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Dear editor and reviewer, 

Thank you for giving us the opportunity to address the comments provided by the 
anonymous reviewers. We have made every effort to respond thoroughly to their 
feedback. Attached is a response letter with our responses highlighted in blue. The 
revised manuscript also uses blue text to indicate the changes made. In some answers, 
this blue text is highlighted if there is more than one answer. 

We would also like to express our gratitude to the anonymous reviewers for their valuable 
comments and suggestions. We appreciate the time and effort they have invested in 
improving our work. We firmly believe that this manuscript is now suitable for publication 
and an excellent contribution to share with the broader research community. 
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Reviewer’s comments (A. Kourtiche Referee #2 CC1, 24 Jan 2025) 

The article focuses on leveraging low-cost sensors (LCS), specifically the ZPHS01B module, 
to monitor ground-level ozone (O₃), a critical air pollutant and urban pollution indicator. Due 
to the limited accuracy of LCS, the authors applied advanced Machine Learning (ML) 
methods, including Gradient (GB), (RF), (ADA), and (DT), for calibration. 

The dataset spans 165 days, with optimal results obtained using a 10 min monitoring 
interval. The GB model achieved the best performance, reducing the estimation error by 
94.05%, while other models reduced errors by more than 89%. (HPO) and feature selection 
techniques (FIA, FS) improved model performance. 

 

First of all, we would like to sincerely thank you for your thoughtful review and 
comments, which have greatly contributed to improving our work. 

In the following sections, we will address all your comments, queries, and suggestions. 
This is an extended version of an answer provided to, we guess the same reviewer, as 
RC2 from Feb 4 2025 about the same manuscript. 

  

  

The authors plan to extend the dataset and include additional parameters like wind speed 
and traffic density in future work. 

I.Questions:  

1. Why was a 10 min interval more effective than 30 min or 1 hour ? Could other time 
intervals (e.g., 5 or 15 minutes) be explored? 

 

Response 1:  Thank you for this comment. 10 minutes was the minimum interval given 
by the references, since it is a standardized monitoring interval for outdoor official air 
quality monitoring in normal conditions as depicted in Section 3.2.  

And among the datasets given by the 10 min, 30 min and 1-hour intervals, after training 
the models as it is explained in Section 4, we see that the minimum prediction error is 
achieved by the 10 minutes interval, as it is shown in Figure 7 for RMSE and MAE in the 
new version of the manuscript (Figure 8 in the first version).  

Notice that this is due to several reasons. On one hand, the 10 min interval is 
determined by environmental researchers as the interval that better gathers the different 
outdoor air quality behaviors, with higher detail under normal conditions. Higher 
sampling frequencies (lower monitoring intervals) create oversampling and redundancy. 
On the other hand, if we use higher monitoring intervals (30 min or 1 hour), we see that 
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we start losing details, smoothing the dataset and overlooking different behaviors that in 
the Machine Learning (ML) process helps to reduce the prediction error. 

We have clarified this issue in the new version of the manuscript as follows: 

 

2. Were the ensemble models compared statistically to determine significance in 
performance differences? 

How do these models generalize to new datasets or different geographical locations? 

Response 2:  Yes, these models were tested and compared in Section 4. We evaluated 
the performance metrics in terms of R^2, RMSE, MAE and MAPE as shown in Tables 9-
11. These results are the weighted average of each metric over 100 different iterations 
by changing the content of the training and test set to obtain results with the minimum 
bias as possible as explained in the manuscript. This explanation is included in the new 
version as follows: 

 

With regard to the generalization of different datasets, this is considered by taking a 
sufficient dataset, as it is detailed in the reference “Machine Learning in Environmental 
Research: Common Pitfalls and Best Practices” by Zhu, et al. In particular, as it is 
explained in Section 3.2, the recommended relationship (ratio) between Sample size and 
Feature size (Sample-size to Feature-size Ratio (SFR)) is higher than 500. In our 
datasets, we have a sample size of 23496, 7843 and 3922 for 10 min, 30 min and 1 hour 
interval, that is a SFR of 4699.2, 1568.6 and 784.4, since we only use 4 features, as it is 
depicted in Section 4.  

