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Abstract. Ground level ozone (O3) is a highly oxidising gas with very reactive properties, harmful at high levels, generated

by complex photochemical reactions when "primary" pollutants from combustion of fossil materials react with sunlight. Thus,

its concentration serves as an indicator of the activity of other air pollutants and plays a key role in Air Quality monitoring

systems in smart cities. To increase its spatial sampling resolution over the city map, ozone low cost sensors are an interesting

alternative, but they have a lack of accuracy. In this context, artificial intelligence techniques, in particular ensemble machine5

learning methods, can improve the raw readings from these sensors taking into account additional environmental information.

In this paper, we analyse, propose and compare different techniques, reducing the estimation error in around 94%, achieving

the best results using the Gradient Boosting algorithm and outperforming the related work using sensor approximately 10 times

less expensive.

1 Introduction10

Air Quality (AQ) is a fundamental aspect of environmental health that addresses the composition and purity of gases in the

atmosphere, in terms of fine Particulate Matter (PM), Nitrogen Oxides (such as NO, NO2 and totals NOx), Volatile Organic

Compounds (VOC) and ground level Ozone (O3). AQ has a direct impact on both human health and the environment Manisa-

lidis et al. (2020).

According to the World Health Organization (WHO), 99% of the world’s population breathes air that exceeds the limit15

values of the recommended safety guidelines H. Adair-Rohani (2024). The WHO also provides global guidelines to help gov-

ernments and authorities establish and implement policies to protect human health from the adverse effects of air pollution.

These guidelines specify recommended levels for these pollutants taking into account both short-term and long-term expo-

sure Organization et al. (2021) and are regularly reviewed and updated to incorporate the latest scientific evidence on the health

effects of air pollution.20

Among these pollutants, we focus on ground level Ozone, a highly oxidising gaseous pollutant, that has very reactive

properties and is harmful at high levels Garcia et al. (2021). This gas is very important to monitor, because it is called a

secondary pollutant, which is generated in cities by complex photochemical reactions when the "primary" pollutants from

combustion of fossil materials (such as NO) react with sunlight Seinfeld and Pandis (2016). Thus, its concentration serves as
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an indicator of the activity of other air pollutants and plays a key role in AQ programs, providing crucial information in smart25

cities to help their citizens improve their quality of life. It is worth mentioning that it is being recommended to increase the

spatial sampling resolution of this pollutant, ideally at least one sample per 100 m2, according to Annex III-B of the European

Directive 2008/50/EC Directive 2008/50/EC (2008). And Low-Cost Sensor (LCS) are becoming increasingly important, an

interesting alternative, but they do not have good accuracy et al (2016).

In this context, Artificial Intelligence (AI) techniques, in particular ensemble Machine Learning (ML), can improve the30

raw readings from these sensors taking into account additional environmental information, such as Temperature (T), Relative

Humidity (RH) as well as other AQ pollutants Zimmerman et al. (2018).

We propose and compare different techniques, reducing the estimation error up to 94.05% based on Mean Absolute Error

(MAE) measurements, that is a 5.95% of Mean Relative Error (MRE), achieving the best results with the Gradient Boosting

(GB) algorithm and outperforming the related work, using sensors approximately 10 times less expensive.35

The rest of the paper is structured as follows. Section 2 introduces the related work. Section 3 explains the experimental work

carried out for the deployment of LCS and shows the data processing as well as the use of ML algorithms for the calibration of

the O3 LCS. The results are shown in Section 4 and finally, the conclusions of the experiment and future work are presented in

Section 5.

2 Related work40

With regard to AQ LCS, due to the increasing market demand, a wide variety of them are available to measure different

pollutants, gases and particles. These sensors are available in different price ranges and are more affordable compared to

regulated measuring station.

Module Sensors Relative cost

SDSO11 Nova Fitness Co., Ltd. (2024) T, RH, PM, PA Low

DL-LP8P DecentLab, Ltd. (2024) T, RH, CO2, PA Low

MiCS-6814 SGX, SensorTech (2024) CO, NO2, C2H5OH, NH3, CH4 Low

ZPHS01B Zhengzhou Winsen Electronics Technology Co. (2024) T, RH, PM1-10, CO, CO2, O3, NO2, TVOC Mid-Low

Sensit RAMP Sensit (2024) PM2.5, CO, CO2, NO, NO2, O3 High

AirSensEUR Van Poppel et al. (2023) NO, NO2, O3, CO, PM2.5, PM10, PM1, CO2 Mid High

Table 1. AQ Sensor systems and/or modules with approximate cost.

