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Dear editor and reviewer,

Thank you for giving us the opportunity to address the comments provided by the
anonymous reviewers. We have made every effort to respond thoroughly to their
feedback. Attached is a response letter with our responses highlighted in magenta for
this Round 2. The revised manuscript also uses to indicate the changes
made, keeping the changes from Round 1 in blue.

We would also like to express our gratitude to the anonymous reviewers for their valuable
comments and suggestions. We appreciate the time and effort they have invested in
improving our work. We firmly believe that this manuscript is now suitable for publication
and an excellent contribution to share with the broader research community.



Reviewer’s comments (Referee #1 Round 2, March 10 2025) Round 2

First of all, we would like to sincerely thank you for your thoughtful review and
comments, which have greatly contributed to improving our work.

In the following sections, we will address all your comments, queries, and
suggestions.

Summary: While this draft shows improvement, more work is needed on the
introduction/related work to set the stage for a strong paper. These sections should clearly
set up: 1) what is already being done in the space; 2) what is lacking in the space; 3) what
you will do differently to expand on what’s already been done. There are plenty of other
papers already using ML, GB., etc. — what about your model is different?

Likewise, figures and tables should be included selectively — many are still superfluous
and either demonstrate the same information as each other, or information that is already
well- established in the field. These figures should be combined or removed as appropriate.

Response 1: Thank you for this comment. We think that the goal and contribution of
this draft is relatively clear, that is the accuracy improvement of ground-level ozone
measurements from low-cost sensors but using less expensive air quality monitoring
modules, in particular the ZPHS01B multisensor module. The related work and the
selected papers used for comparison are using low-cost sensors ten times more
expensive as it is detailed in the manuscript.

Moreover, since Machine Learning-based algorithms show the best results as discussed
in Section 2 in the context of low-cost air quality sensors, in particular for ground-level
ozone, we have focused exclusively on them, evaluating up to four different models,
whereas other studies have only considered one or two. We follow a clear exploratory
data analysis, focused on FIA, FS and a detailed HPO process for the different models.
Notice that Machine Learning algorithms are the ones that best adapt to the nonlinearities
of these sensors, compared to statistical approaches.

In addition, in our models, we include the "date" feature (variable), as metadata, as
depicted in Section 3.3, which takes into account the effects of aging and detects
additional information from road traffic patterns.

Thus, regarding the “what” questions:

1) what is already being done in the space; There are many contributions, and to the best
of our knowledge all of them considered in Section 2.




2) what is lacking in the space; There is always room for improvement through different
aspects: different models and their design, exploratory data analysis, better and different
features (variables) and new sensors and platforms to name a few.

3) what you will do differently to expand on what’s already been done: In our case, we
achieve similar or better results with cheaper sensors (10 time less expensive) in an
environment with lower ozone concentrations (with a mean value of 55.72 ug/m®),
including all the sensors from ZPHSO01B (9 in total) and metadata (“date”) in the machine
learning process, in a well-defined structured approach for exploratory data analysis. The
metadata is used to account for the aging effect and improve the models following road
traffic patterns.

Notice that in addition to our previous manuscript, we have reviewed and updated the
state of the art across various bibliographic databases from the most important
publishers. In particular, we searched for journal publications in IEEE (excluding IEEE
Access), Elsevier (ScienceDirect) and Copernicus. Our search focused on calibration
methods for low-cost ozone sensors using ML techniques. In practice, there are not that
many publications on this topic. Narrowing the search by subject, we found around 50
publications, and after reviewing their contents, we identified only 3 recent references
with a truly similar focus and could be added to update the list of references already
included. Briefly, the discarded publications were excluded because they either dealt with
tropospheric ozone, integrated additional satellite imaging systems, focused on prediction
rather than calibration, used ML for other air quality parameters (without including ground-
level ozone), or focused specifically on deep learning (DL).

These new references are:

Cavaliere, A., Brilli, L., Andreini, B. P., Carotenuto, E, Gioli, B., Giordano, T., Stefanelli, M., Vagnoli, C., Zaldei, A., and Gualtieri, G.:
Development of low-cost air quality stations for next-generation monitoring networks: calibration and validation of NO= and O3 sensors,
Atmospheric Measurement Techniques, 16, 4723-4740, hitps://doi.org/10.5194/amt-16-4723-2023, 2023.

Wang, G.. Yo, C., Guo, K., Guo, H., and Wang, Y.: Research of low-cost air guality monitoring models with different machine leaming
algorithms, Atmospheric Measurement Techniques, 17, 181196, hitps: /doi.org/10. 5194/ ami-17-181-2024, 2024,

Wang, R., Li, Q., Yu, H., Chen, Z, Zhang. Y., Zhang. L., Cui, H., and Zhang, K.: A Category-Based Calibration Approach With Fault
Tolerance for Air Monitoring Sensors, [EEE Sensors Journal, 20, 10756-10763, https//doi.org/10.110%1SEN.2020.2994645, 2020,

These 3 new references included have been explained and included in Section 2 as
follows:



The calibration process of these LCS is a challenge as mentioned before, where ML and Deep Learning (DL) models can be

used. In (Wang et al. (2024)), a low-cost multi parameter A} system based on PMy 5, PMyp, 502, NOg, 0 and 05,
along with Temp and RH is proposed using and evaluating various calibration algorithms, For O3, the algorithms are

110 ranked from best to worst fit as follows: RF, K-Nearest Neighbors (KNN), Back Propagation (BP), Genetic Algorithm
Back Propagation (GA-BP), and Multiple Linear Regression (MLR), with 7° values (MAE, in pg/m”) of 0.98 (2.88),

0.87 (7.33), 0.83 (11.14), 0.83 (10.90), and 0.74 (13.46), respectively. With a mean Oy concentration of approximately

0 ..:L_.rr,-'.'rr“. as shown in their Figure. 12, the RF model achieves a MRE of 4.11%. In (Cavaliere et al. (2023)), hased

on 5 and NO; metal oxide sensors, along with Temp and RH, the authors analyzed different calibration options

115  using uni-variate/multi-variate, linear/non-linear and parametric/non-parametric approaches with algorithms such as
Linear Regression (LR), Non-Linear Regression (NLR), Support Vector Machines (SYM). RF and GB. They concluded

that Multiple Random Forest (MRF) achieved the highest accuracy during Phase 1 (pre-deployment), with an F* of

0,98 and MAE (MRE) of 4.31 (574 %), considering a mean (5 during their deployments of 75 _u_.r,l..-"n.l:".. depicted in their
Figure 3 and 7. However, in Phase 11 (field validation) conducted at a different location, the performance worsened, with

120 the MAE (MRE) 22.22 (29.62% ) while MLR 1296 (17.28% ). In this case, MLR provided better results. The authors
conclude that MLR may be a more suitable solution for representing physical models bevond the Phase I calibration
dataset, demonstrating better transferability across diverse spatial and temporal settings, highlighting that parametric
maodels such as MLR have a defined equation with only a few parameters, making them easier to adjust for potential
changes over time. In (Wang et al. (20207}, the authors propose a category-hased calibration approach (piecewise) using

125 ML, which builds separate regression models for different pollutant concentration levels, This proposal is tested on OO
and 7y data from two Chinese cities, Fuxrhou and Lanzhou, with good and bad AQ, with mean Oy concentrations of
69545 pig/m3 and 49.781 pg/m3 respectively for 11 months (48 weeks). The achieved metrics for the best results are
given by Extreme GB and Light GB machine algorithms (outperforming linear regression and RF) with MAE (g /m3)

of 10.75 and 10.98 in Lanzhou city respectively, and 13.83 and 14.98 in Fuzhou city, with a MRE greater than 19.88%.

And in Table 11 (in the new version), we have included also these 3 references (the first
3 row) for comparison as follows:

Stody Location Platform, Sensor R? MRE [%] Comment
Wang et al | Zhengzhou | by Hamwei Elec- | 0.93 | 4.11 52 weeks dataset with RF and HPO
(2024)) {China) tronics  Corp, (%
B4 Alphasense

(Cavaliere et al | Florence, AirQino LC, N, | 098 | DMRF 574, | 61 weeks datasat with MRF and
(2023)) Montalke MICS-2714. (4 | with | IEMLR MLE. using complatz EDA

(Ttaly MiC5-2614 MEF | 17.28, MRF

M.l
Wang et al | Lanzhou Sailhero  instru- | - 19.88 43 weeks dataset, category-based
(20200) (China) ment, - calibration (piecewise) with Ex-
tmeme GB and F5

(Zimmerman Pittshurg RAMP, Alphasense | 0.86 | 15 16 weeks dataset with RF
et al. (2018)) (USA) Om-B431
(Esposito et al | Cambridge | SnaQ). Alphasznse | 0.69 | 42 5 weeks dataset using Dynamic NN
(2016)) (UK) B4 Electrochemical with a kind of HPO
Our model Valencia ZPHS0IB, Winsen | 093 | 7.21 57 weeks dataset using GE with

{Spain) A ) F1A, FS and HPO

Table 11. Comparison with similar related works



We agree that the Machine Learning techniques used are not innovative, but their use as
a tool to achieve the accuracy shown in our results, combined with the methodology,
following the recommendations and best practices reported in other scientific works and
dealt in the manuscript, make it relevant and interesting for the community (i.e. for
researcher and practitioners). These steps and methodology, as well as their explanation
and justification are not found in the related work as is highlighted in the new version of
the manuscript, as stressed in the previous revision.

We emphasize that some of the steps for data preprocessing, analysis and interpretability
are often overlooked, such as Feature Importance Analysis (FIA), Principal Component
Analysis (PCA) and Feature Selection (FS). In this line, in the manuscript it is said that the
process of optimizing algorithms through the selection of their hyperparameters is also
neglected in some environmental research studies. As we mentioned before, all these
details are already included in Section 2 “Related work” and checked with these
representative papers.

It is worth mentioning that we are combining two different disciplines, air quality and
artificial intelligence. And it is difficult to master both disciplines and this is the reason in
Section 2 we go into detail with these aspects, checking if the procedures used in the
related works are overlooking these steps in these papers.