About extending the dataset with more data, notice that the fusion of the different 
datasets from different locations as a first approach is not recommended, since they 
could change the environmental conditions. This merging process would require 
refinement in the datasets as well as in the models, that in this case, given the available 
datasets are not necessary. It is better to work with different datasets from different 
locations separately, independently. 

Nevertheless, in order to answer the reviewer, we have created another dataset 
(Dataset 2) with new samples from another deployment with two different LCS nodes 
(called AQ IoT Node 1 and 2) in a different location, in Valencia city. In particular, the 
new dataset is from the official AQ monitoring station called Moli del Sol (Valencia, 
Spain) placed at 39.48113875, -0.40855865, managed by Generalitat Valenciana (GVA) 
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and its data is retrieved from https://rvvcca.gva.es/estatico/46250048, for O3 calibration. 
This station is 4.1 km away from the previous official station used for the dataset in the 
manuscript. In this case, this dataset is from May 31, 2024, till January 25, 2025, it has 
239 days and includes data from different seasons as suggested by the reviewer. Notice 
that in our case, to carry out all these deployments, it is required to ask for permission to 
the official institutions in charge of Air Quality. 

Thus, with this new dataset (Dataset2), we have repeated the same process as 
explained in the manuscript, achieving nearly the same results as shown below. We 
show the HPO results over 100 different iterations by changing the content of the 
training and testing set (with the best results given by 90%/10% ratio as already 
discussed in Section 4) to obtain results with the minimum bias as possible, for both 
nodes (AQ IoT Node 1 and 2): 

NODE 1  

GradientBoostingRegressor(criterion='squared_error', max_depth=None, 

learning_rate=0.1,max_features=1.0, n_estimators=900, subsample=1.0) 

R2 = 0.9405841973910234 

RMSE = 6.107097433579371 

MAE = 4.336455961006405 

MAPE = 0.1679585719053396 

time = 102.18236994743347 

 

RandomForestRegressor(max_depth=None,max_features=1.0, n_estimators=100) 

R2 = 0.9046692614127114 

RMSE = 7.735712909738179 

MAE = 5.23282966066717 

MAPE = 0.20992345469839893 

time = 27.86010217666626 

 

AdaBoostRegressor(estimator=DecisionTreeRegressor(max_features=1.0), 

 n_estimators=50, learning_rate=0.01, loss='exponential') 

R2 = 0.9090424941272316 

RMSE = 7.556194639834324 

MAE = 4.564039465946062 

MAPE = 0.16874010491994965 

time = 11.807359457015991 

 

DecisionTreeRegressor(max_depth=None, max_features=1.0, splitter='best') 

R2 = 0.8191113924173187 

RMSE = 10.655883718994565 

MAE = 6.295906305813436 

MAPE = 0.2235395149139127 

time = 0.33399152755737305 

 

NODE 2   

GradientBoostingRegressor(criterion='squared_error', max_depth=None, 

learning_rate=0.1,max_features=1.0, n_estimators=900, subsample=1.0) 
R2 = 0.9547003457380135 

RMSE = 5.332505456267162 
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MAE = 3.7416539078656776 

MAPE = 0.14152286529664848 

time = 82.03594541549683 

 

RandomForestRegressor(max_depth=None,max_features=1.0, n_estimators=100) 

R2 = 0.934358633720318 

RMSE = 6.419078264005403 

MAE = 4.187047365360581 

MAPE = 0.15794878544527777 

time = 20.572300910949707 

 

AdaBoostRegressor(estimator=DecisionTreeRegressor(max_features=1.0), 

 n_estimators=50, learning_rate=0.01, loss='exponential') 

R2 = 0.9287003904552755 

RMSE = 6.690020376986309 

MAE = 3.8299511364469465 

MAPE = 0.13586980540686971 

time = 8.766397953033447 

 

DecisionTreeRegressor(max_depth=None, max_features=1.0, splitter='best') 

R2 = 0.8745869394552789 

RMSE = 8.872688771740032 

MAE = 4.974713868475632 

MAPE = 0.16654468197115013 

time = 0.23625636100769043 

As seen in this new dataset, both AQ IoT nodes exhibit similar behavior. However, Node 
2 performs slightly better than Node 1, likely due to manufacturing variations associated 
with their low cost. It is important to emphasize that these results closely resemble those 
already presented in the manuscript. In the following table we compare and summarize 
these results from Dataset 1, the one used in the manuscript, and Dataset 2, the new 
data set analyzed here in the review.  

