2022); Borrego

et al. (2016)).

One other machine learning-enabled calibration effort is mentioned in this section, with no
information on HOW machine learning actually improves this. This feels out of place here
and the same information is listed again in section 2, so | would suggest removing it here
and expanding on it in section 2. More exploration of other machine learning based
calibration algorithms beyond the ZPHSO01B-specific ones referenced later on would
strengthen the paper as ML-based calibration is common practice in the field. The outline
in line 36 is unnecessary.

Response 5: Thank you for your comments. We have improved the wording and retained
Zimmerman's reference and details only in the related work section. In the introduction,
we have instead included a more general reference regarding best practices in machine
learning methods for environmental research, based on a review of over 148 highly cited
research papers. Additionally, we have introduced the machine learning algorithms used
in this paper, along with their abbreviations. For better readability and clarity, we have left
the outline with a better wording."

Thus, all these changes we have been introduced in the last part of this introduction
section as follows (lines 40-54):

40 Artificial Intelligence (AI) techniques are valuable for environmental research due to their capacity to process large
datasets and identify patterns that enhance system explainability and clarify the behavior of these AQ parameters (Zhu
et al. (2023)).
In this paper, we show that Machine Learning (ML) models, in particular ensemble models, can correct the raw
readings from LCS by taking into account additional environmental information, such as Temperature (Temp), Relative
45 Humidity (RH), as well as other pollutants, being able to use these sensors to extend the resolution of air quality
monitoring networks at low cost, but assuming a small error. This is our main objective. We propose and compare different
techniques, reducing the estimation error up to 94.05% based on Mean Absolute Error (MAE) measurements, with a Mean
Relative Error (MRE) of 7.21%. achieving the best results with the Gradient Boosting (GB) algorithm and outperforming the
related work, using sensors approximately 10 times less expensive. We also carry out the calibration process using Random
50 Forest (RF), Adaptive Boosting (ADA) and Decision Tree (DT) models.
The rest of the paper is structured as follows. Section 2 introduces the related work. Section 3 explains the experimental
work carried out for the deployment of LCS and shows the data processing, as well as the use of ML algorithms for the O3
calibration of these L.CS. The results are shown in Section 4 and finally, the conclusions and future work are presented in

Section 5.
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In table 1, rather than listing “low”, “mid-low”, etc. and then defining it in the text, it would
be easier for the reader if the cost was just listed in the table.

Response 6: We have included the price range information in the caption of this Table 1
and in the text in the related work section, as follows (lines 59-65):

Module Sensors Relative cost

SDSOI11 (Nova Fitness Co., Ltd. (2024)) Temp, RH, PM. PA Low
DL-LPSP (DecentLab, Ltd. (2024)) Temp, RH, CO2, PA Low
MiCS-6814 (SGX, SensorTech (2024)) CO, NO2, CZH30H, NH3, CH4 Low

ZPHS01B (Zhengzhou Winsen Electronics Technology Co. (2024)) | Temp. RH. PM1-10, CO, CO2, 03, NO2, TVOC Mid-Low
Sensit RAMP (Sensit (2024)) PM2.5. CO, CO2, NO, NO2, 03 High

AirSensEUR (Van Poppel et al. (2023)) NO, NO2, 03, CO, PM2.5, PMI10, PM1, CO2 Mid-High

Table 1. AQ Sensor modules with cost estimate: Low (less than 10%), Mid-Low (100-200%), Mid-High (600-1000%) and High

(7=<4000%).

Since in AQ) different pollutants are considered and each sensor measures only one, we will analyze sensor modules

60 that embed some of these LCS. A list of these sensor modules with a cost estimate is given in Table 1. The selection
criteria of these modules is determined by the related work, selecting those modules which have been considered under

a similar studies as the proposed here. We must stress that these modules have different costs due to their quality, order
quantity, country, etc. that we can classify in: Low (less than 10$), Mid-Low (100-200%), Mid-High (600-1000$) and High
~=<40008%). A larger selection and comparison of these LCS modules are given in (Gareia et al. (2022)) and (Borrego

65 etal (2016)).

Better distinction is needed between what is an individual sensor vs. what is a complete
package. The table is titled systems and/or modules, but the text does not explain what
the distinction between a system or module is.

Response 7: Thank you for this comment. In this paper, there are no differences between
modules and systems since both refer to multi-sensor platforms. We have unified these
words as modules, as you can see in the previous response.

Why were these chosen for this table? Without any explanation as to why these are here
it seems random.

Response 8: The selection criteria of these modules is determined by the related work,
selecting those modules which have been considered under similar studies as the
proposed in this manuscript. These details have been introduced in the new version of the
manuscript as you can see in the same paragraph depicted in Response 6. The
highlighted part contains this explanation as seen below (lines 60-62):

Since in AQ different pollutants are considered and each sensor measures only one, we will analyze sensor modules

60 that embed some of these LCS, A list of these sensor modules with a cost estimate is given in Table 1. The selection
criteria of these modules is determined by the related work, selecting those modules which have been considered under

a similar studies as the proposed here. l“-"e must stress that these modules have different costs due to their quality, order
quantity, country, etc. that we can classify in: Low (less than 10$), Mid-Low (100-200%), Mid-High (600-1000%) and High
(7=<4000%). A larger selection and comparison of these LCS modules are given in (Garcia et al. (2022)) and (Borrego

65 etal (2016)).