Thus, in summary our work provides several contributions of interest, which we list
below:

1. The multisensor module ZPHS01B is priced at approximately 150 euros and
includes 9 different sensors, making it cheaper than other systems used in the state
of the art. This is a distinguishing starting point and of interest to the scientific
community. In the related work, systems considered low-cost typically refer to a price
of less than 150 euros per sensor.

2. The approach of using a single module with all 9 integrated air quality
sensors, which enables the evaluation of cross-sensitivity issues between
sensors and their potential added value, is another differentiating element. In the state-
of-the-art works reviewed, the systems generally use separate sensors of different
types and features, which can be interchanged. We have as many different ozone
sensors as there are papers on the related work.

3. In the studies compared in Table 11 of the new version of the manuscript,
various methods are used for calibration, including statistical methods (also known
as white-boxes) and machine learning (ML)-based approaches (grey-boxes), the
latter of which tend to yield better results. However, in those comparisons with ML,
only one or two methods are usually applied. In our case, we focus exclusively
on machine learning and perform a more in-depth evaluation of four different
methods.

4. Due to the design and characteristics of these low-cost sensors, aging
affects their performance over time. Only in the mentioned article by (Cavaliere et



al.(2023)), it is proposed an adjustment for a linear regression method to account for
this, but the adjustment is not applied to other methods, especially not to those based
on machine learning. In our machine learning models, this effect is incorporated
through the "date" feature, which—while technically a metadata field—helps reduce
error in the models by not relying solely on environmental variables. This feature allows
us to capture both the effect of sensor aging and pollution patterns associated with
traffic from combustion vehicles. Besides, this feature (date) will allow us to improve
the models following the road traffic patterns.

5. We already evaluated Deep Learning (DL) methods at the request of Reviewer
2 in Round 1 of the revision process (as can be seen in the discussion forum of the
platform), and we also extended the initial dataset from 165 to 239 days. Although DL
results are not directly included in the article, we provide a relevant discussion
explaining why such methods were discarded in this scenario, as noted in section 3.4.
In fact, we observed that for the datasets obtained during the measurement
campaigns, DL models tend to learn and memorize the dataset entirely, leading
to overfitting. We believe this is due to the intrinsic characteristics of the air quality
monitoring scenario and the behavior of the low-cost sensors in the ZPHS01B module,
as the datasets generated are limited and constrained for the use of DL
techniques. This is the reason we do not include these results. These results are
shown in the response to this Reviewer 2 with R?=0.9999999999976741, RMSE:
3.514481801502949e-05 and MAE: 2.9925663790820442e-05.

Besides, notice that Machine Learning (ML) models are often more practical, efficient,
and interpretable for time-series prediction tasks, especially when datasets are small-
to-medium-sized, contain noise, or require explicit domain knowledge. While DL
models like LSTMs and TCNs excel in capturing long-term dependencies in very large
datasets. Thus, with our dataset, we observed that DL techniques are not able to
generalize as the ML approach did. And for this reason, the results using DL
techniques are not so robust and reliable, mainly due to overfitting.

6. The results presented share the same characteristics as those presented in Table
11 of the new version of the manuscript used for comparison. However, there are
two important differentiating elements. On the one hand, as mentioned before, the
module used is significantly more affordable (around 10 times cheaper). On the other
hand, the results reported in the referenced works (Wang et al. (2024)) were
obtained in environments with much higher ozone concentrations. It is important
to note that these sensors perform worse at low concentrations than at high ones
due to their sensitivity limitations and the weakness of the signals generated, as well
as interference from other pollutants. While in our dataset the ozone concentration
is lower, with an average ozone concentration of 55.72 pug/m*—i.e., in the cited studies
the values are higher (more than 70 pyg/m?3). This information is included in the new
version of the manuscript as follows:



nit all of these works follow and discuss an structured EDA with FIA, FS and HPO. In particular, when compared to the first
two works with slightly better results, in (Wang et al. (2024), we appreciate higher 5 values, mean values higher than
70 g/ m®, while in our case we have lower levels (55.72 jig/m?)), as well as there is not a complete EDA. It is important
to mote that these sensors perform worse at low concentrations than at high ones due to their sensitivity limitations and
380 the weakness of the signals generated, as well as interference from other pollutants, Finally, in (Cavaliere et al. (2023)),
although the authors use a complete EDA, they only use two sensors (VO and ;) apart from Temp and RH, and the

7. Finally, although there are a couple of articles that follow a more structured
approach, in particular (Cavaliere et al.(2023)), most do not carry out the
recommended steps required to properly apply machine learning algorithms,
such as conducting exploratory data analysis and including Feature Importance
Analysis (FIA), Feature Selection (FS) and Hyperparameter Optimization (HPO)
stages.

All these comments have been incorporated into the wording of the new version,
particularly in the abstract, at the end of Section 2 (Related Work), and in the conclusion.

Finally, about the figures and tables included in the manuscript, they are discussed in the
following responses.

