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Dear editor and reviewer, 

Thank you for giving us the opportunity to address the comments provided by the anonymous reviewers. We 
have made every effort to respond thoroughly to their feedback. Attached is a response letter with our 
responses highlighted in blue. The revised manuscript also uses blue text to indicate the changes made. In 
some answers, this blue text is highlighted if there is more than one answer. 

We would also like to express our gratitude to the anonymous reviewers for their valuable comments and 
suggestions. We appreciate the time and effort they have invested in improving our work. We firmly believe 
that this manuscript is now suitable for publication and an excellent contribution to share with the broader 
research community. 
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Reviewer’s comments (A. Kourtiche Referee #2 (RC2) , 4 Feb 2025) 

First of all, we would like to sincerely thank you for your thoughtful review and comments, which have greatly 
contributed to improving our work. 

In the following sections, we will address all your comments, queries, and suggestions. This answer is based 
on a previous answer, we guess from the same reviewer, as CC1 from Jan 24, 2025, about the same 
manuscript. 

 

Increasing the dataset size and covering different seasons or regions could improve generalizability. 

Response 1: 

With regard to the generalization of different datasets, this is considered by taking a sufficient dataset, as it is 
detailed in the reference “Machine Learning in Environmental Research: Common Pitfalls and Best Practices” 
by Zhu, et al. In particular, as it is explained in Section 3.2, the recommended relationship (ratio) between 
Sample size and Feature size (Sample-size to Feature-size Ratio (SFR)) is higher than 500. In our datasets, we 
have a sample size of 23496, 7843 and 3922 for 10 min, 30 min and 1 hour interval, that is a SFR of 4699.2, 
1568.6 and 784.4, since we only use 4 features, as it is depicted in Section 4.  

About extending the dataset with more data, notice that the fusion of the different datasets from different 
locations as a first approach is not recommended, since they could change the environmental conditions. 
This merging process would require refinement in the data sets as well as in the models, that in this case, 
given the available datasets are not necessary. It is better to work with different datasets from different 
locations separately, independently. 

Nevertheless, in order to answer the reviewer, we have created another dataset (Dataset 2) with new samples 
from another deployment with two different LCS nodes (called AQ IoT Node 1 and 2) in a different location, in 
Valencia city. In particular, the new dataset is from the official AQ monitoring station called Moli del Sol 
(Valencia, Spain) placed at 39.48113875, -0.40855865, managed by Generalitat Valenciana (GVA) and its data 
is retrieved from https://rvvcca.gva.es/estatico/46250048, for O3 calibration. This station is 4.1 km away from 
the previous official station used for the dataset in the manuscript. In this case, this dataset is from May 31 
2024 till January 25, 2025, it has 239 days and includes data from different seasons as suggested by the 
reviewer. Notice that in our case, to carry out all these deployments, it is required to ask for permission to the 
official institutions in charge of Air Quality. 
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Thus, with this new dataset (Dataset2), we have repeated the same process as explained in the manuscript, 
achieving nearly the same results as shown below. We show the HPO results over 100 different iterations by 
changing the content of the training and testing set (with the best results given by 90%/10% ratio as already 
discussed in Section 4) to obtain results with the minimum bias as possible, for both nodes (AQ IoT Node 1 
and 2): 

NODE 1  

GradientBoostingRegressor(criterion='squared_error', max_depth=None, 

learning_rate=0.1,max_features=1.0, n_estimators=900, subsample=1.0) 

R2 = 0.9405841973910234 

RMSE = 6.107097433579371 

MAE = 4.336455961006405 

MAPE = 0.1679585719053396 

time = 102.18236994743347 

RandomForestRegressor(max_depth=None,max_features=1.0, n_estimators=100) 

R2 = 0.9046692614127114 

RMSE = 7.735712909738179 

MAE = 5.23282966066717 

MAPE = 0.20992345469839893 

time = 27.86010217666626 

AdaBoostRegressor(estimator=DecisionTreeRegressor(max_features=1.0), 

 n_estimators=50, learning_rate=0.01, loss='exponential') 

R2 = 0.9090424941272316 

RMSE = 7.556194639834324 

MAE = 4.564039465946062 

MAPE = 0.16874010491994965 

time = 11.807359457015991 

DecisionTreeRegressor(max_depth=None, max_features=1.0, splitter='best') 