There is also no explanation as to why some are more expensive than others — are some
better performing?

Response 9: We have added additional information to justify this point regarding
differences in their prices. Note that even within this low-cost range, there are variations
in the quality of LCS production, such as the materials used and sensor calibration, which
affect accuracy and durability.

These details have been introduced in the new version as follows (lines 66-74):

Note that LCS are designed for basic monitoring at a low cost, which compromises accuracy and durability. In this

list, there are several types of LCS. Optical type sensors, such as SDSO11 (Nova Fitness Co., Ltd. (2024)) and DL-
LPSP (DecentLab, Ltd. (2024)), that measure the amount of light absorbed by a given gas. Metal-oxide sensors, such

as SGX, SensorTech (2024) that measure the change in electrical conductivity on a semiconductor due to the presence

70 of certain gases. Usually this type of sensors are the cheapest and are particularly susceptible to cross sensitivities. And
electrochemical sensors that have higher selectivity, good for measuring specific gases, but they are more expensive.
Among these, Sensit RAMP (Sensit (2024)) and AirSensEUR (Van Poppel et al. (2023)) use this type of sensors. Fi-
nally, the ZPHS01B module (Zhengzhou Winsen Electronics Technology Co. (2024)) integrates optical, metal-oxide and

electrochemical sensors and it is a Mid-Low price module with the best price/sensor ratio.

In line 48, “it is necessary to use modules embedding as many AQ LCS as possible.” -
why is it necessary?

Response 10: This is necessary for us because gases are often correlated with other
gases (cross-sensitivity issues) and with factors not directly related to air quality, such as
temperature and relative humidity. To clarify these points, we have improved the wording
and included references that support these arguments.

These details are reflected in the revised version of the manuscript as follows (lines 75-
77):.

75 Since one of the key points to improve the accuracy of these LCS is the use of marginal information (such Temp, RH as
well as other AQ pollutants), exploited using Al techniques (Karagulian et al. (2019); Esposito et al. (2016)) as mentioned

before, it is necessary to use multi-gas modules embedding as many AQ LCS as possible.

In line 49, it is stated that one of these “is the best solution at the time of writing”. If this
means the best choice for the author’s specific set of needs and wants, this needs to be
clearly stated. It reads as an opinion stated as universal fact. Table 2 does not summarize
4 distinct concentration levels as stated in the text.

Response 11: Following the previous response, in the manuscript we have included a
better explanation of this statement and explained better the output of TVOC sensors with
4 levels from this ZPHS01B module.

All this information is included in the next paragraph (lines 78-87):

Thus, among the different low-cost alternatives and taking into account the number of sensors and the price/sensor

ratio, the ZPHSO1B (Zhengzhou Winsen Electronics Technology Co. (2024)) is the AQ sensor module that best meets the



80 the needs and objectives of this study at the time of writing, since it embeds 9 different sensors: Temp(°C), RH (%), as
well as CO, CO2, NO2, O3 that are measured in Parts Per Million (ppm), formaldehyde (CH20O) that is measured in mg/m3.
PM measured in j1g/m* and TVOC that is measured using 4 levels according to its concentration (0-very low, 1-low, 2-
intermediate and 3-high). Table 2 summarizes all this information. Notice that the O3 sensor used in this module is the
electrochemical ZE27-03 (Corp (2024)) that measures within the range 0-10 ppm with a resolution of 0.01 ppm. It operates

85 with an accuracy of =0.1 ppm when the concentration is <1 ppm and +£20% when the concentration is above 1 ppm. Also,
notice that the PM readings in this module are given for 2.5 (fine particles with a diameter of 2.5 pm), and PM1 and PM 10 are
estimated from the PM2.5 readings.

In line 66, the authors state “The calibration process of these LCS is a challenge, where
ML and Deep Learning (DL) models can be used.” The authors have not given any
information on why calibrating low-cost sensors is challenging. The introduction should
include more background information on what these challenges are.

Response 12: We have improved these issues and motivated better these challenges
regarding the calibration of low-cost sensors as shown before in Response 4.

This explanation is given in the new version as follows in Section | (lines 32-39):

ing to Annex III-B of the European (Directive 2008/50/EC (2008)). And Low-Cost Sensor (LCS) are becoming increasingly
important, an interesting alternative, but they do not have good accuracy (Borrego et al. (2016)) in comparison with the offi-
cial equipment, due to limitations in their sensing technology, lack of frequent calibration, sensitivity to environmental
35 factors, cross-sensitive issues, use of less durable materials and the absence of rigorous certification processes. While
official equipment uses advanced technologies and is subject to strict standards of accuracy and reliability, LCS are de-
signed to offer basic monitoring at a low price, which involves sacrifices in accuracy and durability. So, in this context it
is a challenge to estimate the official measurements from these LCS with a reduced error (Garcia et al. (2022); Borrego

et al. (2016)).

Also, in the related work these challenges are stressed again as shown at the beginning
of the following paragraph included in Section 2, line 97 from the new version:

The calibration process of these LCS is a challenge as mentioned before, where ML and Deep Learning (DL) models can be

used. In (Zimmerman et al. (2018)), the authors show calibration models (using 16 weeks data) to improve sensor performance,

There are numerous other papers using gradient boosting to calibrate low-cost sensors,
yet there is not even one cited in this ‘related work’ section.