We have clarified this issue in the new version of the manuscript.

Subscripts are needed throughout for Os, COz2, etc.

Abstract: Readers will know what ozone is. This space would be better spent explaining
why you need machine learning enabled calibration.

Response 2: Thank you for your comment. We have updated the subscripts for the
chemical formulation.

In the abstract, regarding the calibration process in general, it arises from a lack of
accuracy in low-cost ozone sensors. However, we have improved the wording for clarity
as well as a better justification of the machine learning techniques used in this case, but
in a brief form for the abstract, as follows:



Abstract. Ground-level ozone () is a highly oxidizing gas with very reactive properties, harmful at high levels, and generated

by complex photochemical reactions when primary pollutants from the combustion of fossil materials react with sunlight. Thus,

its concentration indicates the activity of other air pollutants and plays a crucial role in smart cities. With the growing interest

in high-resolution Air Quality (AQ) monitoring, low-cost ozone sensors present an interesting alternative, although

& they lack accuracy and suffer from cross-sensitivity issues. In this context, artificial intelligence technigues, particularly
ensemhble Machine Learning (ML) models, can improve the raw readings from these sensors by incorporating additional
environmental information to minimize inaccuracies and nonlinearities, as well as by including metadata to account for
sensor aging effects and improve the models based on road traffic patterns. In this paper, based on the low-cost ZFHS01B
multisensor module with nine sensors, we analyze, propose, and compare different techniques using four ML models

10 in a low O} concentration scenario (mean value of 55.72 g /m*). We carried out a thorough exploratory data analysis
process to extract the main features (variables) and performed hyperparameter optimization for the different models.

As aresult, we reduced the estimation error by approximately 94.05%. In particular, using the Gradient Boosting algorithm, we
achieved a Mean Absolute Error (MAE) of 4.022 pg/m? and a Mean Relative Error (MRE) of 7.21%, outperforming related
work whilke using a module approximately ten times less expensive. To carry out this work, we generated two datasets in

15 the city of Valencia {Spain), at two different locations with the same characteristics (close to the ring road but separated

by 4.1 km), with 165 and 239 days.

Line 14: do the authors ever come back to these guidelines? If not, this paragraph is not
useful. Same with the next paragraph — these standards are not really mentioned again
later. | understand that this is trying to establish the “why use low-cost sensors”, but it
needs to be more clearly related back to what you're actually doing.

Response 3: The reviewer is correct. In Section 1, we introduce, motivate, and
contextualize the problem of ground-level ozone based on the Air Quality Guidelines and
the objectives set within the mentioned directives. This approach is twofold: on one hand,
we focus on air pollutants (particularly ozone) and their impact on health, and on the other
hand, we emphasize the importance of higher spatial monitoring resolution for these
pollutants.

However, we have specifically improved the wording in the Conclusion section to address
this issue and revisit the problem statement covered in this manuscript, as introduced in
Section 1. Thus, in the Conclusion, we refer to these standards and guidelines again for
closure.

5 UConclusions

385 This paper focuses on ground-level ozone (Os), as it serves as an indicator of other pollution levels in urban areas using LCS
niades based on the ZPHSMB module. These nodes will enable an increase in the spatial sampling of A} monitoring in
cities, following the interest of AQG (Organization et al. (2021)) and in line with the future plans of the related directives,
ideally at least one sample per 100 m?, according to Annex III-B of the European (Directive 2008/50EC (2008))..

Line 27: Why is “primary” in quotes but not secondary? Be consistent, but quotes are not
necessary. There are also quotes around primary on line 2.

Line 34: What is “official equipment’?
Line 51: While not detrimental, this paragraph is unnecessary.

Response 4: Thanks for these corrections. We have removed the “quotes” for primary
and secondary. About “official equipment” expression, maybe the term official is not



adequate, and it should be better “regulated”, “certified” or “standardized”. We have
explained this and changed this expression. Thus, we refer to regulated equipment, when
we refer to “standardized air quality monitoring stations”.

The paragraph in line 51, although it is often found in the research papers, to assist the
reader, we have omitted it. If the editor considers incorporating it, it has been just
commented % in latex in the source files.

We have revised this expression in the manuscript accordingly.

Related works: see comments about table 15, but the information on the specific other
sensors used for comparison could be restructured, if not removed. The information added
here on specific ML models here is helpful, but it could be improved further by
exploring more clearly the strengths and weaknesses of each of these, and how you
will improve upon this and not just repeat what'’s already been done.

Response 5: Thanks for this comment. Regarding this table, now Table 11 of the new
version of the manuscript, we have included some extra details for further information
for clarity. Notice that this table only considers some of the modules shown in Table 1, in
particular RAMP, AirSensrEUR and ZPHS10B.

Moreover, we highlight that the goal of Table 1 is to compare different commercially
available low-cost multisensor modules and alternatives, detailing only their sensors and
price range, without considering whether all these modules have been used in related
work.

