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Abstract. The rapid expansion of low-cost sensor networks for air quality monitoring necessitates rigorous calibration to 

ensure data accuracy. Despite numerous published field calibration studies, a universal and comprehensive assessment of 

factors affecting sensor calibration remains elusive, leading to potential discrepancies in data quality across different networks. 

This study deployed eight sensor-based monitors in strategically chosen locations continuously for two years in Hong Kong, 10 

Macau, and Shanghai. These locations covered a wide range of climatic conditions: Hong Kong's subtropical climate, Macau's 

similar yet distinct urban environment, and Shanghai's more variable climate. Each monitor employed a dynamic baseline 

tracking method for the gas sensors, which isolates the concentration signals from temperature and humidity effects, enhancing 

the sensors' accuracy and reliability. This strategic deployment ensured that the sensors' performance and calibration processes 

were tested across diverse atmospheric conditions. The tests, which involved evaluating the validation performance by 15 

analyzing randomly selected calibration sample subsets ranging from 1 to 15 days, indicated that the length of the calibration 

period, pollutant concentration range, and time averaging period are pivotal for sensor calibration quality. We determined that 

a 5–7 days calibration period minimizes calibration coefficient errors, and a wider concentration range improves the validation 

R2 values for all sensors, suggesting the necessity of setting specific concentration range thresholds. A time averaging period 

of at least 5 minutes for data with 1-minute resolution was recommended to enable optimal calibration in field operation. This 20 

study emphasizes the need for a comprehensive calibration assessment and the importance of considering environmental 

variability in sensor calibration condition. These findings offer methodological guidance for the calibration of other sensor 

types, providing a reference for future research in the field of sensor calibration. 

1 Introduction 

Rapid advancements in low-cost air sensor technology have led to a significant increase in their applications across various 25 

fields. These sensors offer a promising and cost-effective solution for monitoring air pollution at finer spatial scales and in 

novel locations compared to traditional monitoring methodologies. This has resulted in a growing demand for high-quality 

sensor data. Calibration is an indispensable component of the air sensor operational paradigm, pivotal for securing accurate 
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and dependable data. By establishing a relationship between the raw sensor output and the corresponding reference 

measurement, calibration enhances the accuracy and precision of sensor data. 30 

Common calibration methods include multi-point calibration with standard gases, controlled chamber calibration 

(Papapostolou et al., 2017; Sousan et al., 2016), on-site probe gas calibrations, and field side-by-side calibration (Bisignano et 

al., 2022; Holstius et al., 2014; Spinelle et al., 2015, 2017). The first three methods are laboratory-based methods or rely on 

standard gas, which inherently possess constraints and may not fully capture the intricate interactions of multiple pollutants 

and environmental factors encountered in situ. This limitation raises concerns about the applicability of calibration results 35 

obtained under controlled conditions to actual monitoring environments(Castell et al., 2017). An alternative approach is the 

side-by-side calibration, which involves the co-locating sensor systems with reference analyzers in real-world environmental 

settings for a designated duration. This approach leverages the natural fluctuation of pollutant concentrations and 

environmental factors to accurately calibrate the sensors’ sensitivity and baseline response. It is advantageous due to its 

procedural simplicity, negligible consumable usage, and cost efficiency compared to laboratory assessments (Castell et al., 40 

2017). Consequently, it has become as a preferred method for calibration in various scenarios (Spinelle et al., 2015, 2017). 

Despite the widespread application of field side-by-side calibration, several critical concerns persist regarding the process. The 

primary issue is the selection of appropriate calibration conditions. Factors like the calibration duration (Levy Zamora et al., 

2023), the pollutant concentrations distribution (Levy Zamora et al., 2023), sensor ageing(Li et al., 2021), interference from 

non-target gases (Cross et al., 2017), the impacts of temperature and relative humidity (Ariyaratne et al., 2023), and various 45 

gas sampling methods can significantly influence the calibration results. Determining the optimal conditions is crucial for 

achieving accurate and reliable calibration results. Extensive research has focused on the calibration period, the most frequently 

reported in recent studies (Datta et al., 2020; Gao et al., 2015; Kim et al., 2018; Mukherjee et al., 2019; Pinto et al., 2014; 

Spinelle et al., 2015, 2017; Topalovic et al., 2019). One study by Zamora et al. (2023) evaluated the impact of calibration 

period on calibration quality using calibration periods of up to 6 months from one year of PM2.5, CO, NO, NO2, and O3 data 50 

in Maryland, US. Their results indicated diminishing improvements in median root-mean-square error (RMSE) for calibration 

periods longer than six weeks for all sensors. Zamora et al. (2023) also highlighted the importance of considering 

environmental conditions during the calibration period that are similar to those encountered during the evaluation period to 

achieve the best calibration performance. Another study by Okorn et al. (2021) reported that longer calibration periods (i.e., 

six weeks) resulted in fits with a reduced bias compared to fits obtained from shorter calibration periods (1 week), while the 55 

one-week calibrations yielded the best R2 (coefficient of determination) values. While these studies have offered valuable 

insights into sensor field calibration conditions, more discussion is needed on other calibration factors, particularly the range 

of pollutant concentrations during the calibration period and the selection of time averaging length for raw data before 

calibration. These two factors are more straightforward to standardize and quantify compared to other factors, as they can be 

defined with specific numerical values and consistent measurement protocols, making it easier to compare results across 60 

different studies and ensure reliable calibration outcomes. 
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In addition to investigating calibration conditions, an equally crucial aspect to address is the development of an effective 

calibration model that can accommodate these optimized sensor calibration conditions. This study focuses on electrochemical 

sensors, which are the most common type of air quality gas sensors. Laboratory studies of commercial electrochemical sensors 

have shown linear correlations between current response and gas analyte concentration under stable temperature and relative 65 

humidity (RH) conditions (Collier-Oxandale et al., 2020; Mead et al., 2013; Wei et al., 2018; Zong et al., 2021). However, due 

to their electrochemical characteristics, these sensors often exhibit non-linear responses to variations in temperature and RH 