Response 13: Thank you for your remark. In the related work section of the revised
manuscript, we have included new references that use the gradient boosting algorithm. In
total, there are eight references on machine learning algorithms, and we have selected
three for direct comparison, as shown in Table 14, 'Comparison with Similar Related
Work."' Additionally, we have improved the paragraph discussing the use of ML algorithms
and gradient boosting, as mentioned in the previous response.

This update is reflected in Section 2, starting at line 97, with two additional references
added, as follows (lines 100-104):



100

system), they achieve an MRE of 15% for O3. In the study performed by (Johnson et al. (2018)), the calibration of an
aerosol sensor for PM2.5 is carried out by comparing simple linear regression models with GB using the PPD42 PM
sensor (Shinyei (2024)). The study concludes that gradient boosting performed better and significantly improved the

performance of the sensors, reaching a coefficient of determination (R?) of up to 0.76. In (Casey et al. (2019)), the

The final two paragraphs of section 2 are both non sequiturs. The authors do not mention
data preprocessing, analysis or interpretability at all up to this point — this paragraph would
only make sense if information on how others have handled these aspects of the data
were included in the literature review of other ML calibration techniques.

Response 14: We appreciate your comment and have enhanced the revised manuscript
by including detailed information about this data preprocessing in Section 2. We have
introduced these concepts, which are later used in the analysis of the algorithms in
subsequent sections.

Additionally, in Section 2, we have discussed how related work has addressed these
issues, focusing on Feature Importance Analysis (FIA), Principal Component Analysis
(PCA), Feature Selection (FS), and Hyperparameter Optimization (HPO)."

This enhanced paragraphs in Section 2 is as follows (lines 111-131):

115

120

125

130

In this context, when using Al techniques on environmental research, it is important to follow the recommendations given
by ( Zhu et al. (2023)) based on a review of more than 148 highly cited research papers. In this reference, it is highlighted that
data preprocessing, analysis and interpretability are often overlooked, such as Feature Importance Analysis (FIA), Principal
Component Analysis (PCA) and Feature Selection (FS). In addition, it is said that the process of optimizing algorithms
through the sclection of their hyperparameters (Hyperparameter Optimization (HPO)) is neglected in most of the
cnvironmental research studies considered. For instance, in (Johnson et al. (2018)), better results are obtained with
GB, but HPO is not performed in the model, which could allow further improvements of the results. Both (Malings
ct al. (2019)) and (Borrego et al. (2016)) take into account some aspects related to the data analysis focused on the
optimization of the problem, but they do not carry out a HP(Q. In (Esposito et al. (2016)), the authors carry out a kind
of simple HPQ), based on raw tests of different architectures and modifying hyperparameters, such as the number of
hidden layers of the model, tapped delay length and feedback delay line length, concluding that a dynamic approach to
these parameters improves the results with respect to a static approach without changing the value of these parameters.

Regarding the selection of parameters, in (Johnson et al. (2018)), the authors does not perform an analysis using
technigues such as the aforementioned FIA and FS, but a sensitivity analysis using different meteorological variables
(such as Temp and RH), determining that it is uscful information for GB. In (Malings et al. (2019)), the quantification
of the importance of the model variables is mentioned as a mean to understand which information is useful, concluding
that for RF, to add additional information apart from A{) measurements, such as Temp and RH are very helpful.
In (Borrego et al. (2016)) and (Esposito et al. (2016)), the authors do not include a specific analysis of the relative
importance of different variables or features. However, a good example of FS is depicted in (Okafor et al. (2020)), where
it is shown that identifying the environmental factors affecting LCS is crucial for improving data quality using data
fusion and ML. These factors are then incorporated into the development of the calibration model.

On line 80, the authors write, “In conclusion, we see that to increase the AQ monitoring
resolution at a city scale, LCS are required.” This has nothing to do with the related works
in this section, where different machine learning algorithms and their previous
performances are listed.



Response 15: We have improved this explanation as it concludes both Sections 1 and 2.
To emphasize the main goal of this manuscript, and drawing on the information provided
by Directive 2008/50/EC (2008) and the reference by Zhu et al. (2023) on best practices
in applying machine learning methods in environmental research, we have added the
following paragraph at the end of Section 2 (lines 132-137):

In conclusion, in order to increase the resolution of city-scale A() monitoring according to the recommendations given

by (Directive 2008/50/EC (2008)) as mentioned before, it is necessary to perform a calibration process of these LCS. In

this scenario, we focus on the O3 calibration by using ensemble ML techniques, comparing different techniques. For
135 this purpese, it is necessary to carry out a thorough data treatment with a good practice criteria (Zhu et al. (2023))
including HPO, FIA and/or FS, which are usually overlooked. In this case, we achieve interesting results compared

with the related work, as shown in Section 4.

Table 3 seems unnecessary since most of the data available at this station was unused,
and it seems the relevant ones are already listed in the text?