GB optimized Dataset1 Dataset2 (Node1) Dataset2 (Node2) 

R2 0.938 0.940 0.954 

RMSE 6.492 6.107 5.332 

MAE 4.022 4.336 3.741 

MAPE 0.194 0.167 0.141 

Time [s] 66.937 102.182 82.035 

 As we can see, Node 1 works worse than Node 2, and the previous results obtained 
from Dataset1 are between these two. In this case, with Dataset 2, the Mean Relative 
Error (MRE) is 6,71% for Node 2 and for Node 1 is 7.78%, and with Dataset 1 was 
7.21%. The estimation of the MRE discussion is at the end of Section 4 in the new 
version of the manuscript as follows: 
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Thus, based on this information, we conclude that for the ZPHS01B module, 165 days of 
Dataset 1 provide sufficient information to generalize the proposed calibration models. 
This aligns with the SFR recommended values, as stated earlier. In other words, given 
the features and characteristics of this module, the original dataset (165 days) contains 
enough information to generalize the behavior of the O3 sensors and their response. 
Thus, better results cannot be achieved with other datasets given the constraints of this 
module.  

This information has been included in the new version of the manuscript with these 
modifications, in Section 3.1, describing the dataset-2 as follows: 

 

In Section 4, in the results with: 

 

 

 

As well as in the conclusion section:  
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3. Why were only 4 features used for the GB model? Were additional environmental factors 
considered initially but excluded? 

Response 3: Thank you for your comment. Based on the analysis conducted in Section 
3.3 for feature selection, we proceeded in Section 4 with the features that provided the 
best performance metrics. These selected features are [date, O3, T, RH], as initially 
indicated in Section 4. We omitted other features that led to poorer results. It is important 
to note that adding less significant features can reduce the importance of key 
parameters, ultimately affecting the overall performance. For instance, including both T 
and PM results in worse performance compared to using only T, leading to less effective 
models.  

4. How does the proposed approach balance cost savings with performance? 

Response 4: Low-cost sensors, as detailed in Section 2, are much cheaper than official 
equipment but with lower accuracy. 

Taking this information into account, Table 15 of the manuscript (in the new version and 
17 in the first one), compares our approach to O3 calibration with similar related work. It 
is important to note that the starting point of the selected studies for comparison differs 
slightly from ours, as these studies used more reliable and significantly more expensive 
low-cost sensors—approximately ten times the cost of the ZPHS01B module as depicted 
in Table 1 of Section 2 with its price range. This was already included in the manuscript. 

 

Thus, we consider that this is a fair balance, highlighting the improvements for the O3 
calibration by using this module. 

 

II.Improvements Needed:  

The current dataset covers 165 days. Increasing the dataset size and covering different 
seasons or regions could improve generalizability. 

Response 5: Thank you for this comment.  

As already answered in Response 2, we repeated the analysis with a new dataset 
(Dataset 2)  from May 31 2024 till January 25, 2025. This dataset has 239 days and 
includes data from different seasons as suggested by the reviewer.  
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As a first approach, we agree that increasing the dataset size and covering different 
seasons or regions could improve the generalizability of ensemble machine learning 
algorithms. In general, a larger dataset typically provides more diverse examples, 
allowing the model to learn from a wider variety of patterns and reducing the risk of 
overfitting to specific data characteristics. Even when the data spans different locations, 
the model also may become more robust by capturing the seasonal variations and 
regional trends that might not be present in a smaller, localized dataset.  

However, as stated in Response 2, 165 days of Dataset 1 provided sufficient information 
to generalize the proposed O3 calibration model and better results cannot be obtained 
with other datasets given the constraints of this module. 

Besides, it must be stressed that there is a trade-off between accuracy and life-time of 
the low cost sensor. And this is the main reason we cannot last the different 
deployments for years. In particular, these low cost sensor modules degrade fast and 
their accuracy is reduced in months. 

Adding complementary parameters, such as traffic patterns, industrial activities, and 
meteorological conditions, could enhance the model’s robustness. 