(Ariyaratne et al., 2023; Li et al., 2021; Wei et al., 2018), which can significantly impair their performance in real-world 

applications. In the past, most studies have adopted generic multiple linear regression (MLR) or machine learning models to 

calibrate raw sensor data, taking into account various complex variables such as temperature, RH, their gradient and cross-70 

sensitivity to other pollutants (Datta et al., 2020; Han et al., 2021; Levy Zamora et al., 2023; Si et al., 2020; Topalovic et al., 

2019; Wei et al., 2020; Zimmerman et al., 2018). These models, while comprehensive, often face limitations such as the risk 

of over-fitting, extensive training requirements, restricted applicability, and difficulties in replicating and scaling up for large 

sensor numbers. Furthermore, the complexity of machine learning models can pose significant barriers for everyday users. 

Instead of relying solely on mathematical algorithms for sensor calibration, we assessed a novel dynamic baseline tracking 75 

technology designed to physically mitigate temperature and RH effects on sensor signals, allowing these kind of gas sensor 

devices, i.e. Mini Air Stations (MAS, Sapiens), to output sensing data most directly related to the concentration signal. By 

isolating the non-linear influences of temperature and RH on sensor readings, this technology allowed us to focus exclusively 

on optimum calibration strategy and enabled the development of a refined linear calibration model. Based on the linear 

calibration model, we further identify the critical factors that influence calibration quality, thus optimizing calibration 80 

conditions for NO2, NO, CO, and O3 electrochemical sensors. Our research uncovers three pivotal factors that significantly 

impact sensor calibration and validation performance: calibration period, concentration range, and time averaging. By 

examining these factors’ effects on the variation of sensor's calibration coefficients, we aim to deepen the understanding of 

sensor calibration processes and enhance the performance of low-cost electrochemical air sensors. This methodology not only 

simplifies the calibration process but also ensures that the calibration model remains robust and applicable in varied and long-85 

term field conditions. 

2 Material and methods 

2.1 Data collection 

2.1.1 Sensor devices 

Eight microsensor-based Mini Air Stations (MAS-AF300, Sapiens), hereinafter referred to as ‘MAS’, shown in Figure 1, were 90 

utilized in this study for continuous measurements of the air pollutants NO2, NO, O3, and CO under field conditions. Each 

MAS unit included three or four gas sensors along with a combined RH and temperature sensor (SHT-75, Sensirion AG). This 



4 

 

study focuses on electrochemical gas sensors for NO2 (Alphasense NO2-B43F), NO (Alphasense NO-B4), CO (Alphasense 

CO-B4), and O3 (Alphasense OX-B431). Please note that the O3 concentration is determined by calculating the difference 

between the readings of the oxidizing gas sensor (OX-B431) and the NO2 sensor (NO2-B43F). Furthermore, the MAS system 95 

incorporates numerous sophisticated functionalities. All the gas sensors are equipped with the dynamic baseline tracking 

technology by the manufacturer with details in the following section. The system is also equipped with an active air sampler, 

ensuring a flow rate of 0.8 L min-1. The sample air undergoes filtration through a Teflon dust filter before directly entering the 

sensor module, without the implementation of any temperature or humidity control measures. The Teflon dust filter for each 

MAS will be replaced regularly every month to prevent dust from entering the gas module and causing measurement errors 100 

and shortening the sensor life. To mitigate potential drift during long-term deployment, the MAS gas module incorporates an 

auto-zeroing function. During the zeroing process, the gaseous pollutant measurement module receives air samples from a 

separate zero module, from which NO, NO2, and O3 have been significantly mitigated. The data collected during the zeroing 

period is subsequently analyzed to rectify any drift effects during the long-term deployment phase, as part of the data cleaning 

procedure. A comprehensive description of this technology and its functional advantages can be found in a paper by Sun (Sun 105 

et al., 2017). All these incorporated functionalities in the MAS system are aimed at optimizing sensor performance, enhancing 

measurement accuracy, and ensuring their long-term stability. 

 

 

Figure 1. Structure diagram of MAS monitoring devices (dimensions: 420 × 320 × 180 mm, H × W × D; weight: 12 kg; power 110 

consumption: 15W). 
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2.1.2 Measurement campaign details 

To assess sensor performance under varying ambient conditions, these MASs were deployed in three distinctively different 

urban and climatic settings: Hong Kong's humid subtropical climate, Macau's somewhat similar yet distinct urban environment, 115 

and Shanghai's more variable climatic conditions. Each city featured a co-location campaign with an AQMS, as detailed in 

Table 1, and the AQMSs were equipped with Federal Equivalent Method (FEM) reference analyzers. 

The first co-location campaign in Hong Kong involved the four MASs, each equipped with all four types of gas sensors (NO2, 

NO, CO, and O3), which were placed at the Tseung Kwan O AQMS (22.3716°E,114.1148°N) regulated by the Hong Kong 

Environmental Protection Department. This station serves as a representative urban site, providing conditions suitable for 120 

sensor evaluation in a complex urban environment. In the second co-location campaign, two MASs were located at the Taipa 

Air Quality Monitoring Station (22.15896°E, 113.56882°N) in Macau, focusing on NO2, NO, and O3 to capture the general 

urban background conditions unique to the region. The third campaign took place in Shanghai, where two MASs, monitoring 

NO2, NO, and CO, were placed separately alongside two sets of reference analyzers at the Waigaoqiao Port 2 site (31.36662°E, 

121.57242°N) and Port 4 site (31.33302°E, 121.65496°N). This campaign was also the longest co-location campaign, lasting 125 

22 months, offering a prolonged observation of the diverse and more polluted air quality conditions typical of a major industrial 

hub. These locations were chosen to ensure a comprehensive analysis across a spectrum of urban pollution levels and 

environmental conditions. 