A list of these sensor systems and sensor modules with a relative cost are given in Table 1. Notice that these modules have

different prices based on the quality of their embedded sensors. At the time of writing, the first three products cost around 1045

euros or less, the ZPHS01B module costs around 150 euros and the RAMP module costs more than 10 times the previous cost.

Since one of the key points to improve the accuracy of these LCS is the use of marginal information (such T, RH as well as

other AQ pollutants) as mentioned before, it is necessary to use modules embedding as many AQ LCS as possible.
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Table 2. AQ information from the ZPHS01B module and units

Parameter [Unit] Range of Measurement

Temperature [ºC] -20-65

Humidity [%R.H.] 0-100

PM2.5 [µg/m3] 0-1000

TVOC levels 0-3

CH2O [mg/m3] 0-6.25

CO2 [ppm] 0-5000

CO [ppm] 0-500

O3 [ppm] 0-10

NO2 [ppm] 0.1-10

Among these options, the ZPHS01B Zhengzhou Winsen Electronics Technology Co. (2024) AQ module is the best solution

at the time of writing, since it embeds 9 different sensors: T (◦C), RH (%), as well as PM, CO, CO2, NO2, O3 measured in50

Parts Per Million (ppm), formaldehyde (CH2O) measured in mg/m3 and Total Volatile Organic Compounds (TVOC) that are

measured using 4 levels according to their concentration (very low, low, intermediate and high). Table 2 summarises all this

information. Notice that the O3 sensor used in this module is the electrochemical ZE27-O3 Corp (2024) that measures within

the range 0-10 ppm with a resolution of 0.01 ppm. It operates with an accuracy of ±0.1 ppm when the concentration is ≤1

ppm and±20% when the concentration is above 1 ppm. Also, notice that the PM readings in this module are given for 2.5 (fine55

particles with a diameter of 2.5 µm), and PM1 and PM10 are estimated from the PM2.5 readings.

Based on this ZPHS01B module, there are several research works and projects. In Coto-Fuentes et al. (2022), it is shown the

implementation of a device for AQ outdoor evaluation using directly this module without calibration, to map AQ pollutants in

a metropolitan area. In Felici-Castell et al. (2023), this module is used in an AQ monitoring network, where different neural

networks have been trained for forecasting of pollutant concentrations, with an estimation error of 7.2% on average and where60

the calibration process is done on a daily basis, but not specified. In Vaheed et al. (2022), this module is used for indoor

AQ monitoring based directly on the readings from this module and calculating an AQ index. In Antonenko et al. (2023),

the authors explain briefly the use of a neural network to determine (classify) types of air: with or without pollution. Also,

in Kennedy et al. (2021), it is shown a prototype to measure ground to stratosphere AQ using this module in a drone. However,

the variability among the individual sensors is high, stressing that the calibration process is complex and it has not been done.65

The calibration process of these LCS is a challenge, where ML and Deep Learning (DL) models can be used. In Zimmerman

et al. (2018) the authors show calibration models (using 16 weeks data) to improve sensor performance, highlighting that
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Random Forest (RF) approach is more robust since it accounts for pollutant cross-sensitivities. Using specific LCS (RAMP

system) they achieve an MRE of 15% for O3. In et al (2016) the authors carry out a performance evaluation during two-weeks

data of the calibration process at Aveiro (Portugal) of different LCS showing different behaviours and models, in particular for70

O3 the best two models get a coefficient of determination (R2) (and MAE) (in ppb) of 0.77 (7.66), 0.7 (2.4), and estimation

MRE between 10 and 5%. Also, in Esposito et al. (2016), the authors use dynamic Neural Network (NN) for calibration

achieving models with R2 (MAE) (in ppb) of 0.69 (7.45), with a MRE of 49%.

In this context, when using AI techniques on environmental research, it is important to follow the recommendations given

by Zhu et al. (2023) based on a review of more than 148 highly cited research papers. There it is highlighted that is common to75

overlook the data preprocessing, analysis and interpretability, such as Feature Importance Analysis (FIA), Principal Component

Analysis (PCA) and Feature Selection (FS). Besides it is said that the process of optimising algorithms through the selection

of their hyperparameters (Hyperparameter Optimization (HPO)) is neglected in most of the environmental research studies

considered.

