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Dear editor and reviewer, 

Thank you for giving us the opportunity to address the comments provided by the 
anonymous reviewers. We have made every effort to respond thoroughly to their 
feedback. Attached is a response letter with our responses highlighted in blue. The 
revised manuscript also uses blue text to indicate the changes made. In some answers, 
this blue text is highlighted if there is more than one answer. 

We would also like to express our gratitude to the anonymous reviewers for their valuable 
comments and suggestions. We appreciate the time and effort they have invested in 
improving our work. We firmly believe that this manuscript is now suitable for publication 
and an excellent contribution to share with the broader research community. 



2 
 

Reviewer’s comments (Anonymous Referee #1, 31 Oct 2024) 

This paper requires major edits to be considered for publication. The introduction and 
related works sections are extremely weak and do not set up a solid foundation for the 
work the authors hope to achieve with their gradient boosted calibration of low-cost ozone 
sensors. The many figures and tables regarding feature selection are not well explained. 
The ML model generation and final model outputs, especially the gradient boosted model, 
seem sound, but the authors neglect to include the results of the testing data, which is a 
better indicator of whether the models are overfitting and better demonstrates how these 
models would perform in the field as compared to the training statistics, which are the 
focus of the article. The grammar throughout needs improvement, and there are many 
instances where subscript is needed (including in figures). Overall, additional literature 
review and context will lay a stronger foundation for the model building, and careful 
revision of which figures and tables are really necessary along with added information on 
the training dataset of the model (which speaks to overfitting and real-world applicability) 
will greatly improve the paper. 

Response 1:  First of all, we would like to sincerely thank you for your thoughtful review 
and comments, which have greatly contributed to improving our work.  

In the following sections, we will address all your comments, queries, and suggestions.  

The introduction section does not provide sufficient context. First, the authors list a few 
vague sentences about air quality in general. For example, line 15: “exceeds the limit 
values of the recommended safety guidelines”– what guidelines? Limits for what 
pollutants? 

Response 2: We have improved this paragraph and placed the Air Quality Guideline 
(AQG) reference next to this sentence. Also, we have included the information from this 
guideline related to ground-level ozone in the text, with a target of 100 µg/m3 during 8 
hours in average. These changes are introduced in the second and third paragraphs of 
the new version, as follows: 

 

For your information, the whole table from this AQG (not included in the manuscript) is: 
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A brief description of how ozone is formed is given, but no specifics on the region of 
interest or what these health effects and consequences. 

Response 3: To explain the effects of ozone on our health, we have included the following 
explanation next to the O3 details, in the third paragraph of the new version (lines 22-26 
of the revised version): 

 

This information is extracted from the study by Garcia, M. A., Villanueva, J., Pardo, N., 
Perez, I. A., and Sanchez, M. L.: “Analysis of ozone concentrations between 2002-2020 
in urban air in Northern Spain”, Atmosphere, 12, 1495, 2021. 

The authors mention that low-cost sensors have lower accuracy – why? What are the 
issues surrounding them? 

Response 4: Thank you for your comment. In order to clarify this issue, we have improved 
the explanation about the accuracy of low-cost sensors, based on the following criteria: a) 
sensor technology, b) calibration, c) environmental sensitivity, d) limited range and 
sensitivity, e) materials and build quality, f) sensor cross-sensitivity, g) maintenance and 
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lifespan. These details about low-cost sensors are also found in several references that 
have been included in the new version of the manuscript as follows (lines 32-39): 

 

One other machine learning-enabled calibration effort is mentioned in this section, with no 
information on HOW machine learning actually improves this. This feels out of place here 
and the same information is listed again in section 2, so I would suggest removing it here 
and expanding on it in section 2. More exploration of other machine learning based 
calibration algorithms beyond the ZPHS01B-specific ones referenced later on would 
strengthen the paper as ML-based calibration is common practice in the field. The outline 
in line 36 is unnecessary. 

Response 5: Thank you for your comments. We have improved the wording and retained 
Zimmerman's reference and details only in the related work section. In the introduction, 
we have instead included a more general reference regarding best practices in machine 
learning methods for environmental research, based on a review of over 148 highly cited 
research papers. Additionally, we have introduced the machine learning algorithms used 
in this paper, along with their abbreviations. For better readability and clarity, we have left 
the outline with a better wording." 

Thus, all these changes we have been introduced in the last part of this introduction 
section as follows (lines 40-54): 
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In table 1, rather than listing “low”, “mid-low”, etc. and then defining it in the text, it would 
be easier for the reader if the cost was just listed in the table. 

Response 6: We have included the price range information in the caption of this Table 1 
and in the text in the related work section, as follows (lines 59-65):  

 

Better distinction is needed between what is an individual sensor vs. what is a complete 
package. The table is titled systems and/or modules, but the text does not explain what 
the distinction between a system or module is. 

Response 7: Thank you for this comment. In this paper, there are no differences between 
modules and systems since both refer to multi-sensor platforms. We have unified these 
words as modules, as you can see in the previous response.  

Why were these chosen for this table? Without any explanation as to why these are here 
it seems random. 

Response 8: The selection criteria of these modules is determined by the related work, 
selecting those modules which have been considered under similar studies as the 
proposed in this manuscript. These details have been introduced in the new version of the 
manuscript as you can see in the same paragraph depicted in Response 6. The 
highlighted part contains this explanation as seen below (lines 60-62): 
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There is also no explanation as to why some are more expensive than others – are some 
better performing? 

Response 9: We have added additional information to justify this point regarding 
differences in their prices. Note that even within this low-cost range, there are variations 
in the quality of LCS production, such as the materials used and sensor calibration, which 
affect accuracy and durability. 

These details have been introduced in the new version as follows (lines 66-74): 

 

In line 48, “it is necessary to use modules embedding as many AQ LCS as possible.” - 
why is it necessary? 

Response 10: This is necessary for us because gases are often correlated with other 
gases (cross-sensitivity issues) and with factors not directly related to air quality, such as 
temperature and relative humidity. To clarify these points, we have improved the wording 
and included references that support these arguments.  

These details are reflected in the revised version of the manuscript as follows (lines 75-
77): 

 

In line 49, it is stated that one of these “is the best solution at the time of writing”. If this 
means the best choice for the author’s specific set of needs and wants, this needs to be 
clearly stated. It reads as an opinion stated as universal fact. Table 2 does not summarize 
4 distinct concentration levels as stated in the text. 

Response 11: Following the previous response, in the manuscript we have included a 
better explanation of this statement and explained better the output of TVOC sensors with 
4 levels from this ZPHS01B module.  

All this information is included in the next paragraph (lines 78-87): 
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In line 66, the authors state “The calibration process of these LCS is a challenge, where 
ML and Deep Learning (DL) models can be used.” The authors have not given any 
information on why calibrating low-cost sensors is challenging. The introduction should 
include more background information on what these challenges are.  

Response 12: We have improved these issues and motivated better these challenges 
regarding the calibration of low-cost sensors as shown before in Response 4.  

This explanation is given in the new version as follows in Section I (lines 32-39):  

 

Also, in the related work these challenges are stressed again as shown at the beginning 
of the following paragraph included in Section 2, line 97 from the new version: 

 

There are numerous other papers using gradient boosting to calibrate low-cost sensors, 
yet there is not even one cited in this ‘related work’ section. 

Response 13: Thank you for your remark. In the related work section of the revised 
manuscript, we have included new references that use the gradient boosting algorithm. In 
total, there are eight references on machine learning algorithms, and we have selected 
three for direct comparison, as shown in Table 14, 'Comparison with Similar Related 
Work.' Additionally, we have improved the paragraph discussing the use of ML algorithms 
and gradient boosting, as mentioned in the previous response.  

This update is reflected in Section 2, starting at line 97, with two additional references 
added, as follows (lines 100-104): 
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The final two paragraphs of section 2 are both non sequiturs. The authors do not mention 
data preprocessing, analysis or interpretability at all up to this point – this paragraph would 
only make sense if information on how others have handled these aspects of the data 
were included in the literature review of other ML calibration techniques. 

Response 14: We appreciate your comment and have enhanced the revised manuscript 
by including detailed information about this data preprocessing in Section 2. We have 
introduced these concepts, which are later used in the analysis of the algorithms in 
subsequent sections.  

Additionally, in Section 2, we have discussed how related work has addressed these 
issues, focusing on Feature Importance Analysis (FIA), Principal Component Analysis 
(PCA), Feature Selection (FS), and Hyperparameter Optimization (HPO)." 