All eight MAS units were designed to automatically transmit the measured raw sensor signals and concentration data of the 

pollutants from the MAS to a secure cloud server in real-time at 1-minute resolution. The reference analyzer in Hong Kong 130 

provided 1-minute time resolution pollutant concentration data, while those in Macau and Shanghai provided hourly averaged 

data, enabling us to conduct calibration analysis at varying time resolutions. 

 

Table 1. Details of MAS devices in co-location calibrations.  

Location MAS 

ID 

Reference 

analyzer 

data time 

resolution 

Co-location periods Monitoring pollutants 

and concentration 

range (5th to 95th 

percentile range) 

MAS inside 

temperature and 

RH range 

Hong 

Kong 

MAS1 Minute 2021-07-27 00:00 to 

2022-10-10 00:00 

(15 months) 

NO2: 3.7 ppb - 34.6 ppb 

NO: 0.4 ppb - 18.0 ppb 

CO: 152 ppb - 643 ppb 

O3: 4.3 ppb - 69.1 ppb 
 

Temp: 10 ˚C - 43˚C 

RH: 17% - 85 % 

MAS2 Minute 2021-12-24 00:00 to 

2022-10-10 00:00 

(10 months)  

Temp: 10 ˚C - 46˚C 

RH: 16% - 86 % 
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MAS3,  

MAS4 

Minute 2021-07-10 00:00 to 

2022-10-10 00:00 

(15 months) 

Temp: 10 ˚C - 45˚C 

RH: 16% - 93 % 

Macau MAS5,  

MAS6 

Hourly 2021-04-04 13:00 to 

2022-04-26 05:00 

(13 months) 

NO2: 0 ppb - 26.3 ppb 

NO: 0 ppb - 17.6 ppb 

O3:  0 ppb - 68.8 ppb 

Temp: 10 ˚C - 47˚C 

RH: 21% - 89 % 

Shanghai MAS7, 

MAS8 

Hourly 2019-10-12 01:00 to 

2021-07-31 23:00 

(22 months) 

NO2: 14.1 ppb - 63.4 ppb 

NO: 3.2 ppb - 142.5 ppb 

CO: 258 ppb - 862 ppb 

Temp: -8 ˚C - 51˚C 

RH: 0% - 90 % 

 135 

2.2 Dynamic baseline tracking method to mitigate environmental effects on sensors 

The sensor device (MAS, Sapiens) has deployed a novel gas sensing technology that enables the isolation of the concentration 

signal from environmental variables of temperature and RH through a patented dynamic baseline tracking method by the 

manufacturer, which operates by differentiating the varying environment and target pollutant induced sensor signals using a 

dual-sensor module. Figure 2 shows the conceptual diagram of MAS sensor module and general working principle of the 140 

dynamic baseline tracking method. This gas sensor system comprises a primary sensor – that is directly exposed to the air, 

capturing the original signal (designated as ORG) influenced by varying pollutants, temperature, and RH - and a proprietary 

pair differential filter sensor (designated as PDF) to track the dynamic baseline signal driven only by temperature and RH. The 

PDF sensor is equipped with a water molecule permeable membrane that allows the water vapor to penetrate through while 

filtering out the target gas modules from entering the sensor head. The differential signal (measured in volts) between the ORG 145 

and PDF sensors decouples the temperature and humidity effects, yielding a pure signal that reflects target gas concentrations.  

Each MAS sensor module produces four distinct outputs for a specific pollutant: (i) the ORG sensor signal in volts, VORG, (ii) 

the PDF sensor signal in volts, VPDF, (iii) the voltage output from the difference of the ORG and PDF sensor signals in volts, 

VDIFF, and (iv) the concentration output of target gas in ppb, Conc. Each MAS has an onboard algorithm capability that converts 

sensor signals to concentration, with the conversion automatically performed onboard the MAS for real-time concentration 150 

output. Eq. (1) presents the conversion equation for NO2, NO, and CO, where ‘a’ denotes the slope of the equation, which is 

also indicative of the sensitivity (ppb mV-1) of the electrochemical sensors, and ‘b’ represents the intercept of the equation. 

For the gas sensors exhibit cross-sensitivity with non-target gases, an interfering gas correction component can be incorporated. 

Eq. (2) presents the equation for calculating O3 concentrations using the Alphasense OX-B431 sensor with NO2 as an 

interferent. The coefficient ‘f ’ accounts for the cross-interference from NO2, and our empirical data, derived from a substantial 155 

number of tests, indicates that ‘f ’ typically falls within the range of 0.8 to 1.2. 

𝐶𝑜𝑛𝑐(𝑁𝑂2, 𝑁𝑂, 𝐶𝑂)  =  𝑎 ×  𝑉𝐷𝐼𝐹𝐹  +  𝑏 ,         (1) 
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𝐶𝑜𝑛𝑐(𝑂3) =  𝑎 ×  𝑉𝐷𝐼𝐹𝐹 +  𝑏 –  𝑓 ×  𝐶𝑜𝑛𝑐(𝑁𝑂2) ,        (2) 

Prior to initiating the co-location campaign, a 15-day pre-test under field conditions and a laboratory test in the environmental 

chamber were conducted to demonstrate the method's capability to enhance the sensor performance under varying temperature 160 

and humidity conditions. 