In conclusion, we see that to increase the AQ monitoring resolution at a city scale, LCS are required. However due to their80

poor performance, further processing of their raw readings is necessary following a criteria of best-practice, by leveraging the

information provided by the additional embedded LCS, in particular for the ground level Ozone estimation.

3 Building the dataset and using Machine Learning algorithms

In this section we explain the process to gather AQ monitoring information from a prototyped low cost Internet of Things (IoT)

node based on the ZPHS01B AQ module, how it is deployed and how the dataset is built to apply ML techniques for calibration85

purpose.

3.1 Building the dataset

In order to carry out the calibration of the O3 sensor from the ZPHS01B module, we need a dataset to train the different ML

models. For this purpose, we use as reference values, O3 concentration readings from the official AQ station in the Valencian

AQ Monitoring Network (VAQMN), at Bulevar Sur (Valencia, Spain) managed by Generalitat Valenciana (GVA) with latitude90

and longitude 39.450389 and -0.396324, respectively, as shown in Figure 1. These reference values are given in µg/m3 peri-

odically averaging every 10-minutes. The AQ station data is retrieved from https://rvvcca.gva.es/estatico/46250050. The data

structure provided by the VAQMN is shown in Table 3. The ZPHS01B module’s readings are taken at a rate of 10 samples per

minute.

The structure and main statistics of the dataset are shown in Table 4. The units used for O3 concentration from the official95

station are in µg/m3, meanwhile in the ZPHS01B module are in ppm. Both are typically used in a formal and academic context

but we need to standardise them. The formula used to carry out this conversion is: "Concentration (µg/m3) = Concentration

(ppm) x 1000 x molecular mass" Breeze Technologies (2024).
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Figure 1. Detail of the official AQ monitoring station and the AQ node with a ZPHS01B module located at Bulevar Sur (Valencia, Spain).

Table 3. Information provided by the official VAQMN station and [units]

Parameter [Units] Parameter [Units]

Temperature [ºC] NO [ µg/m3]

Humidity [%R.H.] NOX [µg/m3]

PM10 [µg/m3] NO2 ECO [µg/m3]

PM10 S/C [µg/m3] NO ECO [µg/m3]

CO [mg/m3] SO2 [µg/m3]

O3 [µg/m3] NH3 [µg/m3]

NO2 [µg/m3] HH:MM [hour:minute]

In Figure 2, it is shown the IoT node, that keeps the ZPHS01B module within a PVC pipe with a small fan at the top, to

ensure air movement over the board’s sensors. This figure shows the detail of this module and its housing. At the upper site of100

this IoT node (the head of the node), it is placed the microcontroller that sends data via the LTE-M communications.

3.2 Analysing the dataset

The data collection includes 165 days, approximately five and a half months, from June 8th 2023 till November 20th 2023.

Based on this collection, three different datasets have been created, using different monitoring intervals: 10 and 30 min. and

5
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Figure 2. (1) AQ IoT node; (2) deployment detail; (3) hardware detail

1 h. with 23496, 7843 and 3922 samples respectively. Although it is not a large dataset, it is sufficient, as shown in Zhu et al.105

(2023).

Initially, the datasets were cleaned of invalid data. Notice that from the readings of the official AQ station we had 275 Not a

Number (NaN) during this period, that in our case were replaced using the quadratic interpolation method, since experimentally

it gave better results and made the interpolation closer to the ozone signal. This explanation to prepare the dataset, also known

as Missing Data Management (MDM), is recommended according to Zhu et al. (2023).110

Table 4 shows a summary of main statistics of the dataset. From these results, it is worth mentioning that the CH2O, CO,

NO2 and TVOC sensors are not very reliable in the ZPHS01B module. Also, the RH sensor has a positive offset as we can see

from the maximum value, 118%. The other sensors have a normal behaviour, although with low accuracy.

To characterise the measurements of the ground ozone, we carry out a DFT analysis, to see the ground ozone changing

patterns. Figure 3 shows the peaks obtained from the ground ozone signal. There are two main peaks and their harmonics. The115

first peak appears in the frequency f = 0.00025 1
hour which corresponds to a period T = 4000hours = 5.56months, that is the

total period of data capture. The second peak indicates the other relevant frequency component at f = 0.04182251 1
hour , which

represents a period T = 23.91hours≈ 1day, that is, there is a pattern that it is repeated every day, as it could be expected.