R2 = 0.8191113924173187 

RMSE = 10.655883718994565 

MAE = 6.295906305813436 

MAPE = 0.2235395149139127 

time = 0.33399152755737305 
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NODE 2   

GradientBoostingRegressor(criterion='squared_error', max_depth=None, 

learning_rate=0.1,max_features=1.0, n_estimators=900, subsample=1.0) 

R2 = 0.9547003457380135 

RMSE = 5.332505456267162 

MAE = 3.7416539078656776 

MAPE = 0.14152286529664848 

time = 82.03594541549683 

RandomForestRegressor(max_depth=None,max_features=1.0, n_estimators=100) 

R2 = 0.934358633720318 

RMSE = 6.419078264005403 

MAE = 4.187047365360581 

MAPE = 0.15794878544527777 

time = 20.572300910949707 

AdaBoostRegressor(estimator=DecisionTreeRegressor(max_features=1.0), 

 n_estimators=50, learning_rate=0.01, loss='exponential') 

R2 = 0.9287003904552755 

RMSE = 6.690020376986309 

MAE = 3.8299511364469465 

MAPE = 0.13586980540686971 

time = 8.766397953033447 

DecisionTreeRegressor(max_depth=None, max_features=1.0, splitter='best') 

R2 = 0.8745869394552789 

RMSE = 8.872688771740032 

MAE = 4.974713868475632 

MAPE = 0.16654468197115013 

time = 0.23625636100769043 
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As seen in this new dataset, both AQ IoT nodes exhibit similar behavior. However, Node 2 performs slightly 
better than Node 1, likely due to manufacturing variations associated with their low cost. It is important to 
emphasize that these results closely resemble those already presented in the manuscript. In the following 
table we compare and summarize these results from Dataset 1, the one used in the manuscript, and Dataset 
2, the new data set analyzed here in the review.  

GB optimized Dataset1 Dataset2 (Node1) Dataset2 (Node2) 

R2 0.938 0.940 0.954 

RMSE 6.492 6.107 5.332 

MAE 4.022 4.336 3.741 

MAPE 0.194 0.167 0.141 

Time [s] 66.937 102.182 82.035 

 As we can see, Node 1 works worse than Node 2, and the previous results obtained from Dataset1 are 
between these two. In this case, with Dataset 2, the Mean Relative Error (MRE) is 6,71% for Node 2 and for 
Node 1 is 7.78%, and with Dataset 1 it was 7.21%. The estimation of the MRE discussion is at the end of 
Section 4 in the new version of the manuscript as follows: 

 

Thus, based on this information, we conclude that for the ZPHS01B module, 165 days of dataset-1 provide 
sufficient information to generalize the proposed calibration models. This aligns with the SFR recommended 
values, as stated earlier. In other words, given the features and characteristics of this module, the original 
dataset (165 days) contains enough information to generalize the behavior of the O3 sensors and their 
response. Thus, better results cannot be achieved with other datasets given the constraints of this module.  

This information has been included in the new version of the manuscript with these modifications, in Section 
3.1, describing the dataset-2 as follows: 
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In Section 4, in the results with: 

 

 

 

As well as in the conclusion section:  

 

 

Adding complementary parameters, such as traffic patterns, industrial activities, and meteorological 
conditions, could enhance the model’s robustness 

 

Response 2:  
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Thank you for your interesting comment. Although this approach is very interesting and valid for some 
scenarios, in our case we focus only on Air quality information obtained directly from the low-cost sensor 
modules. Of course we could include other related information in more theoretical studies, but not on a real 
scenario as the one proposed. This type of information (traffic patterns, industrial activities) is not available 
easily in real time, assuming the low cost IoT AQ nodes, described in this paper. As it is explained in Section 2, 
usually, these nodes have limited communications and only can gather local information from their directly 
connected sensors. And when the information is processed, they can run the ML models to improve the 
accuracy of the readings. Finally, they can upload this information to other external servers, but always with 
constraints due to their features.  

Besides, other meteorological sensors (such as wind speed and direction) could be interesting, but at the end 
they will modify the different diffusion models of the different gasses, but in practice they do not alter the 
direct readings of the low cost Air quality sensors, if they are properly housed as we did in deployment. 