 

Figure 2. A conceptual diagram of the PDF-enabled MAS sensor device. In laboratory tests, standard gas with constant 

concentrations is periodically injected into the PDF and ORG sensors throughout varying temperature and RH cycles to investigate 

their effects on the sensor performance. The PDF tracks the baseline signal driven only by temperature and RH, while the ORG 165 

sensor captures the concentration profile influenced by both the target gas module and environmental conditions. The differential 

signal between the ORG and PDF sensors decouples the baseline signal induced by temperature and RH, producing a pure signal 

that reflects the target gas concentrations. This concept is also applicable to ambient conditions, where the differential signal between 

the paired ORG and PDF sensors demonstrates the accuracy and robustness of PDF technology for ambient air monitoring. 

 170 

2.3 Impact analysis of three crucial factors on calibration conditions 

This study specifically focuses on conducting field tests to identify optimal calibration conditions by examining three primary 

factors that influence sensor calibration performance: (a) calibration period duration; (b) concentration variation range; and (c) 

time averaging pre-processing.  

Calibration Period Optimization 175 

Calibration is typically conducted within a specific timeframe, constrained by time and resource availability. Standard 

protocols involve calibrating sensors over durations ranging from a few days to several weeks prior to their utilization in field 

monitoring applications. The calibration’s effectiveness largely depends on this timeframe, referred to as the calibration period. 

The calibration period test in this study uses subsets of the full co-location period to generate a range of hypothetical calibration 

periods. We investigated calibration period scenarios ranging from 1 to 15 days. In each scenario, 500 samples were randomly 180 
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selected using the numpy.random.choice() function in Python, ensuring randomness and independence in the selection of co-

location timing. This approach is intended to create hypothetical scenarios that reflect the diverse conditions and variability 

under which calibration might occur in real-world sensor calibration practices. Sample sizes of 250, 500, and 1000 were tested, 

results stabilized with 500 samples, indicating minimal impact from decreasing or increasing the sample size further. The 500 

randomly selected calibration periods were illustrated in Figure S1 in the supplementary materials, which shows the start times 185 

for these periods for NO, with the approach also applied to NO2, CO, and O3 sensors. 

These calibration samples were used as the training set for each hypothetical calibration period in the calibration model to 

evaluate the range of potential R2 and RMSE when applied in the sensor validation periods. Firstly, these samples were 

standardized to hourly data to facilitate consistent comparisons across various MAS units. The calibration coefficients (slope 

and intercept) of these samples were calculated as per Eq. (1) or Eq. (2). Subsequently, these coefficients were validated using 190 

the following month’s data by comparing the hourly calibrated sensor data and hourly reference data. A superior validation 

performance, indicated by higher R² values and lower RMSE values, suggests that the calibration period effectively captures 

the relationship between the calibrated sensor and the reference data, thereby indicating an optimal calibration duration. This 

evaluation was not limited to the calibration period's immediate outcome; it also included a comparison of R2 and RMSE 

metrics against the hourly data validation set from the subsequent month. This dual-phase evaluation underscores that the 195 

calibration's true merit is better judged during the post-calibration validation phase, adhering to the standard practice of a 

bounded calibration period followed by an extended validation phase. 

Concentration Range Analysis 

We propose the hypothesis that users can strategically select a co-location period to minimize the calibration duration, 

recognizing that the calibration period is not the sole factor to consider when optimizing instrument co-location for calibration 200 

purposes. A critical aspect is to evaluate the representativeness of environmental conditions during the calibration period in 

relation to those observed during the long-term evaluation periods. Since the influence of temperature and RH on sensor signals 

has been significantly mitigated, concentration emerges as the key factor that accurately reflects environmental conditions. To 

analyze how the range of pollutant concentrations during the calibration period affected the sensor validation performance, we 

compared the validation R2 and RMSE outcomes with the same calibration period length but varied concentration ranges. 205 

Firstly, we segmented the samples into distinct categories based on their concentration ranges while maintaining a constant 

calibration period. We employed the 5th to 95th percentile of the pollutant concentration in each category to define each range. 

This approach mitigates the impact of sporadic peak values, ensuring they do not disproportionately affect the overall 

concentration range assessment. Subsequently, the effectiveness of calibration across these ranges was systematically 

evaluated by comparing R2 and RMSE metrics during the validation periods in the subsequent month. This strategy enabled a 210 

thorough examination of how the concentration range impacts calibration accuracy, providing insights into the optimal range 

needed for precise sensor calibration. 

Time Averaging Evaluation 
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We also evaluated the influence of time averaging on calibration efficacy to identify the optimal data resolution for the best 

calibration outcomes. Given that reference analyzers and sensors can provide data at granular levels, down to minutes or 215 

seconds, pre-calibration data processing plays a crucial role in the accuracy of calibration.  

In this time averaging analysis, we compared the calibration performance of data averaged over different time intervals, from 

minutes to hours. After processing the calibration data set with varied time averaging intervals, the resulting calibration 

coefficients were evaluated against the data from the following month's validation set. For example, for a sample with 

calibration period of 1 day, sensor and reference data were averaged over 1/3/5/7/9/11/30/60/120/180 minutes and used to 220 

determine the sensor coefficients for each time averaging interval. Following that, these coefficients were independently 

applied to the following one-month validation period with hourly data, to determine the R2 and RMSE under each time 

averaging intervals. The ideal time averaging interval was determined based on the highest R2 and lowest RMSE values 

obtained in this validation phase, pinpointing the most effective time resolution for calibration. 