Finally, about the strengths and weaknesses of the related work, it was already considered
in the previous review, in blue as follows:



n " - n 5 rl -

good example of the use of these good practices is shown in (Cavaliere et al. (2023)). In addition, in (Zhu et al. (2023)),
145 it is said that the process of optimizing algorithms through the selection of their hyperparameters (Hyperparameter
Optimization (HFM0)) is neglected in most of the environmental research studies considered. For instance, in (Johnson
et al. (2018)). better results are obtained with GB, but HPO is not performed in the model, which could allow further
improvements of the results. In (Malings et al. (2019), (Wang et al. (2020)) and (Zimmerman et al. (2018)), it is taken
into account some aspects related to the data analysis focused on the optimization of the problem, but they do not carry
150 out a HPO. In (Esposito et al. (2016)). the authors carry out a kind of simple HPO, based on raw tests of different
architectures and modifying hyperparameters, such as the number of hidden layers of the model, tapped delay length
and feedback delay line length, concluding that a dynamic approach to these parameters improves the results with
respect to a static approach without changing the value of these parameters.
Regarding the selection of parameters, in (Johnson et al. (2018)), the authors does not perform an analysis using tech-
155 nigues such as the aforementioned FIA and FS, but a sensitivity analysis using different meteorological variables (such
as Temp and RH), determining that it is useful information for GB. In (Malings et al. (2019)), the quantification of the
importance of the model variables is mentioned as a mean to understand which information is useful, concluding that
for RF, to add additional information apart from AQ measurements, such as Temp and RH are very helpful. In (Es-
posito et al. (2006)) and (Wang et al. (2024)), the authors do not include a specific analysis of the relative importance of
160 different variables or features. However, a good example of FS is depicted in (Okafor et al. (2020)), where it is shown
that identifying the environmental factors affecting LCS is crucial for improving data quality using data fusion and
ML. These factors are then incorporated into the development of the calibration model.
In conclusion, in order to increase the resolution of city-scale A(Q) monitoring according to the recommendations given
by (Directive 2008/50/EC (2008)) as mentioned before, it is necessary to perform a calibration process of these LCS. In
168 this scenario, we focus on O3y calibration vsing ensemhble ML technigues to minimize inaccuracies and nonlinearities,
comparing four different models, considering different environmental variables as well as metadata mainly to account
for sensor aging effects. For this purpose, it is necessary to carry out a thorough data treatment with a good practice
criteria (Zhu et al. (2023)) including HPO, FIA and/or FS, which are usually overlooked. In a seenario with low O3

concentration, we achieve interesting results compared with the related work, as shown in Section 4.

Table 3: This table should be removed. There are still no units in this table (temp, RH,
PM2.5, CO2, NO2, CO, etc. should all have units attached). The statistics of the measured
quantities are not referenced or used anywhere else in the paper, and the reader can’t do
anything with this information on their own. Likewise, “stationarity” and “percentage of
samples taking Different values” are not analyzed further in the text. The paragraph
beginning on line 181 can be condensed to give the context the table is hoping to provide
(ex. “Sensors X, Y, and Z appeared particularly unreliable and were omitted from our
model”.)

Response 6: Thanks for this comment. We have introduced these units both in the caption
and in the text.

However, regarding the content of this table, note that the ZPHS01B model has not been
previously used for these issues. For this reason, it is important for us to justify our choice
and provide all relevant details and evidence to clarify and characterize its behavior.

The statistical analysis conducted with the datasets may seem redundant if using the
same module as other research groups or well-known sensors, but this is not our case.
Nonetheless, we have simplified this table by removing ' Variance (Var.), Stationarity
(Stat.) and 'Seasonality (Seas.)', retaining the more relevant statistics.



In addition, these statistics are used in the results section to calculate additional metrics
and parameters, in particular when we estimate the mean relative error.

The new version of this table 3 is as follows:

Table 3. Summary of main statistics of the Dataset: Minimum (Min.), Maximum (Max.), Mean (Mean), Standard Deviation, Median Absolute
Deviation (MAD), percentage of samples taking Different values (Diff.) and High correlation (High corr.)

Temp RH PM:s CO: NO:2 Cco CH20 ™OC 03 Oarefl
'l | 1% | Ipg/m®1 | Ippml | lmg/m’] | Img/m?®| | lmg/m®] | llevels] | lpg/m?] | |pg/m®]
Min 5.24 62.29 21.25 693.43 078 0 0.005 0 39.57 8.71
Max 4226 118 83.69 1792.50 18.81 0.75 1.21 295 255.76 97.85
Mean 2060 | 9131 49.99 780.33 15.27 0.34 0.021 0.024 11439 55.72
sD 570 18.12 18.14 5716 3.65 0.28 0.02 0.13 67.11 24.83
MAD 392 1637 13.31 24.53 0.59 0 0.001 0 51.40 16.21
Diff. 99.1% | 81.9% 87.9% 97.5% 50.6% 0.2% 81.2% 5.8% 75.0% 30.3%
High corr. yes yes yes yes not yes not not yes yes

Figure 3: Any ambient pollutant will have a repeating diurnal pattern from the boundary
layer rising and falling each day, and most sensors will pick up on major sources like traffic.