Nevertheless, this discussion has been included in Section 5 in the conclusion as future work, but more 
focused on theoretical studies rather than on real deployments with constrained devices as the ones used for 
Air quality monitoring with low cost features. 

 

  

1-While GB is identified as the best-performing model, a statistical comparison of model performances 
(e.g., paired t-tests on errors) should be included to support conclusions. 

2+Explain why ADA and RF performed similarly or differently from GB. 

3-Propose optimizations for deployment scenarios requiring real-time predictions. 

 Response 3: Thank you for your comments. Next, we provide an extended explanation about these issues. 
The different key points about this explanation have been used in order to improve the wording in different 
parts of the manuscript. 

Find next a detailed discussion about all these items. 

As we mentioned below, the guidelines to process this kind of data is shown in reference “Machine Learning 
in Environmental Research: Common Pitfalls and Best Practices” by Zhu, et al.. Thus, in particular, about the 
mentioned “paired t-tests on errors”, these tests are used to test if the means of two paired measurements 
are significantly different, but this does not apply in our experiments, since the different models are carried 
out independently and using different data-sets, as it is explained in Section 4 and different “training-test” 
ratio percentages from these datasets: 60%-40%, 70%-30%, 80%-20% and 90%-10%. Besides, during the 
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training process, each performance metric depicted in Section 4 based on R^2, RMSE, MAE and MAPE is 
obtained with 100 different iterations by changing the content of the training and test set to obtain results with 
the minimum bias as possible. 

About the behavior of ADA and RF vs GB, although all of them are ensemble ML algorithms, their algorithms 
are based on slightly different approaches. In particular, as explained in Section 3.4, Adaptive Boosting 
(AdaBoost) and Gradient Boosting differ in how they improve performance. AdaBoost focuses on re-weighting 
the training data, assigning higher weights to misclassified examples, so subsequent weak learners focus on 
these harder cases. It combines weak learners using weighted voting, emphasizing the most accurate ones. 
In contrast, Gradient Boosting focuses on minimizing a specific loss function by fitting each new weak learner 
to the residual errors (differences between actual and predicted values) of the previous model. This makes 
Gradient Boosting more flexible, allowing it to handle custom loss functions and more complex learners. 
While AdaBoost is simpler and faster, but sensitive to noise, Gradient Boosting is more powerful and robust 
for complex tasks, but it requires higher execution time. 

Similarly, Random Forest and Gradient Boosting are both ensemble learning algorithms and use decision 
trees as base models, but differ significantly in their approach. Random Forest builds multiple decision trees 
independently by randomly sampling data and features, then aggregates their predictions (via majority vote 
for classification or averaging for regression). This parallel training makes it robust, fast, and less prone to 
overfitting. In contrast, Gradient Boosting trains decision trees sequentially, where each tree attempts to 
correct the residual errors of the previous ones by optimizing a specified loss function. This iterative process 
makes Gradient Boosting more flexible and capable of fine-tuning but slower. While Random Forest excels in 
robustness and simplicity, Gradient Boosting often achieves higher accuracy in complex tasks due to its 
ability to learn from mistakes adaptively. 

Besides, these algorithms (ADA, RF and GB) have different hyperparameters and with different optimized 
values, adjusted independently by HPO techniques, as shown in Table 5-8 in Section 3.4. 

With regard to the execution time, the trade-off between Gradient Boosting’s higher execution time and its 
improved accuracy compared to Adaptive Boosting and Random Forest comes down to the balance between 
computational cost and predictive performance. Gradient Boosting builds trees sequentially, optimizing a 
specific loss function at each step, which allows it to capture complex patterns and often achieve superior 
accuracy. However, this iterative process makes it computationally intensive and slower, especially for large 
datasets or when fine-tuning hyperparameters. Adaptive Boosting, while also sequential, is generally faster 
because it uses simpler learners (like decision stumps) and focuses on re-weighting misclassified points 
rather than optimizing a loss function as mentioned before. Random Forest, in contrast, trains trees 
independently and in parallel, making it much faster, but it sacrifices some accuracy because it relies on 
averaging predictions instead of iterative error correction. While Gradient Boosting excels in tasks where 
accuracy is paramount, its higher execution time may not be justified for less complex problems or time-
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sensitive applications, where Random Forest or Adaptive Boosting could provide a faster, more practical 
solution. 