This enhanced paragraphs in Section 2 is as follows (lines 111-131): 

 

On line 80, the authors write, “In conclusion, we see that to increase the AQ monitoring 
resolution at a city scale, LCS are required.” This has nothing to do with the related works 
in this section, where different machine learning algorithms and their previous 
performances are listed. 
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Response 15: We have improved this explanation as it concludes both Sections 1 and 2. 
To emphasize the main goal of this manuscript, and drawing on the information provided 
by Directive 2008/50/EC (2008) and the reference by Zhu et al. (2023) on best practices 
in applying machine learning methods in environmental research, we have added the 
following paragraph at the end of Section 2 (lines 132-137): 

 

Table 3 seems unnecessary since most of the data available at this station was unused, 
and it seems the relevant ones are already listed in the text? 

Response 16: Right. We have deleted this table and only included in the text the 
information about the O3 measurements from the AQ official monitoring stations, as 
highlighted within the following paragraph in the new version of the manuscript (lines 146-
147): 

 

In section 3.2, the monitoring intervals listed on lines 104-105 are unclear. Is this 10 minute 
average or once every 10 minutes? The comment on line 105 “it is sufficient” is also 
unclear – you need to explain to the reader why without expecting them to read the entire 
Zhu paper. 

Response 17: Thank you for your comment. The monitoring intervals used are the 
average of the original ZPHS01B module readings, taken at a rate of 10 samples per 
minute, one sample every 6 seconds, as depicted in line 147-148 of the new version.  

Then, we have enhanced this explanation about these intervals in Section 3.2 “Analyzing 
the data set” as detailed next. Notice that based on the number of samples and the number 
of features (in practice we used 5), it is analyzed the Sample-size to Feature-size Ratio 
(SFR) according to the Zhu’s paper.  

These explanations and its improved paragraph are included as follows (lines 156-163): 
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For any table or figure, the reader should be able to understand it based on the table or 
figure and its caption alone. For table 4, the meaning of the abbreviations are not defined 
anywhere in the figure, caption, or main text. You shouldn’t make the reader guess what 
MAD, Diff., Stat., etc. stand for. Without any definitions, this information is not helpful to 
the reader. Even with definitions, it’s a huge jump from this table to what’s written in the 
text. 

Response 18: We value your suggestion. We have included all these details in the caption 
of this Table (Table 3 in the new version) and in the explanation of the accompanying text 
as follows (lines 168-172): 

 

Of table 4, the authors write, “From these results, it is worth mentioning that the CH2O, 
CO, NO2 and TVOC sensors are not very reliable in the ZPHS01B module. Also, the RH 
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sensor has a positive offset as we can see from the maximum value, 118%. The other 
sensors have a normal behaviour, although with low accuracy.” There is no CH2O, CO, 
or TVOC data in table 4. For NO2, the only pollutant mentioned in your description of table 
4 that even appears in the table, I don’t know what about the random assortment of 
numbers and yes/no’s in the table is supposed to tell me that it’s ‘not very reliable’. For 
RH, I don’t see any value of 118% in the table. Are ‘RH’ (as written in the text) and ‘Hum’ 
(as written in the table) different? The text and the table have almost nothing in common, 
and neither helps me understand what you’re doing with the data. 

 

Response 19: Thank you for your comment. Continuing with the previous response, 
initially in the manuscript, we did not include these sensors (CH2O, CO, NO2 and TVOC) 
since after their analysis we realized that they did not seem to be working properly in the 
ZPHS01B module, at least under the atmospheric conditions during the creation of the 
data-set. However, this information about this behavior is interesting and it has been 
added both to this table (now Table 3 in the new version, depicted in Response 18) and 
in the text. Notice that from Table 3, we can see the maximum value for Relative Humidity 
(RH) sensor is 118%. Also, we have fixed (standardized) this notation regarding RH in this 
table as well as in the whole manuscript. 

The revised paragraph with all these details is as follows (lines 173-178): 

  

On line 114, DFT is not defined. After reading the rest of the section, it is never explained 
HOW the results of Figure 3 are used in your analysis. What do those peaks and 
harmonies tell you, or how do they inform the way you built the model? This needs better 
explanation for the figure to be worth keeping. 

Response 20: The Discrete Fourier Transform (DFT) analysis carried out is used to see 
the O3 changing patterns during the gathering process. Then, we observe a daily pattern 
driven by road traffic.  

We have included the DFT definition and this explanation in the next paragraph in the new 
version of the manuscript (lines 179-185):  
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In the figure 4 and 5 captions, ‘vs’ is typically reserved for Y vs X. Your reference and 
sensor ozone are plotted on the same X axis; consider rewording. In my opinion, Figure 4 
can be removed as Figure 5 shows the same information but in better detail. 

Response 21: Thank you. We have fixed these captions (changing “vs” by “and”) and left 
only one figure from these two. We have kept only the figure that gathers a whole week 
(Figure 4 in the new version), with better resolution.  

In table 5, some of the model acronyms are not defined in the text until well after their first 
appearance in the tables – moving these higher in the text or defining them directly in the 
table will make it easier on the reader. There is again discrepancy between ‘RH’ in the text 
and ‘Hum.’ in the figure. Was there a cutoff number to determine which were the most 
important? Was this across all models, or were the results of one in particular favored? 
Including this information in the text will help the reader to follow how you selected the 
three inputs to move forward with. I think the sentence “For clarity it is not included the 
importance of date and ozone itself from LCS values, that complete the rest.” is meant to 
explain why ozone isn’t included in this analysis, but the sentence doesn’t make sense. It 
might make more sense to include ozone in the analysis to demonstrate how important it 
is rather than ask the reader to just trust that it is. 

Response 22: We appreciate your comment. We have improved this table (now Table 4 
in the new version), including all these details, the abbreviations of the different models 
(Random Forest (RF), Gradient Boosting (GB), Adaptative Boost (ADA) and Decision Tree 
(DT)) as well as all the different features analyzed when performing the Feature 
Importance Analysis (FIA). Notice that these abbreviations (models’ acronyms) were 
already introduced in Section 1, line 49, as we depicted in Response 5. Also, in the 
paragraph below is explained the threshold (8%) used for the selection of the different 
features for the models. Also, we have fixed as seen in Response 19 the RH abbreviation.  

Both Table 4 and this new paragraph are as follows (lines 193-197): 
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In Figure 6, ‘CH2O’ (letter O) seems to be misspelled as ‘CH20’ (number zero). 

Many variables that were left out of the previous tables/figures are now shown here – 
CH2O, CO, TVOC. Had you already ruled these out? It seems that these are in the wrong 
order, at the very least. Tables 4 and 5, and Figures 3-6 all seem to be getting at which 
data to include in the model, but several of them could likely be moved to the supplement 
(or removed outright) pending better explanations of how these are actually used. What 
separate purpose does each of them serve? 

Response 23: We fixed this, CH20 to CH2O. Also, as depicted in the previous response, 
we included all these features again in Table 4 (FIA) for the different models.  

About the supplementary material, we did not think about it since we included everything 
in Section 3 (Building the dataset and using Machine Learning algorithms). All this 
information is used to analyze the different features (variables) and their contribution, 
following step by step the recommendations given by the mentioned Zhu’s paper for best 
practices applied on machine learning methods in environmental research as mentioned 
in Section 2 (lines 111-132). Further explanation was also given in Responses 5, 14 and 
15.  

The utility of all this information provided in this Section 3 (for FIA, FS and HPO analysis) 
was already included and considered in the manuscript. Besides, we have improved the 
wording of the manuscript to clarify these issues. 

However, for a better response for the reviewer we provide clarification of these issues: 

Table 3 “Summary of main statistics of the data set”, shown in Response 18, serves to 
know the dataset of the low-cost sensors. 

Table 4 (FIA) shown in Response 22, is useful to see the importance of the most important 
features (variables) for the models. This indicates which are the features giving more 
information to the models. 
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Figure 3 (DFT analysis) is to detect changing patterns in the ozone measurements and to 
see a justification of O3 related to road traffic. 

Figure 4 (Instantaneous O3 readings) serves to see the dataset of 03 low-cost and the O3 
reference (real value).  

Figure 5 (LCS readings and O3 reference correlation matrix) serves to see how the 
variability of a feature explains the variability of the rest, i.e. the correlation. 

The correlation between features, together with their importance for the model, is relevant 
information when choosing a subset of parameters to train the different models. 

In the paragraph beginning on line 136, the authors state, “, two of them showed better 
results” – which two? List this information here. 