3 Results and discussion 225 

3.1 MAS sensor performance against temperature and RH variability 

Before initiating the long-term co-location campaign, the MAS units equipped with NO2, NO, CO, and O3 sensors were tested 

in Hong Kong, demonstrating the dynamic baseline tracking method's ability to enhance electrochemical sensor performance 

against varying temperatures and RH. We tested four MAS units and presented findings from this one MAS as an example to 

evaluate the robustness of the PDF technology. During the 15-day pre-test in the summer (June 1-15, 2019), temperatures 230 

varied between 28 ˚C and 42 ˚C, with RH levels from 45% to 87%. The outputs from the PDF sensor, the ORG sensor, and 

the differential output between the paired ORG - PDF sensor are illustrated separately in Figure 3(a)-(d). The voltage signals 

from the PDF and ORG sensors were converted into concentration outputs using coefficients derived from Eq. (1). As shown 

in the figure, even during the typical ambient concentration ranges, the accuracy of the ORG sensor outputs for gases other 

than CO was notably poor, primarily due to significant influences from field temperature and RH. It was observed that the 235 

PDF sensor outputs for all gas pollutants did not exhibit a linear relationship with temperature or RH profiles. Different sensor 

types demonstrated distinct response patterns to variations in temperature and RH, highlighting the complex non-linear 

characteristics of electrochemical sensors in relation to baseline dependence on these environmental factors.  

With the PDF enabled sensors, the physical separation of the climatic driven baseline and target gas driven sensitivity is 

demonstrated to be feasible and effective. By subtracting the output of the PDF sensor from that of the ORG sensor, the 240 

resulting ORG – PDF output reveals a clear gas concentration profile that aligns closely with reference measurements. This 

relationship is illustrated in the scatter plots presented in Figure 3(f)-(i). For NO2, the ORG – PDF sensors showed stronger 

performance, with a high R2 (0.99) and low RMSE (0.94), compared to the lower R2 (0.44) and higher RMSE (5.80) for the 

ORG sensors without the PDF module. For NO and O3, the ORG – PDF sensors also demonstrated stronger performance 

compared to the ORG sensors without the PDF module. Specifically, the ORG – PDF sensors had strong R2 (0.97 for both NO 245 
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and O3) and low RMSEs (1.72 for NO, 1.05 for O3), while the ORG sensors without the PDF module had weaker R2 (0.73 for 

NO, 0.59 for O3) and higher RMSEs (5.37 for NO, 4.18 for O3). For CO, the sensors exhibited comparable performance, with 

R2 around 0.93-0.94 and RMSE values between 16.70-19.00, regardless of the PDF module. We tested four MASs and the 

other PDF enabled sensors were shown in Figure S2. Their data quality performance has been consistent with the findings 

reported data here. These significant discrepancies between the ORG sensor output and ORG – PDF sensor output, especially 250 

for NO, NO2, and O3, highlight the importance of the dynamic baseline tracking method in improving the accuracy and 

reliability of measurements, notably under low concentration conditions influenced by temperature and RH. 

Additionally, laboratory tests in environmental chambers assessed the MAS NO sensor (Figure S3), exposing it to broad 

temperature (0°C to 30°C) and RH (10% to 90%) ranges. Despite these fluctuations, MAS sensors maintained consistent and 

stable readings after applying the dynamic baseline tracking method, as shown in Figure S3(b), with concentration steps from 255 

50 to 300 ppb. The outcomes from both field and laboratory tests confirm that the dynamic baseline tracking method effectively 

neutralizes temperature and RH effects, primarily for NO2, NO, and O3 sensors, achieving desired performance while focusing 

primarily on concentration factors for subsequent analysis. Similar pre-tests were also conducted with the MAS units in Macau 

and Shanghai to assess the effectiveness of the dynamic baseline tracking method. 

Upon completion of the pre-tests, the long-term field co-location campaigns were initiated. The dynamic baseline tracking 260 

method was first evaluated in this study to prove its effectiveness in long-term field tests. The performance of MAS1, 

particularly for NO and NO2, throughout the campaign, was depicted in Figures S4 and S5. It should be noted that a single 

fixed calibration coefficient was used throughout the entire campaign duration. This fixed coefficient enabled the calibrated 

sensor data to consistently perform well throughout the co-location campaign. The absolute error (sensor - reference) generally 

stayed within ± 5ppb, and the relative error (absolute error/reference) was primarily under 15%, indicating effective mitigation 265 

of temperature and RH impacts on the sensor’s output, even during extended field conditions over a year. Importantly, the 

long-term analysis in Figures S4 and S5 showed that selecting suitable calibration coefficients can ensure the sensors' stability 

and accuracy over prolonged periods. However, dedicating several months or even up to a year for calibration is not feasible 

in standard practice. Therefore, our main goal is to determine the optimal coefficients from short-term calibration periods to 

enhance long-term validation performance. 270 
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Figure 3. (a-d) Performance validation of the MAS's ORG and PDF sensors for detecting NO₂, NO, CO, and O₃ under field conditions 

in 2019. (e) Displays the temperature and RH measured inside the MAS gas sensor modules. (f-i) Compares the readings from the 

ORG sensor and the MAS PDF-enabled sensor with reference measurements. 275 

 

3.2 Impact of calibration period on sensor calibration 

As detailed in Section 2.3, we used 500 randomly selected samples for each calibration period, and this process generated 500 

sets of calibration slopes and R2 / RMSE values from the validation period. Figure S6 displays the median and the 25th to 75th 

percentile range of these R2 / RMSE results across all eight MAS units with NO2 and NO sensors and all six units with CO and 280 

O3 sensors. Figure 4 extracts the 25th to 75th percentile of each MASs results and combines them into a boxplot, making the 

trend across the calibration period more apparent. An increase in the median of R2 (e.g. for NO, R2 improved from 0.83 to 0.95 

as the calibration period went from 1 to 15 days) coupled with a reduction in the median of RMSE (e.g. for NO, RMSE 

decreased from 3.71 to 2.12 over the same calibration period) shown in Figure 4 indicate improved validation performance. 