Response 16: Right. We have deleted this table and only included in the text the
information about the O3 measurements from the AQ official monitoring stations, as
highlighted within the following paragraph in the new version of the manuscript (lines 146-
147):

To calibrate the O3 sensor from the ZPHS01B module, we require a dataset to train various ML models. For this purpose,

we use as reference values, O3 concentration readings from the official AQ station in the Valencian AQ Monitoring Network

145  (VAQMN), at Bulevar Sur (Valencia, Spain) managed by Generalitat Valenciana (GVA) with latitude and longitude 39.450389
and -0.396324, respectively, as shown in Figure 1. These reference values are given in pg/m® periodically averaging every

10-minutes. The AQ station data is retrieved from https://rvveca. gva. esfestatico/46250050. The ZPHS01B module’s readings

are taken at a rate of 10 samples per minute.

In section 3.2, the monitoring intervals listed on lines 104-105 are unclear. Is this 10 minute
average or once every 10 minutes? The comment on line 105 “it is sufficient” is also
unclear — you need to explain to the reader why without expecting them to read the entire
Zhu paper.

Response 17: Thank you for your comment. The monitoring intervals used are the
average of the original ZPHS01B module readings, taken at a rate of 10 samples per
minute, one sample every 6 seconds, as depicted in line 147-148 of the new version.

Then, we have enhanced this explanation about these intervals in Section 3.2 “Analyzing
the data set” as detailed next. Notice that based on the number of samples and the number
of features (in practice we used 5), it is analyzed the Sample-size to Feature-size Ratio
(SFR) according to the Zhu’s paper.

These explanations and its improved paragraph are included as follows (lines 156-163):

9



3.2 Analyzing the dataset

The initial data collection is based on 6-second frequency samples, including 165 days (approximately five and a half
months), from June 8" 2023 till November 20°" 2023. Based on this collection, three datasets have been created by
averaging data over different time monitoring intervals: 10 min., 30 min. and 1 h. with 23496, 7843 and 3922 samples
160 respectively. The lowest 10 min. interval is given by the official AQ station and 30 min and 1 h are common time base
for AQ parameters. Although they are not large data-set, it is sufficient as shown in (Zhu et al. (2023)), due to the
relationship (ratio) between sample size and feature size, 5 in total as seen next. This ratio is called, Sample-size to

Feature-size Ratio (SFR), being recommended a SFR higher than 500. More detail is given in Section 3.3.

For any table or figure, the reader should be able to understand it based on the table or
figure and its caption alone. For table 4, the meaning of the abbreviations are not defined
anywhere in the figure, caption, or main text. You shouldn’t make the reader guess what
MAD, Diff., Stat., etc. stand for. Without any definitions, this information is not helpful to
the reader. Even with definitions, it's a huge jump from this table to what’s written in the
text.

Response 18: We value your suggestion. We have included all these details in the caption
of this Table (Table 3 in the new version) and in the explanation of the accompanying text
as follows (lines 168-172):

Table 3. Summary of main statistics of the Datasct: Minimum (Min.), Maximum (Max.), Mcan (Mcan), Standard Deviation, Vanance (Var. ),
Median Absolute Deviation (MAD), percentage of samples taking Different values (Diff.), Stationarity (Stat.), Scasonality (Scas.) and High
correlation (High corr.)

Temp RH PM2.5 cO2 NO2 CO | CH20 | TVOC 03 O3ref

Min 524 62.29 21.25 693.43 0.78 0 0.005 0 39.57 8.71

Max 42.26 118 83.69 1792.50 | 18.81 0.75 1.21 295 255.76 97.85

Mean 20,60 | 91.31 49.99 780.33 1527 | 034 0.021 0.024 114.39 55.72

SD 5.70 18.12 18.14 57.16 5.65 0.28 0.02 0.13 67.11 24.83
Var. 32.57 | 32841 | 32934 | 3268.29 | 3192 | 0.08 | 0.0006 | 0016 | 450398 | 616.69
MAD 3.92 16.37 13.31 24.53 0.59 0 0.001 0 51.40 16.21

Diff. 99.1% | 81.9% | 87.9% | 97.5% | 50.6% | 0.2% | 81.2% | 58% 75.0% | 30.3%

Stat. not not not not not not yes yes not not
Seas. yes yes yes yes yes yes not not yes yes
High corr. yes yes yes yes not yes not nol yes yes

Table 3 shows a summary of main statistics of the dataset. For each parameter is shown: the Minimum value (Min.),
Maximum value (Max.), Mean value of all entries (Mean), Standard Deviation, Variance (Var.), Median Absolute De-

170 viation (MAD), percentage of samples taking Different values (Diff.), Stationarity (Stat.), Seasonality (Seas.) and High
correlation (High corr.) with others. Scasonality refers to recurring patterns at regular intervals, while stationarity

indicates constant statistical properties over time.

Of table 4, the authors write, “From these results, it is worth mentioning that the CH20,
CO, NO2 and TVOC sensors are not very reliable in the ZPHS01B module. Also, the RH
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sensor has a positive offset as we can see from the maximum value, 118%. The other
sensors have a normal behaviour, although with low accuracy.” There is no CH20, CO,
or TVOC data in table 4. For NO2, the only pollutant mentioned in your description of table
4 that even appears in the table, | don't know what about the random assortment of
numbers and yes/no’s in the table is supposed to tell me that it’'s ‘not very reliable’. For
RH, | don’t see any value of 118% in the table. Are ‘RH’ (as written in the text) and ‘Hum’
(as written in the table) different? The text and the table have almost nothing in common,
and neither helps me understand what you’re doing with the data.