Response 6: Thank you for your interesting comment. Although this approach is very 
interesting and valid for some scenarios, in our case we focus only on Air quality 
information obtained directly from the low-cost sensor modules. Of course we could 
include other related information in more theoretical studies, but not in a real scenario as 
the one proposed. This type of information (traffic patterns, industrial activities) is not 
available easily in real time, assuming the low cost IoT AQ nodes, described in this 
paper. As it is explained in Section 2, usually, these nodes have limited communications 
and only can gather local information from their directly connected sensors. And when 
the information is processed, they can run the ML models to improve the accuracy of the 
readings. Finally, they can upload this information to other external servers, but always 
with constraints due to their features.  

Besides, other meteorological sensors (such as wind speed and direction) could be 
interesting, but in the end they will modify the different diffusion models of the different 
gasses, but in practice they do not alter the direct readings of the low cost Air quality 
sensors, if they are properly housed as we did in deployment. 

Nevertheless, this discussion has been included in Section 5 in the conclusion as future 
work, but more focus on theoretical studies rather than on real deployments with 
constrained devices as the ones used for Air quality monitoring with low-cost features. 

-While GB is identified as the best-performing model, a statistical comparison of model 
performances (e.g., paired t-tests on errors) should be included to support conclusions. 

+Explain why ADA and RF performed similarly or differently from GB. 

-Discuss the trade-off between GB’s higher execution time and its improved accuracy.  
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-Propose optimizations for deployment scenarios requiring real-time predictions. 

Response 7:  Thank you for your comments. Next, we provide an extended explanation 
about these issues. The different key points about this explanation have been used in 
order to improve the wording in different parts of the manuscript. 

Find next a detailed discussion about all these items. 

As we mentioned below, the guidelines to process this kind of data is shown in reference 
“Machine Learning in Environmental Research: Common Pitfalls and Best Practices” by 
Zhu, et al.. Thus, in particular, about the mentioned “paired t-tests on errors”, these tests 
are used to test if the means of two paired measurements are significantly different, but 
this does not apply in our experiments, since the different models are carried out 
independently and using different data-sets, as it is explained in Section 4 and different 
“training-test” ratio percentages from these datasets: 60%-40%, 70%-30%, 80%-20% 
and 90%-10%. Besides, during the training process, each performance metric depicted 
in Section 4 based on R^2, RMSE, MAE and MAPE is obtained with 100 different 
iterations by changing the content of the training and test set to obtain results with the 
minimum bias as possible. 

About the behavior of ADA and RF vs GB, although all of them are ensemble ML 
algorithms, their algorithms are based on slightly different approaches. In particular, as 
explained in Section 3.4, Adaptive Boosting (AdaBoost) and Gradient Boosting differ in 
how they improve performance. AdaBoost focuses on re-weighting the training data, 
assigning higher weights to misclassified examples, so subsequent weak learners focus 
on these harder cases. It combines weak learners using weighted voting, emphasizing 
the most accurate ones. In contrast, Gradient Boosting focuses on minimizing a specific 
loss function by fitting each new weak learner to the residual errors (differences between 
actual and predicted values) of the previous model. This makes Gradient Boosting more 
flexible, allowing it to handle custom loss functions and more complex learners. While 
AdaBoost is simpler and faster, but sensitive to noise, Gradient Boosting is more 
powerful and robust for complex tasks, but it requires higher execution time. 

Similarly, Random Forest and Gradient Boosting are both ensemble learning algorithms 
and use decision trees as base models, but differ significantly in their approach. Random 
Forest builds multiple decision trees independently by randomly sampling data and 
features, then aggregates their predictions (via majority vote for classification or 
averaging for regression). This parallel training makes it robust, fast, and less prone to 
overfitting. In contrast, Gradient Boosting trains decision trees sequentially, where each 
tree attempts to correct the residual errors of the previous ones by optimizing a specified 
loss function. This iterative process makes Gradient Boosting more flexible and capable 
of fine-tuning but slower. While Random Forest excels in robustness and simplicity, 
Gradient Boosting often achieves higher accuracy in complex tasks due to its ability to 
learn from mistakes adaptively. 
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Besides, these algorithms (ADA, RF and GB) have different hyperparameters and with 
different optimized values, adjusted independently by HPO techniques, as shown in 
Table 5-8 in Section 3.4. 