The location of tables 6 and 7 in the text doesn’t make sense – you are showing the results 
of the models before explaining what the models are in section 3.4. I don’t think showing 
both tables 6 and 7 is necessary.  

Response 24: We appreciate this comment. The reviewer is correct. We had provided 
results from Section 4 in Section 3 in order to define the selection of features. However, 
since the goal of Section 3 is to analyze the data-set and to adjust the different algorithms, 
once we have performed it, at the beginning of Section 4, we start defining the final 
features selected based on [date, O3, Temp., RH], as depicted in lines 263-264. These 
features are then used to carry out the training process of these algorithms for the results 
in Section 4. Thus, this is clarified with the following paragraph (lines 263-264) 

 

And then for clarity according to the reviewer, we have deleted these tables from Section 
3 (Tables 6 and 7 in the first version), since they are already included in Section 4.  

The authors state, “Thus, if we add more features that are not so significant, it makes the 
dataset poorer.” This is already a well-established principle in the field that does not 
require explicit demonstration. You’ve already shown in several figures and tables how 
you did feature selection – does this contradict the feature selection work you did earlier? 
Either way, there are many other papers establishing ozone sensor + temperature + 
humidity (and sometimes NOx) as the best model inputs for O3 (see several below). When 
many others have already demonstrated the same result that it’s taking you 4 tables and 
4 figures to describe, you can just cite those who have done it before with a brief 
explanation. 

https://doi.org/10.3390/atmos12050645 

https://doi.org/10.5194/amt-11-1937-2018 
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https://doi.org/10.1016/j.snb.2018.12.049 

Response 25: We appreciate this comment. Since this is our first experience with the low-
cost multisensor module (ZPHS01B) and no prior information was available, we decided 
to conduct comprehensive tests to extract as much information as possible without making 
any assumptions. We acknowledge that similar studies exist for other types of sensors; 
however, for this specific module, we found no accurate information and could not predict 
its behavior. Additionally, low-cost sensors like this often suffer from cross-sensitivity 
issues, which depend on various factors. 

As indicated in our previous responses (17-24) and detailed in Section 3 of the manuscript, 
we performed a thorough, step-by-step analysis of the dataset. Following this analysis, we 
focused on a subset of the data in Section 4, based on [date, O3, Temp., RH], as outlined 
in lines 263-264, which provided the best results. 

Regarding the reference provided, we believe the first one fits better in the related work 
section and have included it in Section 2 as follows (lines 103-107): 

 

In tables 8-11, the captions should indicate what the numbers in bold mean. This is stated 
once in the text in line 167, but the authors don’t state what criteria was used to decide on 
the ‘best option’. Was it highest R2, lowest RMSE? If needed, all of these except for that 
of the best performing model can be moved to the supplemental. 

Response 26: Thank you for this observation. We have improved the wording in Section 
3.4 to clarify these issues about the Hyperparameter Optimization (HPO). In the revised 
version, the tables that include the selected hyperparameters are Tables 5, 6, 7 and 8 for 
RF, GB, ADA and DT algorithms respectively. Also, it is explained the meaning of the bold 
hyperparameters, the best one that optimize the different models taking into R2, Root 
Mean Square Error (RMSE) and MAE, as depicted in line 219-220. Besides, all these 4 
tables include in their caption ““showing in bold the combination that gives the best results 
in terms of R2, RMSE and MAE”. 

Thus, this information is already included in Section 3.4, as follows: 
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Notice that this detail is included also for GB, ADA and DT algorithms. 

In line 202, it is stated that the 90-10 test-train split worked best for all models. Has any 
analysis been done to ensure these aren’t overfitting? This could be interesting to explore 
with Table 14 and/or figure 8, but table 14 without this doesn’t seem overly informative. 

Response 27: Thank you for your comment. We do not have overfitting and we have 
improved its explanation. As shown in Section 4, in particular Figure 7 in the revised 
version, we do not have overfitting because the error difference between using 90% and 
60% of the data for training (the maximum and minimum percentages, respectively) is 
approximately 2% in the worst-case scenario (1-hour dataset). This suggests that 
overfitting is not significant in the proposed model. Thus, this clarification is given in lines 
281-284, as follows: 

 

In addition, notice that in Section 4, the metrics presented in Tables 9-11 for the different 
models and training-test ratio datasets represent the weighted average over 100 
iterations. In each iteration, the content of the training and test sets is varied to obtain 
results with minimal bias. This detail is also included, as shown below (lines 255-262): 

 

Similar with table 15 – in line 224, the authors write, “In the same line as before, once 
again we can see how the GB adjusts better compared with the other models.” If this entire 



17 
 

table exists just to make a point about GB that has already been made, is it a necessary 
table? 

Response 28: In the new version, we emphasize that the values in Table 12 are derived 
from the different error distributions shown in Figure 8. This information offers a different 
and complementary perspective (rather than calculating R² and the various errors), as it 
considers the Standard Deviation (SD, σ) and the Confidence Interval (CI). With this 
approach, we observe that the Gradient Boosting (GB) model performs better compared 
to the other models based on the error distribution analysis. We have also improved the 
wording related to Table 12 and Figure 8 in lines 293-294 to better link both results, 
highlighting that the SD is similar to the RMSE. This is due to the fact that, as shown in 
Figure 8, the distribution is nearly Gaussian. This is the improved paragraph (lines 293-
294): 

 

In tables 6, 7, 12, 13, 14, 16, 17, I suggest clarifying in the captions whether this is training 
or testing data. If it’s all training data, I would be very interested in seeing the training data 
added as the training data is a better indicator of how this model would actually perform 
in the field. 

Response 29: Note that all the data in these tables are test data, not training data. The 
training data from various iterations are used to create models, which are then evaluated 
using new data, referred to as test data. Metrics are extracted from the results obtained 
using this test data. 

Figure 7 is great and the most informative in the paper. If a graphical abstract is requested, 
I would suggest this one. 

Response 30: Thank you. 

Figure 8 has a typo in ‘Percentage’ on the lower right. This plot could be much stronger if 
the R2 and RMSE were plotted for both the training and testing data instead of just training. 
It’s no question that the more training data you have, the better the fit will be – the training 
data is what will indicate whether you’re overfitting. This would be a great place to address 
overfitting in your discussion. 

Response 31: We have fixed this type. As we explained in Response 29, all this 
information is from testing, not training. About overfitting, this was already answered in 
Response 27 based on the information from Figure 7. Also, it is clarified in the new version 
of the manuscript in lines 281-284. 

Figure 9 could use a sentence in the accompanying paragraph (starting at line 217) plainly 
stating what they key takeaway should be. Is it that HOP improves the model greatly 
regardless of the original model used? 
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Response 32: Thank you for this comment. Yes, HOP optimizes the different models. As 
is explained in the manuscript in Section 3.4 (lines 211-218), the goal of HPO on these 
algorithms is to adjust the hyperparameters as a tuning technique that exhaustively 
searches through a user-defined hyperparameter space to find the optimal combination. 
These hyperparameters are external specific model configurations settings, aiming to 
identify the configuration that maximizes estimation accuracy given by R2, RMSE and 
MAE.  

Then as a result, when HPO has been applied on the different models, the distribution 
error (as shown in Figure 8 in the new version) tends to concentrate around 0, in a 
remarkable way for the GB and ADA but with practically no change for the DT and RF.  

This explanation has been introduced in Section 4 (Results), next to this Figure 8, in the 
revised version as follows: 

 

I’m not sure I see the value of table 16 – as you stated in the introduction and in Figures 
4-5, the raw sensor readings are completely unreliable on their own. 

Response 33: The goal of this table (Table 13 in the revised version) is to quantify the 
improvement vs the raw readings from the low-cost ozone sensor of the ZPHS01B 
module. In other words, it shows the gain in terms of R2 and error reduction when applying 
the ML techniques over the raw readings. 

In table 17, ‘et al (2016)’ seems to be missing a name. I’m not sure I see the value of table 
17 – if these were other studies comparing ozone quantification with the ZPHS01B 
module, that would make more sense to me than seemingly randomly selected projects 
using different sensors at different price points? 

Response 34: Thank you. We have fixed this reference in Table 14 (in the revised 
version). About the content of this comparison table, we compare our models for O3 
calibration against the related work with a similar approach. As we state in the manuscript, 
we stress that the starting point of these studies are slightly different, since they have used 
more reliable and expensive low-cost sensors, approximately ten times more expensive 
than the ZPHS01B module. Thus, the comparison is for the whole system and not only 
the algorithm. It is worth mentioning that there are no other studies using this module. Our 
model reduces the estimation error up to 94.05% from raw readings with a Mean Relative 
Error (MRE) of 7.21%, given by MAE 4.022 with 90/10 dataset and with O3 mean value 
of 55.72 µg/m3 using Gradient Boosting (GB) with only 4 features. 