Response 19: Thank you for your comment. Continuing with the previous response,
initially in the manuscript, we did not include these sensors (CH20, CO, NO2 and TVOC)
since after their analysis we realized that they did not seem to be working properly in the
ZPHS01B module, at least under the atmospheric conditions during the creation of the
data-set. However, this information about this behavior is interesting and it has been
added both to this table (now Table 3 in the new version, depicted in Response 18) and
in the text. Notice that from Table 3, we can see the maximum value for Relative Humidity
(RH) sensor is 118%. Also, we have fixed (standardized) this notation regarding RH in this
table as well as in the whole manuscript.

The revised paragraph with all these details is as follows (lines 173-178):

From these results, it is worth mentioning that the CH20), CO, TVOC and NO2 sensors do not seem to be working
properly in the ZPHS01B module. CH2(), C0O and TVOC are almost always stuck to values close to zero, seeming not

175 to excite at normal concentrations, with very low variability. On the other hand, the NO2 sensor appears saturated,
stuck at the maximum value, 10 ppm. Thus in practice, the number of used features from Table 3 are 5, that is from

the initial 9 (the reference is not included), we remove these 4 (CH20, CO, TVOC, and NO2). Also. RH sensor has a

positive offset as we can see from the maximum value, 118%.

On line 114, DFT is not defined. After reading the rest of the section, it is never explained
HOW the results of Figure 3 are used in your analysis. What do those peaks and
harmonies tell you, or how do they inform the way you built the model? This needs better
explanation for the figure to be worth keeping.

Response 20: The Discrete Fourier Transform (DFT) analysis carried out is used to see
the O3 changing patterns during the gathering process. Then, we observe a daily pattern
driven by road traffic.

We have included the DFT definition and this explanation in the next paragraph in the new
version of the manuscript (lines 179-185):
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To characterize the measurements of 03, we carry out a Discrete Fourier Transform (DFT) analysis, to see the changing

180 patterns. The DFT is a mathematical technique that transforms a discrete signal from the time domain to the frequency
domain. Figure 3 shows the peaks obtained from the O3 signal. There are two main peaks and their harmonics. The first peak
appears in the frequency f = 0.00025—— which corresponds to a period of 4000 hours, 5.56 months, that is the total duration

horur

of data-set. The second peak indicates and reveals a relevant frequency component at f = 00.04182251 Mlm . which represents a

period of 23.91 hours (approximately | day). Thus, there is an O3 pattern that it is repeated every day, as it could be expected

185 in a city, based on how it is generated from road traffic by combustion engines as discussed in Section 1.

In the figure 4 and 5 captions, ‘vs’ is typically reserved for Y vs X. Your reference and
sensor ozone are plotted on the same X axis; consider rewording. In my opinion, Figure 4
can be removed as Figure 5 shows the same information but in better detail.

Response 21: Thank you. We have fixed these captions (changing “vs” by “and”) and left
only one figure from these two. We have kept only the figure that gathers a whole week
(Figure 4 in the new version), with better resolution.

In table 5, some of the model acronyms are not defined in the text until well after their first
appearance in the tables — moving these higher in the text or defining them directly in the
table will make it easier on the reader. There is again discrepancy between ‘RH’ in the text
and ‘Hum.” in the figure. Was there a cutoff number to determine which were the most
important? Was this across all models, or were the results of one in particular favored?
Including this information in the text will help the reader to follow how you selected the
three inputs to move forward with. | think the sentence “For clarity it is not included the
importance of date and ozone itself from LCS values, that complete the rest.” is meant to
explain why ozone isn’t included in this analysis, but the sentence doesn’t make sense. It
might make more sense to include ozone in the analysis to demonstrate how important it
is rather than ask the reader to just trust that it is.

Response 22: We appreciate your comment. We have improved this table (now Table 4
in the new version), including all these details, the abbreviations of the different models
(Random Forest (RF), Gradient Boosting (GB), Adaptative Boost (ADA) and Decision Tree
(DT)) as well as all the different features analyzed when performing the Feature
Importance Analysis (FIA). Notice that these abbreviations (models’ acronyms) were
already introduced in Section 1, line 49, as we depicted in Response 5. Also, in the
paragraph below is explained the threshold (8%) used for the selection of the different
features for the models. Also, we have fixed as seen in Response 19 the RH abbreviation.

Both Table 4 and this new paragraph are as follows (lines 193-197):
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Table 4. FIA of ozonc’s complcmentary paramcters for Random Forest (RF), Gradient Boosting (GGB), Adaptive Boost (ADA) and
Decision Tree (DT)

Model | Temp RH PM25 | CO2 | NOZ | O3ref | CO T™VOC | CH2ZO

RF 0128 | 0103 | 0069 | 0222 | 0.078 | 0269 | 0,002 | 0.003 0.064

GB 0.107 | 0105 | 0052 | 0211 | 0.057 | 0.253 | 0.001 | 0.001 0.068

ADA | 0119 | 00097 | 0064 | 0.246 | 0.067 | 0.287 | 0.001 | 0.001 0.066

DT 0115 | 0088 | 0070 | 0232 | 0.061 | 0276 | 0001 | 0.002 0.061

Table 4 shows the normalized output of the FIA using the scikit-learn library (Pedregosa et al. (2011)), for the parameters

complementary to O3, for each ML models used. In order to determine the most useful parameters for the models, a

195 threshold is established in 8% of importance. Notice that the pattern of parameters with the highest importance, is

repeated for all models. From this analysis, we conclude that Temp, RH and CO2 are the most relevant and then will be
considered for the next step (FS analysis), since they show the highest values.