A DFT is not necessarily needed to show this and confuses the messaging in this section.
Since this figure is never referenced again other than to show that a pattern exists, it should
be omitted.

Response 7: Of course, a repeating diurnal pattern associated with the day/night cycle is
evident once we analyze the DFT, as it reveals ground-level ozone generation through
photochemical reactions.

However, when the selected sensors are under test (especially in a low-cost approach like
this) and this analysis has not been previously performed, we do not consider this check
redundant. We believe that we should not assume certain patterns as obvious without
verification.

It is possible that this pattern does not exist or cannot be detected with these sensors,
which is precisely why we applied this analysis. In our dataset, particularly for ozone, the
pattern is clearly observable, and this method provides a straightforward way to
demonstrate it.

Perhaps this analysis has not been included in previous related work because researchers
have used well-known low-cost sensors.

That said, we are open to removing this information if the editor deems it unnecessary.



Meanwhile, we have placed this information in “Appendix A: Spectral analysis for O3
low-cost readings from ZPHS01B module” of the new version of the manuscript.

Figure 4: While this figure is fine, it's well known in the low-cost sensor space that sensors
can capture the general trends of pollutants but need calibration to accurately convey the
magnitude. This figure should be omitted.

Response 8: As we stated previously, the ZPHS01B module has not been used before
in this kind of studies and research. Note that we selected this module for several reasons,
as explained in the manuscript. It offers the best price-per-sensor and price-to-quality ratio,
embedding 9 different sensors on the same board.

Thus, the data provided by these sensors is valuable for analyzing cross-sensitivity issues,
enabling the training of different calibration models and extracting more information than
would be possible with single sensors.

For this reason, examining and demonstrating the behavior of the O; sensor in this module
is particularly relevant. For instance, we observe a positive offset in the raw readings
compared to the regulated and standardized O; measurements from the AQ station. This
trend was also reflected in the error distribution shown in Figure 8, that finally was removed
in the new version of the manuscript as it is suggested later in Response 15.

Table 4: If this is all to make a better ozone model, the FIA of ozone should be included here
to show how much it improves the model. How was 8% importance selected? It sounds
arbitrary. It would also be easier on the reader if the threshold and the table were in the
same format (either both in decimal or both in percent).

Response 9: Thank you for your comment. Table 4 presents the normalized output of
the FIA using the scikit-learn library for parameters complementary to ozone, for each
model used. For clarity, all contributions are expressed per unit (1). From this table, we
observe the following:

e On one hand, Temp, RH, and CO, exhibit higher contributions compared to the
other parameters. We have highlighted these values in bold.

e On the other hand, NO,, PM,.5, CH,O, TVOC, and CO show lower contributions,
falling below the suggested heuristic threshold of 0.08 (8%), as no other criterion
applies in this case. Additionally, NO,, CH,O, TVOC, and CO were already
discussed in the analysis of Table 3, except for PM,.s.

We have refined the wording and improved this table in the manuscript regarding its
analysis as follows:



Table 4. FIA of ozone’s complementary parameters for Random Forest (RF), Gradient Boosting (GB), Adaptive Boost (ADA) and
Decision Tree (DT), in bold the selected ones, contribution higher than (0.8,

Model | Temp | RH | PMas | CO2 | NOz2 | Osref | CO | TVOC | CH20

RF 0.128 | 0.103 | 0.069 | 0.222 | 0.078 | 0.269 | 0.002 | 0.003 0.064

GB 0.107 | 0.105 | 0.052 | 0.211 | 0.057 | 0.253 | 0.001 | 0.001 0.068

ADA | 0119 | 0.097 | 0.064 | 0.246 | 0.067 | 0.287 | 0.001 | 0.001 0.066

DT 0.115 | 0.088 | 0.070 | 0.232 | 0.061 | 0.276 | 0.001 | 0.002 0.061

230 Table 4 shows the normalized output of the FIA using the scikir-learn library (Pedregosa et al. (2011)), for the parameters
complementary to Oy, for each ML models used. In order to determine the most useful parameters for the models, a
threshold is established in 0.08, that is 8% of importance. These parame ters are in bold. Notice that the set of parame ters
with the highest importance, is repeated for all models: Temp, RH, <'C3; and O,

Besides, we must highlight that these are preliminary steps, and it does not mean that
we directly will exclude these parameters with lower contribution at this point.

Figure 5 is essentially showing that some sensors are more cross sensitive than others,
which is already well established in the field. This figure should be omitted.

Response 10: In our opinion, this figure could be considered redundant when dealing with
well-known and well-characterized sensors. However, this is not our case. In line with the
arguments mentioned in Response 8, the ZPHS01B module has not been used in a similar
way before. Thus, the information provided is valuable for analyzing cross-sensitivity
issues. This type of information is part of the exploratory data analysis (EDA) and
feature selection (FS).

Tables 5, 6, 7 and 8 should be combined into a single table with the 4 sub-categories
as another column.

Response 11: Since we are dealing with four different models, each with different
hyperparameters (both in number and meaning), it is clearer to present this information in
separate tables. These tables are different and cannot be combined in a clear way.