We have improved the wording of this paragraph as follows (lines 297-302): 
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This study builds a strong ML model to fit a single low-cost sensor for ozone. Some of the 
challenges regarding field deployments of low-cost sensors include ensuring that each 
individual node is properly calibrated, and that these calibrations perform just as well in 
the field, where temperatures, humidities, and ozone concentrations not seen during the 
co-location with a reference instrument appear. For future works, it would be great to see 
the authors address what their path forward might look like. 

Response 35: Thank you for your comments. We have revised the wording regarding the 
related work as follows (lines 314-317):  

 

 

Thank you for your thoughtful review and comments which will enable us to improve this 
work.  We appreciate the time and effort invested in your review. 
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We would also like to express our gratitude to the anonymous reviewers for their valuable 
comments and suggestions. We appreciate the time and effort they have invested in 
improving our work. We firmly believe that this manuscript is now suitable for publication 
and an excellent contribution to share with the broader research community. 
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Reviewer’s comments (A. Kourtiche Referee #2 CC1, 24 Jan 2025) 

The article focuses on leveraging low-cost sensors (LCS), specifically the ZPHS01B module, 
to monitor ground-level ozone (O₃), a critical air pollutant and urban pollution indicator. Due 
to the limited accuracy of LCS, the authors applied advanced Machine Learning (ML) 
methods, including Gradient (GB), (RF), (ADA), and (DT), for calibration. 

The dataset spans 165 days, with optimal results obtained using a 10 min monitoring 
interval. The GB model achieved the best performance, reducing the estimation error by 
94.05%, while other models reduced errors by more than 89%. (HPO) and feature selection 
techniques (FIA, FS) improved model performance. 

 

First of all, we would like to sincerely thank you for your thoughtful review and 
comments, which have greatly contributed to improving our work. 

In the following sections, we will address all your comments, queries, and suggestions. 
This is an extended version of an answer provided to, we guess the same reviewer, as 
RC2 from Feb 4 2025 about the same manuscript. 

  

  

The authors plan to extend the dataset and include additional parameters like wind speed 
and traffic density in future work. 

I.Questions:  

1. Why was a 10 min interval more effective than 30 min or 1 hour ? Could other time 
intervals (e.g., 5 or 15 minutes) be explored? 

 

Response 1:  Thank you for this comment. 10 minutes was the minimum interval given 
by the references, since it is a standardized monitoring interval for outdoor official air 
quality monitoring in normal conditions as depicted in Section 3.2.  

And among the datasets given by the 10 min, 30 min and 1-hour intervals, after training 
the models as it is explained in Section 4, we see that the minimum prediction error is 
achieved by the 10 minutes interval, as it is shown in Figure 7 for RMSE and MAE in the 
new version of the manuscript (Figure 8 in the first version).  

Notice that this is due to several reasons. On one hand, the 10 min interval is 
determined by environmental researchers as the interval that better gathers the different 
outdoor air quality behaviors, with higher detail under normal conditions. Higher 
sampling frequencies (lower monitoring intervals) create oversampling and redundancy. 
On the other hand, if we use higher monitoring intervals (30 min or 1 hour), we see that 
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we start losing details, smoothing the dataset and overlooking different behaviors that in 
the Machine Learning (ML) process helps to reduce the prediction error. 

We have clarified this issue in the new version of the manuscript as follows: 

 

2. Were the ensemble models compared statistically to determine significance in 
performance differences? 

How do these models generalize to new datasets or different geographical locations? 

Response 2:  Yes, these models were tested and compared in Section 4. We evaluated 
the performance metrics in terms of R^2, RMSE, MAE and MAPE as shown in Tables 9-
11. These results are the weighted average of each metric over 100 different iterations 
by changing the content of the training and test set to obtain results with the minimum 
bias as possible as explained in the manuscript. This explanation is included in the new 
version as follows: 

 

With regard to the generalization of different datasets, this is considered by taking a 
sufficient dataset, as it is detailed in the reference “Machine Learning in Environmental 
Research: Common Pitfalls and Best Practices” by Zhu, et al. In particular, as it is 
explained in Section 3.2, the recommended relationship (ratio) between Sample size and 
Feature size (Sample-size to Feature-size Ratio (SFR)) is higher than 500. In our 
datasets, we have a sample size of 23496, 7843 and 3922 for 10 min, 30 min and 1 hour 
interval, that is a SFR of 4699.2, 1568.6 and 784.4, since we only use 4 features, as it is 
depicted in Section 4.  

About extending the dataset with more data, notice that the fusion of the different 
datasets from different locations as a first approach is not recommended, since they 
could change the environmental conditions. This merging process would require 
refinement in the datasets as well as in the models, that in this case, given the available 
datasets are not necessary. It is better to work with different datasets from different 
locations separately, independently. 

Nevertheless, in order to answer the reviewer, we have created another dataset 
(Dataset 2) with new samples from another deployment with two different LCS nodes 
(called AQ IoT Node 1 and 2) in a different location, in Valencia city. In particular, the 
new dataset is from the official AQ monitoring station called Moli del Sol (Valencia, 
Spain) placed at 39.48113875, -0.40855865, managed by Generalitat Valenciana (GVA) 



4 

and its data is retrieved from https://rvvcca.gva.es/estatico/46250048, for O3 calibration. 
This station is 4.1 km away from the previous official station used for the dataset in the 
manuscript. In this case, this dataset is from May 31, 2024, till January 25, 2025, it has 
239 days and includes data from different seasons as suggested by the reviewer. Notice 
that in our case, to carry out all these deployments, it is required to ask for permission to 
the official institutions in charge of Air Quality. 

Thus, with this new dataset (Dataset2), we have repeated the same process as 
explained in the manuscript, achieving nearly the same results as shown below. We 
show the HPO results over 100 different iterations by changing the content of the 
training and testing set (with the best results given by 90%/10% ratio as already 
discussed in Section 4) to obtain results with the minimum bias as possible, for both 
nodes (AQ IoT Node 1 and 2): 

NODE 1  

GradientBoostingRegressor(criterion='squared_error', max_depth=None, 

learning_rate=0.1,max_features=1.0, n_estimators=900, subsample=1.0) 

R2 = 0.9405841973910234 

RMSE = 6.107097433579371 

MAE = 4.336455961006405 

MAPE = 0.1679585719053396 

time = 102.18236994743347 

 

RandomForestRegressor(max_depth=None,max_features=1.0, n_estimators=100) 

R2 = 0.9046692614127114 

RMSE = 7.735712909738179 

MAE = 5.23282966066717 

MAPE = 0.20992345469839893 

time = 27.86010217666626 

 

AdaBoostRegressor(estimator=DecisionTreeRegressor(max_features=1.0), 

 n_estimators=50, learning_rate=0.01, loss='exponential') 

R2 = 0.9090424941272316 

RMSE = 7.556194639834324 

MAE = 4.564039465946062 

MAPE = 0.16874010491994965 

time = 11.807359457015991 

 

DecisionTreeRegressor(max_depth=None, max_features=1.0, splitter='best') 

R2 = 0.8191113924173187 

RMSE = 10.655883718994565 

MAE = 6.295906305813436 

MAPE = 0.2235395149139127 

time = 0.33399152755737305 

 

NODE 2   

GradientBoostingRegressor(criterion='squared_error', max_depth=None, 

learning_rate=0.1,max_features=1.0, n_estimators=900, subsample=1.0) 
R2 = 0.9547003457380135 

RMSE = 5.332505456267162 
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MAE = 3.7416539078656776 

MAPE = 0.14152286529664848 

time = 82.03594541549683 

 

RandomForestRegressor(max_depth=None,max_features=1.0, n_estimators=100) 

R2 = 0.934358633720318 

RMSE = 6.419078264005403 

MAE = 4.187047365360581 

MAPE = 0.15794878544527777 

time = 20.572300910949707 

 

AdaBoostRegressor(estimator=DecisionTreeRegressor(max_features=1.0), 

 n_estimators=50, learning_rate=0.01, loss='exponential') 

R2 = 0.9287003904552755 

RMSE = 6.690020376986309 

MAE = 3.8299511364469465 

MAPE = 0.13586980540686971 

time = 8.766397953033447 

 

DecisionTreeRegressor(max_depth=None, max_features=1.0, splitter='best') 

R2 = 0.8745869394552789 

RMSE = 8.872688771740032 

MAE = 4.974713868475632 

MAPE = 0.16654468197115013 

time = 0.23625636100769043 

As seen in this new dataset, both AQ IoT nodes exhibit similar behavior. However, Node 
2 performs slightly better than Node 1, likely due to manufacturing variations associated 
with their low cost. It is important to emphasize that these results closely resemble those 
already presented in the manuscript. In the following table we compare and summarize 
these results from Dataset 1, the one used in the manuscript, and Dataset 2, the new 
data set analyzed here in the review.  