In Figure 6, ‘CH20’ (letter O) seems to be misspelled as ‘CH20’ (number zero).

Many variables that were left out of the previous tables/figures are now shown here —
CH20, CO, TVOC. Had you already ruled these out? It seems that these are in the wrong
order, at the very least. Tables 4 and 5, and Figures 3-6 all seem to be getting at which
data to include in the model, but several of them could likely be moved to the supplement
(or removed outright) pending better explanations of how these are actually used. What
separate purpose does each of them serve?

Response 23: We fixed this, CH20 to CH20. Also, as depicted in the previous response,
we included all these features again in Table 4 (FIA) for the different models.

About the supplementary material, we did not think about it since we included everything
in Section 3 (Building the dataset and using Machine Learning algorithms). All this
information is used to analyze the different features (variables) and their contribution,
following step by step the recommendations given by the mentioned Zhu’s paper for best
practices applied on machine learning methods in environmental research as mentioned
in Section 2 (lines 111-132). Further explanation was also given in Responses 5, 14 and
15.

The utility of all this information provided in this Section 3 (for FIA, FS and HPO analysis)
was already included and considered in the manuscript. Besides, we have improved the
wording of the manuscript to clarify these issues.

However, for a better response for the reviewer we provide clarification of these issues:

Table 3 “Summary of main statistics of the data set”, shown in Response 18, serves to
know the dataset of the low-cost sensors.

Table 4 (FIA) shown in Response 22, is useful to see the importance of the most important
features (variables) for the models. This indicates which are the features giving more
information to the models.
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Figure 3 (DFT analysis) is to detect changing patterns in the ozone measurements and to
see a justification of O3 related to road traffic.

Figure 4 (Instantaneous O3 readings) serves to see the dataset of 03 low-cost and the O3
reference (real value).

Figure 5 (LCS readings and O3 reference correlation matrix) serves to see how the
variability of a feature explains the variability of the rest, i.e. the correlation.

The correlation between features, together with their importance for the model, is relevant
information when choosing a subset of parameters to train the different models.

In the paragraph beginning on line 136, the authors state, “, two of them showed better
results” — which two? List this information here.

The location of tables 6 and 7 in the text doesn’t make sense — you are showing the results
of the models before explaining what the models are in section 3.4. | don’t think showing
both tables 6 and 7 is necessary.

Response 24: We appreciate this comment. The reviewer is correct. We had provided
results from Section 4 in Section 3 in order to define the selection of features. However,
since the goal of Section 3 is to analyze the data-set and to adjust the different algorithms,
once we have performed it, at the beginning of Section 4, we start defining the final
features selected based on [date, O3, Temp., RH], as depicted in lines 263-264. These
features are then used to carry out the training process of these algorithms for the results
in Section 4. Thus, this is clarified with the following paragraph (lines 263-264)

In addition, from the analysis carried out in Section 3.3, for the feature selection, we have proceeded in this section

with the ones with the best results, based on |date, O3, Temp, RH|. We see that fewer features, better results, i.e. increasing

265 the SFR. Then, other dimensionality reduction techniques are not required. If we add more features that are not so significant,
it makes the dataset poorer.

And then for clarity according to the reviewer, we have deleted these tables from Section
3 (Tables 6 and 7 in the first version), since they are already included in Section 4.

The authors state, “Thus, if we add more features that are not so significant, it makes the
dataset poorer.” This is already a well-established principle in the field that does not
require explicit demonstration. You've already shown in several figures and tables how
you did feature selection — does this contradict the feature selection work you did earlier?
Either way, there are many other papers establishing ozone sensor + temperature +
humidity (and sometimes NOXx) as the best model inputs for O3 (see several below). When
many others have already demonstrated the same result that it's taking you 4 tables and
4 figures to describe, you can just cite those who have done it before with a brief
explanation.

https://doi.org/10.3390/atmos 12050645
https://doi.org/10.5194/amt-11-1937-2018
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https://doi.org/10.1016/j.snb.2018.12.049

Response 25: We appreciate this comment. Since this is our first experience with the low-
cost multisensor module (ZPHS01B) and no prior information was available, we decided
to conduct comprehensive tests to extract as much information as possible without making
any assumptions. We acknowledge that similar studies exist for other types of sensors;
however, for this specific module, we found no accurate information and could not predict
its behavior. Additionally, low-cost sensors like this often suffer from cross-sensitivity
issues, which depend on various factors.

As indicated in our previous responses (17-24) and detailed in Section 3 of the manuscript,
we performed a thorough, step-by-step analysis of the dataset. Following this analysis, we
focused on a subset of the data in Section 4, based on [date, O3, Temp., RH], as outlined
in lines 263-264, which provided the best results.