Table 9 is unnecessary and can be omitted — you and many others have already established
that hyperparameter tuning will make the models fit better.

Response 12: Thanks. We have omitted this table and left only the optimized versions.
Simply, we have just introduced a sentence detailing how much improvement the
hyperparameter optimization introduces in the different models, as follows:

320 It is worth mentioning that the impmveknmt achieved by HPO is greater in GB and ADA models than in RF and
DT, which are already well-optimized with default values. In particular, for the optimized GB and ADA models, #?
is improved by 42% and 182%, respectively, while RMSE is reduced by 57% and 66%. However, the execution time
required for training is influenced by HPO, increasing to 66.937s and 7.805s for GB and ADA, respectively, as shown in
Tahle 9. We highlight that RF and DT are already well-optimized, and their execution times remain unchanged between

325  the default and optimized versions.



Tables 10 & 11 should also be combined.

For tables 9, 10, and 11, and Figure 6, it is not specified in the titles whether it is training or
testing data — please specify.

In the low-cost sensor field, it is standard to show both training and testing data -
consider adding to tables 9, 10, and 11, and Figure 6.

Response 13: Thanks for your comment. We have combined both tables in one as
follows:

Table 9. Performance metrics for HPO models with 9(0¢ 10 and B(/20 (training/testing) ratio

Miwdel GE RF ADA DT
Ratio SO0 W20 S0/10 BO200 [ W10 BV20 | 9100 BO20
n* 0.938 0936 0927 0924 [ 05922 0920 | 0878 (LE63

RMSE 6492 6664 7.093 T253 | 7289 7416 | 9149 9735

MAE 4.022 4.221 4.185 4415 | 3642 3833 | 4684 5104

MAPE 0.194 020063 0208 0228 | 0160 0075 | 0206 0226

Time 66937 61034 | 18316 16618 | 7805  7.078 | 0212 0194

The results shown are always for testing data as it is detailed in the manuscript. We do
not show the training process. However, in the next response 14 we will discuss this issue
again, proving the results from training and validation.

Notice that we split the dataset for training and testing, both sets remain independent and
isolated with different training-test ratio percentages: 60%-40%, 70%-30%, 80%-20% and
90%-10%.

And during the training process itself, the dataset is further divided into two parts: one for
training and the other for validation. By default, we allocate 80% of the data for training
and 20% for validation. In this process, the training and validation datasets are combined
across different iterations.

We have improved the wording to clarify this issue in the new version of the manuscript
as follows:



4 Results

285 We evaluated the performance metrics of these ML models under different configurations (in terms of 72, RMSE, MAE in
pg/m® and Mean Absolute Percentage Error (MAPE) and execution time in seconds), with the optimized hyperparameters
that achieve higher R? and lower errors. Also, we used the three different datasets given by different monitoring intervals: 10
and 30 min and 1 h, as depicted in Section 3.2. We tested different training-test ratio percentages from these datasets: 60%-
A0, TO%-30%, B09-20% and 909%-10%, denoted as 60/40, 7030, 80/20 and 20/10. Note that when we split the dataset
300 for training and testing, hoth sets remain independent and isolated. However, during the training process itself, the
dataset is further divided into two parts: one for training and the other for validation. By default, we allocate 80% of
the data for training and 20% for validation. In this process, the training and validation datasets are combined across
different iterations. From all of them, we have achieved the best results in terms of these performance metrics with

Is the point of Figure 7 just to show that the model isn’t overfitting? It needs more
analysis in the text rather than relying on the reader to interpret.

Response 14: As mentioned above, in Response 13, we only show the results from
testing data.

However, in the training process, the used dataset (excluding testing dataset) is further
divided into two parts: one for training and the other for validation, by default 80% for
training and 20% for validation respectively during the different iterations.

Since the convergence of performance metrics provides information about overfitting for
both the training and validation datasets, we have included the following plots, which show
the R? and RMSE values across different iterations during the training process for various
models. Each model uses a reference hyperparameter for convergence.
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We can observe in the above plots during the different iterations the fit of the model in
terms of R?, with a better fit with training than with validation, as expected. In addition, it
should be noted that the convergence process with training does not reach a perfect fit in
any case, which justifies and supports the conclusion that there is no overfitting in the
models.

Moreover, we see that the achieved R? score for both training and validation is better than
the values shown for testing, which are the ones included in the tables in the manuscript.
That is because the testing dataset does not participate in the training process.
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About RMSE, the above plots show a similar behavior during different iterations, with a
better fit in training compared to validation. As mentioned before, these values are better
than those shown in the table from the testing process.

All this information, figures and explanation, has been included in “Appendix B: Results of
models’ convergence”.

Again, it is well-established that low-cost sensors need calibration, and that tuning will
improve models. Figure 8 should be omitted. If you are insistent on including
something like this, an analysis showing the statistical significance in model
improvement might be more impactful.

Is there more analysis or more takeaways to be had from Table 127 All the text is really
saying is that the numbers in the table match the numbers in the figure. Stronger analysis in
the text is needed to make the table worth keeping.