Figure 4 and 5 show the O3 readings in µg/m3 from the LCS and the official station (reference) for different time duration,

the whole dataset (165 days) and one week respectively. It can be seen that there is an offset in the LCS readings over the ones120

from the reference. Also, it is clear how the O3 LCS captures the trends, useful information for the ML models.
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Table 4. Summary of main statistics of the Dataset

Temp Hum PM2.5 CO2 NO2 O3 O3ref

Min 5.24 62.29 21.25 693.43 0.78 39.57 8.71

Max 42.26 118 83.69 1792.50 18.81 255.76 97.85

Mean 20.60 91.31 49.99 780.33 15.27 114.39 55.72

SD 5.70 18.12 18.14 57.16 5.65 67.11 24.83

Var. 32.57 328.41 329.34 3268.29 31.92 4503.98 616.69

MAD 3.92 16.37 13.31 24.53 0.59 51.40 16.21

Diff. 99.1% 81.9% 87.9% 97.5% 50.6% 75.0% 30.3%

Stat. not not not not not not not

Seas. yes yes yes yes yes yes yes

High corr. yes yes yes yes not yes yes

Figure 3. Discrete Fourier Transform (DFT) of O3 readings from LCS

3.3 Feature Importance Analysis and Selection

FIA and FS play crucial roles in ML models, especially in environmental research, by helping to preserve essential features

(variables), reduce noise and enhance model efficiency, particularly relevant when dealing with a small set of samples or large
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Figure 4. O3 readings in µg/m3 from the LCS vs Reference for the whole dataset, 165 days

Figure 5. Zoom for a week from Figure 4: O3 readings vs Reference in µg/m3

numbers of variables Zhu et al. (2023). These techniques also help to improve the Sample-size to Feature-size Ratio (SFR),125

that is the ratio between the total number of samples vs the number of features, being recommended a SFR higher than 500, in

the same previous reference.

Table 5 shows the normalised output of the FIA using the scikit-learn library Pedregosa et al. (2011), for the parameters

complementary to O3, for each ML models used. For clarity it is not included the importance of date and ozone itself from

LCS values, that complete the rest. From this analysis we conclude that T, RH and CO2 are the most relevant and then will be130

considered for the next step, FS since they show the highest values.
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Table 5. Feature Importance Analysis (FIA) of ozone’s complementary parameters

Model Temp. Hum. PM2.5 CO2 NO2

RF 0.128 0.103 0.069 0.222 0.078

GB 0.107 0.105 0.052 0.211 0.057

ADA 0.119 0.097 0.064 0.246 0.067

DT 0.115 0.088 0.070 0.232 0.061

Figure 6. LCS readings and O3 reference correlation matrix

With regard to FS, Figure 6 shows the correlation matrix among these variables. There is a high correlation among all PMx

readings because all of them are calculated directly from the PM2.5 Zhengzhou Winsen Electronics Technology Co. (2024).
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Also, from this analysis, we stress that T and RH, are the best correlated with the rest of variables, as well as O3 LCS, O3

reference, PM2.5 and CO2, but these ones with a lower correlation. This information is very valuable to train the ML models.135

Table 6. Error assessing O3 with [date, O3, T, RH PM2.5, NO2, CO2]

Error/Model RF GB ADA DT

MSE 71.71 48.46 67.51 152.30

MAPE 0.3036 0.2217 0.2119 0.3082

Table 7. Error assessing O3 with [date, O3, T, RH]

Error/Model RF GB ADA DT

MSE 52.46 44.52 55.77 94.50

MAPE 0.2286 0.2065 0.1755 0.2264

Following with the FS analysis, the ML models have been trained with their optimal configurations and with different

datasets. In particular, among these datasets, two of them showed better results, as we can see in Table 6 and 7, based on [date,

O3, T, RH PM2.5, NO2, CO2] and [date, O3, T, RH] respectively, showing Mean Square Error (MSE) and Mean Absolute

Prediction Error (MAPE) over 20 different iterations. In this case, we see that fewer features (Table 7), better results, i.e.

increasing the SFR. Thus, if we add more features that are not so significant, it makes the dataset poorer. Also, if we include140

CO2, we do not improve neither. Thus using this low number of features (only four), other dimensionality reduction techniques

are not required.