The narrowing of the 25th to 75th percentile range across calibration periods (e.g. for NO, R2 range tightened from 0.66-0.96 to 285 

0.90-0.98 as the calibration period went from 1 to 15 days) further supports this, with a tightening of validation performance 

towards a steadier state and reduced chance of abnormal calibration. 
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In Figure 4, the most notable enhancements in validation performance were observed within the initial 1 to 3 days. Beyond 

this period, the rate of improvement was found to be less clear, with the median R2 increasing by less than 0.02 and the median 

RMSE decreasing by less than 0.1 (but less than 1 for CO) for further increases in the calibration period. For NO2, NO, and 290 

O3, the upward trend in validation R2 and the downward trend in RMSE were observed, plateauing after 5 days. CO sensors in 

most MAS units reach stable R2 after 7 days. This suggests lengthening the calibration period beyond 5 days for NO2, NO, O3 

or 7 days for CO does not markedly benefit sensor data performance. If the sensor users can strategically select the co-location 

period to minimize the calibration duration, a period of 5–7 days is identified as most effective for minimizing errors in 

calibration coefficient and avoiding notably low validation R2 values. 295 

The aforementioned results are based on an average pattern derived from the combined data of all sensors. Figure S6 presents 

the separate performance of all eight MAS sensors over varying calibration periods. The NO₂, NO, CO, and O₃ sensors in 

MAS1-4 in Hong Kong and MAS5-6 in Macau exhibited trends consistent with those shown in Figure 4. A noteworthy 

observation in Figure S6(a)-(b) is that the NO2 and NO sensors in MAS7 and MAS8 of Shanghai campaign showed consistent 

performance over all calibration periods, lacking the trends observed in Figure 4. Considering that the NO and NO₂ 300 

concentrations in the site of Shanghai are significantly higher than those in the other two cities, it is hypothesized that the 

elevated pollutant concentrations at the Shanghai port provided a more favorable calibration condition, thereby diminishing 

the contribution of the calibration period. Thus, we conclude that for calibration condition with a narrower concentration range, 

a calibration period of at least 5 to 7 days is necessary, whereas more polluted ambient environments are more conducive to 

sensor concentration calibration. Despite the short calibration duration of 1–3 days, the extensive concentration range assessed 305 

contributed to more precise calibration coefficients and improved validation performance, as will be discussed in the next 

section.  
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Figure 4. The range of the validation R2 and RMSE for a given calibration period for all MAS units consists of (a) NO2, (b) NO, (c) 310 

CO, and (d) O3 sensors. The vertical error bar is the 25%–75% distribution of R2 and RMSE under different calibration periods. 

 

3.3 Impact of concentration range on sensor calibration 

Another critical aspect is the impact of the concentration range experienced by the sensors during calibration periods. Figure 

S6 shows that MAS7 and MAS8 in the Shanghai campaign could achieve accurate and reliable calibration for NO and NO2 315 

within just a day, given their exposure to environments with significant concentration variability. Our second test examined 

the effect of the concentration range.  
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Samples in Figure 4 were grouped based on different concentration ranges, and the results were shown in Figure 5 and Figure 

S7 to explore the relationship between calibration period length, concentration range, and sensor validation performance, 

categorizing the MAS units accordingly. For NO2 and NO sensors of MAS7 and MAS8, a separate analysis was essential due 320 

to their higher pollutant concentrations compared to other units, as detailed in Table 1. MASs 1-6 were evaluated together in 

Figure 5 under a lower concentration range, with 90% of NO2 and NO ranges falling below 40 ppb and 50 ppb, respectively. 

MAS7 and MAS8 were assessed in Figure S7 under higher concentration ranges, where 90% of the readings for both gases 

exceeded these thresholds. 

Figure 5 illustrates the calibration conditions at lower concentrations typical of environments like Hong Kong and Macau. The 325 

red zone of Figure 5, indicating higher R2 values, is primarily concentrated in areas with wider concentration ranges. 

Specifically, when examining the performance of NO2 sensors, the lowest R2 value of 0.55 was recorded in the 0-10 ppb range, 

while the highest R2 value of 0.75 was recorded in the >50 ppb range. When the calibration period is held constant, an increase 

in the concentration range boosts the validation R2 from 0.55 to 0.75 with a notable turning point at 40 ppb. However, extending 

the calibration period without increasing the concentration range doesn't obviously improve the validation R2. NO CO and O3 330 

also displayed patterns similar to NO2, with R2 improvements linked to wider concentration ranges. For all gases, the highest 

R2 values were predominantly observed in the broadest concentration ranges. Therefore, achieving higher validation R2 values 

above the median, such as R2 > 0.65 for NO2, R2 > 0.84 for NO, R2 > 0.75 for CO, and R2 > 0.95 for O3, requires significant 

concentration ranges, notably more than 40 ppb for NO2 and 10 ppb for NO, 500 ppb for CO, and 20 ppb for O3. Reaching 

these ranges allows the calibration coefficients to stabilize and align closely with those derived from year-long calibration 335 

results.  

The recommended concentration ranges are 40 ppb, 10 ppb, 500 ppb, and 20 ppb for NO2, NO, CO, and O3, respectively. The 

differences in these concentration thresholds for various gas sensors may be attributed to the distribution characteristics of the 

gas pollutants in the surrounding environment. The NO concentration range of 10 ppb is the lowest, possibly due to the 

prevalence of high ambient NO concentrations frequently appearing in the form of peaks. When employing the 5th to 95th 340 

percentile as the criteria for concentration range, the NO range is observed to be the lowest among the gases. The higher 

concentration range analysis in Figure S7 shows that increasing the concentration range beyond 40 ppb for NO2 and 50 ppb 

for NO does not improve validation R2 values, further indicating a threshold in the concentration range beyond which no 

additional sensor performance benefits are observed. This underscores the inadequacy of merely extending the calibration 

duration, and it is crucial to ensure an adequate concentration range during the calibration period. But beyond a certain 345 

concentration range threshold, further increases in the calibration range do not lead to additional improvements in the 

calibration results.  