GB optimized Dataset1 Dataset2 (Node1) Dataset2 (Node2) 

R2 0.938 0.940 0.954 

RMSE 6.492 6.107 5.332 

MAE 4.022 4.336 3.741 

MAPE 0.194 0.167 0.141 

Time [s] 66.937 102.182 82.035 

 As we can see, Node 1 works worse than Node 2, and the previous results obtained 
from Dataset1 are between these two. In this case, with Dataset 2, the Mean Relative 
Error (MRE) is 6,71% for Node 2 and for Node 1 is 7.78%, and with Dataset 1 was 
7.21%. The estimation of the MRE discussion is at the end of Section 4 in the new 
version of the manuscript as follows: 
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Thus, based on this information, we conclude that for the ZPHS01B module, 165 days of 
Dataset 1 provide sufficient information to generalize the proposed calibration models. 
This aligns with the SFR recommended values, as stated earlier. In other words, given 
the features and characteristics of this module, the original dataset (165 days) contains 
enough information to generalize the behavior of the O3 sensors and their response. 
Thus, better results cannot be achieved with other datasets given the constraints of this 
module.  

This information has been included in the new version of the manuscript with these 
modifications, in Section 3.1, describing the dataset-2 as follows: 

 

In Section 4, in the results with: 

 

 

 

As well as in the conclusion section:  
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3. Why were only 4 features used for the GB model? Were additional environmental factors 
considered initially but excluded? 

Response 3: Thank you for your comment. Based on the analysis conducted in Section 
3.3 for feature selection, we proceeded in Section 4 with the features that provided the 
best performance metrics. These selected features are [date, O3, T, RH], as initially 
indicated in Section 4. We omitted other features that led to poorer results. It is important 
to note that adding less significant features can reduce the importance of key 
parameters, ultimately affecting the overall performance. For instance, including both T 
and PM results in worse performance compared to using only T, leading to less effective 
models.  

4. How does the proposed approach balance cost savings with performance? 

Response 4: Low-cost sensors, as detailed in Section 2, are much cheaper than official 
equipment but with lower accuracy. 

Taking this information into account, Table 15 of the manuscript (in the new version and 
17 in the first one), compares our approach to O3 calibration with similar related work. It 
is important to note that the starting point of the selected studies for comparison differs 
slightly from ours, as these studies used more reliable and significantly more expensive 
low-cost sensors—approximately ten times the cost of the ZPHS01B module as depicted 
in Table 1 of Section 2 with its price range. This was already included in the manuscript. 

 

Thus, we consider that this is a fair balance, highlighting the improvements for the O3 
calibration by using this module. 

 

II.Improvements Needed:  

The current dataset covers 165 days. Increasing the dataset size and covering different 
seasons or regions could improve generalizability. 

Response 5: Thank you for this comment.  

As already answered in Response 2, we repeated the analysis with a new dataset 
(Dataset 2)  from May 31 2024 till January 25, 2025. This dataset has 239 days and 
includes data from different seasons as suggested by the reviewer.  
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As a first approach, we agree that increasing the dataset size and covering different 
seasons or regions could improve the generalizability of ensemble machine learning 
algorithms. In general, a larger dataset typically provides more diverse examples, 
allowing the model to learn from a wider variety of patterns and reducing the risk of 
overfitting to specific data characteristics. Even when the data spans different locations, 
the model also may become more robust by capturing the seasonal variations and 
regional trends that might not be present in a smaller, localized dataset.  

However, as stated in Response 2, 165 days of Dataset 1 provided sufficient information 
to generalize the proposed O3 calibration model and better results cannot be obtained 
with other datasets given the constraints of this module. 

Besides, it must be stressed that there is a trade-off between accuracy and life-time of 
the low cost sensor. And this is the main reason we cannot last the different 
deployments for years. In particular, these low cost sensor modules degrade fast and 
their accuracy is reduced in months. 

Adding complementary parameters, such as traffic patterns, industrial activities, and 
meteorological conditions, could enhance the model’s robustness. 

Response 6: Thank you for your interesting comment. Although this approach is very 
interesting and valid for some scenarios, in our case we focus only on Air quality 
information obtained directly from the low-cost sensor modules. Of course we could 
include other related information in more theoretical studies, but not in a real scenario as 
the one proposed. This type of information (traffic patterns, industrial activities) is not 
available easily in real time, assuming the low cost IoT AQ nodes, described in this 
paper. As it is explained in Section 2, usually, these nodes have limited communications 
and only can gather local information from their directly connected sensors. And when 
the information is processed, they can run the ML models to improve the accuracy of the 
readings. Finally, they can upload this information to other external servers, but always 
with constraints due to their features.  

Besides, other meteorological sensors (such as wind speed and direction) could be 
interesting, but in the end they will modify the different diffusion models of the different 
gasses, but in practice they do not alter the direct readings of the low cost Air quality 
sensors, if they are properly housed as we did in deployment. 

Nevertheless, this discussion has been included in Section 5 in the conclusion as future 
work, but more focus on theoretical studies rather than on real deployments with 
constrained devices as the ones used for Air quality monitoring with low-cost features. 

-While GB is identified as the best-performing model, a statistical comparison of model 
performances (e.g., paired t-tests on errors) should be included to support conclusions. 

+Explain why ADA and RF performed similarly or differently from GB. 

-Discuss the trade-off between GB’s higher execution time and its improved accuracy.  
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-Propose optimizations for deployment scenarios requiring real-time predictions. 

Response 7:  Thank you for your comments. Next, we provide an extended explanation 
about these issues. The different key points about this explanation have been used in 
order to improve the wording in different parts of the manuscript. 

Find next a detailed discussion about all these items. 

As we mentioned below, the guidelines to process this kind of data is shown in reference 
“Machine Learning in Environmental Research: Common Pitfalls and Best Practices” by 
Zhu, et al.. Thus, in particular, about the mentioned “paired t-tests on errors”, these tests 
are used to test if the means of two paired measurements are significantly different, but 
this does not apply in our experiments, since the different models are carried out 
independently and using different data-sets, as it is explained in Section 4 and different 
“training-test” ratio percentages from these datasets: 60%-40%, 70%-30%, 80%-20% 
and 90%-10%. Besides, during the training process, each performance metric depicted 
in Section 4 based on R^2, RMSE, MAE and MAPE is obtained with 100 different 
iterations by changing the content of the training and test set to obtain results with the 
minimum bias as possible. 

About the behavior of ADA and RF vs GB, although all of them are ensemble ML 
algorithms, their algorithms are based on slightly different approaches. In particular, as 
explained in Section 3.4, Adaptive Boosting (AdaBoost) and Gradient Boosting differ in 
how they improve performance. AdaBoost focuses on re-weighting the training data, 
assigning higher weights to misclassified examples, so subsequent weak learners focus 
on these harder cases. It combines weak learners using weighted voting, emphasizing 
the most accurate ones. In contrast, Gradient Boosting focuses on minimizing a specific 
loss function by fitting each new weak learner to the residual errors (differences between 
actual and predicted values) of the previous model. This makes Gradient Boosting more 
flexible, allowing it to handle custom loss functions and more complex learners. While 
AdaBoost is simpler and faster, but sensitive to noise, Gradient Boosting is more 
powerful and robust for complex tasks, but it requires higher execution time. 

Similarly, Random Forest and Gradient Boosting are both ensemble learning algorithms 
and use decision trees as base models, but differ significantly in their approach. Random 
Forest builds multiple decision trees independently by randomly sampling data and 
features, then aggregates their predictions (via majority vote for classification or 
averaging for regression). This parallel training makes it robust, fast, and less prone to 
overfitting. In contrast, Gradient Boosting trains decision trees sequentially, where each 
tree attempts to correct the residual errors of the previous ones by optimizing a specified 
loss function. This iterative process makes Gradient Boosting more flexible and capable 
of fine-tuning but slower. While Random Forest excels in robustness and simplicity, 
Gradient Boosting often achieves higher accuracy in complex tasks due to its ability to 
learn from mistakes adaptively. 
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Besides, these algorithms (ADA, RF and GB) have different hyperparameters and with 
different optimized values, adjusted independently by HPO techniques, as shown in 
Table 5-8 in Section 3.4. 