Thus, as a conclusion of this section, the dataset used for ozone LCS calibration is [date, O3, T, RH].

3.4 Applying Machine Learning algorithms

As mentioned before in environmental research, the use of ML algorithms, in particular ensemble models, has increased145

significantly compared to DL Zimmerman et al. (2018). Some of the most popular ensemble algorithms are RF or GB related

models Obregon and Jung (2022).

This paper evaluates these ensemble ML algorithms: RF, GB and Adaptive Boosting (ADA) algorithms, implemented in

the scikit-learn Pedregosa et al. (2011) library (in the ensemble submodule), that offers efficient solutions for time series

regression problems as this one. These evaluated methods exhibit the ability to handle non-linear relationships and adapt to150

changing patterns over time. In addition, the Decision Tree (DT) model, belonging to the tree submodule of scikit-learn, is also

evaluated, since it is a common base of this type of ensemble algorithms.
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To optimise these models as indicated in Zhu et al. (2023), there are different techniques and tools in order to carry out

the HPO, being GridSearch Pedregosa et al. (2011) the most commonly used method to obtain a good configuration for these

algorithms. GridSearch in scikit-learn is a hyperparameter tuning technique that exhaustively searches through a user-defined155

hyperparameter space to find the optimal combination for a ML model. These hyperparameters are external specific model

configurations settings. It systematically evaluates the model’s performance across all possible user-defined hyperparameters

using cross-validation, aiming to identify the configuration that maximises estimation accuracy or minimises a specified loss

function. We choose this method due to its higher flexibility compared to other tools such as RandomSearch Pedregosa et al.

(2011) that has a more random approach.160

Next, we discuss the different supervised ML algorithms used and the selection of the different hyperparameters.

3.4.1 Random Forest (RF)

Table 8. RF hyperparameters evaluated on GridSearch.

No. of estimators Max. depth Max. features

50, 100, 250, 500, 900 2, 5, 7, None sqrt, log2, 0.1, 0.3, 0.5, 1.0

It is an ensemble algorithm that relies on constructing multiple DT during training. Each tree is trained on a random subset of

the dataset, and the final predictions are obtained by averaging the individual predictions for all of them. This "forest" approach

helps to mitigate overfitting and improves the model’s generalisation. Furthermore, introducing randomness in the selection165

of features and samples during tree construction contributes to a more robust and accurate model for regression tasks. Table 8

shows the hyperparameters evaluated, in bold the best option. The number of estimators refers to the number of trees in the

forest, while the maximum depth refers to the maximum depth of the tree. The maximum features variable determines the upper

limit on the number of features to consider when splitting a tree into two child nodes during the tree construction process. Note

that as the number of estimators doesn’t have a significant role in this use case, we use the default value, 100.170

3.4.2 Gradient Boosting (GB)

Table 9. GB hyperparameters evaluated on GridSearch.

No. of estimators Max. depth Max. features

50, 100, 250, 500, 900 2, 5, 7, None sqrt, log2, 0.1, 0.3, 0.5, 1.0

Learning rate Subsample Loss

0.01, 0.05, 0.1, 0.3 0.5, 0.8, 1.0 squared err., absolute err., huber

11

https://doi.org/10.5194/amt-2024-127
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.



It is an ensemble algorithm based on the iterative construction of weak DTs, which are sequentially aggregated to enhance

the predictive capability of the model. In each iteration, it focus on correcting the residual errors of the existing model by fitting

a new DT to capture the deficiencies of the current model. The weighting of individual trees is determined by a learning rate,

and the final output of the model is the weighted sum of predictions from all these trees. This gradual building process and the175

ability to handle nonlinear relationships in the data make GB effective for regression tasks. Table 9 shows the hyperparameters

evaluated, in bold the best option. In addition to the previous hyperparameters, in this case, the loss hyperparameter refers to the

loss function to be optimised, while learning rate reduces the contribution of each tree according to the value of the variable.

The subsample hyperparameter represents the fraction of samples that will be used to adjust the individual base learners and if

it is less than 1.0, it results in Stochastic Gradient Boosting (SGB).180

3.4.3 Adaptive Boosting (ADA)

Table 10. ADA hyperparameters evaluated on GridSearch.