Response 15: Thanks. We have omitted Figure 8 and Table 12, which illustrates the error
distribution and its analysis, related to standard deviation and confidence intervals.

We found it interesting to observe how the adjustment in the calibration process is carried
out based on the raw readings, allowing us to identify default deviations and tendencies
directly from the embedded sensors in the ZPHS01B module. Since this module has not
been used before, as previously mentioned, this information could shed light on important
insights into its performance.

Besides, a statistical study based directly on this distribution is more robust and
comprehensive. For instance, we could observe how the offset shown in the raw readings
in Figure 4 appears as an asymmetry (skewness) in the error distribution.

However, we reconsidered and concluded that the information provided could be omitted,
and it was removed.

Is there a better way to visualize the information in table 137 It’s inclusion is helpful, but a
figure could be more informative than a table.

Response 16: Thanks. Table 13 summarizes the metrics provided by the Gradient
Boosting model for the different datasets used for generalization. In this case, we present
the performance metrics for Dataset-1 and Dataset-2 with Node 1 and Node 2,
respectively. Additionally, we have included the following bar graph for easier comparison.
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All this information has been included in the new version of the manuscript.

Table 14 contains repetitive information and should be removed.

Response 17: Since one of the metrics used in the comparisons is the improvement
relative to the raw values, we have kept this table (in the new version is number 10) but
improved its explanation in the text to clarify these results as follows:



In Table 10, we show the improvement in % using the different ML models for the calibration process from the LCS raw
345  meadings of the module, highlighting the better performance of GB model compared to the other models. Notice that with this

model, GB, the initial MAE from the raw readings was 67.59 ug/m® reducing it to 4.022 ji g/m?, that is an improve ment
of 94.05% as depicted in this table.

Table 15 would be more useful if combined with table 1 instead of expecting the reader to
remember the sensor specs from the very beginning. However, as the authors point out,
this is comparing multiple different types of sensors that aren’t inherently comparable. |
understand that the authors are trying to show the usefulness of their calibration, but | don’t
think they need to directly compare with others for that message to come across. |
recommend removing tables 1 and 15, especially because the inclusion of information on
these other sensors in the earlier sections muddles the message of what the paper is
ultimately trying to convey.

Response 18: As we answered in Response 5, Table 15 (in the new version is 11) is used
for comparison and we have included some extra details for clarity. In this table, we
compare our models for ozone calibration for low-cost sensors, against the related work
with a similar approach, highlighting the location, platform and sensors used, R?, mean
relative error (MRE) with comments about the details of the models used and dataset
duration

Notice that this table only considers some of the modules shown in Table 1, in particular
RAMP, AirSensrEUR and ZPHS10B. Table 1 is an overview of different commercial
sensor modules available, detailing only their sensors and price range, without
considering whether all these modules have been used in related work.

This new table (Table 11) was already shown in Response 1, and its explanations have
included in the new version of the manuscript as follows:

Finally, in Table 11, we compare our models for Og calibration for LCS, against the related work with a similar approach,
highlighting the location, platform (and sensors used), B2, MRE along with additional comments about the detail of

350  the models used and dataset duration. First, we must stress that the starting point of the selected papers is slightly different
compared to ours, since these studies have used more reliable and expensive LCS, approximately ten times more expensive

that the ZPHS01B module. Moreover, since ML-hased algorithms show the best results as discussed in Section 2, we have

focused exclusively on them, evaluating up to four different models, whereas other studies have only considered one or

two. Our model. in particular GB with 4 features (including "date” as metadata), as shown in Section 3.3, achieves a MRE of
355  T.21% (given by MAE 4.022 pig /m?* with 90/10 dataset (Table 9) and the mean Oy value of 55.72 pg/m* (Table 3)). Besides,
niot all of the se works follow and discuss an structured EDA with FIA, FS and HPO. In particular, when compared to the first
two works with slightly better results, in (Wang et al. (2024), we appreciate higher 5 values, mean values higher than
T0 pg/m?, while in our case we have lower levels (55.72 jig/m?3)), as well as there is not a complete EDA. It is important
to note that these sensors perform worse at low concentrations than at high ones due to their sensitivity limitations and
360 the weakness of the signals generated, as well as interference from other pollutants. Finally, in (Cavaliere et al. (2023)),
although the authors use a complete EDA, they only use two sensors (V0o and Os) apart from Temp and RH, and the

aging effect is considered a posteriori, while this information is included in our case by date in our models, which also

detects other patterns derived from road traffic.



Line 321: This paragraph isn’t indented, but all the others in this section are.
Response 19: It is the default AMT template.

Line 324-325: Which model are these statistics from? The abstract suggests GB, but this
should be clearly stated in the conclusions as well.

Line 350: Missing a period at the end of the sentence.

Response 20: These details were already included in the previous manuscript. After
comparing the different models, we identified Gradient Boosting (GB) as the best model
and have highlighted its performance metrics in both the abstract and conclusions.

Finally, we put this period.

Finally, thank you for your thoughtful review and comments which will enable us to
improve this work. We appreciate the time and effort invested in your review.