Regarding the execution time, the trade-off between Gradient Boosting’s higher 
execution time and its improved accuracy compared to Adaptive Boosting and Random 
Forest comes down to the balance between computational cost and predictive 
performance. Gradient Boosting builds trees sequentially, optimizing a specific loss 
function at each step, which allows it to capture complex patterns and often achieve 
superior accuracy. However, this iterative process makes it computationally intensive 
and slower, especially for large datasets or when fine-tuning hyperparameters. Adaptive 
Boosting, while also sequential, is generally faster because it uses simpler learners (like 
decision stumps) and focuses on re-weighting misclassified points rather than optimizing 
a loss function as mentioned before. Random Forest, in contrast, trains trees 
independently and in parallel, making it much faster, but it sacrifices some accuracy 
because it relies on averaging predictions instead of iterative error correction. While 
Gradient Boosting excels in tasks where accuracy is paramount, its higher execution 
time may not be justified for less complex problems or time-sensitive applications, where 
Random Forest or Adaptive Boosting could provide a faster, more practical solution. 

And finally, about the optimizations to be applied on the deployments for real-time 
predictions, it must be stressed that once these models are trained, they can be ported 
to the low cost AQ node that is based on a microcontroller. Then, with these models we 
can improve the accuracy of the direct readings immediately.  

Notice that these details have been used to enrich the new wording in Section 4 when 
dealing with the different algorithms. Besides, it has been included in the future work, 
since in practice, this is a very interesting point for the whole AQ monitoring network. 

III-Proposed Best Method 

-Explore DL models like LSTMs or Temporal Convolutional Networks (TCNs) for time-series 
prediction to capture long-term dependencies. 

Response 8: Thank you for this interesting comment.  

Gradient Boosting algorithms are often more practical, efficient, and interpretable for 
time-series prediction tasks, especially when datasets are small-to-medium-sized, 
contain noise, or require explicit domain knowledge. While DL models like LSTMs and 
TCNs excel in capturing long-term dependencies in very large datasets, Gradient 
Boosting flexibility, lower data requirements and ease of use make it a strong choice for 
real-world time-series applications.  

Nevertheless, as it is mentioned before, the lifetime of these low cost sensors and their 
performance degrade over the time (aging), due to their manufacturing process. In 
particular, this is more critical in the ZPHS01B module and that is the reason we focused 
on these ensemble algorithms.  
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Of course, there is a tradeoff between ML and DL in these scenarios, but pros and cons 
made us conduct the test with these ML techniques, with good results.  

It is worth mentioning that we also used DL techniques, but we observed that they are 
not able to generalize as the ML approach did. And for this reason, the results using DL 
techniques are not so robust and reliable, mainly due to overfitting even with bigger 
datasets in this context and scenario. These results are shown below for a simple 
Sequential Neural Network from TensorFlow/Keras using an optimizator stochastic 
gradient descent with an input of 4 features and two layers. These two layers are a 
dense layer with four neurons and a linear activation, followed by a second layer with a 
neuron that provides the output. The network scheme is shown in Figure 1, below.  

 

 

 Figure 1: Scheme of the Sequential Neural Network from TensorFlow/Keras using an 
optimizator stochastic gradient descent with an input of 4 features and two dense layers. 

The results from this Sequential Neural Network are: 

R2 Score: 0.9999999999976741 

RMSE: 3.514481801502949e-05 

MAE: 2.9925663790820442e-05 

As we can see, these results show that these techniques learn and memorize the whole 
dataset and we cannot generalize. That is the reason we focused on ML since they 
adapt and perform better in this scenario, given by the AQ monitoring stations and the 
ZPHS01B low cost sensor module for O3 calibration.  

We have included this explanation also in the revised version, in order to justify the 
selection of these ML techniques instead of other techniques. This information is 
included as follows: 
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-Combine GB with DL methods for feature extraction and refinement, especially if additional 
parameters are included. 

Response 9: Thank you for this comment.  

From our experience, combining Gradient Boosting algorithms with Deep Learning 
methods for feature selection is often unnecessary due to several reasons. Gradient 
Boosting algorithms as the ones proposed in this research, are inherently capable of 
handling feature selection through their built-in mechanisms, such as calculating feature 
importance and automatically ignoring irrelevant or redundant features during training as 
it was shown in Section 3.4. These algorithms excel in structured data tasks and 
effectively model complex, non-linear relationships without requiring additional feature 
selection methods as depicted in Section 3.4. Furthermore, Deep Learning-based 
feature selection is computationally expensive, requiring significant resources and larger 
datasets to avoid overfitting, which may not justify the effort when Gradient Boosting can 
already achieve competitive results. Additionally, Gradient Boosting provides 
interpretable outputs which offer clear insights into feature importance, unlike Deep 
Learning methods, which often function as black boxes. Finally, introducing Deep 
Learning adds unnecessary complexity to the pipeline, increasing training time and 
resource demands without guaranteed improvements in predictive performance, 
especially when Gradient Boosting already performs well on the given dataset.  

This explanation and justification have been considered in the new version of the 
manuscript in Section 3.4. 

-Use advanced ensemble techniques like Stacked Generalization (Stacking) to blend 
predictions from GB, RF, and ADA for better accuracy. 

Response 10: Thank you for this comment.  

It must be pointed out that using Stacked Generalization (Stacking) to blend predictions 
from Gradient Boosting, Random Forest and AdaBoost may not be ideal due to several 
reasons. First, it adds complexity by introducing a meta-learner, making the workflow 
harder to interpret and manage, often for marginal accuracy gains. Gradient Boosting 
already iteratively optimizes predictions and often outperforms combinations with simpler 
models like Random Forest or AdaBoost, making the stack redundant. Additionally, 
stacking increases the risk of overfitting, especially with small datasets, as the meta-
learner can overfit to the base models' predictions. It also significantly increases training 
time and computational demands, while the lack of diversity among tree-based models 
reduces the potential benefits of combining them. Simpler alternatives, such as weighted 
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averaging or selecting the best-performing model, often achieve comparable results 
without the added complexity. 

Several scientific references support the arguments against using Stacked 
Generalization (Stacking) to combine predictions from Gradient Boosting, Random 
Forest, and AdaBoost. The increased complexity and risk of overfitting associated with 
stacking are highlighted in "A guide to ensemble learning," which notes that ensemble 
methods can lead to computational complexity and overfitting risks [1]. Additionally, the 
article "Stacking to Improve Model Performance: A Comprehensive Guide" discusses 
how utilizing too many base models in a stacked ensemble can result in overfitting and 
increased computing complexity [2]. Furthermore, the article "Gradient Boosting vs 
Random Forest" explains that Gradient Boosting focuses on sequential correction of 
errors, while Random Forest relies on the diversity of independently trained trees, 
suggesting that combining these models may not provide significant additional benefits 
[3]. 

Thus, based on these reasons, it shows that for this case, stacking these particular 
models may introduce unnecessary complexity and overfitting risks without substantial 
improvements in predictive performance.  

However, this comment has been included in the new version of the manuscript, to 
justify this explanation. 

References: 

[1] https://serokell.io/blog/ensemble-learning-guide 

[2] https://medium.com/@brijesh_soni/understanding-boosting-in-machine-
learning-a-comprehensive-guide-bdeaa1167a6 

[3] https://www.geeksforgeeks.org/gradient-boosting-vs-random-forest/ 

 

 IV-Recommendations :  

Expand the dataset and include more parameters to increase model accuracy. 

Conduct real-world validation to demonstrate scalability and robustness. 

Compare ML and DL approaches to assess their suitability for time-series AQ calibration. 

Provide open-source tools for replicating and extending the proposed calibration process. 

By addressing these improvements and exploring advanced methodologies, the study can 
significantly contribute to cost-effective and scalable air quality monitoring solutions. 
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Response 11: Thank you for feedback. 

We consider that all these issues have been discussed during this review, and some of 
them, the more interesting, have been included in the new version of the manuscript 
improving its wording. 

In summary, about the dataset, we have discussed this in Response 2 and 5 with detail, 
as well as using other locations. About the real-world validation, all our trials and 
measurements come from real deployments. We have not used anything simulated. 
About the comparison between ML and DL, as it was discussed previously, we have 
included this discussion as well as their worse results, in favor of ML in this case. Also, 
about the open-source tools, all our datasets are available online, as it is indicated in the 
last part of the manuscript with the following statement “Please feel free to contact to the 
authors for further information: http://www.uv.es/eco4rupa/dataset.html”.  