It is important to acknowledge certain limitations in this section. The range of environmental concentrations tested was limited 

and may not encompass all possible calibration scenarios. Consequently, we lack sufficient data to support similar conclusions 

for environments with either significantly larger concentration ranges—such as those where NO, NO₂, and O₃ concentrations 350 

exceed 150 ppb—or those with consistently lower concentrations, where values remain below 10 ppb for extended periods. 
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While our findings are applicable to most similar or closely related concentration environments, further investigation is needed 

to validate these conclusions across a broader spectrum of calibration conditions. 
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Figure 5. (a) NO2, (b) NO, (c) CO, and (d) O3 bubble plot of median R2 of MAS units 1–6 (as located in the low-concentration regions 

(Hong Kong and Macau)) and two factors: calibration period and concentration range. The size of the bubbles represents the 

number of samples. The color represents the median R2 values in corresponding categories. Red represents the higher R2 value, 

while blue represents the lower R2 value. 

 360 

3.4 Impact of time averaging on sensor calibration 

Another factor influencing calibration is the time averaging of the raw data, particularly for high-frequency measurements, 

taken at intervals of a minute or seconds. Performing temporal averaging is critical before formulating the calibration equation. 

As indicated in Table 1, only the reference data from Hong Kong was obtained at a one-minute temporal resolution. Thus, 

only the data from MAS1 - 4 will be used for time averaging evaluation. The time averaging process aims to enhance the 365 

accuracy of calibration coefficients while ensuring a substantial data volume for a reliable calibration process. 

Figure 6 presents results from two different perspectives: (a)-(c) focus on the time averaging analysis and the consistency of 

results across different sensors, while (d)-(f) emphasize the patterns observed under varying calibration periods. Figure 6(a)-

(c) show the performance of the NO₂ sensors from MAS1 to MAS4 across different time intervals, ranging from one minute 

to three hours. To eliminate the influence of the calibration period and adhere to the principles of single variable analysis, we 370 

utilized only 500 calibration samples from each MAS with a fixed calibration period of one day. The sensor and reference data 

for each calibration sample underwent time averaging across intervals of 1/3/5/7/9/11/30/60/120/180 minute(s). Subsequent 

calibration and validation led to the determination of the calibration slope, R2 of the validation set, and RMSE for these time-

averaged intervals. The results reveal a clear trend of improvement across all three metrics with increasing time averaging 

intervals, particularly notable between the 1-minute and 5-minute intervals. All four MAS NO₂ sensors exhibit a consistent 375 

trend in this regard. 

These findings are based on a calibration period of 1 day, and we extended the analysis to other calibration periods. Using 

MAS1 as an illustrative case, Figure 6(d)-(f) display the trends across different time averaging under various calibration periods. 

We derived the median values under each category. Analysis of Figure 6(e)'s vertical axis reveals that, for a one-day calibration 

period, R2 values improved post hourly (R2 = 0.68) and 5-minute averaging (R2 = 0.66) compared to the baseline 1-minute data 380 

(R2 = 0.59), with a corresponding reduction in RMSE. For periods exceeding a day, median R2 values exhibited a modest rise 

from 0.64-0.66 for 1-minute data to 0.68-0.70 for hourly data, suggesting the shorter the calibration period, the more 

pronounced the benefit of longer time averaging. Hence, calibrating with minute-level data over short periods of 1-3 days may 

lead to suboptimal validation performance. Similar trends were observed for NO and CO, as shown in Figures S8-S9; however, 

the trend for O₃ shown in Figure S10 was less pronounced, with only the calibration slope exhibiting a similar pattern. This 385 

may be attributed to the unique characteristics of O₃ calculations (Eq. 2), where the influence of cross-interference from NO₂ 

affects the results, thereby masking the impact of time averaging. 
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The results indicate that data averaging over an hour are more suitable for calibration than minute-level data. As depicted in 

Figure 6 and Figures S8-S10, a critical juncture is identified at the 5-minute mark (highlighted by a green line with a star). 

After this point, the improvements in validation R2 and RMSE become substantially less obvious. Thus, for data originally 390 

recorded at 1-minute intervals, applying a time averaging of 5 minutes or longer boosts the performance of the validation set, 

aligning the calibration coefficient more closely with the optimal one. The enhanced performance of hourly over minute-level 

data across various calibration periods warrants further investigation in the next section to understand the underlying factors. 

 

 395 

Figure 6. (a)-(c) The potential range of calibration slope, the R2, and the RMSE of the validation set for MASs 1-4 NO₂ sensors, 

under various time averaging with a calibration period of 1 day. Different colored lines represent the results of different MAS units. 

The vertical error bar is the 25%–75% distribution of the results under different categories. (e)-(f) The calibration slope median, 

the R2 median, and the RMSE median of the validation set for MAS1 NO₂ sensors across all calibration periods, with different colors 

denoting time averages ranging from one minute to three hours. 400 

 

3.5 Potential causes of sensor calibration coefficient variation 

We selected a sample from the MAS1 NO2 sensor with a one-day calibration period to analyze the benefits of hourly over 

minute-level data averaging. Regression analysis between sensor and reference data was performed for both 1-minute and 1-
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hour averages. Initially, data fitting during the calibration period was assessed. The time series plot in Figure 7(a) shows that 405 

both minute and hourly averaged data closely align with the reference. However, obvious differences emerged when computing 

the calibration equations separately for each time frame. The calibration slope for minute-level data (a = 2.70) was substantially 

lower than that for hourly data (a = 3.91), corroborating the trends noted in Figure 6. This discrepancy is evident in Figure 

7(b), where the regression curves for minute-level and hourly data diverge. The orange line for hourly data intersects more 

closely with the dense cluster of orange dots representing minute-level data, unlike the minute-level data's blue fitting line, 410 

which misses this dense area. In the validation phase, applying the distinct calibration coefficients derived for minute and hour 

averages to the next month's dataset also highlighted clear differences. Figure 7(c) and (d) illustrate that minute-level 

calibration coefficients (blue line) resulted in less consistent sensor data with the reference (R2 = 0.72, RMSE = 5.60) than the 

hourly data (R2 = 0.93, RMSE = 2.74), especially at lower concentrations. 