And finally, about the optimizations to be applied on the deployments for real-time predictions, it must be 
stressed that once these models are trained, they can be ported to the low cost AQ node that is based on a 
microcontroller. Then, with these models we can improve the accuracy of the direct readings immediately.  

Notice that these details have been used to enrich the new wording in Section 4 when dealing with the 
different algorithms. Besides, it has been included in the future work, since in practice, this is a very 
interesting point for the whole AQ monitoring network. 

 

  

III-Proposed Best Method 

-Explore DL models like LSTMs or Temporal Convolutional Networks (TCNs) for time-series prediction to 
capture long-term dependencies. 

 

Response 4: Thank you for this interesting comment.  

Gradient Boosting algorithms are often more practical, efficient, and interpretable for time-series prediction 
tasks, especially when datasets are small-to-medium-sized, contain noise, or require explicit domain 
knowledge. While DL models like LSTMs and TCNs excel in capturing long-term dependencies in very large 
datasets, Gradient Boosting flexibility, lower data requirements and ease of use make it a strong choice for 
real-world time-series applications.  

Nevertheless, as it is mentioned before, the lifetime of these low cost sensors and their performance degrade 
over time (aging), due to their manufacturing process. In particular, this is more critical in the ZPHS01B 
module and that is the reason we focused on these ensemble algorithms.  

Of course, there is a tradeoff between ML and DL in these scenarios, but pros and cons made us conduct the 
test with these ML techniques, with good results.  

It is worth mentioning that we also used DL techniques, but we observed that they are not able to generalize 
as the ML approach did. And for this reason, the results using DL techniques are not so robust and reliable, 
mainly due to overfitting even with bigger datasets in this context and scenario. These results are shown 
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below for a simple Sequential Neural Network from TensorFlow/Keras using an optimizator stochastic 
gradient descent with an input of 4 features and two layers. These two layers are a dense layer with four 
neurons and a linear activation, followed by a second layer with a neuron that provides the output. The 
network scheme is shown in Figure 1, below.  

 

 

 Figure 1: Scheme of the Sequential Neural Network from TensorFlow/Keras using an optimizator stochastic 
gradient descent with an input of 4 features and two dense layers. 

The results from this Sequential Neural Network are: 

R2 Score: 0.9999999999976741 

RMSE: 3.514481801502949e-05 

MAE: 2.9925663790820442e-05 

As we can see, these results show that these techniques learn and memorize the whole dataset and we 
cannot generalize. That is the reason we focused on ML since they adapt and perform better in this scenario, 
given by the AQ monitoring stations and the ZPHS01B low cost sensor module for O3 calibration.  
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We have included this explanation also in the revised version, in order to justify the selection of these ML 
techniques instead of other techniques. This information is included as follows: 

 

 

 

-Combine GB with DL methods for feature extraction and refinement, especially if additional parameters 
are included.. 

Response 5: Thank you for this comment.  

From our experience, combining Gradient Boosting algorithms with Deep Learning methods for feature 
selection is often unnecessary due to several reasons. Gradient Boosting algorithms as the ones proposed in 
this research, are inherently capable of handling feature selection through their built-in mechanisms, such as 
calculating feature importance and automatically ignoring irrelevant or redundant features during training as 
it was shown in Section 3.4. These algorithms excel in structured data tasks and effectively model complex, 
non-linear relationships without requiring additional feature selection methods as depicted in Section 3.4. 
Furthermore, Deep Learning-based feature selection is computationally expensive, requiring significant 
resources and larger datasets to avoid overfitting, which may not justify the effort when Gradient Boosting can 
already achieve competitive results. Additionally, Gradient Boosting provides interpretable outputs which 
offer clear insights into feature importance, unlike Deep Learning methods, which often function as black 
boxes. Finally, introducing Deep Learning adds unnecessary complexity to the pipeline, increasing training 
time and resource demands without guaranteed improvements in predictive performance, especially when 
Gradient Boosting already performs well on the given dataset.  

This explanation and justification have been considered in the new version of the manuscript in Section 3.4. 

 