 

Finally, thank you for your thoughtful review and comments which will enable us to 
improve this work.  We appreciate the time and effort invested in your review. 
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Title: “Improving Raw Readings from Low-Cost Ozone Sensors Using Artificial Intelligence for Air Quality 
Monitoring” 
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Dear editor and reviewer, 

Thank you for giving us the opportunity to address the comments provided by the anonymous reviewers. We 
have made every effort to respond thoroughly to their feedback. Attached is a response letter with our 
responses highlighted in blue. The revised manuscript also uses blue text to indicate the changes made. In 
some answers, this blue text is highlighted if there is more than one answer. 

We would also like to express our gratitude to the anonymous reviewers for their valuable comments and 
suggestions. We appreciate the time and effort they have invested in improving our work. We firmly believe 
that this manuscript is now suitable for publication and an excellent contribution to share with the broader 
research community. 
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Reviewer’s comments (A. Kourtiche Referee #2 (RC2) , 4 Feb 2025) 

First of all, we would like to sincerely thank you for your thoughtful review and comments, which have greatly 
contributed to improving our work. 

In the following sections, we will address all your comments, queries, and suggestions. This answer is based 
on a previous answer, we guess from the same reviewer, as CC1 from Jan 24, 2025, about the same 
manuscript. 

 

Increasing the dataset size and covering different seasons or regions could improve generalizability. 

Response 1: 

With regard to the generalization of different datasets, this is considered by taking a sufficient dataset, as it is 
detailed in the reference “Machine Learning in Environmental Research: Common Pitfalls and Best Practices” 
by Zhu, et al. In particular, as it is explained in Section 3.2, the recommended relationship (ratio) between 
Sample size and Feature size (Sample-size to Feature-size Ratio (SFR)) is higher than 500. In our datasets, we 
have a sample size of 23496, 7843 and 3922 for 10 min, 30 min and 1 hour interval, that is a SFR of 4699.2, 
1568.6 and 784.4, since we only use 4 features, as it is depicted in Section 4.  

About extending the dataset with more data, notice that the fusion of the different datasets from different 
locations as a first approach is not recommended, since they could change the environmental conditions. 
This merging process would require refinement in the data sets as well as in the models, that in this case, 
given the available datasets are not necessary. It is better to work with different datasets from different 
locations separately, independently. 

Nevertheless, in order to answer the reviewer, we have created another dataset (Dataset 2) with new samples 
from another deployment with two different LCS nodes (called AQ IoT Node 1 and 2) in a different location, in 
Valencia city. In particular, the new dataset is from the official AQ monitoring station called Moli del Sol 
(Valencia, Spain) placed at 39.48113875, -0.40855865, managed by Generalitat Valenciana (GVA) and its data 
is retrieved from https://rvvcca.gva.es/estatico/46250048, for O3 calibration. This station is 4.1 km away from 
the previous official station used for the dataset in the manuscript. In this case, this dataset is from May 31 
2024 till January 25, 2025, it has 239 days and includes data from different seasons as suggested by the 
reviewer. Notice that in our case, to carry out all these deployments, it is required to ask for permission to the 
official institutions in charge of Air Quality. 
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Thus, with this new dataset (Dataset2), we have repeated the same process as explained in the manuscript, 
achieving nearly the same results as shown below. We show the HPO results over 100 different iterations by 
changing the content of the training and testing set (with the best results given by 90%/10% ratio as already 
discussed in Section 4) to obtain results with the minimum bias as possible, for both nodes (AQ IoT Node 1 
and 2): 

NODE 1  

GradientBoostingRegressor(criterion='squared_error', max_depth=None, 

learning_rate=0.1,max_features=1.0, n_estimators=900, subsample=1.0) 

R2 = 0.9405841973910234 

RMSE = 6.107097433579371 

MAE = 4.336455961006405 

MAPE = 0.1679585719053396 

time = 102.18236994743347 

RandomForestRegressor(max_depth=None,max_features=1.0, n_estimators=100) 

R2 = 0.9046692614127114 

RMSE = 7.735712909738179 

MAE = 5.23282966066717 

MAPE = 0.20992345469839893 

time = 27.86010217666626 

AdaBoostRegressor(estimator=DecisionTreeRegressor(max_features=1.0), 

 n_estimators=50, learning_rate=0.01, loss='exponential') 

R2 = 0.9090424941272316 

RMSE = 7.556194639834324 

MAE = 4.564039465946062 

MAPE = 0.16874010491994965 

time = 11.807359457015991 

DecisionTreeRegressor(max_depth=None, max_features=1.0, splitter='best') 

R2 = 0.8191113924173187 

RMSE = 10.655883718994565 

MAE = 6.295906305813436 

MAPE = 0.2235395149139127 

time = 0.33399152755737305 
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NODE 2   

GradientBoostingRegressor(criterion='squared_error', max_depth=None, 

learning_rate=0.1,max_features=1.0, n_estimators=900, subsample=1.0) 

R2 = 0.9547003457380135 

RMSE = 5.332505456267162 

MAE = 3.7416539078656776 

MAPE = 0.14152286529664848 

time = 82.03594541549683 

RandomForestRegressor(max_depth=None,max_features=1.0, n_estimators=100) 

R2 = 0.934358633720318 

RMSE = 6.419078264005403 

MAE = 4.187047365360581 

MAPE = 0.15794878544527777 

time = 20.572300910949707 

AdaBoostRegressor(estimator=DecisionTreeRegressor(max_features=1.0), 

 n_estimators=50, learning_rate=0.01, loss='exponential') 

R2 = 0.9287003904552755 

RMSE = 6.690020376986309 

MAE = 3.8299511364469465 

MAPE = 0.13586980540686971 

time = 8.766397953033447 

DecisionTreeRegressor(max_depth=None, max_features=1.0, splitter='best') 

R2 = 0.8745869394552789 

RMSE = 8.872688771740032 

MAE = 4.974713868475632 

MAPE = 0.16654468197115013 

time = 0.23625636100769043 
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As seen in this new dataset, both AQ IoT nodes exhibit similar behavior. However, Node 2 performs slightly 
better than Node 1, likely due to manufacturing variations associated with their low cost. It is important to 
emphasize that these results closely resemble those already presented in the manuscript. In the following 
table we compare and summarize these results from Dataset 1, the one used in the manuscript, and Dataset 
2, the new data set analyzed here in the review.  

GB optimized Dataset1 Dataset2 (Node1) Dataset2 (Node2) 

R2 0.938 0.940 0.954 

RMSE 6.492 6.107 5.332 

MAE 4.022 4.336 3.741 

MAPE 0.194 0.167 0.141 

Time [s] 66.937 102.182 82.035 

 As we can see, Node 1 works worse than Node 2, and the previous results obtained from Dataset1 are 
between these two. In this case, with Dataset 2, the Mean Relative Error (MRE) is 6,71% for Node 2 and for 
Node 1 is 7.78%, and with Dataset 1 it was 7.21%. The estimation of the MRE discussion is at the end of 
Section 4 in the new version of the manuscript as follows: 

 

Thus, based on this information, we conclude that for the ZPHS01B module, 165 days of dataset-1 provide 
sufficient information to generalize the proposed calibration models. This aligns with the SFR recommended 
values, as stated earlier. In other words, given the features and characteristics of this module, the original 
dataset (165 days) contains enough information to generalize the behavior of the O3 sensors and their 
response. Thus, better results cannot be achieved with other datasets given the constraints of this module.  

This information has been included in the new version of the manuscript with these modifications, in Section 
3.1, describing the dataset-2 as follows: 
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In Section 4, in the results with: 

 

 

 

As well as in the conclusion section:  

 

 

Adding complementary parameters, such as traffic patterns, industrial activities, and meteorological 
conditions, could enhance the model’s robustness 

 

Response 2:  
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Thank you for your interesting comment. Although this approach is very interesting and valid for some 
scenarios, in our case we focus only on Air quality information obtained directly from the low-cost sensor 
modules. Of course we could include other related information in more theoretical studies, but not on a real 
scenario as the one proposed. This type of information (traffic patterns, industrial activities) is not available 
easily in real time, assuming the low cost IoT AQ nodes, described in this paper. As it is explained in Section 2, 
usually, these nodes have limited communications and only can gather local information from their directly 
connected sensors. And when the information is processed, they can run the ML models to improve the 
accuracy of the readings. Finally, they can upload this information to other external servers, but always with 
constraints due to their features.  