Regarding the reference provided, we believe the first one fits better in the related work
section and have included it in Section 2 as follows (lines 103-107):

performance of the sensors, reaching a coefficient of determination (R?) of up to 0.76. In (Casey et al. (2019)), the
authors show that Neural Networks (NN) generally outperform lineal models to quantify 03, CO, CO2, and CH4 in
105 ambient air, using gas sensors integrated into U-Pod air quality monitors. Besides, they highlight that NN capture the
complex nonlinear interactions among multiple gas sensors, considering factors such as Temp, RH and atmospheric

chemistry. I[n (Borrego et al. (2016)), the authors carry out a performance evaluation during two-weeks data of the calibration

In tables 8-11, the captions should indicate what the numbers in bold mean. This is stated
once in the text in line 167, but the authors don’t state what criteria was used to decide on
the ‘best option’. Was it highest R2, lowest RMSE? If needed, all of these except for that
of the best performing model can be moved to the supplemental.

Response 26: Thank you for this observation. We have improved the wording in Section
3.4 to clarify these issues about the Hyperparameter Optimization (HPO). In the revised
version, the tables that include the selected hyperparameters are Tables 5, 6, 7 and 8 for
RF, GB, ADA and DT algorithms respectively. Also, it is explained the meaning of the bold
hyperparameters, the best one that optimize the different models taking into R?, Root
Mean Square Error (RMSE) and MAE, as depicted in line 219-220. Besides, all these 4

tables include in their caption “showing in bold the combination that gives the best results
in terms of R2, RMSE and MAE”.

Thus, this information is already included in Section 3.4, as follows:
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Next, we discuss the different supervised ML algorithms used and the selection of the different hyperparameters taking into
220 account the best results of /22, Root Mean Square Error (RMSE) and MAE.

3.4.1 Random Forest (RF)

Table 5. RF hyperparameters evaluated on GridSearch showing in bold the combination that gives the best results in terms of R*, RMSE
and MAE.

No. of estimators Max. depth Max. features

50, 100, 250, S00, 900 | 2, 5,7, None | sqrt, log2, 0.1, 0.3, 0.5, 1.0

Notice that this detail is included also for GB, ADA and DT algorithms.

In line 202, it is stated that the 90-10 test-train split worked best for all models. Has any
analysis been done to ensure these aren’t overfitting? This could be interesting to explore
with Table 14 and/or figure 8, but table 14 without this doesn’t seem overly informative.

Response 27: Thank you for your comment. We do not have overfitting and we have
improved its explanation. As shown in Section 4, in particular Figure 7 in the revised
version, we do not have overfitting because the error difference between using 90% and
60% of the data for training (the maximum and minimum percentages, respectively) is
approximately 2% in the worst-case scenario (1-hour dataset). This suggests that
overfitting is not significant in the proposed model. Thus, this clarification is given in lines
281-284, as follows:

behaviors are shown by the other models, in particular with ADA model. Regarding overfitting, Figure 7 shows that the error
difference between using 90% and 60% of the data for training (the maximum and minimum percentages, respectively)
is approximately 2% in the worst-case scenario (1-hour dataset). This suggests that overfitting is not significant in the
proposed model.

In addition, notice that in Section 4, the metrics presented in Tables 9-11 for the different
models and training-test ratio datasets represent the weighted average over 100
iterations. In each iteration, the content of the training and test sets is varied to obtain
results with minimal bias. This detail is also included, as shown below (lines 255-262):

255 4 Results

We evaluated the performance metrics of these ML models under different configurations (in terms of 2, RMSE, MAE
and Mean Absolute Prediction Ermror (MAPE) in ;:ghn“ and execution time in seconds), both with default and optimized
hyperparameters, taking into account the three different datasets given by different monitoring intervals: 10 and 30 min and
1 h, as depicted in Section 3.2. We tested different training-test ratio percentages from these datasets: 60%-40%, 70%-30%,
260 B0%-20% and 90%-10%, denoted as 6(/40, 70/30, 80,200 and 9 1(). The metrics presented in the Tables 9, 10 and 11 are
the weighted average of each metric over 100 different iterations by changing the content of the training and test set to

obtain results with the minimum bias as possible.

Similar with table 15 — in line 224, the authors write, “In the same line as before, once
again we can see how the GB adjusts better compared with the other models.” If this entire
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table exists just to make a point about GB that has already been made, is it a necessary
table?

Response 28: In the new version, we emphasize that the values in Table 12 are derived
from the different error distributions shown in Figure 8. This information offers a different
and complementary perspective (rather than calculating R? and the various errors), as it
considers the Standard Deviation (SD, o) and the Confidence Interval (Cl). With this
approach, we observe that the Gradient Boosting (GB) model performs better compared
to the other models based on the error distribution analysis. We have also improved the
wording related to Table 12 and Figure 8 in lines 293-294 to better link both results,
highlighting that the SD is similar to the RMSE. This is due to the fact that, as shown in
Figure 8, the distribution is nearly Gaussian. This is the improved paragraph (lines 293-
294):

The Standard Deviations (SD) and the Confidence Intervals (CI) in _ugj.?m:' are shown in Table 12. This information is
obtained from the error distribution statistics given in Figure 8. It can be seen how the GB adjusts better compared with the
other models from the error distribution analysis. It is observed that the SD is similar to the RMSE and this is due to the

fact that, as shown in this figure, the distribution is almost Gaussian.

In tables 6, 7, 12, 13, 14, 16, 17, | suggest clarifying in the captions whether this is training
or testing data. If it's all training data, | would be very interested in seeing the training data
added as the training data is a better indicator of how this model would actually perform
in the field.

