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Figure S1. The start times of 500 randomly selected calibration periods for the MAS1 NO sensor. 

 

 

Figure S2. (a) Laboratory environmental chamber setup and (b) the response of 4 MASs' NO sensors under 
multiple point concentrations in laboratory temperature and humidity test. 
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Figure S3. MAS1 NO2 sensor calibrated data overview. 

 

 

Figure S4. MAS1 NO sensor calibrated data overview. 

 



 
Figure S5. The potential range of the calibration slope, validation R2 and RMSE for a given calibration period for 

each MAS (a) NO2, (b) NO, (c) CO, and (d) O3 sensors. Different colored lines represent the results of different 

MAS units. The vertical error bar is the 25%–75% distribution of the results under different calibration periods. 

 

 

Figure S6. (a) NO2 and (b) NO bubble plot of median R2 of MAS units 7 and 8 (located in the high-concentration 

region (Shanghai)) and two factors: calibration period and concentration span. The size of the bubbles represents 



the number of samples. The color of these bubbles represents the median R2 values in corresponding categories. 

Red represents higher R2 values, while blue represents lower R2 values. 

 

 

Figure S7. Calibration slope median, the R2 median of the validation set, and the RMSE median of the validation 

set under different time averaging for a given calibration period for the MAS1 NO sensor. 

 



  

Figure S8. Calibration slope median, the R2 median of the validation set, and the RMSE median of the validation 

set under different time averaging for a given calibration period for the MAS1 CO sensor. 

 



 

Figure S9. Calibration slope median, the R2 median of the validation set, and the RMSE median of the validation 

set under different time averaging for a given calibration period for the MAS1 O3 sensor. 

 



 

Figure S10. Comparison of the distribution between reference data and the MAS1 NO2 sensor data after 

calibration using varying time averaging. The purple and green dashed lines represent the normal distribution of 

the sensor and reference fitting, respectively. μ and σ represent the mean and standard deviation of the normal 

distribution, respectively. 

 

Text S1. Potential causes of sensor calibration coefficient variation from mathematical perspective 

To delve deeper into the enhanced calibration performance with increased time averaging, the principles 

of linear regression are pivotal (Marill 2004). In calibrating sensor data via linear regression (Reference 

= a × Sensor_raw + b + ε), it is posited that the dependent variable Y (Reference) consists of the linear 

portion (a × Sensor_raw + b) and a residual component (ε) adhering to a normal distribution (Tripepi et 

al. 2008). The residuals in this model should conform to the white noise criteria  (Kulperger 1998; 

Rahmatullah Imon 2009), signifying their independence, identical distribution, and lack of 

autocorrelation. These residuals should also be uncorrelated with both the independent variable X 

(Sensor_raw) and dependent variable Y, maintaining a zero mean and constant variance, indicative of 

'homoscedasticity' or its absence, 'heteroscedasticity'. 

Analyzing the residuals is essential for grasping sensor data nuances and validating the model's 

calibration coefficients(Law and Jackson 2017). Figure S11 displays the residual plot in the X and Y 

axes, where residuals display a random, homoscedastic distribution over X values but turn 



heteroscedastic with a strong linear tie to Y in minute-level data. This pattern suggests overlooked 

influential factors in the calibration model (Tripepi et al. 2008), which significantly interact with Y, 

affecting the residuals systematically. 

Consequently, the predictive capability of the calibration model may be compromised since it fails to 

encapsulate these crucial variables' effects on Y. However, averaging X and Y over time tends to 

normalize the residuals' homoscedasticity in the hourly data along the Y axis, possibly due to mitigating 

heteroscedasticity-inducing elements during time averaging (Long and Ervin 2000). This leads to a 

more homoscedastic arrangement in Y and a mitigated impact on the X-Y regression relationship. While 

further analysis is needed to pinpoint the factors affecting residual behavior, it's clear that extended time 

averaging of sensor data facilitates calibration coefficients nearing the ideal solution, highlighting the 

importance of appropriate time averaging in achieving optimal calibration.  

  

Figure S11. (a) Scatter plots of the reference and sensor_raw data of MAS1’s NO2 sensor at hourly and minute-

level time averaging, respectively. (b) Distribution of sensor residuals (Reference - Sensor) in the sensor 

direction. (c) Distribution of sensor residuals in the reference direction. The red and blue lines in (b) and (c) are 

the fitted trends of the residuals. 
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