No. of estimators Learning rate Loss

50, 100, 250, 500, 900 0.01, 0.05, 0.1, 0.3 linear, square, exponential

It is an ensemble algorithm, that its primary goal is to improve the predictive accuracy by combining multiple weak regres-

sion models. When training, ADA assigns weights to data instances, giving more emphasis to observations that were poorly

predicted in previous iterations. Its construction involves the sequential aggregation of regression models, each fitted to cor-

rect errors from the existing combined model. The final model is a weighted combination of individual predictions from the185

base models. ADA is particularly effective in enhancing generalisation capability and reducing overfitting in regression tasks.

Table 10 shows the hyperparameters evaluated, in bold the best option. In this model, there is a key concept to run the op-

timisation process related to the estimator variable, that by default is an instance of type DecisionTreeRegressor, initialised

with a maximum depth value of three. If the value of this hyperparameter is not modified, this model is largely constrained.

Also, notice that as the number of estimators does not have a significant role on this use case, we use the default value of 50190

estimators. The other hyperparameters have the same meaning in this model.

3.4.4 Decision Tree (DT)

Table 11. DT hyperparameters evaluated on GridSearch.

Max. depth Max. features Splitter

2, 5, 7, None sqrt, log2, 0.1, 0.3, 0.5, 1.0 best, random

12

https://doi.org/10.5194/amt-2024-127
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.



It is an algorithm that recursively partitions the dataset based on features, aiming to create a hierarchical structure of decision

nodes to make predictions. Table 11 shows the hyperparameters evaluated, in bold the best option. The splitter hyperparameter

indicates which strategy is used to perform the splitting at each node.195

4 Results

We have evaluated the performance metrics of these ML models with different configurations (in terms of R2, Root Mean

Square Error (RMSE), MAE and MAPE in µg/m3 and execution time in seconds), both with default and optimised hyperpa-

rameters, taking into account three different datasets given by different monitoring intervals: 10 and 30 min and 1 h, as depicted

in Section 3.2. From these datasets, we have tested different training-test (ratio) percentages: 60%-40%, 70%-30%, 80%-20%200

and 90%-10%.

Table 12. Performance metrics with the default models and 90% training dataset

GBdefault RFdefault ADAdefault DTdefault

R2 0.658 0.927 0.326 0.878

RMSE 15.341 7.092 21.543 9.158

MAE 11.604 4.179 18.123 4.691

MAPE 0.827 0.208 1.239 0.206

Time 3.829 17.187 0.342 0.213

Table 13. Performance metrics with HPO models and 90% training dataset

GBoptimized RFoptimized ADAoptimized DToptimized

R2 0.938 0.927 0.922 0.878

RMSE 6.492 7.093 7.289 9.149

MAE 4.022 4.185 3.642 4.684

MAPE 0.194 0.208 0.160 0.206

Time 66.937 18.316 7.805 0.212

From all of them, we have achieved the best results with 90/10 training-test ratio with a monitoring interval of 10 min.

These results are shown for the default ML models in Table 12 and the ones improved with HPO in Table 13. Using HPO, we

optimise the calibration process (higher R2 and lower errors), but we increase significantly the execution time. In particular,
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Figure 7. Ozone calibration done with default and optimised models with 90% training dataset

the best option is given by GB with a R2 of 0.938, RMSE of 6.492 and an execution time of 66.937 s, followed by ADA205

with much less execution time, 7.805 s as shown in Table 13. Notice that the execution time required for the training process

is influenced by the hyperparameter optimisation, in particular for GB as it is shown in these tables. Also we highlight that

RF and DT are already well optimised and their execution times do not increase in comparison between the default and the

optimised versions. In Figure 7 is shown the calibration process for both the default and HPO models vs O3 reference given

by the different algorithms.210

However, it is common to use a 80/20 training/test ratio Zhu et al. (2023). For this ratio, Table 14 shows the results with the

optimised models by HPO, where the GB model is the best one, as it happened with previous 90/10 ratio.