Response 29: Note that all the data in these tables are test data, not training data. The
training data from various iterations are used to create models, which are then evaluated
using new data, referred to as test data. Metrics are extracted from the results obtained
using this test data.

Figure 7 is great and the most informative in the paper. If a graphical abstract is requested,
| would suggest this one.

Response 30: Thank you.

Figure 8 has a typo in ‘Percentage’ on the lower right. This plot could be much stronger if
the R2 and RMSE were plotted for both the training and testing data instead of just training.
I's no question that the more training data you have, the better the fit will be — the training
data is what will indicate whether you're overfitting. This would be a great place to address
overfitting in your discussion.

Response 31: We have fixed this type. As we explained in Response 29, all this
information is from testing, not training. About overfitting, this was already answered in
Response 27 based on the information from Figure 7. Also, it is clarified in the new version
of the manuscript in lines 281-284.

Figure 9 could use a sentence in the accompanying paragraph (starting at line 217) plainly
stating what they key takeaway should be. Is it that HOP improves the model greatly
regardless of the original model used?
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Response 32: Thank you for this comment. Yes, HOP optimizes the different models. As
is explained in the manuscript in Section 3.4 (lines 211-218), the goal of HPO on these
algorithms is to adjust the hyperparameters as a tuning technique that exhaustively
searches through a user-defined hyperparameter space to find the optimal combination.
These hyperparameters are external specific model configurations settings, aiming to
identify the configuration that maximizes estimation accuracy given by R?, RMSE and
MAE.

Then as a result, when HPO has been applied on the different models, the distribution
error (as shown in Figure 8 in the new version) tends to concentrate around O, in a
remarkable way for the GB and ADA but with practically no change for the DT and RF.

This explanation has been introduced in Section 4 (Results), next to this Figure 8, in the
revised version as follows:

285 In Figure 8, it is shown the distribution error for the different models, with detail of raw, default and optimized versions.
The number of samples are normalized in the Y-axis. It is appreciated with GB and ADA that their distribution errors are
concentrated around zero when calibration is applied, and even more when using the HPO optimized models. This behavior is
also appreciated with DT, but with lower intensity. However, RF keeps a pretty similar distribution in both versions, default and
optimized, as we saw in Tables 9 and 1(). Thus, in terms of error distribution, HI*Q) significantly concentrates the error

290 around 0 for the GB and ADA models, while practically no change is observed for the DT and RF models,

I’m not sure | see the value of table 16 — as you stated in the introduction and in Figures
4-5, the raw sensor readings are completely unreliable on their own.

Response 33: The goal of this table (Table 13 in the revised version) is to quantify the
improvement vs the raw readings from the low-cost ozone sensor of the ZPHS01B
module. In other words, it shows the gain in terms of R? and error reduction when applying
the ML techniques over the raw readings.

In table 17, ‘et al (2016)’ seems to be missing a name. I'm not sure | see the value of table
17 — if these were other studies comparing ozone quantification with the ZPHS01B
module, that would make more sense to me than seemingly randomly selected projects
using different sensors at different price points?

Response 34: Thank you. We have fixed this reference in Table 14 (in the revised
version). About the content of this comparison table, we compare our models for O3
calibration against the related work with a similar approach. As we state in the manuscript,
we stress that the starting point of these studies are slightly different, since they have used
more reliable and expensive low-cost sensors, approximately ten times more expensive
than the ZPHSO01B module. Thus, the comparison is for the whole system and not only
the algorithm. It is worth mentioning that there are no other studies using this module. Our
model reduces the estimation error up to 94.05% from raw readings with a Mean Relative
Error (MRE) of 7.21%, given by MAE 4.022 with 90/10 dataset and with O3 mean value
of 55.72 ug/m? using Gradient Boosting (GB) with only 4 features.

We have improved the wording of this paragraph as follows (lines 297-302):
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In Table 14, we compare our models for O3 calibration for LCS, against the related work with a similar approach. We
must stress that the starting point is slightly different compared to ours, since these studies have used more reliable and
expensive LCS, approximately ten times more expensive that the ZPHS01B module. As mentioned before, our model reduces

300 the estimation error up to 94.05% from raw readings based on MAE measurements, with a MRE of 7.21% (given by MAE
4.022 with 920/10 dataset and with (03 mean value of 55.72 ,u.q,fm"‘ as shown in Table 3, using GB with only 4 features, as
shown in Section 3.3.

This study builds a strong ML model to fit a single low-cost sensor for ozone. Some of the
challenges regarding field deployments of low-cost sensors include ensuring that each
individual node is properly calibrated, and that these calibrations perform just as well in
the field, where temperatures, humidities, and ozone concentrations not seen during the
co-location with a reference instrument appear. For future works, it would be great to see
the authors address what their path forward might look like.

Response 35: Thank you for your comments. We have revised the wording regarding the
related work as follows (lines 314-317):

As future work, we plan to expand the dataset and include complementary parameters, such as wind speed or road traffic
315 density, to increase the accuracy of these models. In addition, we highlight that our research activity is focused on the
design of new calibration and forecasting algorithms for the different sensors embedded in the low-cost ZPHS01B

module in order to improve A() monitoring resolution.

Thank you for your thoughtful review and comments which will enable us to improve this
work. We appreciate the time and effort invested in your review.
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