The discrepancy between the two sets of calibration coefficients is further illustrated in the data distribution plots in Figure 415 

S11, where sensor and reference data distributions for varying time averaging lengths are compared. As the time averaging 

interval increases, the sensor data distribution more closely mirrors the reference data distribution. This observation supports 

the notion that time averaging can refine the accuracy of the calibration by aligning data distributions, leading to more precise 

calibration outcomes. This pattern consistently appeared across various samples, MAS units, and gases, as described in section 

3.4, demonstrating the superior calibration accuracy achieved with longer averaging periods. 420 

Furthermore, we investigated the potential factors for the observed pattern by analyzing the residual term in sensor calibration 

model from the mathematical perspective. The detailed analysis is provided in Text S1 of the Supplementary Material. One 

plausible explanation is that the predictive capability of the calibration model using minute-level data may be compromised 

due to data noise. This noise can introduce variability that obscures underlying trends, ultimately leading to less reliable 

regression results and hindering the model's ability to accurately capture the relationship between sensor and reference data. 425 

While this explanation is plausible, we currently lack specific insights into which influential factors may be affecting the 

regression model. This remains an area for further investigation in our future work. 
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Figure 7. One of the calibration samples for MAS1’s NO2 sensor with a calibration period of 1 day. (a) is the time series and (b) is 430 

the scatter plot of minute-level and hourly data for the NO2 sensor and reference during the calibration period. (c) is the time series 

and (d) is the scatter plot of minute-level and hourly data for the NO2 sensor and reference during the validation period. The color 

bars in (b) and (d) represent the sample size in each region. 

 

4. Conclusions 435 

This study aimed to assess the performance of a novel dynamic baseline tracking method equipped with patented PDF gas 

sensors under different climate conditions, and to critically analyze three factors influencing the sensor calibration performance 

of PDF enabled NO2, NO, CO, and O3 sensors: calibration period, concentration range, and time averaging. By co-locating 

eight MAS units with reference analyzers in three cities over a period of up to 22 months, a comprehensive framework for 

sensor calibration was established. The study utilized a dynamic baseline tracking method, enhancing the consistency between 440 
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MAS sensor data and reference measurements. This method effectively countered the impacts of temperature and RH, focusing 

on pollutant concentration as the primary factor for MAS performance assessment. 

In the calibration period analysis, equations were derived from 500 randomly selected samples for each period ranging from 1 

to 15 days, with subsequent evaluation against the validation data. Initial improvements in validation performance were notable 

within the first 1 to 3 days of the calibration period, stabilizing around 5 to 7 days. This pattern suggests that extending the 445 

calibration period beyond 7 days yields negligible benefits, hence a 5–7 days calibration period is advocated to reduce 

calibration coefficient errors. 

The concentration range assessment indicated that broader ranges enhance the validation R2 values across all gas sensors. This 

finding emphasizes the necessity of establishing a concentration range threshold to facilitate effective calibration. Optimal 

ranges were determined as over 40 ppb for NO2, 10 ppb for NO, 500 ppb for CO, and 20 ppb for O3, with these thresholds 450 

ensuring reliable calibration coefficients and minimizing uncertainty in the results. 

Time averaging’s impact on calibration was significant, with improved coefficients and validation performance as averaging 

intervals increased. The one-day calibration period showed the most substantial improvement, with hourly and 5-minute 

averages providing higher R2 values than one-minute intervals. A 5-minute threshold emerged as critical, advocating for a 

minimum of 5-minute averaging to enhance calibration accuracy and align coefficients with the optimal standard. 455 

This study offers comprehensive insights into calibrating electrochemical gas sensors, highlighting the calibration period, 

concentration range, and time averaging's roles. Recommended practices for optimal calibration include: (1) a calibration 

period of 5–7 days using hourly data, (2) a concentration variation range (5th to 95th percentile range) exceeding 40 ppb for 

NO2, 10 ppb for NO, 500 ppb for CO, and 20 ppb for O3, and (3) a time averaging of 5 minutes or longer, preferably utilizing 

hourly data. The findings highlight the importance of balancing these factors to achieve optimal calibration outcomes, while 460 

extending certain calibration aspects beyond recommended thresholds may not yield additional benefits.  

Acknowledging the limitations of this study, which focused exclusively on our MAS sensor technology with its active flow 

gas sampler, it should be noted that the specific calibration protocol described may not be directly applicable to studies 

involving different sensor types, commercial sensor packages from various manufacturers, or different air sampling methods 

using passive samplers. Optimal calibration conditions may vary depending on the sensor’s specific features and the calibration 465 

methods employed. For instance, regarding the optimized calibration period, a duration of at least 5 to 7 days is necessary for 

conditions with a narrower concentration range. In contrast, in locations with more polluted ambient environments, a shorter 

calibration duration of 1 to 3 days may be sufficient for effective sensor concentration calibration. 

Future research endeavors should aim to diversify sensor types and increase the number of test sensors, thereby enhancing the 

generalizability and practicality of the findings. Nonetheless, the primary objective of this study is to provide methodological 470 

insights that can serve as a valuable reference for calibrating various sensor types. The developed dynamic baseline tracking 

method, along with the determined optimal calibration period, concentration range thresholds, and time averaging period, can 

inform and guide future research and calibration efforts for a wide range of sensors used in air quality monitoring. By 
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establishing a foundation for standardized calibration approaches, this study contributes to advancing sensor technologies and 

promoting the generation of reliable and comparable air quality data across diverse monitoring networks. 475 
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