Regarding the execution time, the trade-off between Gradient Boosting’s higher 
execution time and its improved accuracy compared to Adaptive Boosting and Random 
Forest comes down to the balance between computational cost and predictive 
performance. Gradient Boosting builds trees sequentially, optimizing a specific loss 
function at each step, which allows it to capture complex patterns and often achieve 
superior accuracy. However, this iterative process makes it computationally intensive 
and slower, especially for large datasets or when fine-tuning hyperparameters. Adaptive 
Boosting, while also sequential, is generally faster because it uses simpler learners (like 
decision stumps) and focuses on re-weighting misclassified points rather than optimizing 
a loss function as mentioned before. Random Forest, in contrast, trains trees 
independently and in parallel, making it much faster, but it sacrifices some accuracy 
because it relies on averaging predictions instead of iterative error correction. While 
Gradient Boosting excels in tasks where accuracy is paramount, its higher execution 
time may not be justified for less complex problems or time-sensitive applications, where 
Random Forest or Adaptive Boosting could provide a faster, more practical solution. 

And finally, about the optimizations to be applied on the deployments for real-time 
predictions, it must be stressed that once these models are trained, they can be ported 
to the low cost AQ node that is based on a microcontroller. Then, with these models we 
can improve the accuracy of the direct readings immediately.  

Notice that these details have been used to enrich the new wording in Section 4 when 
dealing with the different algorithms. Besides, it has been included in the future work, 
since in practice, this is a very interesting point for the whole AQ monitoring network. 

III-Proposed Best Method 

-Explore DL models like LSTMs or Temporal Convolutional Networks (TCNs) for time-series 
prediction to capture long-term dependencies. 

Response 8: Thank you for this interesting comment.  

Gradient Boosting algorithms are often more practical, efficient, and interpretable for 
time-series prediction tasks, especially when datasets are small-to-medium-sized, 
contain noise, or require explicit domain knowledge. While DL models like LSTMs and 
TCNs excel in capturing long-term dependencies in very large datasets, Gradient 
Boosting flexibility, lower data requirements and ease of use make it a strong choice for 
real-world time-series applications.  

Nevertheless, as it is mentioned before, the lifetime of these low cost sensors and their 
performance degrade over the time (aging), due to their manufacturing process. In 
particular, this is more critical in the ZPHS01B module and that is the reason we focused 
on these ensemble algorithms.  
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Of course, there is a tradeoff between ML and DL in these scenarios, but pros and cons 
made us conduct the test with these ML techniques, with good results.  

It is worth mentioning that we also used DL techniques, but we observed that they are 
not able to generalize as the ML approach did. And for this reason, the results using DL 
techniques are not so robust and reliable, mainly due to overfitting even with bigger 
datasets in this context and scenario. These results are shown below for a simple 
Sequential Neural Network from TensorFlow/Keras using an optimizator stochastic 
gradient descent with an input of 4 features and two layers. These two layers are a 
dense layer with four neurons and a linear activation, followed by a second layer with a 
neuron that provides the output. The network scheme is shown in Figure 1, below.  

 

 

 Figure 1: Scheme of the Sequential Neural Network from TensorFlow/Keras using an 
optimizator stochastic gradient descent with an input of 4 features and two dense layers. 

The results from this Sequential Neural Network are: 

R2 Score: 0.9999999999976741 

RMSE: 3.514481801502949e-05 

MAE: 2.9925663790820442e-05 

As we can see, these results show that these techniques learn and memorize the whole 
dataset and we cannot generalize. That is the reason we focused on ML since they 
adapt and perform better in this scenario, given by the AQ monitoring stations and the 
ZPHS01B low cost sensor module for O3 calibration.  

We have included this explanation also in the revised version, in order to justify the 
selection of these ML techniques instead of other techniques. This information is 
included as follows: 
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-Combine GB with DL methods for feature extraction and refinement, especially if additional 
parameters are included. 

Response 9: Thank you for this comment.  