A summary of these metrics (R2 and errors) for the GB model, with different monitoring intervals and different training/test

ratio percentages are shown in Figure 8. We can see how increasing the training %, the trend is to improve the accuracy of the

model (R2 getting closer to 1) and to reduce lightly the errors but increasing the training time, as it could be expected. Similar215

behaviours are shown by the other models, in particular with ADA model.
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Table 14. Performance metrics with HPO models and 80% training dataset

GBoptimized RFoptimized ADAoptimized DToptimized

R2 0.936 0.924 0.920 0.863

RMSE 6.664 7.253 7.416 9.735

MAE 4.221 4.415 3.833 5.104

MAPE 0.206 0.228 0.175 0.226

Time 61.054 16.618 7.078 0.194

In Figure 9, it is shown the distribution error for the different models, with detail of raw, default and optimised versions. The

number of samples are normalised. It is appreciated with GB and ADA that their distribution errors are concentrated around

zero when calibration is applied, and even more when using the HPO optimised models. This behaviour is also appreciated

with DT, but with lower intensity. However, RF keeps a pretty similar distribution in both versions, default and optimised as220

we can see in Tables 12 and 13.

Table 15. Standard Deviation (σ) and Confidence Interval (CI) for the error estimation with raw, default and optimised models

Data σ

Raw 72.53

GBdefault 15.39

GBoptimised 6.74

RFdefault 7.25

RFoptimised 7.23

ADAdefault 21.29

ADAoptimised 7.50

DTdefault 9.73

DToptimised 9.65

Data CI

Raw [-65.05,-60.91]

GBdefault [-0.17,0.7]

GBoptimised [-0.11,0.27]

RFdefault [-0.1,0.3]

RFoptimised [-0.05,0.36]

ADAdefault [3.91,5.12]

ADAoptimised [-0.38,0.05]

DTdefault [-0.26,0.29]

DToptimised [-0.31,0.24]

The Standard Deviations (SD) and the Confidence Intervals (CI) in µg/m3 are shown in Table 15. This information is

obtained from the error distribution statistics given in Figure 9. In the same line as before, once again we can see how the GB

adjusts better compared with the other models.
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Figure 8. Ozone estimation analysis for GB default and optimised models with different % training datasets and monitoring intervals

Finally, in the Table 16, we show the improvement in % using the different ML models for the calibration process from the225

LCS raw readings of the module.

In Table 17, we compare our models for ground level Ozone calibration for LCS, against the related work with a similar

approach. We must stress that the starting point is slightly different compared to ours, since these studies have used more

reliable and expensive LCS, approximately ten times more expensive that the ZPHS01B module, the one we used. Nevertheless,

our model reduces the estimation error up to 94.05% based on MAE measurements, that is a 5.95% of MRE approximately,230

using GB with only 4 features, as shown in Section 3.3.
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Figure 9. Distribution error for the different models, with detail of raw, default and optimised versions

5 Conclusions

In this paper we have focused on ground level Ozone (O3) since in the cities is an indicator of other pollution levels using LCS

nodes based on the ZPHS01B module. These nodes permit to increase the spatial sampling of AQ. Due to their low accuracy,

after a thorough analysis, we have used machine learning methods, in particular DT and the ensemble algorithms (GB, RF235

and ADA), taking into account additional environmental information, reducing the estimation error in around 94% with GB,

and more than 89% in the other models, outperforming the related work. Thus, the raw readings from this O3 LCS, after the

proposed calibration process are adjusted with higher accuracy.
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Table 16. Improvement (in%) of O3 calibration from the raw readings with the different optimised models.

GB RF ADA DT

R2 258.13% 256.27% 256.1% 246.27%

RMSE 93.05% 92.43% 92.29% 89.85%

MAE 94.05% 93.82% 94.59% 92.79%

MAPE 62.75% 58.8% 68.35% 59.12%

Table 17. Comparison with the similar related work

Study Location Sensor R2 MRE [%]

et al (2016) Aveiro (PT) many 0.70-0.77 10-5%

Zimmerman et al. (2018) Pittsburg (USA) RAMP 0.86 15%

Esposito et al. (2016) Cambridge (UK) SnaQ 0.69 42%

Our model Valencia ZPHS01B 0.93 5.95%

In particular, we have used a data set of 165 days, with different monitoring intervals, giving the best results when we use 10

min monitoring interval, as it could be expected. For the training process, we have carried out several techniques (FIA and FS)240

in order to select the most relevant features, applying HPO within the different models, with different percentages for training

and testing.

As future work, we plan to enlarge the dataset and to add complementary parameters, such as wind speed, traffic density to

increase the accuracy of this model.

Data availability. Please feel free to contact to the authors for further information: http://www.uv.es/eco4rupa/dataset.html245
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