Besides, other meteorological sensors (such as wind speed and direction) could be interesting, but at the end 
they will modify the different diffusion models of the different gasses, but in practice they do not alter the 
direct readings of the low cost Air quality sensors, if they are properly housed as we did in deployment. 

Nevertheless, this discussion has been included in Section 5 in the conclusion as future work, but more 
focused on theoretical studies rather than on real deployments with constrained devices as the ones used for 
Air quality monitoring with low cost features. 

 

  

1-While GB is identified as the best-performing model, a statistical comparison of model performances 
(e.g., paired t-tests on errors) should be included to support conclusions. 

2+Explain why ADA and RF performed similarly or differently from GB. 

3-Propose optimizations for deployment scenarios requiring real-time predictions. 

 Response 3: Thank you for your comments. Next, we provide an extended explanation about these issues. 
The different key points about this explanation have been used in order to improve the wording in different 
parts of the manuscript. 

Find next a detailed discussion about all these items. 

As we mentioned below, the guidelines to process this kind of data is shown in reference “Machine Learning 
in Environmental Research: Common Pitfalls and Best Practices” by Zhu, et al.. Thus, in particular, about the 
mentioned “paired t-tests on errors”, these tests are used to test if the means of two paired measurements 
are significantly different, but this does not apply in our experiments, since the different models are carried 
out independently and using different data-sets, as it is explained in Section 4 and different “training-test” 
ratio percentages from these datasets: 60%-40%, 70%-30%, 80%-20% and 90%-10%. Besides, during the 
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training process, each performance metric depicted in Section 4 based on R^2, RMSE, MAE and MAPE is 
obtained with 100 different iterations by changing the content of the training and test set to obtain results with 
the minimum bias as possible. 

About the behavior of ADA and RF vs GB, although all of them are ensemble ML algorithms, their algorithms 
are based on slightly different approaches. In particular, as explained in Section 3.4, Adaptive Boosting 
(AdaBoost) and Gradient Boosting differ in how they improve performance. AdaBoost focuses on re-weighting 
the training data, assigning higher weights to misclassified examples, so subsequent weak learners focus on 
these harder cases. It combines weak learners using weighted voting, emphasizing the most accurate ones. 
In contrast, Gradient Boosting focuses on minimizing a specific loss function by fitting each new weak learner 
to the residual errors (differences between actual and predicted values) of the previous model. This makes 
Gradient Boosting more flexible, allowing it to handle custom loss functions and more complex learners. 
While AdaBoost is simpler and faster, but sensitive to noise, Gradient Boosting is more powerful and robust 
for complex tasks, but it requires higher execution time. 

Similarly, Random Forest and Gradient Boosting are both ensemble learning algorithms and use decision 
trees as base models, but differ significantly in their approach. Random Forest builds multiple decision trees 
independently by randomly sampling data and features, then aggregates their predictions (via majority vote 
for classification or averaging for regression). This parallel training makes it robust, fast, and less prone to 
overfitting. In contrast, Gradient Boosting trains decision trees sequentially, where each tree attempts to 
correct the residual errors of the previous ones by optimizing a specified loss function. This iterative process 
makes Gradient Boosting more flexible and capable of fine-tuning but slower. While Random Forest excels in 
robustness and simplicity, Gradient Boosting often achieves higher accuracy in complex tasks due to its 
ability to learn from mistakes adaptively. 

Besides, these algorithms (ADA, RF and GB) have different hyperparameters and with different optimized 
values, adjusted independently by HPO techniques, as shown in Table 5-8 in Section 3.4. 

With regard to the execution time, the trade-off between Gradient Boosting’s higher execution time and its 
improved accuracy compared to Adaptive Boosting and Random Forest comes down to the balance between 
computational cost and predictive performance. Gradient Boosting builds trees sequentially, optimizing a 
specific loss function at each step, which allows it to capture complex patterns and often achieve superior 
accuracy. However, this iterative process makes it computationally intensive and slower, especially for large 
datasets or when fine-tuning hyperparameters. Adaptive Boosting, while also sequential, is generally faster 
because it uses simpler learners (like decision stumps) and focuses on re-weighting misclassified points 
rather than optimizing a loss function as mentioned before. Random Forest, in contrast, trains trees 
independently and in parallel, making it much faster, but it sacrifices some accuracy because it relies on 
averaging predictions instead of iterative error correction. While Gradient Boosting excels in tasks where 
accuracy is paramount, its higher execution time may not be justified for less complex problems or time-
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sensitive applications, where Random Forest or Adaptive Boosting could provide a faster, more practical 
solution. 

And finally, about the optimizations to be applied on the deployments for real-time predictions, it must be 
stressed that once these models are trained, they can be ported to the low cost AQ node that is based on a 
microcontroller. Then, with these models we can improve the accuracy of the direct readings immediately.  

Notice that these details have been used to enrich the new wording in Section 4 when dealing with the 
different algorithms. Besides, it has been included in the future work, since in practice, this is a very 
interesting point for the whole AQ monitoring network. 

 

  

III-Proposed Best Method 

-Explore DL models like LSTMs or Temporal Convolutional Networks (TCNs) for time-series prediction to 
capture long-term dependencies. 

 

Response 4: Thank you for this interesting comment.  

Gradient Boosting algorithms are often more practical, efficient, and interpretable for time-series prediction 
tasks, especially when datasets are small-to-medium-sized, contain noise, or require explicit domain 
knowledge. While DL models like LSTMs and TCNs excel in capturing long-term dependencies in very large 
datasets, Gradient Boosting flexibility, lower data requirements and ease of use make it a strong choice for 
real-world time-series applications.  

Nevertheless, as it is mentioned before, the lifetime of these low cost sensors and their performance degrade 
over time (aging), due to their manufacturing process. In particular, this is more critical in the ZPHS01B 
module and that is the reason we focused on these ensemble algorithms.  

Of course, there is a tradeoff between ML and DL in these scenarios, but pros and cons made us conduct the 
test with these ML techniques, with good results.  

It is worth mentioning that we also used DL techniques, but we observed that they are not able to generalize 
as the ML approach did. And for this reason, the results using DL techniques are not so robust and reliable, 
mainly due to overfitting even with bigger datasets in this context and scenario. These results are shown 
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below for a simple Sequential Neural Network from TensorFlow/Keras using an optimizator stochastic 
gradient descent with an input of 4 features and two layers. These two layers are a dense layer with four 
neurons and a linear activation, followed by a second layer with a neuron that provides the output. The 
network scheme is shown in Figure 1, below.  

 

 

 Figure 1: Scheme of the Sequential Neural Network from TensorFlow/Keras using an optimizator stochastic 
gradient descent with an input of 4 features and two dense layers. 

The results from this Sequential Neural Network are: 

R2 Score: 0.9999999999976741 

RMSE: 3.514481801502949e-05 

MAE: 2.9925663790820442e-05 

As we can see, these results show that these techniques learn and memorize the whole dataset and we 
cannot generalize. That is the reason we focused on ML since they adapt and perform better in this scenario, 
given by the AQ monitoring stations and the ZPHS01B low cost sensor module for O3 calibration.  
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We have included this explanation also in the revised version, in order to justify the selection of these ML 
techniques instead of other techniques. This information is included as follows: 

 

 

 

-Combine GB with DL methods for feature extraction and refinement, especially if additional parameters 
are included.. 

Response 5: Thank you for this comment.  

From our experience, combining Gradient Boosting algorithms with Deep Learning methods for feature 
selection is often unnecessary due to several reasons. Gradient Boosting algorithms as the ones proposed in 
this research, are inherently capable of handling feature selection through their built-in mechanisms, such as 
calculating feature importance and automatically ignoring irrelevant or redundant features during training as 
it was shown in Section 3.4. These algorithms excel in structured data tasks and effectively model complex, 
non-linear relationships without requiring additional feature selection methods as depicted in Section 3.4. 
Furthermore, Deep Learning-based feature selection is computationally expensive, requiring significant 
resources and larger datasets to avoid overfitting, which may not justify the effort when Gradient Boosting can 
already achieve competitive results. Additionally, Gradient Boosting provides interpretable outputs which 
offer clear insights into feature importance, unlike Deep Learning methods, which often function as black 
boxes. Finally, introducing Deep Learning adds unnecessary complexity to the pipeline, increasing training 
time and resource demands without guaranteed improvements in predictive performance, especially when 
Gradient Boosting already performs well on the given dataset.  

This explanation and justification have been considered in the new version of the manuscript in Section 3.4. 
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