From our experience, combining Gradient Boosting algorithms with Deep Learning 
methods for feature selection is often unnecessary due to several reasons. Gradient 
Boosting algorithms as the ones proposed in this research, are inherently capable of 
handling feature selection through their built-in mechanisms, such as calculating feature 
importance and automatically ignoring irrelevant or redundant features during training as 
it was shown in Section 3.4. These algorithms excel in structured data tasks and 
effectively model complex, non-linear relationships without requiring additional feature 
selection methods as depicted in Section 3.4. Furthermore, Deep Learning-based 
feature selection is computationally expensive, requiring significant resources and larger 
datasets to avoid overfitting, which may not justify the effort when Gradient Boosting can 
already achieve competitive results. Additionally, Gradient Boosting provides 
interpretable outputs which offer clear insights into feature importance, unlike Deep 
Learning methods, which often function as black boxes. Finally, introducing Deep 
Learning adds unnecessary complexity to the pipeline, increasing training time and 
resource demands without guaranteed improvements in predictive performance, 
especially when Gradient Boosting already performs well on the given dataset.  

This explanation and justification have been considered in the new version of the 
manuscript in Section 3.4. 

-Use advanced ensemble techniques like Stacked Generalization (Stacking) to blend 
predictions from GB, RF, and ADA for better accuracy. 

Response 10: Thank you for this comment.  

It must be pointed out that using Stacked Generalization (Stacking) to blend predictions 
from Gradient Boosting, Random Forest and AdaBoost may not be ideal due to several 
reasons. First, it adds complexity by introducing a meta-learner, making the workflow 
harder to interpret and manage, often for marginal accuracy gains. Gradient Boosting 
already iteratively optimizes predictions and often outperforms combinations with simpler 
models like Random Forest or AdaBoost, making the stack redundant. Additionally, 
stacking increases the risk of overfitting, especially with small datasets, as the meta-
learner can overfit to the base models' predictions. It also significantly increases training 
time and computational demands, while the lack of diversity among tree-based models 
reduces the potential benefits of combining them. Simpler alternatives, such as weighted 
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averaging or selecting the best-performing model, often achieve comparable results 
without the added complexity. 

Several scientific references support the arguments against using Stacked 
Generalization (Stacking) to combine predictions from Gradient Boosting, Random 
Forest, and AdaBoost. The increased complexity and risk of overfitting associated with 
stacking are highlighted in "A guide to ensemble learning," which notes that ensemble 
methods can lead to computational complexity and overfitting risks [1]. Additionally, the 
article "Stacking to Improve Model Performance: A Comprehensive Guide" discusses 
how utilizing too many base models in a stacked ensemble can result in overfitting and 
increased computing complexity [2]. Furthermore, the article "Gradient Boosting vs 
Random Forest" explains that Gradient Boosting focuses on sequential correction of 
errors, while Random Forest relies on the diversity of independently trained trees, 
suggesting that combining these models may not provide significant additional benefits 
[3]. 

Thus, based on these reasons, it shows that for this case, stacking these particular 
models may introduce unnecessary complexity and overfitting risks without substantial 
improvements in predictive performance.  

However, this comment has been included in the new version of the manuscript, to 
justify this explanation. 

References: 

[1] https://serokell.io/blog/ensemble-learning-guide 

[2] https://medium.com/@brijesh_soni/understanding-boosting-in-machine-
learning-a-comprehensive-guide-bdeaa1167a6 

[3] https://www.geeksforgeeks.org/gradient-boosting-vs-random-forest/ 

 

 IV-Recommendations :  

Expand the dataset and include more parameters to increase model accuracy. 

Conduct real-world validation to demonstrate scalability and robustness. 

Compare ML and DL approaches to assess their suitability for time-series AQ calibration. 

Provide open-source tools for replicating and extending the proposed calibration process. 

By addressing these improvements and exploring advanced methodologies, the study can 
significantly contribute to cost-effective and scalable air quality monitoring solutions. 
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Response 11: Thank you for feedback. 

We consider that all these issues have been discussed during this review, and some of 
them, the more interesting, have been included in the new version of the manuscript 
improving its wording. 

In summary, about the dataset, we have discussed this in Response 2 and 5 with detail, 
as well as using other locations. About the real-world validation, all our trials and 
measurements come from real deployments. We have not used anything simulated. 
About the comparison between ML and DL, as it was discussed previously, we have 
included this discussion as well as their worse results, in favor of ML in this case. Also, 
about the open-source tools, all our datasets are available online, as it is indicated in the 
last part of the manuscript with the following statement “Please feel free to contact to the 
authors for further information: http://www.uv.es/eco4rupa/dataset.html”.  

 

Finally, thank you for your thoughtful review and comments which will enable us to 
improve this work.  We appreciate the time and effort invested in your review. 

  

 


